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Abstract

Working memory (WM) supports the temporary retention of task-relevant informa-
tion. It is limited in capacity and inherently noisy. The ability to flexibly allocate
WM resource is a hallmark of adaptive behavior. While it is well established
that WM resource can be prioritized via selective attention, whether they can be
allocated based on reward incentive alone remains under debate—raising open
questions about whether humans can efficiently allocate WM resource based on
utility. To address this, we conducted behavioral experiments using orientations as
stimuli. Participants first learned stimulus—reward associations and then performed
a delayed estimate WM task. We found that WM precision, indexed by the vari-
ability of memory reports, reflected both natural stimulus priors and utility-based
allocation. The effects from reward and prior on memory variability both grew over
time, indicating their effects in stabilizing memory representations. In contrast,
memory bias was largely unaffected by time or reward. To interpret these findings,
we extended efficient coding theory by incorporating time and reformulating the
objective from minimizing estimation loss to maximizing expected utility. We
showed that the behavioral results were consistent with an observer that efficiently
allocates WM resource over time to maximize utility. Lastly, we trained recurrent
neural networks (RNN5s) to perform the same WM task under a 2x2 design: prior
(uniform vs. natural) x reward policy (baseline vs. reward context). Human-like
behaviors emerged in RNNs: memory was more stable (lower variability) for stim-
uli associated with higher probability or rewards, and these effects increased over
time. Transfer learning showed that recurrent dynamics were crucial for adapting
to different priors and reward policies. Together, these results provide converging
behavioral and computational evidence that WM resource allocation is shaped by
environmental statistics and rewards, offering insight into how intelligent systems
can dynamically optimize memory for utility under resource constraints.

1 Introduction

Working memory (WM) is the neural and cognitive process that temporarily maintain task-relevant
information online[Baddeley, 2003]]. It supports a wide range of high-level cognition functions such
as learning, decision-making and planning [Collins and Frankl 2012} [Daneman and Carpenter, |1980),
Sub et al., 2002} [Ehrlich and Murrayl, 2022]]. WM has limited capacity and is inherently noisy—the
quality of the WM decreases with the number of items stored [Luck and Vogel, [1997,[2013| Ma et al.}
2014], and the precision of WM representations decays over time [Pertzov et al., 2017} |Panichello
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et al.,|2019| |Shin et al.;2017]]. Thereby, the ability to flexibly and efficiently allocate WM resource is
essential for adaptive and goal-directed behaviors.

It is well-established that humans can allocate WM resource in response to attentional cues. When
multiple items must be remembered, people can prioritize certain items over others, suggesting a
degree of control over the distribution of WM resource [Zhang and Luckl 2008, |[Emrich et al.| 2017,
Dube et al., 2017, [Klyszejko et al., 2014} Yoo et al.||2018} Bays,[2014]. However, a more fundamental
and still unresolved question is whether WM resource is allocated efficiently to maximize reward or
utility—the common currency of the subjective value. Recent studies have reported mixed results
regarding whether WM resource can be modulated based on reward alone [Brissenden et al., 2023}
Van den Berg et al) 2023 [Weiss et al., 2025, [Manga et al., 2020]], when factors such as spatial
attention are controlled. These findings cast doubt on the notion that WM resource can be flexibly
optimized to maximize an individual’s utility. In parallel, although both cognitive models [Van den
Berg et al., 2014, Bays et al., 2024]] and recurrent neural network (RNN) models have been developed
to account for various aspects of working memory [Wimmer et al.l 2014} |Compte et al.l 2000,
Bouchacourt and Buschman, 2019} |[Esnaola-Acebes et al.l [2022] [Wang| [2021], it remains largely
underexplored how such models should allocate WM resource in order to maximize expected utility,
a signature of normative and reward-sensitive computation.

Here, we conducted behavioral experiments to test the hypothesis that after value learning, humans
allocate WM resource efficiently according to stimulus-reward association in order to maximize
utility. To preview, we found that memory representations were more stable for stimuli associated
with higher reward, as well as for those more probable in the natural environment. To explain these
findings, we extended efficient coding theory to the time domain and reformulated the objective
from minimizing estimation loss to utility maximization, providing a normative account of how WM
resource can be allocated over time to optimize expected utility [Wei and Stocker, [2015/ Hahn and
‘Wei, |2024, [Morais and Pillowl} 2018 |Schaffner et al., 2023]]. Finally, we show that recurrent neural
networks (RNNs) trained to maximize reward exhibit human-like behaviors, integrating both prior
and reward information in a manner consistent with the behavioral data.

2 Joint effects of prior and reward on human working memory

2.1 Behavioral tasks

The behavioral experiments consisted of two sessions scheduled on separate days, with one context
tested per day (Figure[TJA). On each day, participants first completed a value learning task followed by
a WM delay-estimation task under the same context. The order of the contexts was counterbalanced
across subjects (n=14, power analysis see [A.1.7). In the baseline context, all orientations were
associated with the same reward; in the reward context, reward increased with the diagonality of the
orientations (Figure[IB). We designed the reward context such that the reward structure goes against
the environmental distribution of the orientations (Figure[T[C), where cardinal orientations are more
prevalent [Girshick et al.l | 2011]]. This allowed us to disentangle the impact of the environmental prior
and learned reward.

In the value-learning task (Figure[ID), each trial started with four gratings with orientations sampled
from the environmental distribution presented in different quadrants on the screen. Participants used
mouse clicks to choose one grating and received feedback of the rewards (indicated as points). They
were instructed to maximize the reward while learning the reward-orientation association. Each
participant completed 5 blocks of 20 trials. At the end of the training, participants learned to choose
the most diagonal grating in the reward context, while they choose the most diagonal one at a chance
level in the baseline context (Figure[ID, details of learning trajectory in[A.T.T).

