
On the O(
√
d

K1/4) Convergence Rate of AdamW
Measured by ℓ1 Norm

Huan Li 1B Yiming Dong 2 Zhouchen Lin 2,3,4B

lihuanss@nankai.edu.cn ymdong@stu.pku.edu.cn zlin@pku.edu.cn

1. College of Artificial Intelligence, Nankai University, Tianjin, China
2. State Key Lab of General AI, School of Intelligence Science and Technology, Peking University

3. Institute for Artificial Intelligence, Peking University, Beijing, China
4. Pazhou Laboratory (Huangpu), Guangzhou, China

Abstract

As the default optimizer for training large language models, AdamW has achieved
remarkable success in deep learning. However, its convergence behavior is
not theoretically well-understood. This paper establishes the convergence rate
1
K

∑K
k=1 E

[
∥∇f(xk)∥1

]
≤ O(

√
dC

K1/4 ) for AdamW measured by ℓ1 norm, where
K represents the iteration number, d denotes the model dimension, and C matches
the constant in the optimal convergence rate of SGD. Theoretically, we have
∥∇f(x)∥2 ≪ ∥∇f(x)∥1 ≤

√
d∥∇f(x)∥2 for any high-dimensional vector x

and E [∥∇f(x)∥1] ≥
√

2d
π E [∥∇f(x)∥2] when each element of ∇f(x) is gener-

ated from Gaussian distribution N (0, 1). Empirically, our experimental results
on real-world deep learning tasks reveal ∥∇f(x)∥1 = Θ(

√
d)∥∇f(x)∥2. Both

support that our convergence rate can be considered to be analogous to the optimal
1
K

∑K
k=1 E

[
∥∇f(xk)∥2

]
≤ O( C

K1/4 ) convergence rate of SGD.

1 Introduction

AdamW, which modifies Adam by decoupling weight decay from gradient-based updates, has
emerged as the dominant optimizer for training deep neural networks, particularly for large language
models. AdamW represents the pinnacle of adaptive gradient algorithms, having developed through
the progression of AdaGrad [1, 2], RMSProp [3], Adam [4], and finally AdamW [5] itself. Although
the literature on the convergence analysis of adaptive gradient algorithms is quite extensive, there has
been little research on the convergence properties of AdamW.

Recently, Xie and Li [6] proved that if the iterates of AdamW converge to some x∞, then x∞ is a
KKT point of the constrained problem

min
x∈Rd

f(x), s.t. ∥x∥∞ ≤ 1

λ
, (1)

where f(x) is the nonconvex objective function, ∥ · ∥∞ is the infinity norm, and λ is the weight decay
parameter. Moreover, x is a KKT point of problem (1) iff [6]

∥x∥∞ ≤ 1

λ
and ⟨λx,∇f(x)⟩+ ∥∇f(x)∥1 = 0. (2)

Xie and Li characterized which solution does AdamW converge to, if it indeed converges. The
next fundamental question to address is whether and how fast AdamW converges. Zhou et al. [7]
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conducted preliminary exploration on this problem. However, their analysis requires the weight decay
parameter to decrease exponentially, making AdamW reduce to Adam finally. To the best of our
knowledge, aside from [7], we have not found any other literature addressing the convergence issue
of AdamW.

In practical deep learning training, we often initialize the network weights small and employ modest
weight decay, for example, λ = 0.01, which empirically confines the optimization trajectory within
the ℓ∞ norm constraint, as empirically demonstrated in Figure 3. That is, ∥x∥∞ ≤ c

λ for some c < 1,
making ⟨λx,∇f(x)⟩+ ∥∇f(x)∥1 lower bounded by (1− c)∥∇f(x)∥1. This key property enables
the use of ∥∇f(x)∥1 as an effective yet significantly simpler convergence metric for AdamW in
practical settings.

Building on the above observation, this paper focuses on the convergence rate of AdamW within the
constraint in problem (1). Specifically, we prove the following convergence rate for AdamW

1

K

K∑
k=1

E
[
∥∇f(xk)∥1

]
≤ O

( √
d

K1/4
4
√
σ2
sL(f(x

1)− f∗) +

√
dL(f(x1)− f∗)

K

)
(3)

by proper parameter settings such that ∥xk∥∞ < 1
λ for all iterates, where K is the total iteration

number, d is the model dimension, σs is the gradient noise variance, L is the Lipschtiz smooth
constant, and f∗ is a lower bound of f(x). Recall the classical convergence rate of SGD [8]

1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≤ O

(
4
√

σ2
sL(f(x

1)− f∗)

K1/4

)
, (4)

which matches the lower bound of nonconvex stochastic optimization [9]. Comparing (3) with
(4), we see that our convergence rate (3) also achieves the same lower bound with respect to K,
σs, L, and f(x1) − f∗. The only coefficient left unclear whether it is tight is the dimension d.
Theoretically, we have ∥∇f(x)∥2 ≪ ∥∇f(x)∥1 ≤

√
d∥∇f(x)∥2 for any high-dimensional vector x

and E [∥∇f(x)∥1] ≥
√

2d
π E [∥∇f(x)∥2] when each element of ∇f(x) is generated from Gaussian

distribution N (0, 1). Empirically, we have observed ∥∇f(x)∥1 = Θ(
√
d)∥∇f(x)∥2 on real-world

deep learning tasks, as shown in Figure 2. Thus, we could say that our convergence rate (3) can be
considered to be analogous to (4) of SGD in the ideal case.

As a special case, we also establish the same convergence rate (3) for Adam under slightly relaxed
parameter settings than AdamW. To the best of our knowledge, this convergence rate only appears for
RMSProp firstly proved in [10], and similar results for AdaGrad subsequently appeared in [11, 12]
and RMSProp in [13] under different assumptions. Notably, comparable convergence guarantees
remain unproven for AdamW and Adam.

2 Convergence Rate of AdamW

This section presents our convergence rate analysis for AdamW. We first describe the assumptions
used throughout this paper as follows, where we denote Fk = σ(g1,g2, · · · ,gk) to be the sigma
field of the stochastic gradients up to k, denote EFk

[·] as the expectation with respect to Fk and
Ek[·|Fk−1] the conditional expectation with respect to gk conditioned on Fk−1.

Assumptions:
1. Smoothness:

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥,
2. Unbiased estimator:

Ek

[
gk|Fk−1

]
= ∇f(xk),

3. Coordinate-wise bounded noise variance:
Ek

[
|gk

i −∇if(x
k)|2|Fk−1

]
≤ σ2

i .

Algorithm 1 AdamW

Hyper parameters: η, θ, β, λ, ε
Initialize x1, m0 = 0, v0 = 0
for k = 1, 2, · · · ,K do
gk = GradOracle(xk)
mk = θmk−1 + (1− θ)gk

vk = βvk−1 + (1− β)(gk)⊙2

xk+1 = (1− λη)xk − η√
vk+ε

⊙mk

end for

Denoting σ = [σ1, · · · , σd] as the noise variance vector and σs = ∥σ∥2 =
√∑d

i=1 σ
2
i , we have the
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following standard bounded noise variance assumption

Ek

[
∥gk −∇f(xk)∥2

∣∣Fk−1

]
≤ σ2

s .

Algorithm 1 provides the complete AdamW implementation, where we denote ⊙ for the Hadamard
product. Setting the weight decay parameter λ = 0 recovers the standard Adam. For analytical
simplicity, we omit the bias correction term in our analysis.

Based on Assumptions 1-3, we provide the convergence rate of AdamW in the following theorem.
Note that we do not assume the boundedness of the gradient ∇f(xk) or stochastic gradient gk.

