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Abstract

Test log-likelihood is commonly used to compare different models of the same data or
different approximate inference algorithms for fitting the same probabilistic model. We
present simple examples demonstrating how comparisons based on test log-likelihood can
contradict comparisons according to other objectives. Specifically, our examples show that
(i) approximate Bayesian inference algorithms that attain higher test log-likelihoods need
not also yield more accurate posterior approximations and (ii) conclusions about forecast
accuracy based on test log-likelihood comparisons may not agree with conclusions based on
root mean squared error.

1 Introduction

Test log-likelihood, also known as predictive log-likelihood or test log-predictive, is computed as the log-
predictive density averaged over a set of held-out data. It is often used to compare different models of the
same data or to compare different algorithms used to fit the same probabilistic model. Although there are
compelling reasons for this practice (Section 2.1), we provide examples that falsify the following, usually
implicit, claims:

• Claim: The higher the test log-likelihood, the more accurately an approximate inference algorithm
recovers the Bayesian posterior distribution of latent model parameters (Section 3).

• Claim: The higher the test log-likelihood, the better the predictive performance on held-out data
according to other measurements, like root mean squared error (Section 4).

Our examples demonstrate that test log-likelihood is not always a good proxy for posterior approximation
error. They further demonstrate that forecast evaluations based on test log-likelihood may not agree with
forecast evaluations based root mean squared error.

We are not the first to highlight discrepancies between test log-likelihood and other analysis objectives. For
instance, Quiñonero-Candela et al. (2005) and Kohonen and Suomela (2005) showed that when predicting
discrete data with continuous distributions, test log-likelihood can be made arbitrarily large by concentrating
probability into vanishingly small intervals. Chang et al. (2009) observed that topic models with larger test
log-predictive densities can be less interpretable. Yao et al. (2019) highlighted the disconnect between test
log-likelihood and posterior approximation error in the context of Bayesian neural networks. Our examples,
however, reveal more fundamental discrepancies between test log-likelihood and other evaluation metrics. In
particular, we show how comparisons based on test log-likelihood can contradict comparisons based on other
objectives even in simple models like linear regression.

After introducing our notation, we precisely define test log-likelihood and review arguments for its use in
Section 2. In Section 3, we show that over a range of posterior approximations provided by a recent method,
those with higher test log-likelihood provide worse posterior approximation quality; in additional examples,
we recover similar results even when using different approximations and even when there is little or no model
misspecification. In Section 4, we show examples in both complex and simple models where test log-likelihood
is higher but root mean squared error on held-out data is worse. Our examples in Section 4 do depend on
model misspecification, but we note that model misspecification is unavoidable in practice. We conclude in
Section 5 with a reflection on when we should use test log-likelihood in practice.
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2 Background

Practitioners often model training data D = {yn}N
n=1, which are assumed to be distributed according to an

unknown probability distribution P, by introducing a parameter θ and specifying a conditional distribution
Π(Y |θ) with density π(y|θ). In a non-Bayesian analysis, one usually computes a point estimate θ̂ of the
unknown parameter (e.g. by maximum likelihood). A Bayesian analysis elaborates the conditional model by
specifying a prior distribution Π(θ) and formally computes the density π(θ|D) of the posterior distribution
Π(θ|D) from the assumed joint distribution Π(D, θ).

Upon computing a point estimate θ̂ or posterior density π(θ|D), one can ask how well the fitted model
predicts new data generated from P. Given a point estimate θ̂, the predictive density evaluated at y? is just
π(y?|θ̂). The Bayesian posterior predictive density is given by

π(y?|D) =
∫
π(y?|θ)π(θ|D)dθ.

Observe that π(y?|θ̂) is numerically equal to π(y?|D) when the prior or posterior of θ is a point mass at θ̂.

Practitioners commonly assess how well their fitted model predicts out-of-sample using a held-out set of
testing data D? = {y?

n}N?

n=1, which was not used to train the model. To compute test log-likelihood, they
average evaluations of the log-predictive density function over the testing set:

TLL(D?; Π) := 1
N?