After the value-learning task, participants performed the WM delay-estimation task (Figure [IE).
Participants viewed a centrally presented grating (the target, 0.5s duration), and reproduced its
orientation after a 1s or 5s delay. Orientations of the targets in each run were pseudo-randomly drawn
from a uniform distribution. The rewards (points) they earned on each trial decreased linearly with
the absolute memory error (the reported orientation minus the true orientation) in both contexts. The
orientation of the target determined the maximum reward (when memory error = 0°) that can be
earned in each trial. Following the same policy they just learned (Figure[IB), in the reward context,
more diagonal targets were associated with higher reward, while the rewards were uniform across
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Figure 1: Behavioral experiments and procedures. (A) The experiments included 2 days, each day
assigned to a distinct reward policy. (B) Reward policy for the baseline and the reward context.
(C) Uniform distribution and environmental distribution of orientations adopted from |Girshick et al.
[2011]. (D) Left: The value-learning task: participants learn the reward-orientation association in a
4AFC decision task. Right: The learning outcome of the value-learning task. Participants learned to
choose the most diagonal orientation in the reward context, while the choice is random in the baseline
context. (E) The WM delay-estimation task, where the memory of a single orientation is tested after
a s or 5s delay.

orientations in the baseline context. By the end of each session (day), the total rewards (points) earned
across the two tasks were converted into cash bonus earned by the participants.

2.2 Behavioral results

Reward stabilizes WM representations
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Figure 2: Behavioral results. (A) WM variability (bias removed) in each context x delay condition.
Data points represent mean + 1 s.e.m. Lines are fitted variability (sinusoidal) functions. (B) Vari-
ability amplitude fitted from sinusoidal functions. Higher amplitude indicates a stronger oblique
effect—cardinals having a lower variability compared to the oblique orientations. Error bars represent
+ 1 s.e.m. (C) WM bias in each context x delay condition. Data points represent mean + 1 s.e.m.
Lines are fitted polynomial functions. (D) Bias magnitude estimated from polynomial function, where
higher value denotes a higher repulsion away from the cardinals. Error bars represent + 1 s.e.m. (E)
Ilustrations of how bias and variability are decomposed from memory responses.



It is well-established that orientation estimation exhibits distinct patterns of bias and variability
[Taylor and Bays|, 2018| Wei and Stocker, [2017] |Girshick et al.} 2011]. We decomposed the memory
error into these two components (Figure 2E). For each context x delay condition, we fitted polynomial
regression to the (signed) memory error to predict the bias. After subtracting the predicted bias from
the error, we used the standard deviation of the residuals as the variability (details in[A.T.5]). For
visualization, the results were binned based on the orientations of the WM target in Figure [2|

For the variability, we found a significant 3-way interaction indicated by a linear mixed-effects model
(context x delay x orientation, p < .05; Figure E]A). In the short delay, there was a well-known
"oblique effect” [Appellel 1972} |Girshick et al.l 2011} De Gardelle et al.,|2010]: the variability was
lower for cardinal compared to the diagonal orientations in both contexts (no interaction of context
and orientation, p = .16). In the long delay (5s), there was a significant interaction of context and
orientation (p < .05), where the variability of the diagonal orientations was lower in the reward
context compared to the baseline. That is, after value learning, high-reward (diagonal) orientations
were maintained better, reflecting the effect of learned stimulus-reward association on stabilizing
WM. Interestingly, When the reward is uniform, the oblique effect became more pronounced in the
long delay, while the cardinal orientations were more stable (also see Figure [B]A, where the variability
is grouped by contexts). Therefore, more prevalent stimuli in the environment not only were encoded
more precisely, but maintained better in WM. In contrast, in the reward context, the oblique effect
was attenuated over time, due to the reward structure that opposed the environmental prior. Overall,
our results reveal a joint effect of reward and natural stimulus prior on the variability of WM.

We further confirmed the above effects by fitting the variability pattern by sinusoidal functions over
orientations (details in[A.1.6). The parameter "oblique amplitude" captured the relative advantage
in variability at cardinal compared to the oblique orientations (Figure 2B). As a result, we found a
significant 2-way interaction of context and delay (p < .05), and no main effect of context (p = .19)
nor delay (p = .20).

For the bias, we observed a repulsion bias, with the reported orientations shifted away from the
cardinal orientations [Taylor and Bays} 2018||Wei and Stocker, 2017, |Girshick et al.,[2011]. A linear
mixed-effect model showed no significant 3-way interaction between context, delay, and orientation
(p = .09, Figure[2[C), and the bias pattern was not affected by either the delay or the reward context.
We further quantified the bias magnitude (Figure 2D, details in [A.1.4), and found no interaction
between context and delay (p = .78), nor any main effect of context (p = .75) or delay (p = .95).
Given that reward and delay predominantly affected variability, below we focused on modeling their
effects on memory variability.

WM resource allocation shaped by prior and reward
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Figure 3: The distribution of behavioral variability and estimated resource J. (A) WM variability
grouped by the context. (B) The resource distribution estimated by a variable precision model. The
shaded areas represent the clusters showing significant differences in resource between the two delay
durations (permutation test, p < .001). Color shades and error bars represent + 1 s.e.m.

We view WM resource as quantities that can be distributed to improve encoding and maintenance
quality. From behavioral data, we estimated the theoretical resource quantity using Fisher information
J by the Variable Precision (VP) model [[Van den Berg et al.,[2012]]. In this model, the magnitude
of memory error is associated with WM resource J. We extended the VP model by allowing the
resource J to vary as a function of orientation, and quantified how the resulting resource profiles
changed systematically across contexts and delays (model details and parameter tests in[A.1.7).



We fitted the VP model to individual data in different contexts and delays, and then we treated
the best-fit resource function J(6) as the estimated distribution of WM resource (Figure ). The
estimated resource roughly followed the environmental distribution of orientations, peaking at cardinal
orientations. Critically, rewards affected how WM resource evolved across delay. When reward was
uniform (baseline context), resource declined over time for diagonal orientations but were maintained
well for cardinal ones, reflecting preferential maintenance for more frequent stimuli. In contrast, in
the reward context, the cardinal orientations (now associated with lower reward) have their resource
decreased under longer delay whereas the resource for the diagonal orientations (associated with
higher reward) was stable. These results confirm a joint effect of stimulus prior and rewards on WM
resource allocation.