Theorem 1 Suppose that Assumptions 1-3 hold. Define σ̂2
s = max

{
σ2
s ,

L(f(x1)−f∗)
Kγ2

}
with any

constant γ ∈ (0, 1]. Let 1 − θ =
√

L(f(x1)−f∗)
Kσ̂2

s
, θ ≤ β ≤

√
θ1, η =

√
f(x1)−f∗

4KdL , ε =
σ̂2
s

d , λ ≤
√
d√

72K3/4
4

√
L3

σ̂2
s(f(x

1)−f∗) , and ∥x1∥∞ ≤
√

K(f(x1)−f∗)
dL . Then for AdamW, we have ∥xk∥∞ < 1

λ for
all k = 1, 2, · · · ,K and

1

K

K∑
k=1

E
[
∥∇f(xk)∥1

]
≤ 8

√
d

K1/4
4
√
σ̂2
sL(f(x

1)− f∗) + 30

√
dL(f(x1)− f∗)

K
.

Specially, when σ2
s ≤ L(f(x1)−f∗)

Kγ2 , we have 1 − θ = γ, θ ≤ β ≤
√
θ, η =

√
f(x1)−f∗

4KdL , ε =

L(f(x1)−f∗)
dKγ2 , λ ≤

√
dLγ

72K(f(x1)−f∗) , ∥x1∥∞ ≤
√

K(f(x1)−f∗)
dL , ∥xk∥∞ < 1

λ , and accordingly

1

K

K∑
k=1

E
[
∥∇f(xk)∥1

]
≤ 38

√
dL(f(x1)− f∗)

Kγ
.

Theorem 1 demonstrates that AdamW minimizes the gradient norm directly while restricting
∥xk∥∞ < 1

λ . As a comparison, ℓ2 regularized Adam only minimizes ∥∇f(x) + λx∥, rather
than ∥∇f(x)∥.

As a special case, we also establish the same convergence rate for Adam in the following corollary
under slightly relaxed parameter settings. The complete description of Corollary 1 is given in
Appendix B.

Corollary 1 With the same assumptions and parameter settings of 1− θ, η, and ε as Theorem 1, but

only requiring 0 ≤ β ≤ 1 rather than both θ ≤ β ≤
√
θ and ∥x1∥∞ ≤

√
K(f(x1)−f∗)

dL , we have the
same convergence rate for Adam as established in Theorem 1.

2.1 Optimality of Our Convergence Rate

When comparing our convergence rate (3) with the optimal rate (4) of SGD, which aligns with
the lower bound in nonconvex stochastic optimization, we observe that our rate is also optimal
with respect to K, σs, L, and f(x1) − f∗. The only remaining uncertainty concerns the tightness
of the dimension d. Theoretically, ∥∇f(x)∥2 ≪ ∥∇f(x)∥1 ≤

√
d∥∇f(x)∥2 holds for any high-

dimensional vector x, and when each element of ∇f(x) is drawn from Gaussian distribution N (0, 1),

we have E [∥∇f(x)∥1] ≥
√

2d
π E [∥∇f(x)∥2] from Lemma 1. Empirically, experiments on real deep

neural networks training confirm ∥∇f(x)∥1 = Θ(
√
d)∥∇f(x)∥2, as demonstrated in Figure 2. Thus,

our convergence rate (3) can be regarded to be analogous to SGD’s optimal rate (4).

Lemma 1 When each entry of x ∈ Rd is generated from Gaussian distribution with zero mean and

unit variance, we have E [∥x∥1] ≥
√

2d
π E [∥x∥2].

1We gratefully thank the anonymous NeurIPS reviewer to derive this looser bound. Our original bound is
θ ≤ β ≤ (1+θ)2

4
.
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Figure 1: Illustration of average training loss f(xk) over epochs/steps, and at the initialization,
f(x1) ≤ 8.
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Figure 2: Illustration of ∥∇f(xk)∥1 = Θ(
√
d)∥∇f(xk)∥2 over epochs/steps. The gradient norm

ratio shows ∥∇f(xk)∥1

∥∇f(xk)∥2
, and

√
d = 4868, 5060, and 11136, respectively.
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Figure 3: Illustration of ∥xk∥∞ < 1
λ over epochs/steps. The model ℓ∞ norm shows ∥xk∥∞, and

λ = 0.01, 0.1, and 0.05, respectively.
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Figure 4: Illustration of small σ2
s

d over epochs/steps. The magnitude σ2
s is approximated by ∥gk −

∇f(xk)∥2 without taking expectation, and d = 2.37×107, 2.56× 107, and 1.24× 108, respectively.
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Recently, Jiang et al. [11] established a fundamental lower bound for SGD when measuring gradients

by ℓ1 norm, which is of order Ω
(√

dL(f(x1)−f∗)
K +

4

√
dL(f(x1)−f∗)∥σ∥2

1

K

)
under Assumptions 1-3.

When ∥σ∥1 ≈
√
d∥σ∥2 =

√
dσs, this lower bound precisely aligns with our convergence rate in (3).

We further conjecture that this lower bound applies more broadly to general first-order stochastic
optimization algorithms under ℓ1 norm gradient measurement. This would imply that our derived
convergence rate is nearly tight.

2.2 Separating the Convergence Rate by the Noise Variance

In Theorem 1, we separate the convergence rate by the magnitude of σs. When σ2
s ≥ L(f(x1)−f∗)

Kγ2 ,

both the convergence rates of AdamW and Adam are O(
√
d

K1/4 ). When σ2
s becomes smaller than

L(f(x1)−f∗)
Kγ2 , the convergence rates improve to O(

√
d
K ), matching that of gradient descent measured

by ℓ1 norm.

2.3 Reasonable Weight Decay Parameter and Initialization Interval

In Theorem 1, we set the weight decay parameter λ smaller than
√
d√

72K3/4
4

√
L3

σ̂2
s(f(x

1)−f∗) . In modern

deep neural networks, the dimension d is typically extremely large, for example, d = 1.75× 1011 in
GPT-3, making

√
d

K3/4 almost certainly exceed 0.01, which is the default setting of λ in PyTorch official
implementation. For example, in the experiments of our paper, we train ResNet-50 on i) CIFAR-100
and ii) ImageNet dataset, and GPT-2 on iii) OpenWebText, and observe (K, d) = (39100, 2.37×107),
(28080, 2.56× 107), and (50000, 1.24× 108), resulting in

√
d

K3/4 ≈ 1.75, 2.33, and 3.33, respectively.
We empirically show in Appendix D that large λ may cause AdamW not converge and thus a upper

bound is necessary. We also initialize ∥x1∥∞ ≤
√

K(f(x1)−f∗)
dL . Although

√
K
d is typically smaller

than 1 in large language models training, it remains not too small. In practical configurations, we
often initialize the network weights very small. On the other hand, although we always initialize the
scale parameter in BatchNorm/LayerNorm to 1, we do not use weight decay for the scale parameter
in practice.

2.4 Small ε Setting

In practice, ε is typically set to a very small value, for example, approximately 10−16 in PyTorch
implementation2, to prevent division by zero while maintaining the adaptive properties of AdamW
and Adam. Larger ε values would make AdamW and Adam behave similarly to SGD, losing its
adaptive learning rate adjustment. In Theorem 1, we set ε = σ̂2

s

d = max
{

σ2
s

d , L(f(x1)−f∗)
dKγ2

}
, which

remains small due to extremely large d and modest σ2
s . We have empirically shown in Figure 4 that

σ2
s

d ≈ 10−7, 10−9, and 10−10 in our experiments of ResNet-50 on CIFAR-100 and ImageNet and
GPT-2 on OpenWebText, respectively. Intuitively, ε should be smaller than the square of stochastic
gradient at each coordinate, otherwise, ε would dominate the magnitude of vk

i in 1√
vk
i +ε

. Our setting

of ε, the coordinate-wise average of gradient noise variance, approximately resides at this critical
threshold. Notably, our convergence rates for both AdamW and Adam do not depend on ε explicitly.
In comparison, existing convergence rates for AdamW and Adam in the literature either explicitly
depend on ε or exhibit a higher dependence on the dimension d.