N?∑
n=1

log π(y?
n|D), (1)

where our notation makes explicit the dependence of the test log-likelihood (TLL) on testing data D? and
the chosen model Π.

2.1 The case for test log-likelihood

Researchers commonly use test log-likelihood to select between two models of the data, say Π and Π̃; that is,
they select model Π over Π̃ whenever TLL(D?; Π) > TLL(D?; Π̃). Often practitioners will further observe
that TLL may exhibit variability across draws of testing data and express confidence in choosing Π when the
lower bound of a confidence interval around TLL(D?; Π) exceeds the upper bound of a confidence interval
around TLL(D?; Π̃).1

To understand these comparisons, consider the expected log-predictive density,

elpd(Π) :=
∫

log π(y?|D)dP(y?).

Our use of the abbreviation elpd follows the example of Gelman et al. (2014, Equation 1). Under mild
assumptions about P and Π, TLL(D?; Π) a.s.→ elpd(Π) as the number of testing points N? diverges. Expected
log-predictive density is closely related to the Kullback–Leibler divergence; if we assume P has density p(y?),

KL (P(y?) ‖Π(y?|D)) =
∫
p(y?) log p(y?)dy? − elpd(Π).

Thus, assuming that the test set D? is sufficiently large, if the lower bound of a confidence interval around
TLL(D?; Π) exceeds the upper bound of a confidence interval around TLL(D?; Π̃), we can reasonably conclude
that elpd(Π) > elpd(Π̃), which in turn implies that Π(y?|D) is closer to P(y?) than Π̃(y?|D) in a KL sense.

1In our experiments, the number of data points is typically high, so we assume that the sampling distribution of TLL is
well-approximated by a normal distribution, and we report 95% confidence intervals as the mean plus or minus two standard
errors. Since TLL takes the form of a mean, its standard error can be calculated using the usual formula for standard error of
the mean, and that is what we use in our experiments below. Also, note that technically the estimates of the standard error of
TLL(D?; Π) and of TLL(D?; Π̃) may be correlated when computed in this way; we do not expect that more careful treatment of
this correlation would change our substantive conclusions below.
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In other words, we would expect predictions made using the fitted model with larger TLL to be closer (in a
KL sense) to realizations from the true data generating process.

In addition to being essentially the only strictly proper local scoring rule (Bernardo and Smith, 2000,
Proposition 3.13), in the absence of application-specified predictive loss, TLL may be seen as a “non-
informative” choice (Robert, 1996; Gelman et al., 2014). When Π(y?|D) is assumed to be Gaussian, elpd is
intimately related to another proper scoring rule: the Dawid–Sebastiani score (Dawid and Sebastiani, 1999).
Namely, elpd is equal to the Dawid–Sebastiani score plus a constant that does not depend on the model
or the data-generating process. Further, for Gaussian predictive distributions, the highest possible elpd is
obtained whenever the means and variances of Π(y?|D) and P(y?) are identical. By contrast, minimizing
mean square error is equivalent to only matching the means of Π(y?|D) and P(y?).

Model comparison with TLL makes two (often implicit) assumptions: (i) that TLL(D?; ·) is a close approxi-
mation to elpd(·) and (ii) that closeness between Π(y?|D) and P in a KL sense is desirable. As we will see
shortly, however, KL closeness to P does not necessarily imply closeness of other distributional quantities or
of posterior approximation quality.

3 Claim 1: TLL accurately assesses posterior approximation quality

In this section, we give examples where test log likelihood is higher though the quality of an approximate
posterior mean, variance, or other common summary is lower. We start with examples in mis-specified models
and then give a correctly specified example.