3 Efficient coding for utility maximization in working memory

3.1 Previous studies on efficient coding of perception

The theory of efficient coding posits that perceptual system should allocate more encoding resource
with respect to the statistical structure of the environment by allocating more resource to more
common stimuli [Barlow et al., |1961]. Recent studies on efficient coding have derived optimal
allocation of neural resource quantified as Fisher information [Wei and Stocker;, [2015} [Hahn and Weil
2024, [Morais and Pillow, 2018|]. Under this framework, resource allocation can be formalized as the
objective to minimize overall expected loss defined as:

L= /p(a) E [10(m) —o[° | 0] ao 0

Here m is the sensory measurement of the stimuli, and p is an exponent term that specifies the loss
function. Extending the theoretical framework developed in Wei and Stocker| [2015]], [ Morais and
Pillow| [2018]] linked the estimation error with neural resource (Fisher information .J), and identified
the lower bound of the expected loss in Eq above as L = [ p(0) J()~ % df. Under the constraint
of total resource [ .J(0)? df < C, where C represents total resource and /3 specifies the non-linearity
in the constraint, it was shown that the optimal resource allocation is proportional to the stimulus
prior distribution raised to a power g, a power-law efficient code [Morais and Pillow, [2018]:

J()pt X p(@)q

3.2 Extension of power-law efficient code to utility maximization

Here, we extended this framework to tasks in which stimuli § carry context-dependent rewards.
Similar ideas have been proposed for perceptual encoding [Schaffner et al.| 2023]]. We shift the
objective from minimizing estimation errors to maximizing expected utility. In our tasks, reward
decreases monotonically with estimation error. Therefore, the expected reward can be written as:

R— / p(0) v(0) E[d(6, 0)] do

where v(0) is the value function determining the orientation-reward association, d(é, 0) is a reward
discounting function—a decreasing function of error. A simple choice is d(6,0) = 3 — c|6 — 0],
where 5 > 0 can be considered as a baseline payoff (e.g., the subject payment), and ¢ > 0 dictates
how rapidly rewards declines with estimation error. Given that 5 and ¢ are constants, maximizing
reward is equivalent to minimizing the loss:

L= /p(o) o(0) Ed — 0] db

This objective has a form similar to Eq[I] Thus, the power-law efficient coding can be extended for
utility maximization as:

Jopt < [p(0) v(6)]7 )
That is, the optimal resource is proportional to the expected value of the stimulus raised to a power.
In the reward context of our behavioral experiments, reward increased linearly with the diagonality of



orientations, opposite to the trend in natural stimulus statistics. Consequently, the optimal resource
allocation, and thus the variability of perceptual or memory reports, would be flattened relative to
the baseline condition where reward is uniform (Figure dJA). These predictions are in line with our
behavioral results (Figure E]B).
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Figure 4: Utility maximization extension of efficient coding theory. (A) Optimal resource .J for
baseline context (Jop o p(#)?), and reward context (Jop, o< [p(6) v(0)]9). Here set ¢ = 2 for
illustration. (B) Resource allocation estimated from the behavioral data (5-sec delay) was consistent
with the theoretical prediction (A). The shaded gray areas represent the clusters showing significant
differences in resource between the two contexts (permutation test, p < .001). (C) Left: The optimal
resource allocation predicts a stronger oblique effect in the baseline than in the reward context. In
addition, the increment of the oblique effect over time is more rapid in the baseline context. These
predictions are consistent with the behavioral data (middle) and the RNNs (right). Color shade error
bar as the standard error.

3.3 Considerations on the time domain

One finding in the behavioral data was that, in the baseline context, the oblique effect became stronger
with a longer delay. This indicates that less frequent stimuli are not only encoded with lower precision,
but are also harder to maintain over time. Here, we extend the power-law efficient code to incorporate
the time domain, allowing resource to vary with delay. The objective is to optimize J(6,t), the
resource distribution over orientations and time by minimizing the loss function:

/OT/p(e) J(0,t)"% do dt

subject to the resource constraints summed over time:
T
/ /J(a,t)ﬂ dodt < C
0

Let A be the Lagrange multiplier. The full Lagrangian is:

c:/OT/p(a)J(e,t)—’S d0dt+)\<C—/0T/J(0,t)ﬂd9dt>

Solving for J(0, ) yields:
Jopt (6, ) o< p(0)7

Importantly, even when incorporating the time domain, the optimal distribution of resource Jop
depends only on the stimulus distribution p(#) regardless of time, implying a fixed strategy throughout
the memory delay. As a consequence, the difference in resource allocated between frequent (cardinal
orientations) versus infrequent (diagonal orientations) stimuli will accumulate over time, producing a
stronger oblique effect with longer delays, consistent with our empirical results (Figured[C in baseline
context). This stable strategy can also be applied to utility maximization in which the optimal solution
shared the same form as Eq. [2]

4 Recurrent neural network

The neural dynamics of WM has been extensively studied and modeled by recurrent neural networks
(RNNs) with attractor dynamics that hold memory content in the presence of neural noise [Amit and



Brunel, 1997, Bouchacourt and Buschman} 2019, |(Compte et al., 2000, Wang, |1999, 2021, Wimmer
et al., 2014, |[Esnaola-Acebes et al., 2022]]. Here, we investigated whether and how biologically
plausible circuit architecture RNNs, when combined with task-oriented and simple learning rules,
can implement efficient and adaptive allocation of WM resource to maximize expected reward, and
how their behaviors compared to human performanceﬂ

4.1 RNN setup

We trained RNNs to perform the same WM delayed-estimation task as humans (Figure [IE). To
systematically investigate the effect of prior and reward, we trained the RNNs in a 2x2 design (Figure
[BA). For the prior, input orientations were sampled either from a uniform distribution or a natural
(environmental) distribution, yielding the Uniform RNN and Environmental RNN, respectively. For
the reward, networks were trained to maximize reward under two contexts (implemented by the loss
functions): a baseline context with uniform reward across orientations and a reward context where
reward increased with orientation diagonality.