2.5 Unpractical Settings of η, θ, and β

In Theorem 1, we set the learning rate η very small and the parameters θ and β nearly equal to
1 to satisfy the proof requirements. This differs from standard implementations where (θ, β) =
(0.9, 0.999) is typically used. Although investigating AdamW/Adam’s property under realistic

2In PyTorch official implementation, ε appeared in a different place in η√
vk+ε

and ε = 10−8, while we use
η√

vk+ε
.
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configurations represents an important research direction, as it could yield valuable insights for deep
learning hyperparameters tuning, the practical configurations may not guarantee the convergence. For
instance, prior work [14, 15] demonstrates through constructed examples that Adam with common
hyperparameters (θ = 0.9, β = {0.999, 0.997, 0.995, 0.993}, and ηk = 0.1√

k
) fails to converge to

stationary points (see [15, Figuire 2]). On the other hand, empirical evidence from recent studies
[16, Figure 9] [17, Figure 6] demonstrate that during the training of language models with practical
parameter configurations, the gradient norm hardly decreases during the training run, although the
objective function decreases sufficiently.

2.6 No Conflict with [6]

For sufficiently large weight decay parameter λ where no critical points exist within the constrained
domain of problem (1), the KKT conditions (2) serve as a natural convergence metric. As λ diminishes,
problem (1) asymptotically approaches an unconstrained optimization problem, and AdamW reduces
to Adam in the limit. There exists a critical threshold beyond which ∥∇f(x)∥1 also becomes a viable
metric for convergence. Consequently, our results do not conflict with [6].

3 Proof Sketch

In this section, we outline the proof sketch of Theorem 1. The detailed proofs are provided in
Appendix A. From the Lipschitz smoothness of f(x) and the update of xk+1 in Algorithm 1, we have

Ek

[
f(xk+1)|Fk−1

]
− f(xk)

≤Ek

[〈
∇f(xk),xk+1 − xk

〉
+

L

2
∥xk+1 − xk∥2

∣∣∣Fk−1

]

=Ek

−η

d∑
i=1

〈
∇if(x

k),
mk

i + λxk
i

√
vk
i + ε√

vk
i + ε

〉
︸ ︷︷ ︸

term (a)

+
Lη2

2

d∑
i=1

∣∣∣mk
i + λxk

i

√
vk
i + ε

∣∣∣2
vk
i + ε︸ ︷︷ ︸

term (b)

∣∣∣Fk−1

 .

(5)

Decompose term (a) into

−η

2

d∑
i=1

∣∣∇if(x
k)
∣∣2√

vk
i + ε

−η

2

d∑
i=1

∣∣∣mk
i +λxk

i

√
vk
i +ε

∣∣∣2√
vk
i + ε︸ ︷︷ ︸

term (c)

+
η

2

d∑
i=1

∣∣∣∇if(x
k)−mk

i −λxk
i

√
vk
i +ε

∣∣∣2√
vk
i + ε︸ ︷︷ ︸

term (d)

(6)

and relax term (b) as follows to absorb it within term (c)

term (b) ≤ Lη2

2
√
ε

d∑
i=1

∣∣∣mk
i + λxk

i

√
vk
i + ε

∣∣∣2√
vk
i + ε

η≤
√

ε
2L

≤ η

4

d∑
i=1

∣∣∣mk
i + λxk

i

√
vk
i + ε

∣∣∣2√
vk
i + ε

. (7)

Next, we consider term (d) and relax it as follows

term (d) ≤ η√
ε

∥∥∇f(xk)−mk
∥∥2 + η

d∑
i=1

|λxk
i |2
√

vk
i + ε. (8)

We see that the parameter ε plays a pivotal rule in steps (7) and (8). Combing (5)-(8), we have

Ek

[
f(xk+1)|Fk−1

]
−f(xk)≤Ek

−η

2

d∑
i=1

∣∣∇if(x
k)
∣∣2√

vk
i + ε

− η

4

d∑
i=1

∣∣∣mk
i + λxk

i

√
vk
i + ε

∣∣∣2√
vk
i + ε

+
η√
ε

∥∥∇f(xk)−mk
∥∥2︸ ︷︷ ︸

term (e)

+η

d∑
i=1

|λxk
i |2
√
vk
i + ε

∣∣∣Fk−1

 .

(9)
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Considering term (e), we can use standard techniques in the analysis of momentum SGD to build a
recursion (Lemma 4) as follows

Ek

[∥∥∇f(xk)−mk
∥∥2 |Fk−1

]

≤θ
∥∥mk−1 −∇f(xk−1)

∥∥2 + L2η2√
ε(1− θ)

d∑
i=1

∣∣∣∣mk−1
i + λxk−1

i

√
vk−1
i + ε

∣∣∣∣2√
vk−1
i + ε

+ (1− θ)2σ2
s .

(10)

Multiplying both sides of (10) by η√
ε(1−θ)

, adding it to (9), and letting η2 ≤ ε(1−θ)2

4L2 , we have

Ek

f(xk+1)− f∗ +
ηθ√

ε(1− θ)

∥∥∇f(xk)−mk
∥∥2 + η

4

d∑
i=1

∣∣∣mk
i + λxk

i

√
vk
i + ε

∣∣∣2√
vk
i + ε

∣∣∣Fk−1



≤f(xk)− f∗ +

d∑
i=1

Ek

−η

2

∣∣∇if(x
k)
∣∣2√

vk
i + ε︸ ︷︷ ︸

term (f)

+ η|λxk
i |2
√

vk
i + ε︸ ︷︷ ︸

term (g)

∣∣∣Fk−1



+
ηθ√

ε(1− θ)

∥∥∇f(xk−1)−mk−1
∥∥2 + η

4

d∑
i=1

∣∣∣∣mk−1
i + λxk−1

i

√
vk−1
i + ε

∣∣∣∣2√
vk−1
i + ε

+
η(1− θ)σ2

s√
ε

.

(11)

The above analysis comes from the standard framework and contains nothing new. We can recur-
sively eliminate certain terms in (11) after telescoping, except for the troublesome term (g). The
following outlines the key technical components of our proof to address term (g) and achieve the
tight convergence rate.

3.1 Bounding |λxk
i | in Term (g) by O( 1

K1/4 )

The analysis for AdamW proves more challenging than for SignSGD-type methods with weight decay
[18], because SignSGD maintains a fixed update size 1, whereas AdamW’s updates can be arbitrarily
large. Specifically, for AdamW and Adam, we have |mk

i |
2

vk
i

≤ (1−θ)2β
(1−β)(β−θ2) (Lemma 2), where the

latter is minimized to be 1 by setting θ = β. However, when setting θ = O(1) (for example, θ = 0.9)
and β = 1 − 1

K , we have (1−θ)2β
(1−β)(β−θ2) = O(K), leading to unbounded updates in AdamW. This

fundamental difficulty prevents direct extension of the proof framework in [10] to AdamW. We set
θ ≤ β ≤

√
θ in Theorem 1 such that (1−θ)2β

(1−β)(β−θ2) ≤ 4 (Lemma 2). Then for the update of xk+1 in
AdamW, we have

∥xk+1∥∞ − 2

λ
≤ (1− ηλ)k

(
∥x1∥∞ − 2

λ

)
.

When (1 − ηλ)k decreases fast, we have (1 − ηλ)k
(
∥x1∥∞ − 2

λ

)
→ 0 and ∥xk+1∥∞ is loosely

bounded by 2
λ , which is far from our target λ∥xk+1∥∞ ≤ O( 1

K1/4 ). To address this issue, we

control the decrease of (1 − ηλ)k by setting parameter λ properly such that ηλ ≤
√
ν

2K5/4 and

(1− ηλ)k ≥ e
−

√
ν

K1/4 ≥ 1−
√
ν

K1/4 for some ν and any k ≤ K. Equipped with proper initialization of

∥x1∥∞ ≤
√
ν

K1/4λ
, we finally have (Lemma 3)

∥xk+1∥∞ ≤ 2

λ
−
(
1−

√
ν

K1/4

)(
2

λ
−

√
ν

K1/4λ

)
≤ 3

λ

√
ν

K1/4
,

and

term (g) ≤ 9ην

K1/2

√
vk
i + ε.

