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Abstract

Computer Aided Design (CAD) is indispensable
across various industries. Text-based CAD editing,
which automates the modification of CAD models
based on textual instructions, holds great poten-
tial but remains underexplored. Existing methods
primarily focus on design variation generation or
text-based CAD generation, either lacking support
for text-based control or neglecting existing CAD
models as constraints. We introduce CAD-Editor,
the first framework for text-based CAD editing.
To address the challenge of demanding triplet
data with accurate correspondence for training,
we propose an automated data synthesis pipeline.
This pipeline utilizes design variation models to
generate pairs of original and edited CAD mod-
els and employs Large Vision-Language Models
(LVLMs) to summarize their differences into edit-
ing instructions. To tackle the composite nature
of text-based CAD editing, we propose a locate-
then-infill framework that decomposes the task
into two focused sub-tasks: locating regions re-
quiring modification and infilling these regions
with appropriate edits. Large Language Models
(LLMs) serve as the backbone for both sub-tasks,
leveraging their capabilities in natural language
understanding and CAD knowledge. Experiments
show that CAD-Editor achieves superior perfor-
mance both quantitatively and qualitatively. The
code is available at https://github.com/
microsoft/CAD-Editor.
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1. Introduction
In the modern digital era, Computer-Aided Design (CAD)
has become indispensable across industries. Most modern
CAD tools follow the Sketch-and-Extrude (SE) Opera-
tions paradigm (Shahin, 2008; Camba et al., 2016), where
designers sketch 2D curves to define the outer and inner
boundaries of profiles, extrude them into 3D shapes, and
combine these shapes to create complex models.

CAD model creation is an iterative process, where an initial
draft undergoes multiple modifications until it aligns with
user requirements. Natural language plays a crucial role
throughout this process, serving as a key medium of com-
munication. For non-experts, it offers the most intuitive way
to express their needs, while for professionals, it enables
fast, detailed, and precise instructions. Consequently, a sys-
tem capable of automatically editing CAD models based
on textual instructions – known as text-based CAD edit-
ing (Figure 1) – has the potential to revolutionize the entire
CAD design workflow. Such a system could significantly
accelerate the development of CAD models and empower a
broader range of individuals, especially those with limited
design expertise, to create CAD models more effectively.

While important, text-based CAD editing receives limited
attention. Some studies explore design variation generation,
where new CAD models are generated by randomly alter-
ing components of an existing model (Wu et al., 2021; Xu
et al., 2022; 2023; Zhang et al., 2024b). However, these ap-
proaches lack support for text-based control over the appear-
ance of the generated CAD models, limiting their practical
usability. Another line of research makes initial attempts
at text-based CAD generation, focusing on generating new
CAD models directly from textual descriptions (Khan et al.,
2024b; Li et al., 2024). Nonetheless, these methods do not
incorporate an existing CAD model as input, which pre-
vents them from leveraging the original design’s context
and constraints.

Text-based CAD editing presents several distinct challenges.
First, training for this task requires triplet data with accu-
rate correspondence among an original CAD model, an
editing instruction, and an edited CAD model. However,
such data does not naturally exist, and manually collection
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Drill four smaller holes 
through corners.

Transform the 
rectangular panel 
into circular one.

Add smaller prisms 
on the top.

Increase the height of 
the entire shape.

Remove the cylinder.

Figure 1. Text-based CAD editing achieved by CAD-Editor. Each sub-figure shows the editing instruction at the top, the original CAD
model on the left, and the edited CAD model on the right. The rendered image is shown for better comprehension. The actual editing
occurs on sketch-and-extrusion (SE) operations of a CAD model to provide editability and reusability.

is both costly and difficult to scale. Second, text-based CAD
editing is inherently a composite problem. It demands a com-
prehensive understanding of diverse textual instructions and
geometric concepts, the ability to locate the corresponding
parts within the intricate structure of the CAD’s SE opera-
tions, and the capability to generate concrete modifications
to these SE operations.

In this work, we introduce CAD-Editor, the first frame-
work for text-based CAD editing. We frame the task as a
sequence-to-sequence (seq2seq) generation problem, where
the input combines an editing instruction and the sequence
representation of the original CAD model, and the output
is the sequence of the edited CAD model (Figure 2). To
address the need for triplet data with accurate correspon-
dence, we propose an automated data synthesis pipeline
that leverages existing design variation models and Large
Vision-Language Models (LVLMs) (Figure 3). Starting
from an existing CAD model, design variation models gen-
erate edited CAD models by randomly altering parts while
keeping others unchanged, producing pairs of original and
edited CAD models. LVLMs then summarize the differ-
ences between these CAD models into editing instructions,
resulting in triplets with strong correspondence. To tackle
the composite nature of text-based CAD editing, we de-
compose the task into specialized sub-tasks: locating and
infilling, each addressing a specific aspect of the editing
process (Figure 4). For both sub-tasks, Large Language
Models (LLMs) serve as the backbone, leveraging their
strong natural language understanding capabilities and ba-
sic CAD-related knowledge, including SE operations and
geometric concepts (Makatura et al., 2023). In the locat-
ing stage, LLMs identify regions requiring modification by
generating a masked CAD sequence, where special tokens
<mask> indicate the regions to be modified. In the infilling
stage, LLMs generate appropriate edits for these masked
regions, using the masked CAD sequence from the locating
stage as context.

The contributions of this work are summarized as follows:

• We introduce a new task, text-based CAD editing, en-
abling precise edits through textual instructions to bet-

ter align with real-world user needs.
• We propose an automated data synthesis pipeline that

combines design variation models and LVLMs to gen-
erate triplet data with accurate correspondence, ad-
dressing a critical challenge in training.

• We develop a locate-then-infill framework that decom-
poses the task into focused sub-tasks, and leverage
LLMs as the backbone, effectively handling the com-
posite nature of text-based CAD editing.

• We conduct extensive experiments, demonstrating that
our approach outperforms baselines in generation va-
lidity, text-CAD alignment, and overall quality.