Architecture

The input orientation 6 € [0, 7) was encoded by 32 neurons with circular-normal tuning function
u;(0) = exp|kin cos(2(f — ¢;))] . which were later normalized to [0, 1]. The centers of the
encoding tuning functions ¢; evenly tiled the orientation space [0, 7). On each trial, an orientation
stimulus was presented for 0.5s, followed by a 5s memory delay (matched the human WM task)
during which neural activity was maintained through recurrent connections among the neurons
governed by W....

The activity of the recurrent layer was updated based on the equation:
r(t+1) = (1 —a)r(t) + a tanh(r(t) Wiee + u(0) + o £(t))

where a was set as 0.2. The neural noise was added at each time step (per 20 ms) as £(t) ~ N (0, I),
with a magnitude o = 0.5.

The outputs of the 32 response neurons are linear readout from the recurrent r(t) activity as 2(t) =
Wous 7(t). Each output unit 2;(¢) corresponded to an orientation centered at the same preferred angle

¢; as its encoding counterpart, allowing the estimated orientation 6 to be decoded via population
vector averaging.

Loss functions and training

The RNNSs were trained to minimize the loss function
1 & ,
L=7 32 0@) 26" + e 7 ZH * 4+ [Weee

t=1

where ||A9 H denotes the squared estimation error between the stimulus orientation € and esti-

mated orientation @ at time step t. The total time steps per trial is 7. The function v(f) specifies the
stimulus-reward association. Under the baseline context, reward was uniform across orientations so
this term was negligible, and was set as v(6) = 1. Under the reward context, reward increased with
orientation diagonality (Figure[5]A), computed as:
™ T d(o
m(0) = 6 mod 5 ) = 1 |m(0) — Z|, () = 05 + ﬂ(/i

This weighting makes errors on more rewarded orientations contribute more strongly to the loss. In
addition to the estimation error and reward, we imposed L2 regularization on recurrent activities
(Mact = 10™%), and weights (A, = 10~%) to mimic biological resource constraints. In addition to
different reward contexts, the networks were also trained under different stimulus priors by sampling
the orientation 6 either from a uniform or from the environmental prior during the training (Figure
[BlA). We trained the networks using the Adams optimizer implemented in PyTorch with a learning
rate of 10~3. Each network reported here was trained with 15 random initializations through 2000
epochs with batch size as 256. After training, each network was tested with orientations uniformly
sampled from 0° to 180° in steps of 2°, with 300 repetitions per orientation, and we reported the
results averaged over all the initializations.

'Scripts are available at https://github.com/Qingqing-Yang-177/wm_UtilityMax.git


https://github.com/Qingqing-Yang-177/wm_UtilityMax.git

4.2 RNNs results
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Figure 5: RNNs architecture, and their variability and bias patterns. (A) RNN architecture, training
stimulus distribution (uniform and natural distribution) and loss functions (reward and baseline
context). (B) WM variability from RNNs trained with each stimulus distribution x context condition.
(C) Bias of RNNss trained with each stimulus distribution x context condition. (D) Transfer learning
results when we froze recurrent weights trained in uniform distribution + baseline context, and
retrained the readout layer in the new conditions. (E) Transfer learning results when we froze readout
layer trained in uniform distribution + baseline context, and retrained the recurrent weights in the
new conditions. Only the results of variability are shown here. Each line denotes a delay length after
the stimulus presentation duration. Color shades represent the standard error.

We trained the RNNs under different stimulus priors and reward contexts. Bias and variability were
quantified using the same procedure as for human data. RNNs trained with the natural stimulus
distribution and uniform reward (baseline context) showed the oblique effect: memory variability
was lower for cardinal than diagonal orientations (Figure 5B natural distribution + baseline context),
consistent with prior work using biased training stimuli in RNNs [Xiong and Wei, 2022} |Ye et al.
2025, [Ei1ssa and Kilpatrick, 2023]]. We found that with longer delays, variability increased more for
infrequent (diagonal) orientations, amplifying the oblique effect, mirroring the behavioral data in the
baseline context (Figure EIA).

When RNNs were trained with natural prior but with a reward policy favoring diagonal orientations,
higher rewards stabilized these orientations by reducing their variability (Figure[5B natural distribution
+ reward context). Because the reward policy opposed the natural stimulus prior, their joint influences
led to a weakened oblique effect. These RNN patterns are in line with efficient, utility-maximizing
allocation of WM resource (Figure ff[C), and resemble the behavioral results especially in the longer
(5s) delay, where the oblique effect was significantly attenuated in the reward context relative to the
baseline context (FigureZJA).

We also trained RNNs with uniform stimulus distribution under both contexts. As expected, when
both prior and reward were uniform (Figure 5B uniform distribution + baseline context), variability
was flat across orientations and simply increased over time due to the accumulated neural noise.
Although human data did not show as strong a reward effect, the results from uniform prior and reward
context isolated the influence of reward on memory variability (Figure [5B uniform distribution +
reward context). In this case, memory variability was lower for higher-reward orientations (diagonal)
than lower-reward orientations (cardinal), and this pattern grew with delay.

While the RNNs reproduced clear effects of stimulus prior and reward on WM variability, and
consistent with the human data, the bias patterns were less systematic (Figure[5C). A slight repulsion
appeared in the RNNs trained with a uniform prior under the reward context; however, this pattern
likely reflects an attraction toward the high-reward orientations rather than the repulsion as in the
previous studies on orientation |Girshick et al.|[2011]],[We1 and Stocker| [2017]. For RNNs trained
with natural stimulus distribution with baseline context, we did not observe a clear repulsive bias
(from cardinal) as seen in humans, and there was a trend of shifting towards more frequent stimuli.