Intuitively, when the initialization is far from the boundary of problem (1) and (1− ηλ)k ≈ 1, the
iterates xk+1 are guaranteed to be far from the boundary throughout the optimization process.
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3.2 Absorbing Term (g) within Term (f)

To absorb term (g) within term (f), we first relax
√
vk
i + ε to

√
ṽk
i + ε as follows by the concavity

of
√
x and − 1√

x

Ek

−η

2

∣∣∇if(x
k)
∣∣2√

vk
i + ε︸ ︷︷ ︸

term (f)

+ η|λxk
i |2
√
vk
i + ε︸ ︷︷ ︸

term (g)

∣∣∣Fk−1

 ≤ −η

2

∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

+
9ην

K1/2

√
ṽk
i + ε,

where we define ṽk
i = βvk−1

i + (1 − β)
(∣∣∇if(x

k)
∣∣2 + σ2

i

)
. Then, we can bound

√
ṽk
i + ε as

follows (Lemma 5) and absorb term (h) within −η
2

∑K
k=1

∑d
i=1

|∇if(x
k)|2√

ṽk
i +ε

derived from term (f),

K∑
k=1

d∑
i=1

EFk−1

[√
ṽk
i + ε

]
≤ K∥σ∥1 +Kd

√
ε+ 2

K∑
k=1

d∑
i=1

EFt−1

[
|∇if(x

k)|2√
ṽk
i + ε

]
︸ ︷︷ ︸

term (h)

.
(12)

Summing (11) over k and combing the above analysis, we have

EFK

f(xK+1)− f∗ +
ηθ√

ε(1− θ)

∥∥∇f(xK)−mK
∥∥2 + η

4

d∑
i=1

∣∣∣mK
i + λxK

i

√
vK
i + ε

∣∣∣2√
vK
i + ε


≤− η

2

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]
+

9ην

K1/2

K∥σ∥1+Kd
√
ε︸ ︷︷ ︸

term (i)

+2

K∑
k=1

d∑
i=1

EFk−1

[
|∇if(x

k)|2√
ṽk
i + ε

]
+ f(x1)− f∗ +

η√
ε(1− θ)

EF1

[
∥∇f(x1)−m1∥2

]
+

Kη(1− θ)σ2
s√

ε︸ ︷︷ ︸
term (j)

≤− η

4

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]
+ 18ηνd

√
Kε+ term (j)

by letting 9ν
K1/2 ≤ 1

8 and ε =
σ2
s

d such that K∥σ∥1 ≤ Kd
√
ε. Letting ν = 1

72d

√
σ2
sL(f(x1)−f∗)

ε2 ,

1 − θ =
√

L(f(x1)−f∗)
Kσ2

s
and η =

√
ε(f(x1)−f∗)

4Kσ2
sL

, both term (j) and ηνd
√
Kε are of the order

η

√
Kσ2

sL(f(x1)−f∗)
ε . This accounts for why bounding |λxk

i | by O(
√
ν

K1/4 ), otherwise, term (i) would
slow the convergence rate established in Theorem 1. Intuitively, when ∇if(x

k) ≈ 0 such that
ṽk
i = βkv0

i + (1 − β)
∑k

r=1 β
k−r

(
|∇if(x

r)|2 + σ2
i

)
≈ σ2

i , we have
∑K

k=1

∑d
i=1

√
ṽk
i + ε ≈

K∥σ∥1 +Kd
√
ε, making term (i) non-negligible in (12).

3.3 Eliminating ε in the Final Convergence Rate

Based on the above analysis, we get the following bound
K∑

k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]
≤ O

(√
Kσ2

sL(f(x
1)− f∗)

ε

)
.

Using Holder’s inequality and (12) again, we finally have(
K∑

k=1

EFk−1

[
∥∇f(xk)∥1

])2

≤

(
K∑

k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

])(
K∑

k=1

d∑
i=1

EFk−1

[√
ṽk
i + ε

])
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≤

(
K∑

k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

])(
K∥σ∥1 +Kd

√
ε+ 2

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

])

≤O

(√
Kσ2

sL(f(x
1)− f∗)

ε

(√
Kσ2

sL(f(x
1)− f∗)

ε
+K∥σ∥1 +Kd

√
ε

))
and

1

K

K∑
k=1

EFk−1

[
∥∇f(xk)∥1

]

≤O

 1

K


√

Kσ2
sL(f(x

1)− f∗)

ε
+

4

√√√√√Kσ2
sL(f(x

1)− f∗)

ε

(
K∥σ∥1 +Kd

√
ε
)2︸ ︷︷ ︸

term (k)


 .

The above convergence rate is not optimal due to its explicit dependence on ε, which is absent from the
optimal rate (4) of SGD. By setting ε =

σ2
s

d , we obtain K∥σ∥1 ≤ Kd
√
ε and (K∥σ∥1 +Kd

√
ε)

2 ≤
4K2d2ε, which allows us to eliminate ε in the denominator of term (k). This yields the following
final convergence rate

1

K

K∑
k=1

EFk−1

[
∥∇f(xk)∥1

]
≤ O

(√
dL(f(x1)− f∗)

K
+

√
d

K1/4
4
√
σ2
sL(f(x

1)− f∗)

)
.

Although smaller value of ε does not affect the convergence of AdamW and Adam, this term cannot
be eliminated any more and consequently slows the convergence rate by introducing explicit ε-
dependence. On the other hand, while larger ε does not impact the convergence rate, it makes
AdamW closer to SGD.

At last, in order to incorporate the scenario when σ2
s ≤ L(f(x1)−f∗)

K , we define σ̂2
s =

max
{
σ2
s ,

L(f(x1)−f∗)
Kγ2

}
with any constant γ ∈ (0, 1] and replace σ2

s by σ̂2
s in the definitions of

ε, ν, 1− θ, and η.

4 Literature Comparisons

In this section, we compare our theoretical results with representative ones in the literature. A
substantial amount of literature exists regarding the convergence analysis of adaptive gradient
algorithms, such as [19, 20, 21, 22, 23] for AdaGrad-norm, [22, 11, 12, 24, 25] for AdaGrad, [26, 27,
28, 10, 13] for RMSProp, [29] for Adam-norm, [30, 26, 27, 31, 32, 14, 33, 15, 34, 35, 36, 37, 38, 39]
for Adam, and [40, 41, 42, 43, 44, 45, 46, 47, 48, 49] for other variants. We primarily compare
with the literature on AdamW and Adam. For Adam, we restrict our comparison to studies with the
state-of-the-art convergence rates that do not require the bounded gradient assumption.