2. Related Works
CAD Generation. Parametric CAD (Shahin, 2008; Camba
et al., 2016), defined by its sketch-and-extrude operations,
is central to mechanical design due to its ability to retain
modeling history, which facilitates both editing and manu-
facturing. Recent large-scale CAD datasets (Wu et al., 2021)
have fueled the development of generative models. Wu et al.
(2021) explored unconditional generation, where a random
latent vector is used as input to generate CAD models. Xu
et al. (2022; 2023); Zhang et al. (2024b) focused on design
variation generation, which randomly modifies specific part
of an existing CAD model. Recently, Khan et al. (2024a);
Li et al. (2024) studied text-based CAD generation, which
transforms textual descriptions into CAD models. Our work
differs in two key aspects. First, we target a distinct task,
unlike prior work, which either lacks text-based control (Wu
et al., 2021; Xu et al., 2022; 2023; Zhang et al., 2024b)
or disregards existing CAD models as constraints (Khan
et al., 2024a; Li et al., 2024). Second, we introduce a novel
locate-then-infill framework based on LLMs to handle the
composite nature of text-based CAD editing. Previous ap-
proaches either rely on VAE-based (Wu et al., 2021; Xu
et al., 2022; 2023) or transformer-based (Khan et al., 2024a;
Li et al., 2024) architectures, or apply LLMs without ac-
counting for task-specific needs (Zhang et al., 2024b).

Large Language Models (LLMs). Recently, LLMs like
GPT (Achiam et al., 2023; OpenAI, 2023) and LLaMA (Tou-
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INPUT
Original CAD Sequence:
[Original CAD sequence]
Instruction:
Increase the cylinder's height and reduce its diameter centrally.
Edited CAD Sequence:

OUTPUT
[Edited CAD sequence]

line,10,19 <EoC> line,31,7 <EoC> line,52,19 <EoC> 
line,52,43 <EoC> line,31,55 <EoC> line,10,43 <EoC> <EoL> 
<EoF> <EoS> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,57,31,31 
<EoE> circle,31,53,31,9,53,31,9,31 <EoC> <EOL> <EoF> 
<EoS> add,31,44,31,31,63,1,0,0,0,1,0,0,0,1,37,31,31 <EoE>

CAD Sequence Rendered CAD Model

Figure 2. Left: Example input and output for CAD-Editor. The input combines the original CAD sequence with the editing instruction,
and the output is the edited CAD sequence. The specific CAD sequence is shortened to ‘[Original (or Edited) CAD Sequence]’ to save
space. Right: An illustration for a specific CAD sequence and its rendered CAD model.

vron et al., 2023) have distinguished themselves from
smaller models, particularly through advanced prompt-
ing (Brown et al., 2020; Wei et al., 2022b; Kojima et al.,
2022) or fine-tuning methods (Wei et al., 2022a). Beyond
excelling in natural language processing (Yue et al., 2024;
Zhan et al., 2025; Zhao et al., 2025), LLMs have trans-
form generative tasks in other domains, e.g. motion gener-
ation (Zhang et al., 2024a) and material generation (Gru-
ver et al., 2024). These advancements inspire us to adopt
LLMs as the backbone for subtasks in our locate-then-infill
framework. Moreover, LLMs and LVLMs are increasingly
utilized for data synthesis to enhance training (Xu et al.,
2024; Yu et al., 2024). Specifically, Khan et al. (2024b)
leverage LLMs/LVLMs to synthesize data for text-based
CAD generation. However, our task of text-based CAD
editing presents distinct challenges. First, unlike Khan et al.
(2024a), who generates two-tuple data (a text prompt and a
CAD model), our task involves creating triplet data: an edit-
ing instruction, an original CAD model, and an edited CAD
model. We address this by combining design variation mod-
els with LLMs/LVLMs. Second, while Khan et al. (2024a)
focus on captioning single CAD models, our task requires
summarizing differences between two CAD models. We
handle this by introducing a stepwise captioning strategy.

Text-based Editing in Other Domains. Text-based editing
has been widely explored across various domains, e.g., 3D
editing (Mikaeili et al., 2023), image editing (Meng et al.,
2021; Brooks et al., 2023), and video editing (Chai et al.,
2023; Ceylan et al., 2023). It enables users to specify and
modify particular objects or attributes with precision and
flexibility. Inspired by these advancements, we introduce
text-based editing in the CAD domain for the first time.

3. Approach Overview
Let I denotes the editing instruction, Corig the original CAD
model and Cedit the edited CAD model. Here, the CAD
model is represented using Sketch-and-Extrude (SE) opera-
tions, as this representation preserves the modeling history,
making it easier to edit. The goal of text-based CAD editing
is to learn a function f that takes I and Corig as inputs and

generates Cedit as output, i.e., Cedit = f(I, Corig).

We formulate text-based CAD editing as a sequence-to-
sequence (seq2seq) generation problem. To achieve this,
both the editing instruction and the CAD models are rep-
resented as sequences of textual tokens. The editing in-
struction I naturally consists of textual tokens. For the
CAD models Corig and Cedit, we adopt the sequence format
introduced by Zhang et al. (2024b), which abstracts all prim-
itives in SE operations, including numerical and categorical
parameters, into textual tokens (Figure 2).

To address the need for training data with good corre-
spondence among I, Corig, and Cedit, denoted as D =
{(I, Corig, Cedit)}N1 (where N is the data size), we introduce
an automated data synthesis pipeline (Section 4). First, we
obtain Cedit from Corig by leveraging existing design varia-
tion models (Xu et al., 2023) to randomly modify certain
parts of the original CAD model while keeping others un-
changed. Next, we generate the corresponding I by utilizing
LVLMs to summarize the differences between the paired
CAD models. Finally, we assemble these components into
triplets.

Based on seq2seq formulation and triplet-correspondence
dataset, we propose a locate-then-infill framework to tackle
the composite nature of text-based CAD editing (Section 5).
Specifically, we decompose the problem into two focused
sub-tasks: locating and infilling, each handling a more
manageable aspect of the overall problem. In the locat-
ing stage, we predict a masked CAD sequence Cmask by
inserting special <mask> tokens into Corig, indicating the re-
gions that require modification, i.e., Cmask = flocate(I, Corig).
In the infilling stage, We generate Cedit by filling in pre-
cise modifications within the masked regions, i.e., Cedit =
finfill(I, Corig, Cmask). In both stages, LLMs serves as the
backbone, leveraging their natural lauguage understanding
and CAD knowledge acquired during the pre-training.

4. Automated Data Synthesis Pipeline
Figure 3 illustrates our data synthesis pipeline, comprising
three key steps introduced below.
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Design Variation 
Generation

(a) Paired CAD Models Generation

Stepwise 
Captioning

(c) Assembling

→ →

"Decrease the size of 
the cylinder's radius."

(b) Editing Instruction Generation

Multi-modal
Representation

“Reduce the radius of the 
cylinder by 10 units.”