Practitioners often use posterior expectations to summarize the relationship between a covariate and a
response. For instance, the posterior mean serves as a point estimate, and the posterior standard deviation
quantifies uncertainty. However, as the posterior density π(θ|D) is analytically intractable, practitioners must
instead rely on approximate posterior computations. There are myriad approximate inference algorithms
(e.g. Laplace approximation, Hamiltonian Monte Carlo, mean-field variational inference, to name just a few).
All these algorithms aim to approximate the same posterior Π(θ|D). Log predictive-density is often used to
compare the quality of different approximations, with higher TLL values assumed to reflect more accurate
approximations, e.g. in the context of variational inference (see, e.g., Hoffman et al., 2013; Ranganath et al.,
2014; Hernández-Lobato et al., 2016; Liu and Wang, 2016; Shi et al., 2018) or Bayesian deep learning (see,
e.g., Hernández-Lobato and Adams, 2015; Gan et al., 2016; Li et al., 2016; Louizos and Welling, 2016; Sun
et al., 2017; Ghosh et al., 2018; Mishkin et al., 2018; Wu et al., 2019; Izmailov et al., 2020; 2021; Ober and
Aitchison, 2021).

Formally, suppose that our exact posterior is Π(θ|D) and that we have two approximate inference algorithms
that produce two approximate posteriors, respectively Π̂1(θ|D) and Π̂2(θ|D). The exact posterior and its
approximations respectively induce predictive distributions Π(y?|D), Π̂1(y?|D), and Π̂2(y?|D). For instance,
Π̂1(θ|D) could be the empirical distribution of samples drawn using HMC and Π̂2(θ|D) could be a mean-field
variational approximation. Our first example demonstrates that it is possible that2 (i) TLL(D?; Π̂1) >
TLL(D?; Π) but (ii) using Π̂1 could lead to different inference about model parameters than using the exact
posterior Π. Our second example demonstrates that it is possible that (i) TLL(D?; Π̂1) > TLL(D?; Π̂2) but
(ii) Π̂1(θ|D) is a worse approximation to the exact posterior Π(θ|D) than Π̂2(θ|D).

3.1 TLL and downstream posterior inference

Relying on TLL for model selection can lead to different inferences than we would find by using the exact
posterior. To illustrate, suppose we observe D100 = {(xn, yn)}100

n=1 drawn from the following heteroscedastic
model:

xn ∼ N (0, 1), yn | xn ∼ N (xn, 1 + log(1 + exp(xn))). (2)
Further suppose we model these data with a mis-specified homoscedastic model:

θ ∼ N ([0, 0]>, [1, 0; 0, 1]), yn | θ, φn ∼ N (θTφn, 1), (3)
2In fact, we compare confidence intervals around the test log-likelihood values, but we write “TLL(D?; Π̂1) > TLL(D?; Π)”

and below for brevity. In our experiments, we generally find that the confidence intervals are small on the scale of the comparison.
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Figure 1: (Left). Predictive distributions under the Bayesian posterior and mean field variational approx-
imations. The two numbers in the title of each plot are the 2-Wasserstein distance to the exact posterior
and test log-likelihood computed on 104 test set observations. Two standard errors in the test log-likelihood
estimate are (A) 0.03, (B) 0.03, (C) 0.02, (D) 0.02, (E) 0.02, (F) 0.02. (Right). The relationship between
2-Wasserstein distance to the posterior and test log-likelihood.

where φn = [xn, 1]>, and θ = [θ1, θ2]. Figure 1 shows the posterior mean and the 95% predictive interval of
the mis-specified regression line θ>φ from (A) the exact Bayesian posterior; (B) the mean field variational
approximation restricted to isotropic Gaussians; and (C)–(F) variational approximations with re-scaled
marginal variances. Each panel includes a scatter plot of the observed data, D100. We also report the
2-Wasserstein distance between the exact posterior and each approximation and the TLL averaged over
N∗ = 104 test data points drawn from Equation (2); note that the 2-Wasserstein distance can be used to
bound differences in means and variances (Huggins et al., 2020). The variational approximation (panel (B) of
Figure 1) is quite accurate: the 2-Wasserstein distance between the approximation and the exact posterior is
∼10−4. See also Figure 2, which shows the contours of the exact and approximate posterior distributions. As
we scale up the variance of this approximation, we move away from the exact posterior over the parameters
but the posterior predictive distribution covers more data, yielding higher TLL.