4.3 Robustness and generalization

We performed systematic testing of the RNNs by varying network size (32 vs. 128 units), the internal
recurrent noise level, the tuning centers of the encoding neurons, and regularization terms (details in
[A.2.4). These analyses showed that the effects of reward and prior on working memory variability
were robust across architectures and configurations.

To address the concern that RNNs might simply memorize input—output mappings, we trained the
RNNs with a delay up to 5 sec, and showed that they generalized to longer (untrained) time points
(7 sec) while maintaining the robust prior/reward effects (see Delay 7s in Figure E]) These results
confirmed that the models relied on dynamic memory representations, not static pattern matching.

4.4 Dissecting the contributions of recurrent dynamics

To investigate the unique contributions of the recurrent layer and readout layer, we performed two sets
of transfer learning experiments to transfer across (i) prior stimulus distribution and (ii) the contexts,
while freezing either the recurrent or the readout layer (details in[A.2.2)).

We first trained the RNNs under the uniform + baseline condition. In the first experiment, we then
froze the recurrent weights, and retrained the readout layer in the (i) natural + baseline or (ii) uniform
+ reward condition. We observed a weaker effect from both prior and reward (Figure [5D): The
variability patterns remained relatively flat across orientations compared to the RNNs fully trained in
the new conditions (Figure [5B). In the second experiment, we instead froze the readout layer, and
retrained the recurrent layer. We found that the variability patterns (Figure [SE) were more similar
to the RNNs fully trained in the new conditions. Therefore, the recurrent dynamics plays a more
important role in allowing the RNNs to adapt to different stimulus distributions or reward policies.

4.5 Input noise and bias

While the bias was less systematic in our RNNs, there was weak but noticeable attraction bias toward
the high prior or high reward stimuli (Figure [5C). The "attraction to prior" effect has been found
in some WM studies that manipulated stimulus prior distributions [Panichello et al., 2019, |[Honig
et al}2020], and is generally in line with the Bayesian theory that an ideal observer would exhibit
attraction to the prior [Knill and Pouget, 2004} Ma, |2019]]. The repulsive (from cardinal) bias often
observed in orientation estimation (and other domains) is counterintuitive and of interest in recent
development on efficient coding [We1 and Stocker} 2015, 2017, |[Hahn and Wei, 2024]]. One possible
account is that repulsion arises in an early encoding stage, where less frequent stimuli are represented
with greater noise, preceding the recurrent network we modeled here. Thus, we trained a variant
of RNNs where we injected input noise to the stimuli, with magnitude varying inversely with the
environmental prior (stronger noise for more diagonal orientations) during training [Gu et al., 2025].
The model exhibited a clear repulsive bias away from the cardinals (Figure[6] and details in[A.2.3)).
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Figure 6: RNNs variability and bias when trained with non-homogeneous input noise. Larger input
noise near diagonal orientations produced a repulsive bias.

5 Limitations

While a repulsive bias could emerge when inhomogeneous input noise was introduced, such im-
plementation does not explain how such encoding could be learned by neural networks. A more
complete account may require training a hierarchical model, or multi-layer RNNs [[Yang et al.| 2024],



with a dedicated trainable encoding and maintenance stage to capture how the repulsive bias emerge
through learning.

In this study, we used gradient-descent and backpropagation through time as the learning algorithms
and showed that RNNs can learn to efficiently allocate resource for utility. Future studies can explore
whether the same model behaviors emerge under more biologically plausible learning rules [Miconi,
2017, Bellec et al.l [2020].

6 Discussions

Using a novel behavioral paradigm, we demonstrated that reward influences the precision and temporal
dynamics of visual WM. Once stimulus-reward associations were learned, memory representations for
high-reward stimuli were maintained with greater stability over time, reflected in the lower memory
variability. These findings contrast with previous studies reporting null or mixed effects of monetary
reward on WM [Van den Berg et al., 2023} Brissenden et al., 2023} Manga et al., 2020, Weiss
et al.,|2025]]. The critical difference may lie in how the reward was manipulated: previous studies
varied reward cues randomly across trials, whereas our design established consistent stimulus—reward
associations that had to be learned. Treating reward as a stable feature of the environment may elicit
a more robust value-driven influence on WM, as in natural environments where reward contingencies
are learned through experience.

By treating stimulus—reward associations as an integral part of the environment, we extended efficient
coding theory [Wet and Stocker, 2015} |Morais and Pillow, 2018 from minimizing estimation errors to
maximizing expected utility, and further incorporated the temporal dimension for WM. The optimal
resource allocation respects stimulus probability and associated reward jointly, and this optimal
strategy remains stable over time. Importantly, both human behaviors and RNNs aligned with these
theoretical predictions: (1) showing reduced oblique effect when diagonal orientations carried higher
rewards, and (2) the effect of natural stimulus prior and the reward both accumulated over time. These
converging results suggest that optimizing resource allocation with respect to utility, beyond merely
minimizing estimation error, is a fundamental component of adaptive behavior. To do so, organisms
efficiently allocate WM resource to stabilize highly rewarding WM representations over time.

Previous studies on efficient coding jointly explained perceptual bias and discrimination threshold
[Wei and Stocker, 2015} [2017]], and suggested a coupling between the two. Our normative model
and behavioral data diverged from this view: In extending efficient coding theory to the temporal
domain and reward maximization, we focused on linking neural resource J with variability, without
specifying the direction of bias. In terms of behavioral results, while variability increased over time,
bias remained relatively stable, aligning with previous WM studies on orientations [Tomic et al.,
2025} Shin et al.,[2017]]. The temporal dissociation between them may indicate a distinction between
perceptual encoding and memory maintenance. Two factors may contribute this dissociation: First,
this interpretation is consistent with findings that in human brains, WM engages neural populations
that go beyond initial sensory encoding [Christophel et al., 2017, L1 et al., 2021} [Li and Curtis} 2023}
Li et al.| 2025]. While encoding depends on sensory areas with fixed tuning curves, WM further
involves higher-level regions including parietal and prefrontal cortices, where neurons exhibit mixed
and flexible selectivity [Rigotti et al., 2013| [Fusi et al.l |2016]. The dynamics of the higher-level
regions may differ from the original encoding structure. Second, recent theoretical work [Hahn
and Weil 2024] suggests that bias arises from two opposing forces: a repulsive component during
encoding and an attractive component during Bayesian decoding. These components can coexist, and
if both strengthen over the delay, their effects may offset each other, resulting in a stable overall bias.