Textual

Visual

line ... <EoE> 
line ...<EoE>

line ... <EoE> circle,31,43,31,19,
43,31,19,31 ...<EoE>

“Insert a cylindrical rod 
through the central hole.”

line ... <EoE> circle,31,53,31,9,
53,31,9,31 ...<EoE>

line ... <EoE> 
circle ...<EoE>

line ... arc ... 
circle ... <EoE>

line ... arc ... 
circle ... <EoE>
circle ... <EoE>

“Replace the cylinder with a 
rectangular prism.”

Figure 3. Illustration of automated data synthesis pipeline.

Paired CAD Models Generation. In this step, we create
paired CAD models, Corig and Cedit, by starting with an ex-
isting CAD model and applying design variation models
to create its variations. We source CAD models from the
DeepCAD dataset (Wu et al., 2021) and use Hnc-CAD (Xu
et al., 2023) as our design variation model1. Given an ex-
isting CAD model C0, we use Hnc-CAD’s auto-completion
to generate variants C1, . . . , CK . We then create paired
CAD models by: 1) treating C0 as the original and Ck
(k ∈ [1,K]) as the edited CAD model; 2) reversing the
roles, considering Ck as the original and C0 as the edited
CAD model; and 3) using two generated variants, Ck1

and
Ck2

(k1, k2 ∈ [1,K], k1 ̸= k2), as the original and edited
CAD models. This approach captures common CAD editing
operations, including addition, deletion, and replacement.

Editing Instruction Generation. In this step, we generate
editing instructions, I, by summarizing the difference be-
tween Corig and Cedit using LVLMs. To ensure both diversity
and accuracy, we introduce two key techniques.

First, we represent CAD models in multiple modalities:
the visual and sequence modalities. The intuition is that
high-level structural changes (e.g., changing a cylinder to a
cube) are more easily observed in the visual modality, while
low-level numerical changes (e.g., doubling the height) are
better captured in the sequence modality. Additionally, the
sequence modality provides a detailed representation of all
operations, ensuring that no information is lost. In our imple-
mentation, we use rendered images for the visual modality
and SE operations for the sequence modality.

Second, we propose a stepwise captioning strategy to break
down the complex task of difference summarization into
three sub-tasks, enhancing generation quality of LVLMs.
For each representation (visual or sequence) of a CAD

1We choose Hnc-CAD for its well-developed open-source im-
plementation. Other design variation models (Xu et al., 2022;
Zhang et al., 2024b) are also applicable.

model pair, we follow these steps: 1) describing each CAD
model – this involves analyzing geometric properties such as
component types, quantities, sizes, and spatial relationships;
2) identifying differences – using the detailed descriptions
from the previous step alongside CAD models, this stage
extracts the necessary modifications between CAD models;
and 3) compressing instructions – the final step refines the
editing instructions into a concise yet precise form.

Assembling. Finally, we assemble CAD pairs (Corig and
Cedit) from the first step and editing instruction (I) from the
second step into triplets, constructing the training dataset
D = {(I, Corig, Cedit)}N1 . Note that the visual modality is
only used in the second stage to generate diverse editing
instructions. In the final dataset, all CAD models are rep-
resented as SE operations, aligning with the focus of this
work – text-based CAD editing in the SE domain.

5. Locate-then-Infill Framework
Figure 4 illustrates our framework. We decompose text-
based CAD editing by explicitly introducing a masked CAD
sequence, Cmask, to indicate potential modification regions:

P (Cedit | Corig, I) ≜ (1)
P (Cmask | Corig, I) · P (Cedit | Corig, I, Cmask),

where P (·) denotes the probability. Here, P (Cmask | Corig, I)
represents locating stage, while P (Cedit | Corig, I, Cmask) cor-
responds to the infilling stage.

5.1. Locating Stage

This stage aims to generate a masked CAD sequence, Cmask,
where regions requiring modification are marked by special
tokens <mask> while unchanged parts are copied from
the original CAD sequence Corig. We adopt LLMs as the
backbone and autoregressively predict tokens in Cmask using
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(a) Locating Stage

LLMs LLMs

“Reduce the radius of the cylinder.”

Original CAD Sequence

line,10,19 <EoC> ... <EoE> 
circle,31,53,31,9,53,31,9,31 
<EoC> ... <EoE>

line,10,19 <EoC> ... <EoE> 
<mask> <EoC> ... <EoE>

line,10,19 <EoC> ... <EoE>
circle,31,43,31,19,43,31,19,31 
<EoC> ... <EoE>

...

Editing Instruction Token Original CAD Token

...

Masked CAD Token

...... ...

... ...

Modified CAD Token

Editing Instruction

Masked CAD Sequence Edited CAD Sequence

Original CAD Sequence Editing Instruction Masked CAD Sequence

(b) Infilling Stage

...
Masked CAD Sequence

...
Edited CAD Sequence

Original CAD Sequence

...

Editing Instruction

...

(c) Examples of Input and Output

Legends:

Figure 4. (a)-(b): Overview of Locate-then-Infill framework. (c): Examples of input and output, where the left column shows abstracted
representations using legends, the middle column displays concrete sequences and the right column presents rendered visual objects.

Corig and the editing instruction I as context:

P (Cmask | Corig, I) =
T∏

t=1

P (ctmask | Corig, I, c<t
mask), (2)

where T is the sequence length.

Creating Ground-Truth Masked CAD Sequence via LCS.
To finetune LLMs for the locating task, we require ground-
truth masked CAD sequences, denoted as Cgt-mask as super-
vision signals. We obtain them using the Longest Common
Subsequence (LCS) algorithm. Let Corig = {c1, . . . , cT }
and Cedit = {c̃1, . . . , c̃T } denote the tokenized original and
edited CAD sequences respectively. The LCS algorithm
computes the longest subsequence CLCS = {ci1 , . . . , cik}
such that CLCS ⊆ Corig and CLCS ⊆ Cedit, where the indices
i1, i2, . . . , ik represent the positions of matching tokens in
Corig. Using CLCS, we construct Cgt-mask as follows: 1) for
each token ci ∈ Corig, if ci ∈ CLCS, retain ci in Cgt-mask and if
ci /∈ CLCS, replace ci with the placeholder token <mask>;
2) for tokens in Cedit that do not appear in CLCS (representing
insertions), insert <mask> tokens at the corresponding posi-
tions in Cgt-mask; 3) consecutive <mask> tokens are merged
into a single <mask> token for simplicity.

5.2. Infilling Stage

This stage focuses on generating the final edited sequence
Cedit by precisely filling in the masked regions while preserv-
ing the unmodified parts. We employ LLMs as the backbone,
autoregressively predicting tokens in Cedit using Cmask from
the locating stage along with Corig and I as inputs:

P (Cedit | Cmask, Corig, I) (3)

=

T∏
t=1

P (ct | Cmask, Corig, I, c<t).