TLL and a discrepancy in inferences. Researchers are often interested in understanding whether there
is a relationship between a covariate and response; a Bayesian analysis will often conclude that there is
no relationship if the posterior on the corresponding effect-size parameter places substantial probability on
an interval not containing zero. In our example, we wish to check whether θ1 = 0. Notice that the exact
posterior distribution (panel (A) in Figures 1 and 2) is concentrated on positive θ1 values. The 95% credible
interval of the exact posterior3 is [0.63, 1.07]. Since the interval does not contain zero, we would infer that
θ1 6= 0. On the other hand, as the approximations become more diffuse (panels (B)–(F)), TLL increases
and the approximations begin to place non-negligible probability mass on negative θ1 values. In fact, the
approximation with highest TLL (panel (F) in Figures 1 and 2) yields an approximate 95% credible interval
of [-0.29,1.99], which covers zero. Had we used this approximate interval, we would have failed to conclude
θ1 6= 0. That is, in this case, we would reach a different substantive conclusion about the effect θ1 if we (i)
use the exact posterior or (ii) use the approximation selected by highest TLL.

3.2 TLL in the wild

Next, we examine a more realistic scenario in which the difference between the quality of the posterior
approximation and the exact posterior distribution TLL arises naturally, without the need to artificially

3Throughout we used symmetric credible intervals formed by computing quantiles: the 95% interval is equal to the 2.5%–97.5%
interquantile range.
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Figure 2: Contours of (A) the exact posterior, (B) the mean field variational approximation restricted to
isotropic Gaussians, and (C)–(F) re-scaled mean field approximations. The line θ1 = 0 is highlighted in red.

Figure 3: (Left). Predictive distributions under the Bayesian posterior (A) and the SWAG posterior with
SWAG learning rate of (B) 10−3, (C) 10−2, (D) 10−1, (E) 1, and (F) 10. The two numbers in the title of
each plot are the 2-Wasserstein distance to the exact posterior and test log-likelihood computed on 104 test
set observations. Two standard errors in the test log-likelihood estimates are (A) 0.16, (B) 0.15, (C) 0.14, (D)
0.13, (E) 0.05, (F) 0.01. (Right). Contours of the (A) exact posterior, and (B)–(F) SWAG approximations
with different learning rates. The line θ1 = 0 is highlighted in red.

increase the marginal variance of the variational approximations. To explore this situation, we will first
introduce another example of mis-specification and repeat the type of analysis described in Section 3.1.

Consider the following case: we observe 500 observations D500 = {(xn, yn)}500
n=1 drawn from a non-linear

model:

θ∗ = [−2,−1]>, xn ∼ N (0, 1), yn | θ∗, φn ∼ N (θ>∗ φn + x2
n, 0.5), (4)

where φn = [xn, 1]>. Further suppose we modeled these data with a mis-specified linear model

θ ∼ N ([0, 0]>[1, 0; 0, 1]), yn | θ, φn ∼ N (θ>φn, 0.5). (5)

While the misspecification here might appear egregious, linear models are widely used in practice for modeling
non-linear phenomena when one is primarily interested in inferring whether the covariates are positively
correlated, negatively correlated, or are uncorrelated with the responses (Berk et al., 2014; 2018; Blanca
et al., 2018; Vowels, 2023). Next, we use SWAG (Maddox et al., 2019), an off-the-shelf approximate inference
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algorithm, to approximate the posterior Π(θ|D500).4 SWAG uses a gradient-based optimizer with a learning
rate schedule that encourages the optimizer to oscillate around the optimal solution instead of converging to
it. Then, a Gaussian distribution is fit to the set of solutions explored by the optimizer around the optimum
using moment matching. In general, one must select the learning rate schedule in a heuristic fashion. One
might be tempted to use TLL to tune the learning rate schedule. We use this heuristic5 and run SWAG for a
thousand epochs, annealing the learning rate down to a different constant value after 750 epochs. We vary this
constant value over the set {10−3, 10−2, 10−1, 1, 10}. In Figure 3, we show the resulting posterior mean and
the 95% predictive interval of the misspecified regression line θ>φ from (A) the Bayesian posterior; (B)–(F)
the SWAG posteriors using different learning rate schedules. In each plot, we overlay the observed data
D500 (black dots) with the true data generating function in dashed black. We also report the 2-Wasserstein
distance between the exact posterior and each approximation and the TLL averaged over N∗ = 104 test data
points drawn from Equation (4). In all cases, SWAG overestimates the posterior variance, with predictive
distributions that better cover the data and consequently lead to a higher TLL. However, these SWAG
posterior approximations are farther from the exact posterior. In fact, we found that a learning rate of 10
(Figure 3, Left, panel (F)) maximized TLL but led to the worst approximation of the exact posterior.