4.1 AdamW: Comparison with [7]

To the best of our knowledge based on a comprehensive literature review, [7] appears to be the
only existing paper addressing AdamW’s convergence and convergence rate. We compare with [7]
in the following aspects. Firstly, the assumptions in [7] are stronger than ours. Denoting f(x) =
Eζ∈D[f(x; ζ)], they assumed ∥∇f(y; ζ)−∇f(x; ζ)∥ ≤ L∥y − x∥ (under which the lower bound
is O( 1

ϵ3 ), rather than O( 1
ϵ4 ) [9]) and ∥gk∥∞ ≤ c∞, while we only assume ∥∇f(y) − ∇f(x)∥ ≤

L∥y − x∥ without the bounded gradient assumption. Secondly, they set the weight decay parameter
λk = λ(1 − βc2∞

ε )k, which decreases exponentially, making AdamW reduce to standard Adam in

the limit. Thirdly, they establish the complexity of O(max{ c2.5∞ Lσ2
s(f(x

1)−f∗)
ε1.25ϵ4 ,

c2∞σ4
s

εϵ4 }) to achieve
1
K

∑K
k=1 E[∥∇Fk(x

k)∥2] ≤ ϵ2, where Fk is a dynamic ℓ2 regularized objective. Their complexity
depends on ε explicitly, which is usually small in practice, for example, ε ≈ 10−16 in PyTorch
implementation. As a comparison, our convergence rate does not depend on ε explicitly.
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4.2 Adam: Comparison with [10]

Li et al. [10] studied RMSProp and its momentum extension, where RMSProp is a special case of
Adam by letting θ = 0 and λ = 0 in Algorithm 1. The convergence analysis of Adam presents
substantially greater challenges than RMSProp and we cannot extend the proofs in [10] to Adam.
Alternatively, this paper uses a different proof framework to establish for Adam the same convergence
rate achieved by [10] under identical assumptions. As a trade-off, one limitation of our proof is that it
relies on a larger value of parameter ε, although ε =

σ̂2
s

d is very small in practice. Specifically, under

the parameter settings of β = 1 − 1
K , v0

i = λmax{σ2
i ,

1
dK }, and λ ≥ σ2

s

KL(f(x1)−f∗) in [10], we
have 1

e2 ≤ βt ≤ 1 for any t ≤ K and

vk
i = βkv0

i + (1− β)

k∑
t=1

βk−t|gt
i |2 ≈ σ2

i

K

σ2
s

L(f(x1)− f∗)
+

1

K

k∑
t=1

|gt
i |2,

where βkv0
i plays the role of ε in Algorithm 1, which is of the order σ2

i

K , or approximately σ2
s

dK . As a
comparison, in this paper, we have

vk
i + ε= ε+ (1−β)

k∑
t=1

βk−t|gt
i |2 =

σ̂2
s

d
+ (1−β)

k∑
t=1

βk−t|gt
i |2 ≈ σ2

i + (1−β)

k∑
t=1

βk−t|gt
i |2.

When ∇f(xt) ≈ 0 such that |gt
i | ≈ σi, we have (1 − β)

∑k
t=1 β

k−t|gt
i |2 ≈ σ2

i . Thus, ε accounts
for nearly half of (vk

i + ε)’s size, while in [10], βkv0
i only makes up close to 1

k of vk
i ’s total size.

Other representative studies [34, 35, 33] have derived convergence guarantees for Adam built upon
weak ε-dependent analysis. However, these results all yield slower convergence rates than ours with
a higher dependence on the dimension d.

4.3 Adam: Comparison with [37]

Li et al. [37] studied Adam under assumption ∥gk − ∇f(xk)∥ ≤ σs with probability
1 and proved 1

K

∑K
k=1 ∥∇f(xk)∥22 ≤ ϵ2 with high probability within O(

G2.5σ2
sL(f(x1)−f∗)
ε̃2.5ϵ4 )

iterations. That is, 1
K

∑K
k=1 ∥∇f(xk)∥2 ≤ (Gε̃ )

5/8 1
K1/4

4
√
σ2
sL(f(x

1)− f∗), where G ≥
max{ε̃, σs,

√
L(f(x1)− f∗)} and ε̃ appeared in a different place in mk

√
vk+ε̃

(hence we may consider

ε̃ to be equal to
√
ε). When ∥∇f(x)∥1 = Θ(

√
d)∥∇f(x)∥2, as empirically observed in real-world

deep learning training, our convergence rate is (Gε̃ )
5/8 times faster than [37]. In PyTorch implemen-

tation, the default value of ε̃ is typically set to 10−8. To eliminate the dependence on ε, Li et al. [37]
requires ε̃2(≈ ε) = G2 ≥ max{σ2

s , L(f(x
1)− f∗)} ≥ σ2

s , while we only need ε =
σ2
s

d , which is d
times smaller.

Conclusion

This paper studies the popular AdamW optimizer in deep learning. We establish the convergence rate
1
K

∑K
k=1 E

[
∥∇f(xk)∥1

]
≤ O(

√
dC

K1/4 ) for AdamW measured by ℓ1 norm. It can be considered to be
analogous to the optimal rate of SGD in the ideal case of ∥∇f(x)∥1 = Θ(

√
d)∥∇f(x)∥2, which is

verified on real-world deep learning tasks.

An important direction for future research would be to investigate the optimal convergence rate using
weak ε-dependent analysis (for example, log 1

ε ) for AdamW and Adam. On the other hand, it is
currently unclear whether our upper bound on λ is tight. Investigating how to prove the optimal
convergence rate under a looser upper bound would be meaningful. This study is primarily concerned
with theoretical analysis and it does not yield direct negative societal impacts.
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contributions and scope?
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written in the abstract and introduction section.
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question will not be perceived well by the reviewers.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We discuss the limitations of our work in Section 4.2.
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these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
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on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.
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• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
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preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: Assumptions are provided in Section 2 and the proofs are provided in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental settings are provided in Appendix E. We also share the code in the
supplementary material.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code is provided in the supplementary material. It will be available on Github after the
decision.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Experimental details are provided in the Appendix E. This work is solely concerned with
training aspects, with no consideration of testing performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: Our figures show the convergence properties of AdamW for specific runs. People often
do not plot the behaviors over multiple averaged runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Computational resources information are provided in the Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in the conclusion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: They are properly cited based on their licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Proof of Theorem 1

Proof 1 As the gradient is L-Lipschitz, we have
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Plugging into (13) and rearranging the terms, we have
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Multiplying both sides of (18) in Lemma 4 by η√
ε(1−θ)

and adding it to (14), we have
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where we let η2 ≤ ε(1−θ)2

4L2 in the last inequality. For both (14) and (15), taking expectation with respect to
Fk−1, rearranging the terms, summing (14) with k = 1 and (15) over k = 2, 3, · · · ,K, we have
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ṽk
i + ε

]

+
ηθ√

ε(1− θ)
EF1

[
∥∇f(x1)−m1∥2

]
+

η√
ε
EF1

[
∥∇f(x1)−m1∥2

]
+

(K − 1)η(1− θ)σ2
s√

ε

(3)

≤f(x1)− f∗ − η

2

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
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ε(1− θ)
EF1

[
∥∇f(x1)−m1∥2

]
+

(K − 1)η(1− θ)σ2
s√

ε

(4)

≤f(x1)− f∗ − η

4

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]

+ 18ηνd
√
Kε+

η√
ε(1− θ)

EF1

[
∥∇f(x1)−m1∥2

]
+

(K − 1)η(1− θ)σ2
s√

ε

(5)

≤f(x1)− f∗ − η

4

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]

+ 18ηνd
√
Kε+

2ηL(f(x1)− f∗)√
ε(1− θ)

+
η(1− θ)σ2

s√
ε

++
(K − 1)η(1− θ)σ2

s√
ε

,

(16)
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where we use Lemma 5 in
(3)

≤ , let 9ν

K1/2 ≤ 1
8

and ε ≥ σ2
s
d

such that ∥σ∥1 ≤
√
d∥σ∥2 =

√
dσs ≤ d

√
ε in

(4)

≤ ,
and use m0 = 0,

f∗ ≤ f

(
x− 1

L
∇f(x)

)
≤ f(x)− 1

L
⟨∇f(x),∇f(x)⟩+ L

2

∥∥∥∥ 1L∇f(x)

∥∥∥∥2 = f(x)− 1

2L
∥∇f(x)∥2,

and
EF1

[
∥∇f(x1)−m1∥2

]
=EF1

[
∥θ∇f(x1) + (1− θ)(∇f(x1)− g1)∥2

]
=θ2∥∇f(x1)∥2 + (1− θ)2EF1

[
∥∇f(x1)− g1∥2

]
≤2L(f(x1)− f∗) + (1− θ)2σ2

s

in
(5)

≤ . So from (16), we have
K∑

k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]

≤4(f(x1)− f∗)

η
+ 72νd

√
Kε+

8L(f(x1)− f∗)√
ε(1− θ)

+
4K(1− θ)σ2

s√
ε

≤4(f(x1)− f∗)

η
+ 72νd

√
Kε+

8L(f(x1)− f∗)√
ε(1− θ)

+
4K(1− θ)σ̂2

s√
ε

,

(17)

where we denote σ̂2
s = max

{
σ2
s ,

L(f(x1)−f∗)
Kγ2

}
with any constant γ ∈ (0, 1].