Improving Performance with Selective Data. To fine-tune
LLMs for the infilling task, we use the dataset D synthe-
sized through the pipeline introduced in Section 4. While

we strive to ensure high-quality synthetic data, achieving
absolute accuracy is impossible. To further improve perfor-
mance, we introduce a selective dataset curated with human
annotations. Rather than having human annotators create
editing instructions or CAD models from scratch, we adopt
a more efficient approach — inviting them to select the
best option from generated candidates. This significantly
reduces human effort and accelerates dataset construction.
Specifically, we first fine-tune LLMs on synthetic data and
use them to generate multiple edited CAD sequences. These
sequences are then rendered into visual objects, and hu-
man annotators select the best one. The chosen sequence,
along with its corresponding original CAD model and tex-
tual instruction, is added to the selective dataset. Finally, we
further fine-tune LLMs using this selective dataset.

5.3. Training and Inference

Training. In the locating stage, we fine-tune LLMs us-
ing Low-Rank Adapters (LoRA) (Hu et al., 2022) with the
ground-truth masked CAD sequence constructed via LCS.
For the infilling stage, we first fine-tune LLMs using LoRA
with the synthetic dataset introduced in Section 4. We then
further refine the model by fine-tuning it with LoRA on the
selective dataset introduced in Section 5.2.

Inference. During inference, the locating and the infilling
stage operates sequentially. The locating stage generates
Cmask using Corig and I as input. The infilling stage generates
Cedit by using Cmask from the locating stage along with Corig
and I as input.

6. Experiments
6.1. Experimental Setup

Datasets. We use the DeepCAD dataset (Wu et al., 2021)
which contains 178k CAD models. We split it into 90%
training, 5% validation, and 5% testing segments. We fol-
low the same strategy in existing work (Xu et al., 2022;
2023) to remove duplication. For the synthetic dataset used
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Input GPT-4o-ICGPT-4o-BasicOurs

(1) “Attach an annular groove around the central hole.” (5) “Remove the central vertical rectangular prism.”

(2) “Add a horizontal cylinder centrally beneath the arch structure.” (6) “Extend length, remove extension, add two cuboid extensions on end.”

(7) “Attach a hexagonal prism to one cylinder end, add recess.”(3) “Enlarge the central hole.”

(4) “Add a cylinder with a central circular hole, aligning with first hole.” (8) ”Remove the two horizontal rectangular prisms.“

Input GPT-4o-ICGPT-4o-BasicOurs

Figure 5. Qualitative results from CAD-Editor, GPT-4o-Basic and GPT-4o-IC .

for training, we generate 120k examples using the method
introduced in Section 4. For the test set, we randomly sam-
ple 2k examples from the original test segment, generate the
initial version following Section 4, and manually examine
them to ensure the correctness. To compare the performance
of different methods, we generate 5 outputs for each exam-
ple in the test set, yielding 10k CAD models for evaluation.

Implementation Details. During data synthesis, GPT-4o
is utilized for the visual modality, while LLaMA-3-70B han-
dles the sequence modality. For training, we adopt Llama-
3-8B-Instruct as the backbone model, fine-tuning it over
70 epochs using PyTorch’s Distributed Data Parallel (DDP)
framework on 4 NVIDIA A800-80GB SMX GPUs. The
initial learning rate is set to 1e-4 with a maximum token
length of 1024. We employ LoRA with a rank of 32. During
the inference, we set the temperature as 0.9 and top-p as 0.9
to generate varied results in each trial.

Baselines. We compare our results with three types of
baselines: 1) design variation generation models, including
SkexGen (Xu et al., 2022), Hnc-CAD (Xu et al., 2023)
and FlexCAD (Zhang et al., 2024b); 2) text-based CAD
generation models such as Text2CAD (Khan et al., 2024a)
and 3) foundation models that are not specifically designed
for CAD generation but have acquired some CAD knowl-
edge during pre-training. For the third category, we select
one of the most powerful foundation models, GPT-4o, as
our baseline. We use two prompting strategies: 1) GPT-4o-

Basic, which provides only an explanation of CAD opera-
tion sequences; and 2) GPT-4o-IC: which includes three
in-context (IC) examples retrieved based on cosine simi-
larity between editing instructions, in addition to the basic
explanation. Notably, existing CAD design variation mod-
els and text-based CAD generation models do not support
text-based CAD editing. We include them as baselines to
show that our model can generate CAD models with com-
parable or superior validity and quality while addressing a
more complex task.

6.2. Metrics

As this work is the first to address text-based CAD editing,
we propose evaluating the task from three key aspects.

(1) Validity. The generated CAD sequence must be valid,
that is, it can be successfully parsed and rendered into a 3D
visual object. We denote this as Valid Ratio (VR).

(2) Realism. The generated CAD models should be realis-
tic and similar to ground-truth CAD models. To measure
this, we adopt the Jensen-Shannon Divergence (JSD) from
prior work (Wu et al., 2021; Xu et al., 2022; 2023). JSD
quantifies the similarity between two probability distribu-
tions, evaluating how often the ground-truth point clouds
occupy similar positions as the generated point clouds.

(3) Edit Consistency. The generated edits should faith-
fully reflect the provided textual instructions. We assess
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"Attach four cuboids perpendicularly to 
the vertical edge."

“Remove the shorter intersecting 
prism, keeping the longer one intact.”

“Subtract concentric cylinder to 
form annular ring.”

“Slant side faces of the rectangular 
prism to form trapezoids.”

“Draw and extrude a centered 
smaller star inside original prism.”

“Move the hole from edge to 
center and enlarge it.” “Flatten the arch, add a semi-

circle atop a base.”

“Add a smaller cylinder vertically 
on top of one larger cylinder.”

Figure 6. Additional results from CAD-Editor with various editing instructions . In each sub-figure, the left image shows the original
CAD model, the right image displays the edited CAD model and the text below provides the editing instruction.

“Add a 44-unit diameter 
circular hole.” 

“Attach a small cube mid-height 
on a vertical face.”

“Reduce the cylinder's 
height by half.”

“Drill one large and three 
smaller equidistant holes on top.”