As in the previous section, next suppose we fit this misspecified linear model to understand whether there is
a relationship between the covariates and the responses, i.e., whether θ1 = 0. Notice that the exact posterior
distribution (Figure 3, Right, panel (A)) is concentrated on negative θ1 values, with the 95% posterior credible
interval being [−1.96,−1.79]. Since the interval is to the left of zero, we would infer that θ1 < 0 and that
the covariate and the response are negatively correlated. In contrast, if we select the SWAG approximation
with the highest TLL, we select the posterior approximation in panel (F) on the right side of Figure 3. The
corresponding 95% posterior credible interval is [−4.46, 0.74], which places non-negligible probability mass on
θ1 > 0. In this case, we would not conclude that the response and the covariate are negatively correlated –
by contrast to the conclusion using the exact posterior.

Figure 4: (Left). Contours of (A) the exact posterior, (B) the mean field variational approximation restricted
to isotropic Gaussians, and (C)–(F) re-scaled mean field approximations. The two numbers in the title of
each plot are the 2-Wasserstein distance to the exact posterior and test log-likelihoods computed on 104 test
set observations. Two standard errors in the test log-likelihood estimates are (A) 0.019, (B) 0.020, (C) 0.014,
(D) 0.013, (E) 0.011, (F) 0.009. (Right). The non-monotonic relationship between distance to posterior and
test log-likelihood. Observe that the exact posterior does not achieve highest test log-likelihood.

4We also repeat the re-scaled variational inference experiment from Section 3.1 with this set of data and models (Equations (4)
and (5)). See Appendix A.

5Although used pedagogically here, similar heuristics have been used in practice (di Langosco et al., 2022), where the learning
rate is tuned based on the accuracy achieved on held-out data.
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3.3 TLL and well-specified models

The examples above demonstrated that TLL is not a reliable proxy to posterior approximation quality when
the model is mis-specified. Though mis-specified models are the norm in practice, we now demonstrate that a
distribution with higher TLL may not provide a more accurate posterior approximation even when the model
is correctly specified.

To this end, consider the following Bayesian linear model:

θ ∼ N ([0, 0]>, [1, 0.9; 0.9, 1]), yn | θ, φn ∼ N (θ>φn, 0.252), (6)

where φn = [xn, 1]>. Now, suppose we observe ten data points D10 = {(xn, yn)}10
n=1 sampled as

θ∗ = [−2,−1]>, xn ∼ N (0, 1), yn | θ∗, φn ∼ N (θ>∗ φn, 0.252). (7)

The left panel of Figure 4 plots the contours of (A) the exact posterior distribution Π(φ|D10); (B) the
mean field variational approximation constrained to the isotropic Gaussian family; and (C)–(F) variational
approximations with re-scaled marginal variances. In each panel, we report the 2-Wasserstein distance
between the approximate and exact posterior and the test log-predictive averaged over N? = 104 test data
points drawn from Equation (7).