To conclude, the present study provides empirical evidence that humans allocate WM resource
according to the expected utility from the learned stimulus-reward associations. These behaviors are
consistent with an efficient coding framework in which the objective is to maximize individual utility.
Notably, similar patterns emerge in biologically-plausible RNN trained with a simple learning rule to
maximize expected reward. Together, our behavioral results, neural network models, and theoretical
framework revealed that modulations in memory variability serve as the primary mechanism through
which the WM system allocates resource based on stimulus statistics and reward. Beyond their
relevance to biological systems, our findings indicate that designing artificial agents aligned with
human adaptive behavior requires integrating motivational and environmental factors that support
utility maximization, rather than focusing solely on minimizing errors.
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A Technical Appendices and Supplementary Material

A.1 Behavioral methods and results

A.1.1 Value learning trajectory

The value learning task followed the reward-orientation association that, in the reward context, reward increased
with the diagonality of the orientations; in the baseline context, all the orientations were associated with the
same reward (Figure EB). To visualize the learning trajectory, trials were binned into 10 trials per bin based on
their order (Figure[7). The percentage of subjects choosing the most diagonal stimuli in the reward context was
consistently higher than in the baseline context after 40 trials of learning (FDR corrected paired t-test, p < .01).
Learning in the reward context reached an asymptote (about 70% choosing the highest-reward stimuli) at around
60 trials. In the baseline context, the probability of choosing the most diagonal stimuli (now not high-reward)
of all participants reached the chance level 25% after 70 trials of learning (FDR corrected one-sample t-tests,
p > .05).
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Figure 7: Learning trajectory in the value learning task.

A.1.2 Power analysis

We conducted a power analysis based on the effect size reported in the Exp.1 in|Schaffner et al.|[2023]], which
investigated the effect of reward on perceptual encoding. Specifically, we used the reported coefficient (Estimate
=—0.16, SE = 0.09) from the Bayesian hierarchical linear regression model to approximate a standardized
effect size (Cohen’s f ~ 2.0). This effect size represents the magnitude of the reward-related difference between
the reward and baseline contexts for oblique orientations. Based on the orientation bins, we applied a Bonferroni
correction for multiple comparisons, resulting in a corrected significance threshold of & = 0.01. Power analysis
revealed that 14 participants provided above 90% power to detect an effect of reward in the oblique orientation.

A.1.3 Compensation information

Each subject was compensated at the rate of 12 dollars per hour for each session, and there was up to 10-dollar
bonus based on the points collected in each day (context).

A.1.4 WM bias magnitude

We modeled the signed response error as a periodic function of the stimulus orientation 6 € [0°, 180°] using a
third-order Fourier series regression. For each context x delay condition, the model was defined as:

3
ertor(6) = Bo + Y _ [Be.j cos(j6) + Bs,jsin(j0)] + ¢,

Jj=1

which approximates the response error as a weighted sum of sinusoidal functions. Here the free parameters
included o as the intercept, and 3. ; and f;,; as the coefficients (weights). All parameters were estimated via
ordinary least squares by minimizing the sum of squared difference between predicted erfor () (the bias) and
observed error ().

To quantify the overall magnitude of the bias, we compared the signed peaks within 0-45° (er7-or;) and within
135-180° (ertor,), each determined by the maximum absolute value of the predicted bias in that range. The
resulting bias magnitude M was computed as

M = ertor, — ertor;.

A positive bias magnitude represents a repulsive bias from the cardinal orientation, and a negative value denotes
an attraction towards cardinals. If erfor; and ertor, share the same sign, the corresponding value was excluded
from group analyses.
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A.1.5 WM variability

To isolates trial-by-trial variability independent of systematic, orientation-dependent bias, the predicted bias
ertor(0) from Fourier series regression was subtracted from the response error to yield a bias-removed residual:

error(0) = error(8) — erfor(9),

We quantified the WM variability V'ar(6) within each condition (and orientation bin) as the standard deviation
of the residual error(f)’, providing a bias-removed response precision.

A.1.6 Quantify effects in WM variability

After obtaining bias-removed variability Var(0), we quantified the effect of context x delay in variability by
fitting a sinusoidal function of the form:

- . [ wOr
Var(f) = Aversin | —= + ¢ | + Baseyar,
180
where 6 denotes the orientation in degrees, w controls the frequency, ¢ the phase offset, A, 4, the amplitude,
and Base,q, the baseline level of variability which is constant across orientations. This formulation captures
systematic modulations in response variability across orientations (e.g., oblique effects).

Model parameters (w, @, Avqar, Baseyqr) were estimated separately for each condition by minimizing the
squared error between the observed and predicted variability:

. 2
(w’gl,ijl’B) 20: [Var(@) - Var(@)] ,

using a global optimization approach with randomized initialization and bounded parameter ranges to ensure
robust convergence.

Among the parameters, the amplitude A, reflects the strength of modulation in variability from orientation.
Therefore, we use A,qr to capture the relative advantage in error variability at cardinal orientations, where a
larger A, indicate a higher difference in variability for cardinal relative to oblique orientations, such as a
stronger oblique effect.