Figure 7. CAD-Editor can deal with parametric instructions, including explicit numeric expressions and implicit parametric cues.

consistency at both the point cloud and image levels:

• Point Cloud Level. We use the Chamfer Distance (CD)
as a reconstruction metric as used in (Khan et al., 2024b)
to evaluate geometric alignment between the edited and
ground-truth CAD model pairs. While CD captures shape
similarity, it may not fully reflect semantic consistency, as
the goal of editing is not exact replication but meaningful
transformation aligned with the instruction.

• Image Level. We adapt Directional CLIP Score (D-
CLIP) from the image editing domain (Gal et al., 2022;
Brooks et al., 2023) as the metric. Building upon CLIP
score (Radford et al., 2021; Sohn et al., 2023), D-CLIP
evaluates how well the change between the image for the
edited CAD model and the image for the original CAD
model aligns with the editing instruction:

D-CLIP =
∆I ·∆T

|∆I||∆T |
, (4)

∆T = ET (tedit)− ET (torig) ,∆I = EI (iedit)− EI (iorig) ,

where EI and ET are CLIP’s image and text encoders, re-
spectively. torig is a neutral text (e.g.,“This is a 3D shape.”),
tedit is the concatenation of torig and the textual instruction.
iedit and iorig are the images for the edited and original CAD
model, respectively.

Table 1. Quantitative evaluations. SkexGen, Hnc-CAD, FlexCAD
and Text2CAD do not support text-based editing, so only their
generation quality is compared. JSD, CD, and D-CLIP values are
scaled by 102. ↑: the higher the better, ↓: the lower the better.

Method VR ↑ JSD ↓ CD ↓ D-CLIP ↑ H-Eval ↑

SkexGen 74.3 1.94 - - -

Hnc-CAD 77.4 1.77 - - -

FlexCAD 82.1 1.72 - - -

Text2CAD 84.8 2.39 1.91 - -

GPT-4o-Basic 63.2 1.10 2.30 - 1.08 7.22

GPT-4o-IC 84.5 0.70 1.55 - 0.11 15.6

CAD-Editor 95.6 0.65 1.18 0.11 43.2

6.3. Main Results

Quantitative Evaluation. Table 1 reports the average
scores across 3 runs. Notably, CAD-Editor achieves a high
Valid Ratio of 95.6%, significantly surpassing other meth-
ods and indicating a greater proportion of valid and high-
quality CAD generations. In terms of CD and D-CLIP,
which measure alignment with editing instructions, CAD-
Editor achieves scores of 1.18 and 0.11 respectively, repre-
senting substantial improvements over both GPT-4o-Basic
and GPT-4o-IC. These results underscore CAD-Editor’s ef-
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“Add a hollow 
cylinder on top.”

“Add a hexagonal 
prism on top.”Input

Input “Cut a centered 
hexagon through 
the cylinder.”

“Drill one large 
central hole and 
four smaller holes.”

“Subtract a 
cylinder shell from 
a solid cylinder.”

“Add a rectangular 
prism on top.”

Figure 8. Given one CAD model and various instructions, CAD-
Editor produces different outcomes.

fectiveness in adhering to user instructions. Additionally,
CAD-Editor outperforms all baselines on the point cloud
evaluation metric JSD, demonstrating good generation qual-
ity. Overall, the results indicate that CAD-Editor not only
enable precise text-based CAD editing, which better align-
ment with user instructions, but also achieve higher validity
and better quality of the generated CAD designs.

Qualitative Evaluation. In Figure 5, we qualitatively com-
pare our method with GPT-4o-Basic and GPT-4o-IC. We
observe that GPT-4o-Basic often generates irrelevant edits
(case 6), unrealistic shapes (case 3), or fails to make any
changes (cases 1 ,4 and 7). Additionally, it struggles with
distinguishing shape types (case 2) and locating specific
positions (case 5). It performs better with dynamic few-shot
prompting (i.e., GPT-4o-IC), highlighting the high quality
of our synthetic data. GPT-4o-IC can detect specific shapes
reasonably well but still struggles with precise localization
(case 2 and 4) and object count (case 8). In contrast, our
model successfully executes many challenging edits, in-
cluding modifying sizes, shapes, and positions, as well as
replacing, adding, and removing objects.

Besides, we present more results from CAD-Editor. Fig-
ure 6 shows how CAD-Editor handles a variety of editing
instructions and different CAD models. Figure 7 shows
that CAD-Editor has the ability to interpret parameterized
instructions, including explicit numeric expressions such as
“add a 44-unit diameter circular hole” and implicit paramet-
ric cues like “reduce the cylinder’s height by half”. Figure 8
illustrates that, given the same original CAD model, CAD-
Editor applies different modifications based on the provided
editing instructions. Figure 9 shows that when the edit-
ing instruction is vague, CAD-Editor generates multiple
CAD models, all aligning with the user’s intent. Figure 10
highlights the iterative editing capability of CAD-Editor,
allowing users to refine a CAD model through successive
instructions until a satisfactory result is achieved.

Human Evaluation. We randomly sampled 2,000 CAD

“Deepen the inward curvature of the sides.”

Input

Input

“Add smaller prisms on the top.“

Figure 9. Given the same CAD model and instruction, CAD-Editor
produces diverse outcomes.

Table 2. Ablation studies. The CAD-Editor-mini is trained on a
small set with 10k examples.

Method VR ↑ JSD ↓ CD ↓ D-CLIP ↑

CAD-Editor-mini w/ Basic 88.8 0.78 1.25 - 0.12

CAD-Editor-mini w/ Step 90.1 0.70 1.22 - 0.07

CAD-Editor w/ Direct 86.1 0.77 1.26 - 0.19

CAD-Editor w/ L-I 96.5 0.67 1.13 0.03

CAD-Editor w/ L-I & HS 95.6 0.65 1.18 0.11

models from the full set of generated results. Each pair of
original CAD model and edited CAD model was indepen-
dently rated by five crowd workers. For each pair, a score of
1 is assigned if the generated data is deemed successful, and
0 otherwise. Success is defined by two criteria: alignment
with the text and sufficiently high visual quality. The results,
denoted as H-Eval, are presented in Table 1. CAD-Editor
outperforms baselines, indicating that crowd workers fre-
quently found CAD models generated by baselines to be
misaligned with the instructions or of lower quality, whereas
our method demonstrated superior performance.

6.4. Ablation Studies

Stepwise Captioning Strategy. As introduced in Section 4,
we propose a stepwise captioning strategy to decompose the
complex task of generating editing instructions. To evaluate
its effectiveness, we conduct an experiment where LVLMs
are directly queried to generate editing instructions, denoted
as CAD-Editor w/ Basic. Our approach, which incorporates
stepwise captioning, is referred to as CAD-Editor w/ Step.
Due to resource constraints, we compare these methods on
a subset of 10k examples. Table 2 shows results. CAD-
Editor w/ Step outperforms CAD-Editor w/ Basic across all
metrics, highlighting the importance of stepwise captioning
strategy in ensuring accurate editing instruction generation.
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“Transform the base into a hexagonal 
one, and extrude cylinder from the hole.”