Although we have correctly specified the conditional model of y|(θ, φ), the exact posterior has a lower TLL
than some of the approximate posteriors; in particular, the 95% confidence intervals for (C) and (D) are disjoint
from the 95% confidence interval for the exact posterior, shown in (A). The left panel of Figure 4 suggests
that the more probability mass an approximate posterior places around the true data-generating parameter,
the higher the TLL. Eventually, as the approximation becomes more diffuse, TLL begins to decrease (Figure 4
(right)). The non-monotonicity demonstrates that an approximate posterior with larger implied TLL can in
fact be further away from the exact posterior in a 2-Wasserstein sense than an approximate posterior with
smaller implied TLL. Figure 8 in Appendix A shows that, in the well-specified case, a distribution with larger
TLL can provide a worse approximation of the posterior standard deviation than a distribution with smaller
TLL.

4 Claim 2: the higher the TLL, the more accurate the predictive mean

We now show that although TLL roughly measures closeness in a KL sense, a comparison based on TLL can
disagree with a comparison based on root mean squared error (RMSE). To this end, we construct two models
Π and Π̃ such that TLL(D?; Π) < TLL(D?; Π̃) but Π̃ yields larger predictive RMSE.

Misspecified Gaussian process regression. Suppose we observe D100 = {(xn, yn)}100
n=1 from the following

data generating process:

xn ∼ U(−5,+5) yn|xn ∼ N (sin(2xn), 0.1). (8)

Further suppose we model this data using a zero-mean Gaussian process (GP) with Gaussian noise,

f ∼ GP(0, k(x, x′)), yn|fn ∼ N (fn, σ
2), (9)

where fn is shorthand for f(xn). First consider the case where we employ a periodic kernel,6 constrain the
noise nugget σ2 to 1.6, and fit all other hyper-parameters by maximizing the marginal likelihood. The resulting
fit is shown in Figure 5 (A). Next, consider an alternate model where we use a squared-exponential kernel
and fit all hyper-parameters including the noise nugget via maximum marginal likelihood. The resulting fit is
displayed in Figure 5 (B). The squared exponential model fails to recover the predictive mean and reverts back
to the prior mean (RMSE = 0.737, 95% confidence interval [0.729, 0.745]),7 while the periodic model recovers

6PeriodicMatern32 in https://github.com/SheffieldML/GPy
7To compute the RMSE confidence interval, we first compute the mean of the squared errors (MSE, m) and its associated

standard error of the mean (s). Since we have a large number of data points and the MSE takes the form of a mean, we
assume the sampling distribution of the MSE is well-approximated by a normal distribution. We use [m− 2s, m + 2s] as the
95% confidence interval for the MSE. We use [

√
m− 2s,

√
m + 2s] as the 95% confidence interval for the RMSE. Note that the

resulting RMSE confidence interval will generally not be symmetric.
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the predictive mean accurately, as measured by RMSE = 0.355 (95% confidence interval [0.351, 0.360]).Despite
the poor mean estimate provided by the squared exponential model, it scores a substantially higher TLL.

Figure 5: The plots display two Gaussian processes trained on the same set of data (represented by black plus
symbols). The dashed red line shows the mean of the posterior Gaussian process, while the red highlighted
region represents the 95% predictive interval. The subplot titles display the TLL (±2 standard error) attained
by each Gaussian process. Although the Gaussian process in panel (A) achieves a better mean fit compared
to panel (B), it has a worse TLL when evaluated on 104 test instances (represented by black dots).

In this example, we see that, even with an accurate point estimate, TLL can be reduced by, for instance,
inflating the predictive uncertainty. And this discrepancy between TLL and RMSE is not necessarily removed
by optimizing the parameters of a model.

Misspecified linear regression. Our next example illustrates that even when all parameters in a model
are fit with maximum likelihood, a comparison based on TLL may still disagree with a comparison based on
RMSE. It also illustrates that the discrepancy between TLL and RMSE can arise even in very simple and
low-dimensional models and even when data is sufficiently large that we expect that TLL matches elpd well.

Specifically, suppose that we observe D = {(xn, yn)}100,000
n=1 generated according to

xn ∼ U(0, 25), yn|xn ∼ Laplace(xn, 1/
√

2), (10)

which we model using one of the following mis-specified conditional linear models:

Π : yn|xn ∼ N (θxn, σ
2)

or
Π̃ : yn|xn ∼ Laplace(0.45 + θxn, λ).