Recall that we require the parameters satisfying the following relations in the above proof

η ≤
√
ε

2L
, η2 ≤ ε(1− θ)2

4L2
,

9ν

K1/2
≤ 1

8
, ε ≥ σ2

s

d
and

ηλ ≤
√
ν

2K5/4
,

√
ν

K1/4
< 1, ∥x1∥∞ ≤

√
ν

K1/4λ
, θ ≤ β ≤

√
θ < 1

in Lemma 3.

Recalling the definition of σ̂s and letting ε =
σ̂2
s
d

, 1− θ =
√

L(f(x1)−f∗)
Kσ̂2

s
, η =

√
ε(f(x1)−f∗)

4Kσ̂2
sL

=

√
f(x1)−f∗

4KdL
,

ν = 1
72d

√
σ̂2
sL(f(x1)−f∗)

ε2
= 1

72

√
L(f(x1)−f∗)

σ̂2
s

, λ ≤
√
ν

2K5/4η
=

√
d√

72K3/4
4

√
L3

σ̂2
s(f(x

1)−f∗) , and ∥x1∥∞ ≤√
K(f(x1)−f∗)

dL
= 2Kη ≤

√
ν

K1/4λ
, the above requirements are satisfied. So we have from (17) that

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]
≤ 21

√
Kσ̂2

sL(f(x1)− f∗)

ε
.

Using Holder’s inequality and Lemma 5, we have(
K∑

k=1

EFk−1

[
∥∇f(xk)∥1

])2

≤

(
K∑

k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

])(
K∑

k=1

d∑
i=1

EFk−1

[√
ṽk
i + ε

])

≤

(
K∑

k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

])(
K∥σ∥1 +Kd

√
ε+ 2

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

])

≤

(
21

√
Kσ̂2

sL(f(x1)− f∗)

ε

)(
42

√
Kσ̂2

sL(f(x1)− f∗)

ε
+K∥σ∥1 +Kd

√
ε

)
and

1

K

K∑
k=1

EFk−1

[
∥∇f(xk)∥1

]
≤ 1

K

(
30

√
Kσ̂2

sL(f(x1)− f∗)

ε
+ 5

4

√
Kσ̂2

sL(f(x1)− f∗)

ε

(
K∥σ∥1 +Kd

√
ε
)2)

≤30

√
dL(f(x1)− f∗)

K
+

8
√
d

K1/4

4
√

σ̂2
sL(f(x1)− f∗)
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by letting ε =
σ̂2
s
d

and using ∥σ∥1 ≤
√
d∥σ∥2 =

√
dσs ≤ d

√
ε. At last, from Lemma 3 and the settings of ν

and σ̂s, we have

λ∥xk∥∞ ≤ 3
√
ν

K1/4
=

3√
72

4

√
L(f(x1)− f∗)

Kσ̂2
s

≤ 3√
72

for all k = 1, 2, · · · ,K, leading to ∥xk∥∞ < 1
λ

.

B Proof of Corollary 1

We give the complete description of Corollary 1 in the following corollary.

Corollary 2 Suppose that Assumptions 1-3 hold. Define σ̂2
s = max

{
σ2
s ,

L(f(x1)−f∗)
Kγ2

}
with any constant

γ ∈ (0, 1]. Let 1− θ =
√

L(f(x1)−f∗)
Kσ̂2

s
, 0 ≤ β ≤ 1, η =

√
f(x1)−f∗

4dKL
, and ε =

σ̂2
s
d

. Then for Adam, we have

1

K

K∑
k=1

E
[
∥∇f(xk)∥1

]
≤ 6

√
d

K1/4

4
√

σ̂2
sL(f(x1)− f∗) + 15

√
dL(f(x1)− f∗)

K
.

Specially, when σ2
s ≤ L(f(x1)−f∗)

Kγ2 , we have 1− θ = γ, 0 ≤ β ≤ 1, η =

√
f(x1)−f∗

4KdL
, ε = L(f(x1)−f∗)

dKγ2 , and
accordlingly

1

K

K∑
k=1

E
[
∥∇f(xk)∥1

]
≤ 21

√
dL(f(x1)− f∗)

Kγ
.

Proof 2 When λ = 0, the 9ην

K1/2

∑d
i=1

√
vk
i + ε term disappears in (13) in the proof of Theorem 1, and (16)

becomes

EFK

f(xK+1)− f∗ +
ηθ√

ε(1− θ)

∥∥∥∇f(xK)−mK
∥∥∥2 + η

4

d∑
i=1

∣∣∣mK
i + λxK

i

√
vK
i + ε

∣∣∣2√
vK
i + ε


≤f(x1)− f∗ − η

2

K∑
k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]
+

2ηL(f(x1)− f∗)√
ε(1− θ)

+
Kη(1− θ)σ2

s√
ε

,

where the term 18ηνd
√
Kε disappears because we do not need Lemma 5 to bound

9ην

K1/2

∑K
k=1

∑d
i=1 EFk−1

[√
ṽk
i + ε

]
any more.

Similar to the proof of Theorem 1, we have
K∑

k=1

d∑
i=1

EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]
≤2(f(x1)− f∗)

η
+

4L(f(x1)− f∗)√
ε(1− θ)

+
2K(1− θ)σ2

s√
ε

≤10

√
Kσ̂2

sL(f(x1)− f∗)

ε
.

Comparing with (17), we see that the term 72νd
√
Kε disappears. Following the proof of Theorem 1, we have

the conclusion. Note that we do not use Lemmas 2 and 3 in the proof of Corollary 1, so Corollary 1 does not
require θ ≤ β ≤

√
θ and ∥x1∥∞ ≤

√
ν

K1/4λ
any more.

C Supporting Lemmas

Lemma 2 Suppose m0 = 0, v0 = 0, and θ ≤ β ≤
√
θ < 1, then we have

|mk
i |2

vk
i

≤ (1− θ)2β

(1− β)(β − θ2)
≤ 4.

Proof 3 From the recursions of mk
i and vk

i , we have

mk
i = θkm0

i + (1− θ)

k∑
r=1

θk−rgr
i = (1− θ)

k∑
r=1

θk−rgr
i ,

vk
i = βkv0

i + (1− β)

k∑
r=1

βk−r|gr
i |2 = (1− β)

k∑
r=1

βk−r|gr
i |2.
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Using Holder’s inequality, we have

|mk
i |2 =(1− θ)2

(
k∑

r=1

θk−rgr
i

)2

≤ (1− θ)2
(

k∑
r=1

βk−r|gr
i |2
)(

k∑
r=1

(
θ2

β

)k−r
)

=vk
i
(1− θ)2

1− β

k∑
r=1

(
θ2

β

)k−r

≤ vk
i
(1− θ)2

1− β

1

1− θ2

β

(1)

≤ vk
i
(1− θ)2

(1− β)2

(2)

≤vk
i
(1−

√
θ)2(1 +

√
θ)2

(1−
√
θ)2

≤ vk
i (1 +

√
θ)2 ≤ 4vk

i ,

where we use θ ≤ β in
(1)

≤ and β ≤
√
θ in

(2)

≤ .