“Remove the top cylinder, 
keeping the central hole intact.”

“Add a larger 
rectangular base.”

“Replace the central circular 
hole with an elongated slot.”

“Transform the circular hole 
into a hexagonal cutout.”

“Round the corners.”“Fill the two smaller holes.” “Fill the cutout.” “Add four cylindrical legs.”

Figure 10. Apply CAD-Editor iteratively to edit a CAD model until it meets user requirements.

Locate-then-Infill Framework. Our approach consists of
two stages: the locating and infilling stages, each focused
on a specialized sub-task of text-based CAD editing. A
more straightforward approach would be to treat the task
as a whole, without decomposing it, and directly fine-tune
LLMs. We refer to this as CAD-Editor w/ Direct and com-
pare it with our method, CAD-Editor w/L-I. As shown in
Table 2, CAD-Editor w/L-I outperforms CAD-Editor w/ Di-
rect, showing the effectiveness of our two-stage approach in
addressing the composite nature of text-based CAD editing.

Selective Dataset. In Section 5.2, we propose improving the
performance of the infilling stage with selective data curated
with human annotation. We conduct experiments both with
or without such human selection, denoted as CAD-Editor
w/ L-I & HS and CAD-Editor w/ L-I. Table 2 shows that
this strategy results in the greatest improvement in both
JSD and D-CLIP scores, demonstrating its effectiveness
in enhancing generation quality and better aligning editing
instructions with the edited CAD model.

7. Limitation
While CAD-Editor shows promising results, it has limita-
tions. First, its data synthesis pipeline relies on LVLMs,
which are costly and struggle with processing multiple im-
ages simultaneously. Second, as an LLM-based system, it
faces challenges with long contexts and generating extended
sequences, limiting its ability to handle highly complex
CAD models and their corresponding edits.

8. Conclusion
We introduced CAD-Editor, the first framework for text-
based CAD editing. We proposed a data synthesis pipeline
to address the need of triplet data with accurate correspon-
dence, and a locate-then-infill framework to handle the com-
posite nature of the task. Experiments showed that CAD-

Editor outperforms other methods. In the future, we aim to
enhance our data synthesis pipeline to make it more cost-
effective and efficient. We also plan to develop an advanced
benchmark that better reflects practical user scenarios.
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Deng, B., Tjandrasuwita, M., Spielberg, A., Owens, C. E.,
Chen, P. Y., et al. How can large language models help
humans in design and manufacturing? arXiv preprint
arXiv:2307.14377, 2023.

Meng, C., Song, Y., Song, J., Wu, J., Zhu, J.-Y., and Ermon,
S. Sdedit: Image synthesis and editing with stochastic
differential equations. arXiv preprint arXiv:2108.01073,
2021.

Mikaeili, A., Perel, O., Safaee, M., Cohen-Or, D., and
Mahdavi-Amiri, A. Sked: Sketch-guided text-based 3d
editing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14607–14619, 2023.

OpenAI. Introducing chatgpt. OpenAI Blog, 2023. Avail-
able: https://openai.com/blog/chatgpt.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763, 2021.

Shahin, T. M. Feature-based design–an overview. Computer-
Aided Design and Applications, 5(5):639–653, 2008.

Sohn, K., Ruiz, N., Lee, K., Chin, D. C., Blok, I., Chang,
H., Barber, J., Jiang, L., Entis, G., Li, Y., et al. Styledrop:
text-to-image generation in any style. In Proceedings of
the 37th International Conference on Neural Information
Processing Systems, pp. 66860–66889, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022b.

10

https://openai.com/blog/chatgpt


CAD-Editor

Willis, K. D., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne,
J. G., Solar-Lezama, A., and Matusik, W. Fusion 360
gallery: A dataset and environment for programmatic
cad construction from human design sequences. ACM
Transactions on Graphics (TOG), 40(4):1–24, 2021.

Wu, R., Xiao, C., and Zheng, C. Deepcad: A deep gen-
erative network for computer-aided design models. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 6772–6782, 2021.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J.,
Tao, C., Lin, Q., and Jiang, D. Wizardlm: Empowering
large pre-trained language models to follow complex in-
structions. In The Twelfth International Conference on
Learning Representations, 2024.

Xu, X., Willis, K. D., Lambourne, J. G., Cheng, C.-Y.,
Jayaraman, P. K., and Furukawa, Y. Skexgen: Autore-
gressive generation of cad construction sequences with
disentangled codebooks. In International Conference on
Machine Learning, pp. 24698–24724, 2022.

Xu, X., Jayaraman, P. K., Lambourne, J. G., Willis, K. D.,
and Furukawa, Y. Hierarchical neural coding for control-
lable cad model generation. In International Conference
on Machine Learning, pp. 38443–38461, 2023.

Yu, L., Jiang, W., Shi, H., Jincheng, Y., Liu, Z., Zhang,
Y., Kwok, J., Li, Z., Weller, A., and Liu, W. Metamath:
Bootstrap your own mathematical questions for large lan-
guage models. In The Twelfth International Conference
on Learning Representations, 2024.

Yue, L., Liu, Q., Zhao, L., Wang, L., Gao, W., and An,
Y. Event grounded criminal court view generation with
cooperative (large) language models. In Proceedings of
the 47th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pp.
2221–2230, 2024.

Zhan, Y., Liu, Q., Gao, W., Zhang, Z., Wang, T., Shen, S.,
Lu, J., and Huang, Z. Coderagent: Simulating student
behavior for personalized programming learning with
large language models, 2025.

Zhang, Y., Huang, D., Liu, B., Tang, S., Lu, Y., Chen, L.,
Bai, L., Chu, Q., Yu, N., and Ouyang, W. Motiongpt:
Finetuned llms are general-purpose motion generators. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 7368–7376, 2024a.

Zhang, Z., Sun, S., Wang, W., Cai, D., and Bian, J. Flex-
cad: Unified and versatile controllable cad generation
with fine-tuned large language models. arXiv preprint
arXiv:2411.05823, 2024b.

Zhao, L., Wang, Y., Liu, Q., Wang, M., Chen, W., Sheng, Z.,
and Wang, S. Evaluating large language models through
role-guide and self-reflection: A comparative study. In
The Thirteenth International Conference on Learning
Representations, 2025.