We fitted each participant’s variability results in each context x delay condition with the sinusoidal function
above, and applied repeated-measured ANOVA to investigate the effect of reward and context:

For Ayqr, the amplitude parameter (Figure[2B), there was a significant interaction of context and delay (p < .05),
and no main effect of context (p = .19) nor delay (p = .20). The strength of the oblique effect - how much
the cardinal orientations has lower variability compared to the oblique - was affected by the reward-orientation
association in the WM longer delay.

For Baseyar, the base level of the variability across orientations, there was no significant interaction of context
and delay (p = .76), but a significant main effect of context (p = .04) and delay (p < .001).

For ¢, the peak location, there was no significant interaction of context and delay (p = .39), and no main effect
of context (p = .25) and delay (p = .41). The peak was stable around the oblique orientations.

For w, the frequency, there was no significant interaction of context and delay (p = .57), and no main effect of
context (p = .13) and delay (p = .22). The frequency was stable to provide a ~ 90° periodicity.

A.1.7 WM resource allocation distribution

From the behavioral data, we estimated the theoretical resource quantity as Fisher information J . We adapted
the Variable Precision (VP) model to fit memory error distributions under different contexts and delays [Van den
Berg et al., 2012]. Memory errors (bias-removed) were modeled as samples from von Mises distributions
p(€e) = von_Mises(0, k), where € denotes the angular memory error and & is the concentration parameter. In
R
Iy(k) and I (k) are the modified Bessel functions of the first kind (of order 0 and 1). Higher J values produced
narrower distributions. Although not our main focus, the VP model assumed that J itself is a random variable

the model, x was linked with the fisher information — WM resource parameter J by J = &« - where

following a gamma distribution J = gamma (%, T), where .J is the mean of the resource parameter .J , and 7 is

the scale parameter of the Gamma distribution, controlling the variability in J across trials [Van den Berg et al.|
2012]]. To capture orientation-dependent resource allocation, we modeled the mean resource .J as a function of
orientations: B

J(#)=A-(1—B-|sin(20 + ¢)|)"

, where A, B, ¢ and n were fitted as free parameters, allowing .J to vary across orientations.
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For the resource distribution represented by the best-fitted resource function J(6) = A -
(1 — B -|sin(20 + ¢)|)™, Figure 3B showed that resource distributions exhibited a stronger oblique effect
(the W pattern) in the long delay condition in the baseline context, but a weaker oblique effect in the long delay
condition in the reward context (a shallower W). These effects are reflected in the parameter B. Indeed, we
found a significant interaction effect (context x delay, p < .05) when testing the best-fitted B values. Here we
describe the statistical results on all the fitted parameters:

For A: The linear mixed-effects model showed no significant interaction effect (context x delay, p = .27), and
no significant main effect of context (p = .27) or delay (p = .28). The Bonferroni-corrected one-sample ¢-test
showed that A is significantly larger than 0 (p < .001) in all contexts and delays.

For B: The linear mixed-effects model showed a significant interaction effect (context x delay, p < .05), and a
marginally significant effect for delay (p = .06) and no effect for context (p = .5). The Bonferroni-corrected
one-sample ¢-test showed that B is significantly larger than 0 (p < .001) in all contexts and delays.

For ¢: The linear mixed-effects model showed a marginal interaction effect (context x delay, p = .06), and
no significant main effect for delay (p = .22) or context (p = .59). The Bonferroni-corrected one-sample
t-test showed that ¢ is only significantly larger than O in the delay = 5 s condition in both contexts, while not
significantly different from O in the delay = 1 s condition in either context.

For n: The linear mixed-effects model showed no significant interaction effect (context x delay, p = .25),
but a significant main effect of delay (p < .05) and no effect of context (p = .37). The Bonferroni-corrected
one-sample ¢-test showed that n is significantly larger than O (p < .001) in all contexts and delays.

A.2 RNN methods and results

A.2.1 Computing resource

Modeling training required approximately 10 minutes for each initialization on a single T4 GPU for each setup.
Therefore, the results of the main RNN experiment we reported in the paper (Figure[5JA) took roughly 10 hours
for model training.

A.2.2 Transfer learning

Additional details of the transfer learning experiments are described here: We conducted 2 transfer learning
tasks (across contexts, and priors), and tested the contribution of 2 different layers (recurrent and readout layer)
in the RNNSs in adapting to stimulus prior distribution and reward policy.

(1) Transfer across contexts (baseline — reward). We first trained 15 RNNs in the uniform distribution + baseline
context fully with varying initializations, then (i) froze the recurrent weights and retrained the readout in the
uniform distribution + reward context; or (ii) froze the readout layer and retrained the recurrent weights in the
uniform distribution +reward context. All the other configurations of the RNNs remained the same as those in
the main text.

(2) Transfer across prior distributions (uniform — natural). We trained 15 RNNs under a uniform distribution +
baseline context with varying initializations. After training, we then (i) froze the recurrent weights and retrained
only the readout weights in the natural distribution + baseline context; or (ii) froze the readout layer and retrained
the recurrent weights in the natural distribution + baseline context. All the other configurations of the RNNs
remained the same.

For bias, the transferred RNNs closely matched fully trained RNNs in the new conditions, when we froze and
retrain either layer, indicating that both layer explains the effect of prior and reward policy in the bias. The
results for the variability are described in the main text (Figure[3D, E ).

A.2.3 Input noise level

For this RNN variant, we added gaussian noise to the stimulus input during the training while keeping all
the other configurations the same. We assumed that the recurrent neurons received a noisy version of the
stimulus input. The noisy input § was modeled as the true stimulus input 6y perturbed by Gaussian noise
6 ~ N (6o, v|sin(260)|*), where we set v as 10 [Gu et al., 2025]. This non-homogeneous input noise led to
higher input noise for more diagonal orientations. This implementation was based on the assumption that the
repulsive bias or oblique effect involves non-homogeneous encoding that occurred before the recurrent neurons.
When calculating the estimation error in the loss function, the decoded orientation 6 was compared with the true
stimulus input 6 .