Lemma 3 Suppose ηλ ≤
√
ν

2K5/4 , ∥x1∥∞ ≤
√
ν

K1/4λ
,

√
ν

K1/4 < 1, and θ ≤ β ≤
√
θ < 1, then we have

λ∥xk∥∞ ≤ 3
√
ν

K1/4
, ∀k = 1, 2, · · · ,K.

Proof 4 From the update of xk+1, we have

∥xk+1∥∞ − 2

λ
=

∥∥∥∥(1− ηλ)xk − η√
vk + ε

⊙mk

∥∥∥∥
∞

− 2

λ

≤(1− ηλ)∥xk∥∞ +

∥∥∥∥ η√
vk + ε

⊙mk

∥∥∥∥
∞

− 2

λ

(1)

≤ (1− ηλ)∥xk∥∞ + 2η − 2

λ

=(1− ηλ)

(
∥xk∥∞ − 2

λ

)
≤(1− ηλ)k

(
∥x1∥∞ − 2

λ

)
≤− 1

λ
(1− ηλ)k

(
2−

√
ν

K1/4

)
,

where we use Lemma 2 in
(1)

≤ . Since lnx ≤ x− 1 and ex ≥ x+ 1 for any x > 0 and ηλ ≤
√
ν

2K5/4 ≤ 1
2

, we
have for any k ≤ K that

k ln(1− ηλ) = −k ln
1

1− ηλ
≥ −K

(
1

1− ηλ
− 1

)
= − Kηλ

1− ηλ
≥ −

√
ν

K1/4
,

(1− ηλ)k ≥ e
−

√
ν

K1/4 ≥ 1−
√
ν

K1/4
,

and

∥xk+1∥∞ − 2

λ
≤− 1

λ

(
1−

√
ν

K1/4

)(
2−

√
ν

K1/4

)
≤ − 2

λ
+

3

λ

√
ν

K1/4
.

Lemma 4 Suppose that Assumptions 1-3 hold. Then we have

Ek

[∥∥∥mk −∇f(xk)
∥∥∥2 |Fk−1

]

≤θ
∥∥∥mk−1 −∇f(xk−1)

∥∥∥2 + L2η2

√
ε(1− θ)

d∑
i=1

∣∣∣∣mk−1
i + λxk−1

i

√
vk−1
i + ε

∣∣∣∣2√
vk−1
i + ε

+ (1− θ)2σ2
s .

(18)

Proof 5 Denoting ζk = gk −∇f(xk), from the update of mk, we have

mk −∇f(xk) =θmk−1 + (1− θ)gk −∇f(xk)

=θ
(
mk−1 −∇f(xk−1)

)
+ (1− θ)

(
∇f(xk) + ζk

)
−∇f(xk) + θ∇f(xk−1)

=θ
(
mk−1 −∇f(xk−1)

)
+ (1− θ)ζk − θ

(
∇f(xk)−∇f(xk−1)

)
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and

Ek

[
∥mk −∇f(xk)∥2|Fk−1

]
≤
∥∥∥θ (mk−1 −∇f(xk−1)

)
− θ

(
∇f(xk)−∇f(xk−1)

)∥∥∥2 + (1− θ)2σ2
s

≤θ2
((

1 +
1− θ

θ

)∥∥∥mk−1 −∇f(xk−1)
∥∥∥2 + (1 + θ

1− θ

)∥∥∥∇f(xk)−∇f(xk−1)
∥∥∥2)+ (1− θ)2σ2

s

≤θ
∥∥∥mk−1 −∇f(xk−1)

∥∥∥2 + L2

1− θ

∥∥∥xk − xk−1
∥∥∥2 + (1− θ)2σ2

s

=θ
∥∥∥mk−1 −∇f(xk−1)

∥∥∥2 + L2η2

1− θ

d∑
i=1

∣∣∣∣mk−1
i + λxk−1

i

√
vk−1
i + ε

∣∣∣∣2
vk−1
i + ε

+ (1− θ)2σ2
s

≤θ
∥∥∥mk−1 −∇f(xk−1)

∥∥∥2 + L2η2

√
ε(1− θ)

d∑
i=1

∣∣∣∣mk−1
i + λxk−1

i

√
vk−1
i + ε

∣∣∣∣2√
vk−1
i + ε

+ (1− θ)2σ2
s .

The following lemma is modified from [10]. We give the proof here only for the sake of completeness.

Lemma 5 Suppose that Assumptions 1-3 hold. Let β ≤ 1 and v0 = 0. Then we have
K∑

k=1

d∑
i=1

EFk−1

[√
ṽk
i + ε

]
≤ K∥σ∥1 +Kd

√
ε+ 2

K∑
t=1

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]
.

Proof 6 From the definition of ṽk
i , we have

EFk−1

[√
ṽk
i + ε

]
=EFk−1

[√
βvk−1

i + (1− β)
(
|∇if(xk)|2 + σ2

i

)
+ ε

]

=EFk−1

 βvk−1
i + (1− β)σ2

i + ε√
βvk−1

i + (1− β)
(
|∇if(xk)|2 + σ2

i

)
+ ε

+
(1− β)

∣∣∇if(x
k)
∣∣2√

βvk−1
i + (1− β)

(
|∇if(xk)|2 + σ2

i

)
+ ε


≤EFk−1

[√
βvk−1

i + (1− β)σ2
i + ε

]
+ (1− β)EFk−1

[∣∣∇if(x
k)
∣∣2√

ṽk
i + ε

]
.

Consider the first part in the general case. From the recursion of vk
i , we have

EFk−t

[√
βtvk−t

i + (1− βt)σ2
i + ε

]
=EFk−t

[√
βt+1vk−t−1

i + βt(1− β)|gk−t
i |2 + (1− βt)σ2

i + ε

]
=EFk−t−1

[
Ek−t

[√
βt+1vk−t−1

i + βt(1− β)|gk−t
i |2 + (1− βt)σ2

i + ε
∣∣∣Fk−t−1

]]
(1)

≤EFk−t−1

[√
βt+1vk−t−1

i + βt(1− β)Ek−t

[
|gk−t

i |2|Fk−t−1

]
+ (1− βt)σ2

i + ε

]
(2)

≤EFk−t−1

[√
βt+1vk−t−1

i + βt(1− β) (|∇if(xk−t)|2 + σ2
i ) + (1− βt)σ2

i + ε

]
=EFk−t−1

[√
βt+1vk−t−1

i + βt(1− β)|∇if(xk−t)|2 + (1− βt+1)σ2
i + ε

]

=EFk−t−1

 βt+1vk−t−1
i + (1− βt+1)σ2

i + ε√
βt+1vk−t−1

i + βt(1− β)|∇if(xk−t)|2 + (1− βt+1)σ2
i + ε


+ EFk−t−1

 βt(1− β)|∇if(x
k−t)|2√

βt+1vk−t−1
i + βt(1− β)|∇if(xk−t)|2 + (1− βt+1)σ2

i + ε


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≤EFk−t−1

[√
βt+1vk−t−1

i + (1− βt+1)σ2
i + ε

]

+ EFk−t−1

 βt(1− β)|∇if(x
k−t)|2√

βt+1vk−t−1
i + βt(1− β)|∇if(xk−t)|2 + (βt − βt+1)σ2

i + βtε


=EFk−t−1

[√
βt+1vk−t−1

i + (1− βt+1)σ2
i + ε

]
+
√

βt(1− β)EFk−t−1

 |∇if(x
k−t)|2√

ṽk−t
i + ε

 ,

where we use the concavity of
√
x in

(1)

≤ and Assumptions 2 and 3 in
(2)

≤ . Applying the above inequality recursively
for t = 1, 2, · · · , k − 1, we have

EFk−1

[√
βvk−1

i + (1− β)σ2
i + ε

]
≤
√

βkv0
i + (1− βk)σ2

i + ε+

k−1∑
t=1

√
βk−t(1− β)EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]
and

EFk−1

[√
ṽk
i + ε

]
≤
√

βkv0
i + (1− βk)σ2

i + ε+

k∑
t=1

√
βk−t(1− β)EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]

≤
√

σ2
i + ε+

k∑
t=1

√
βk−t(1− β)EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]

≤σi +
√
ε+

k∑
t=1

√
βk−t(1− β)EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]
,

where we use v0
i = 0. Summing over i = 1, 2, · · · , d and k = 1, 2, · · · ,K, we have

K∑
k=1

d∑
i=1

EFk−1

[√
ṽk
i + ε

]
≤K∥σ∥1 +Kd

√
ε+

K∑
k=1

k∑
t=1

√
βk−t(1− β)

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]

=K∥σ∥1 +Kd
√
ε+

K∑
t=1

K∑
k=t

√
βk−t(1− β)

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]

≤K∥σ∥1 +Kd
√
ε+

1− β

1−
√
β

K∑
t=1

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]

=K∥σ∥1 +Kd
√
ε+ (1 +

√
β)

K∑
t=1

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i + ε

]
.