11



CAD-Editor

A. CAD-Editor Dataset Preprocessing
The DeepCAD dataset exhibits a severe data imbalance. Among deduplicated 137,012 training models, over 91.1% have
three or fewer SE operations, while only 6.2% have 4–5 SEs. Models with more than 5 SEs make up less than 3%, and those
exceeding 10 SEs account for just 0.4%. To mitigate the impact of this long-tail distribution, we limit our dataset to models
with at most 3 SE pairs.

Additionally, the design variation generation model can sometimes introduce noise by altering a CAD model too drastically
or not at all. To ensure data quality, we implement a data filtering strategy. We filter out CAD pairs with too many changes
by excluding examples with more than three editing instructions or more than five <mask> tokens. We also filter out pairs
with no significant changes by excluding instructions containing phrases like “no transformation is needed”.

B. Stepwise Captioning Strategy
To implement stepwise captioning, we utilize GPT-4o four times per CAD pair to generate the final image-level editing
instructions. For sequence-level, we employ LLaMA-3-70B. The detailed prompts are illustrated in Figure 11.

Visual Modality
Step 1:
Please take a look at the first of two 3D shapes we'll be examining. Please provide a detailed description, focusing on its geometric 
properties, including the type and number of elements it features, the proportions of its size, its positional relationships between elements, 
and any additional details that stand out.
Step 2:
Now, let's turn our attention to the second 3D shape. Please provide a detailed description, focusing on its geometric properties, 
including the type and number of elements it features, the proportions of its size, its positional relationships between elements, and any 
additional details that stand out.
Step 3:
Please provide detailed instructions for transforming the first 3D shape into the second. 
Step 4:
Condense your instructions to one sentence, 10 words maximum.

Sequence Modality
## Task
You are a senior Computer-Aided Design (CAD) engineer. Your task is to provide a clear and concise editing instruction (10 words or 
fewer) for editing a sketch-and-extrude CAD model. Your response should include:
1. Description of the Original CAD Model: Analyze the CAD operation sequence and describe the resulting geometry. Include element 
types (e.g., cylinder, prism, hole), quantities, proportions, spatial relationships, and any notable details.
2. Description of the Edited CAD Model: Analyze the CAD operation sequence and describe the resulting geometry. Include element 
types (e.g., cylinder, prism, hole), quantities, proportions, spatial relationships, and any notable details.
3. Change Analysis:  
    - Geometric Changes: Describe added, removed, or modified elements, including types (e.g., cylinder, prism, hole) and quantities (e.g., 
two rectangles). Use spatial or geometric features (e.g., "upper triangular face", "smaller rectangular prism", "central circular hole") 
instead of unintuitive terms like "first" or "second."
    - Proportions and Dimensions: Note changes in size, scaling, or relative proportions.
    - Positional Relationships: Explain spatial alignment and relationships between elements.
    - Other Notable Details: Highlight any additional observations.
    - Purpose: Suggest the intent behind the edit (e.g., "add a central hole", "remove the smaller prism", or "increase length by 8 units").
4. Editing Instruction: Provide a concise instruction (max 10 words) describing the modification.

## Sketch-and-Extrude Model Overview
...

## Your Task
Original CAD Sequence: [ oiriginal CAD sequence]
Edited CAD Sequence: [edited CAD sequence]
Let's think step by step. Your output should be of the following json format:
{
    "Description of the Original CAD Model": your description here.
    "Description of the Edited CAD Model": your description here.
    "Change Analysis": your change analysis here.
    "Editing Instruction": the final editing instruction here (10 words maximum).
}

Figure 11. Detailed prompt used for stepwise captioning.
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Furthermore, Figure 12 presents a comparison between the basic captioning approach and our proposed stepwise captioning
method.

Basic Caption:
Drill three holes into the 
rectangular prism.
Stepwise Caption:
Drill two vertical holes on top, 
horizontal hole through side.

Basic Caption:
Add a cylinder and a rectangular 
prism to the surface.
Stepwise Caption:
Attach a cylinder and semi-
cylindrical prism to opposite sides.

Basic Caption:
Fill the rectangular cutout and 
left circular hole.
Stepwise Caption:
Fill cutout, remove one hole, 
center remaining hole on top.

Figure 12. Comparison between the basic captioning method and our stepwise captioning method.

C. Locate-then-Infill Framework
We adopt task-specific prompts for both the locating and infilling stages. The detailed prompt designs for each task are
shown in Table 3.

Table 3. Prompt for Locate-then-Infill framework.

Locating Prompt Infilling Prompt

Below is a Computer-Aided Design (CAD) oper-
ation sequence. Replace the parts that need to be
modified with the string “<mask>” according to
the editing instruction.
Original CAD Operation Sequence:
[Original CAD sequence]
Editing Instruction:
[Textual editing instruction]
Masked CAD Operation Sequence:
[Masked CAD sequence]

Below is the original Computer-Aided Design (CAD) operation
sequence.
Original CAD Operation Sequence:
[Original CAD sequence]
The parts that need to be modified according to the editing in-
struction have been replaced by the string “<mask>”.
Editing Instruction:
[Textual editing instruction]
Masked CAD Operation Sequence:
[CAD sequence with “<mask>” ]
Generate the edited CAD sequence that could replace “<mask>”
in the CAD model:

D. Additional Qualitative Results
We present qualitative comparisons between the directly fine-tuned LLM and our proposed Locate-then-Infill framework in
Figure 13. Compared to the direct fine-tuning approach, our framework improves generation quality, enhances text-CAD
alignment, and ensures greater output stability.

Additional qualitative comparisons between CAD-Editor and other baseline methods are shown in Figure 14, demonstrating
the superior performance of CAD-Editor under various editing conditions.

13



CAD-Editor

“Add a horizontal cylinder centrally 
beneath the arch structure.”

Input Direct Locate-then-Infill 

“Remove the top face of the solid 
rectangular prism.”

“Add smaller coaxial cylinders to 
each end.”

“Increase the height of each 
cylinder.”

Figure 13. The qualitative comparison between the directly fine-tuned LLM and our Locate-then-Infill framework.

“Attach a small cube mid-
height on a vertical face.”

“Subtract concentric cylinder to 
form annular ring.”

GPT-4o 
(3-shot)

CAD-
Editor

GPT-4o
-Basic

“Align and extend a smaller 
cylinder from one base.”

“Attach a vertical block perpendicularly to 
the horizontal base.”

“Add a smaller centered cylinder 
protruding from one disk base.”