(11)

Both Π and Π̃ depend on two unknown parameters. Π depends on a slope θ and a residual variance σ2 and
Π̃ depends on a slope θ and a residual scale λ. The kind of mis-specification is different across models; while
Π has the correct mean specification but incorrect noise specification, Π̃ has incorrect mean specification but
correct noise specification.
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We computed the maximum likelihood estimates (MLEs) (θ̂Π, σ̂Π) and (θ̂Π̃, λ̂Π̃) for both models. The two
fitted models induce the following predictive distributions of y?|x?:

Π(y?|x?,D) : y?|x? ∼ N (θ̂Πx
?, σ̂2

Π)
and

Π̃(y?|x?,D) : y?|x? ∼ Laplace(0.45 + θ̂Π̃x
?, λ̂Π̃).

(12)

The means of these predictive distributions are natural point estimates of the output y? at input x?.

Using a test set of size N? = 395,000, we observed TLL(D?; Π) = −1.420 < −1.389 = TLL(D?; Π̃). The
standard error of either TLL estimate is only 0.002. Hence, based on sample mean and standard error, we
conclude that Π̃ has better elpd than Π. These values suggest that on average over inputs x?, Π̃(y?|x?,D)
is closer to P(y?|x?) than Π(y?|x?,D) in a KL sense. However, using the same test set, we found that Π
yielded more accurate point forecasts, as measured by root mean square error (RMSE):(

1
N?

N?∑
n=1

(y?
n − θ̂Πx

?
n)2

)1/2

= 1.000 < 1.025 =
(

1
N?

N?∑
n=1

(y?
n − 0.45− θ̂Π̃x

?
n)2

)1/2

. (13)

In addition, the 95% confidence intervals for the RMSE do not overlap: the interval for Π’s RMSE is
[0.997, 1.005] and that for Π̃’s RMSE is [1.022, 1.029]. The comparison of RMSEs suggests that on average
over inputs x?, the predictive mean of Π(y?|x?,D) is closer to the mean of P(y?|x?) than the predictive mean
of Π̃(y?|x?,D). In other words, the model with larger TLL – whose predictive distribution is ostensibly closer
to P – makes worse point predictions than the model with smaller TLL.

5 Discussion

Our paper is neither a blanket indictment nor recommendation of test log-likelihood. Rather, we hope to
encourage researchers to explicitly state and commit to a particular data-analysis goal – and recognize that
different methods may perform better under different goals. For instance, if the goal of a method is to
approximate the exact Bayesian posterior, we would argue that it is inappropriate to use test log-likelihood as
the principal metric. We have produced examples where a distribution can provide a better test log-likelihood
but yield a (much) poorer approximation to the Bayesian posterior – in particular, leading to fundamentally
different inferences and decisions.

Conversely, it may very reasonably be the case that a particular method is not designed to approximate the
exact Bayesian posterior; indeed, many of the arguments for using the exact Bayesian posterior in decision
making rely on correct model specification, which we cannot rely upon in practice. But then the choice of
evaluation metrics would ideally be made plain. Test log-likelihood might be a good choice of evaluation
metric when the goal is being close to the true data generating distribution in a Kullback–Leibler sense. It is
important to note, however, that just because two distributions are close in KL, their means and variances
need not be close; in fact, Propositions 3.1 & 3.2 of Huggins et al. (2020) show that the means and variances
of distributions that are close in KL can be arbitrarily far apart. If there is a quantity of particular interest
in the data-generating process, such as a moment or a quantile, a good choice of evaluation metric may be an
appropriate scoring rule. Namely, one might choose a scoring rule whose associated divergence function is
known to quantify the distance between the forecast’s quantity of interest and that of the data-generating
process. For instance, when comparing the quality of mean estimates, one option is using the squared-error
scoring rule, whose divergence function is the integrated squared difference between the forecast’s mean
estimate and the mean of the data-generating process. See Gneiting and Raftery (2007) for a list of commonly
used scoring rules and their associated divergences.
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A Additional Experiments and Plots

A.1 Additional TLL in the wild experiments

SWAG with higher learning rates. In Figure 6 we continue the experiment described in Section 3.2
but using higher learning rates of 12, 15, and 20. Despite moving further from the exact posterior the test
log-likelihood remains higher than those achieved by SWAG approximations with lower learning rates (panels
(B) through (E) of Figure 3).