Lemma 6 When each entry of x ∈ Rd is generated from Gaussian distribution with zero mean and unit variance,

we have E [∥x∥1] ≥
√

2d
π
E [∥x∥2].

Proof 7 When xi ∼ N (0, 1), we have

E [|xi|] =
√

2

π
, E

[
x2
i

]
= 1,

E [∥x∥1] =
d∑

i=1

E [|xi|] = d

√
2

π
,

E
[
∥x∥22

]
=

d∑
i=1

E
[
x2
i

]
= d,

E [∥x∥2] = E
[√

∥x∥22
]

(1)

≤
√

E [∥x∥22] =
√
d,

E [∥x∥1]
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Figure 5: Illustrations of 1
k

∑k
t=1 |∇f(xt)| (left) and xk (right) over steps on the toy example.

D A Toy Example with Large λ

Consider the following function:

f(x) =
(x− x∗)2

200
, with the stochastic gradient g(x) =

{
x− x∗ − 1, with probability p = 0.1,
− 1

10
(x− x∗ − 10

9
), with probability 1− p.

We set K = 1010, θ = 1 − 1√
K

, β =
√
θ, η = 1√

K
, ε = 10−10, m0 = 0, v0 = 0, and x1 = x∗ + 1 for

AdamW, where x∗ = 5 is the minimum solution of f(x). We test λ = {10−1, 10−2, 10−3, 10−4, 10−5, 0}
such that x∗ < 1

λ
and thus the KKT conditions (2) reduce to |∇f(x∗)| = 0 at the minimum solution. So we

can use the gradient norm |∇f(x)| to measure the convergence. From Figure 5, we see that AdamW fails to
converge to x∗ when λ = {10−1, 10−2, 10−3}, indicating that large values of λ exceeding a certain threshold
may cause AdamW neither to converge to the minimum solution nor to a KKT point satisfying (2)3. In practical
implementations, excessively large values of λ are typically avoided, as they may drive the parameters toward
zero and away from the minimum solution.

E Experimental Details

In the main paper, we conduct several representative deep learning experiments to empirically support our claims,
covering classic image classification and language processing tasks. For the vision tasks, we independently train
ResNet50 [50] on CIFAR100 [51] and ImageNet [52] datasets; For the language task, we adopt the GPT-2 [53]
architecture and pretrain it on the OpenWebText [54] dataset. Code is released at https://github.com/adonis-dym/
Convergence-Rate-AdamW .

Our experiments involve the computation of the full training loss f(xk) as well as the full gradient ∇f(xk).
However, in the typical stochastic training paradigm, one often updates the parameter xk on-the-fly immediately
after obtaining the stochastic gradient gk from the backward pass. To get an accurate measurement and avoid
interfering with the normal training process, we propose to split each epoch into two separate phases: training
phase and logging phase. In the training phase, we traverse the dataset once with stochastic updates, where
the model parameters are updated upon processing each mini-batch. In the logging phase, we conduct a
second traversal over the training dataset while keeping the model parameters frozen. Since the loss function is
typically defined to be the average over all training samples and the gradient computation is inherently linear,
we accumulate the losses and stochastic gradients across mini-batches during this phase. This yields the exact
values of the full training loss f(xk) and full gradient ∇f(xk) at the current iteration.

In the following, we detail each experimental setup individually:

i) ResNet50 - CIFAR100: CIFAR100 is a simple benchmark dataset that is widely used for quick and efficient
evaluation of deep learning tasks. It contains a training split of 50000 examples and a test split of 10000 examples,
although we do not perform evaluation on the test set in this work. Following the official implementation,
we use the torch.optim.AdamW API to configure the optimizer. We initialize the learning rate to 3× 10−3,
train the ResNet50 model for 100 epochs, and apply a cosine learning rate decay schedule during the whole
training process. Setting the batch size to 128, each epoch consists of ⌊50000/128⌋+ 1 = 391 steps, where the
additional step accounts for the final truncated batch which contains the remaining samples. The total number of

3This does not conflict with [6] because [6] only considered deterministic AdamW.
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steps is K = 391× 100 = 39100. Without loss of generality, we compute the noise vector σk = gk −∇f(xk)
using the stochastic gradient gk obtained from the first batch at the logging phase. We leave the weight decay λ
as its default value 0.01, and complete the training task with a single NVIDIA A100 GPU.

ii) ResNet50 - ImageNet: To evaluate the scalability of our conclusions on larger-scale dataset, we conduct
experiments on the ImageNet dataset using the same ResNet50 architecture. ImageNet consists of approximately
1.28 million training images and 50,000 validation images across 1,000 classes, which also come with an official
dataset split. We employ the training script from PyTorch Image Models (timm) [55], making only the necessary
modifications to suit our experimental setup. We adopt the same optimizer configuration as previously, but
compute the noise vector using the last batch at the logging phase, as the timm script discards incomplete batch
and ensures uniform batch sizes. We follow the standard ImageNet training protocol for ResNet-50, which
consists of 90 epochs as commonly adopted in the literature and official implementations [50, 55]. The first
10 epochs are used for learning rate linear warmup from 0 to 3 × 10−3, followed by cosine decay over the
remaining 80 epochs. We apply standard data augmentation techniques including RandAugment, Mixup (0.1),
and CutMix (1.0). Setting the batchsize to 4096, each epoch consists of 312 minibatches and the total number of
steps is K = 28080. We set λ = 0.1 and complete the training task using 8 NVIDIA A100 GPUs.

iii) GPT2 - OpenWebText: To assess the generality of our conclusions across different modalities, we further
evaluate on a language modeling task using GPT-2. We pretrain this model on the OpenWebText dataset under
the NVIDIA Megatron-LM codebase [56], which is a widely adopted framework for large-scale language
model training. Unlike the previous settings, where computing the full training loss and gradient over the entire
dataset is tractable, the OpenWebText dataset is substantially larger, containing approximately 9 billion tokens.
Consequently, an entire pass through the dataset to get the full training loss f(xk) and gradient ∇f(xk) is
computationally infeasible. Instead, we approximate these quantities by accumulating their values over 100
consecutive mini-batches at the logging phase. We follow the Megatron-LM official GPT-2 training configuration
with minimal modifications to suit our experimental needs. We train a GPT-2 Small model with approximately
125M parameters. The model is optimized using the fused implementation of AdamW from NVIDIA Apex
package, which is the default setting in Megatron-LM. We set the learning rate to 3× 10−3 and weight decay to
0.05. Following the de facto standard in large-scale language model training, we use (θ, β) = (0.9, 0.95) (that
is, the commonly used (β1, β2)) instead of the conventional (0.9, 0.999) setting. The total training process runs
for 50,000 iterations, where the learning rate is linearly warmed up for the first 2,000 iterations and then decayed
following a cosine schedule. We set the global batch size to 640 and train the model for K = 50000 steps, and
complete the training task using 8 NVIDIA A100 GPUs.
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