“Align and evenly space three 
holes in a straight line.”

“Cut the central connecting prism to 
separate the end prisms.” “Add two symmetrical cylindrical 

protrusions to one long rectangular face.”

“Drill four smaller holes through corners, 
maintaining symmetry and alignment.”

“Add a raised hexagon with a 
central circular hole.”

“Cut two top squares, one bottom 
rectangle from front face.”

“Stack and horizontally shift 
duplicate cube by one edge length.”

“Attach a small cube mid-
height on a vertical face.”

“Subtract concentric cylinder to 
form annular ring.”

GPT-4o 
(basic)

CAD-

GPT-4o 
-IC

Editor

“Align and extend a smaller 
cylinder from one base.”

“Attach a vertical block perpendicularly to 
the horizontal base.”

“Add a smaller centered cylinder 
protruding from one disk base.”

“Align and evenly space three 
holes in a straight line.”

“Cut the central connecting prism to 
separate the end prisms.” “Add two symmetrical cylindrical 

protrusions to one long rectangular face.”

“Drill four smaller holes through corners, 
maintaining symmetry and alignment.”

“Add a raised hexagon with a 
central circular hole.”

“Cut two top squares, one bottom 
rectangle from front face.”

“Stack and horizontally shift 
duplicate cube by one edge length.”

Figure 14. Additional qualitative comparison results between CAD-Editor and baseline methods.
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E. Scaling & Generalization
Due to the severe data imbalance in DeepCAD, we constrain the SE length during training. To evaluate the scalability of
our method, we conduct an additional experiment in which we artificially balance the dataset across different SE lengths.
Specifically, we construct a training set containing 4,000 samples for each SE length from 1 to 5, ensuring a uniform
distribution. The model is then evaluated on separate test sets corresponding to each SE length. As shown in Table 4,
CAD-Editor consistently outperforms the baselines across all SE lengths. Model performance declines slightly as SE length
increases. Since generating longer sequences is inherently more challenging, this result demonstrates that our method
generalizes well to complex CAD structures given sufficient training data.

To further assess generalization, we evaluate CAD-Editor’s generalization by testing a model trained on DeepCAD directly
on Fusion 360 dataset (Willis et al., 2021). As shown in Table 5 , CAD-Editor outperforms baselines, confirming its
generalization ability to datasets with different shape distributions.

We present additional results generated by CAD-Editor in Figure 15, including cases with more than three SEs and examples
sourced from the Fusion 360 dataset.

Table 4. Quantitative evaluation across different numbers of sketch-extrude (SE) operations. We construct a dataset of 20,000 examples
with a uniform distribution over SE counts from 1 to 5. JSD and D-CLIP values are scaled by 102. ↑: higher is better, ↓: lower is better.

Method JSD ↓ D-CLIP ↑ VR ↑

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

GPT-4o-Basic 5.98 2.86 3.68 3.82 3.95 -0.31 -0.90 -0.61 -0.47 -0.97 56.5 64.2 59.4 61.5 58.3

GPT-4o-IC 5.42 1.75 2.29 2.40 3.67 0.39 -0.06 -0.50 -0.11 -0.38 76.2 85.0 76.5 75.5 73.1

CAD-Editor 4.08 1.46 2.01 2.35 3.15 0.41 -0.23 -0.06 -0.02 -0.29 84.3 91.6 87.5 79.3 79.5

Table 5. Quantitative evaluation on the dataset generated from the Fusion 360 Gallery. Lower JSD and higher D-CLIP and VR values
indicate better performance. The results demonstrate that our method exhibits strong generalization ability.

Method JSD↓ D-CLIP↑ VR↑

GPT4o-Basic 4.58 -0.45 57.7

GPT4o-IC 2.59 -0.39 81.5

CAD-Editor 2.34 0.41 93.9

Combine every two small cylinders 
into one large cylinder.

Remove the smallest prism.

Increase the vertical thickness of all 
tori without changing positions.

Add a triangular roof to the top. Add a centered semicircular cutout 
above the two circular holes.

Add vertical cylinders to existing 
outer protrusions of the shape.

Remove inner section, add two 
smaller concentric cylinders on top.

Drill symmetric holes through 
one flat cylinder disk.

Figure 15. Extended results from CAD-Editor on more complex scenarios, including examples with more than three SEs and examples
sourced from Fusion 360 datasets.
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F. Baseline Editing Methods
This section presents the detailed prompt used in the GPT-4o-IC baseline, as illustrated in Figure 16. The GPT-4o-Basic
prompt follows the same format, excluding the in-context examples.

Modify the original Computer-Aided Design(CAD) operation sequence according to the instruction:
## Instructions for sketch-and-extrude model
A sketch-and-extrude model consists of multiple extruded-sketches.
# Sketch
-   A sketch consists of multiple faces
-   A face consists of multiple loops.
-   A loop consists of multiple curves.
-   A curve is either a line, an arc, or a circle.
-   A circle is defined by four points with four geometry tokens. 
-   An arc is defined by three points but with two tokens, where the third point is specified by the next curve (or the 
first curve when a loop is closed). 
-   A line is defined by start point. 
-   A point is represented by two integers which stands for the x and y coordinate, respectively.
-   A loop with a circle can not contain additional curves since it is already a closed path. 
-   When a face consists of multiple loops, the first loop defines the external boundary, and the remaining loops define 
internal loops (i.e., holes).
-   An end-primitive token appears at the end of each primitive (curve, line, face, loop or sketch).
# Extrude
Each sketch will be followed by an extrude, which is represented by 18 parameters: BVVTTTRRRRRRRRRSOO.
- B represents one of the three Boolean operations: add, cut or intersect. It occupies 1 parameter
- V indicates the displacements of the top and the bottom planes from the reference plane in which a sketch is 
extruded to form a solid. It occupies 2 parameters.

- T represents 3D translation applied to the extruded solid. It occupies 3parameters.
- R represents 3D rotation of the extrusion direction. It occupies 6 parameters.
- S represents the uniform scaling factor. It occupies 1 parameter.
- O represents the center of scaling as a 2D coordinate. It occupies 2 parameters.
# Note
-   Note that every number is an integer.
## Examples for editing sketch-and-extrude model
[The 3 most similar editing instructions and their corresponding CAD pairs]
## Your task
Original CAD Command Sequence:  [original sequence]
Instruction: [editing instruction]
Your output should be of the following json format:
{
    “edited sequence": your modified CAD sequence here.
}
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Figure 16. Prompt employed in baseline methods for CAD model editing.
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