Figure 6: (Left). Predictive distributions under the SWAG posterior with SWAG learning rate of (G) 12, (H)
15, (I) 20. The two numbers in the title of each plot are the 2-Wasserstein distance to the exact posterior
and test log-likelihood computed on 104 test set observations. Two standard errors in the test log-likelihood
estimates are (G) 0.01, (H) 0.009, (I) 0.08. (Right). Contours of the SWAG approximations with different
learning rates. The line θ1 = 0 is highlighted in red.

Mean field variational inference. Next, we reproduce the experimental setup described in Section 3.2,
but instead of using SWAG to approximate the posterior, we use mean field variational inference and examine
the relationship between TLL and posterior approximation quality under different re-scalings of the marginal
variance of the optimal variational approximation. Figure 7 shows the posterior mean and the 95% predictive
interval of the mis-specified regression line θ>φ from (A) the Bayesian posterior; (B) the mean field variational
approximation restricted to isotropic Gaussians; and (C)–(F) several re-scaled variational approximations.
In each plot, we overlaid the observed data D500, the true data generating function in dashed black, and
also report the 2-Wasserstein distance between the true posterior and each approximation and the TLL
averaged over N∗ = 104 test data points drawn from Equation (2) Like in our previous example, the mean
field approximation (panel (B) of Figure 7) is very close to the exact posterior. Further, as we scale up
the marginal variance of the approximate posteriors, the posterior predictive distributions cover more data,
yielding higher TLL, while simultaneously moving away from the exact posterior over the model parameters
in a 2-Wasserstein sense. Interestingly, when the approximation is diffuse enough, TLL decreases, again
highlighting its non-monotonic relationship with posterior approximation quality. In this example of a
mis-specified model, the non-monotonic relationship between TLL and 2-Wasserstein distance means that
TLL is, at best, a poor proxy of posterior approximation quality.

A.2 Non-monotonicity of TLL beyond the Wasserstein distance

We reproduce the experimental setup that produced Figure 4 but plot TLL against the difference of marginal
standard deviations of the parameters of interest between an approximation and the exact posterior in
Figure 8. We observe a similar kind of non-monotonicity as the right panel of Figure 4.

Figure 9 shows a similar phenomenon with posterior standard deviations. Figure 9 displays a similar kind of
non-monotonicity as the right panel of Figure 7. The experimental setup is identical to Figure 7: we have
only changed what is plotted on the x-axis.
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Figure 7: (Left). Predictive distributions under the Bayesian posterior and mean field variational approxima-
tions. The two numbers in the title of each plot are the 2-Wasserstein distance to the true posterior and
test log-likelihoods computed on 104 test set observations. Two standard errors in the test log-likelihood
estimates are (A) 0.16, (B) 0.16, (C) 0.03, (D) 0.02, (E) 0.02, (F) 0.01. (Right). The relationship between
distance to posterior and test log-predictive density. Observe the log scale of the x-axis and the non-monotonic
relationship between test log-predictive density and 2-Wasserstein distance to the Bayesian posterior.

Figure 8: The non-monotonic relationship between difference in marginal standard deviations and test log-
predictive density in a well-specified case. (Left) The x-axis reports the difference in the standard deviation
of the weight θ1 between an approximation and the posterior. (Right) The x-axis reports the difference in the
standard deviation of the bias θ2 between an approximation and the posterior.
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Figure 9: The non-monotonic relationship between difference in marginal standard deviations and test
log-predictive density in a mis-specified case. The meaning of x-axis is similar to that of Figure 8.
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