After adding the noise, the stimulus distribution for natural prior condition remained similar to the original
stimulus distribution; therefore the RNN training results reflect the effects of both the natural stimulus distribution
and input noise (Figure[8). However, the uniform distribution was affected by adding these non-homogeneous
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Figure 8: Stimulus distribution before and after adding the stimulus noise.

input noise, and we also observed a decreased variability at oblique orientations compared to the RNNs without
input noise.

A.2.4 Robustness
Larger network.

We trained 15 large RNNs with 128 recurrent units (vs. 32 as we reported in the main paper) in each prior x
context condition with varying initializations (Figure[] The variability of the large RNNs under a larger network
shared the same pattern with the smaller network, indicating the effect of reward and prior distribution. The
average variability was smaller for larger RNNs, suggesting improved precision with larger networks. The
magnitude of the bias for larger RNNs was also small.
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Figure 9: The larger RNN (128 units) WM performance. (A) Variability patterns for larger RNNs
reflected the impact of reward and prior stimulus distribution. (B) Bias patterns.

Alternative loss weightings.

We trained additional RNNs with larger L2 penalty on recurrent weights and activations (10~2 vs. 107*
as we reported in the main paper), while keeping other configurations the same (Figure[T0). We observed
that, compared to the weaker regularization, these models with stronger regularization exhibited even stronger
modulations by stimulus prior or reward - large differences in variability between low- versus high-probability
orientations, or between low- versus high-reward orientations. There was a stronger bias towards the frequent
and high-rewarded orientations. Thus, a more constrained working memory system allocates its capacity more
selectively across stimuli.

Additionally, we trained RNNs with zero L2 penalty on recurrent weights and activations. These models
exhibited behavior similar to those trained with small (10™*) L2 penalties that are affected by both prior and
reward conditions. These results suggest that resource-efficient behavior can emerge from task optimization
alone, even in the absence of hard-coded limitations. Thus, “limited resource” in working memory may reflect
rational strategy to task goals rather than strict architectural bottlenecks.

Centers of the encoding tuning function

To investigate whether the results we observed were related to the location of the orientation tuning function
of the RNN neurons during stimulus encoding, we trained a collection of RNNs with slightly shifted tuning
functions. For each of the 15 RNNs with varying initializations, the unit centers were initialized as

centers; = (centers; + Peenter + €;) mod m,

where centers; are fixed center values that evenly spaced the orientation space, @ecenter is a global phase
shift uniformly sampled from (—5°,5°). The +5° shift range corresponds approximately to one spacing step
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Figure 10: WM variability and bias for RNNs with larger L2 regularization on recurrent weights and
activations.

(180°/32) between adjacent orientation-tuned units. The €; ~ N'(0,0.5°) is a small per-unit jitter. All other
aspects were identical to the original models. The resulting RNNs behaviors were the same as what we reported
in the main paper (Figure[TT).
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Figure 11: WM performance for RNNs with the shifted centers of the tuning functions during
perceptual encoding.

Internal noise level

To investigate the effect of internal noise, we trained and tested RNN under different levels of internal sensory
noise levels (o = 0.1 — 0.9, the neural noise added to the recurrent activation per time step), as shown in Figure
@A. (I) When we matched the training and testing noise, the reported variability pattern holds consistent across
different levels of noise. (II) When RNNs were tested at lower noise than training, the reported variability pattern
(Figure |§|A) holds consistent and even stronger. For bias, there were attractive biases toward the prior or reward.
(IIT) When RNNss were tested at higher noise than training, the oblique effect in variability broke down. Bias
became more repulsive from prior or high-reward stimuli.

We further trained RNN's with varying levels of internal neural noise, where we randomly and uniformly selected
an internal noise level for each of the 2000 epochs during training. After training, these RNNs were tested with a
constant noise levels (Figure[T2B). The variability amplitude was optimized for both prior and reward policy,
with an increasing effect when tested with higher sensory noise setting. For bias, we also observed an amplified
effect from prior and reward with higher testing noise. Compared to the RNNs trained with a constant level of
internal noise, these RNNs trained with varying noise showed more robust effect of prior and bias, preserving
the patterns regardless of the testing noise.
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Figure 12: The effect of training and testing internal noise in RNNs WM. (A) RNNs variability
amplitude and bias magnitude under different training and testing of internal noise level. For the
variability, the red colors indicate an oblique (higher variability at diagonal orientations) while the
blue colors indicate a pattern opposite to the oblique effect. For the bias, green colors indicate an
attraction to the cardinal orientations while the pink colors indicate a repulsion. (B) The variability

amplitude and bias magnitude for the RNNs trained with varying internal noise and tested with
different level of internal noises.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly reflect the work in the section "Joint effects of prior
and reward on working memory dynamics", "Efficient coding of working memory" and "RNN" parts.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to the Limitations section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems

of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: We included the assumption in the "Efficient coding of working memory" section with
specific formula and reasoning, the behavioral and RNN results can be considered as the supporting
evidence.

Guidelines:

* The answer NA means that the paper does not include theoretical results.
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 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

¢ All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We included the detailed information for behavioral experiments in subsection "Behav-
ioral tasks" and details of RNN in "RNN setup". Some details in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

¢ While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: The preprocessed data and code will be shared at https://github.com/
Qingqing-Yang-177/wm_UtilityMax.gitl
Guidelines:
¢ The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We included training details of RNN in "RNN setup".
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars in the behavioral results and RNN results are all using the standard errors.
We reported the statistical tests and results.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The model fitting for the WM resource allocation and RNN training and testing utlizes
T4 GPU and could also be adapted to CPU, since the computing resources required are limited.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors confirm the research conform with the code of ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: The work is more theoretical cognitive neuroscience work for working memory, which
does not have direct impact on the societal components.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer:[NA |
Justification: The paper poses no such risks.
Guidelines:

¢ The answer NA means that the paper poses no such risks.
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13.

14.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: This paper properly cited the relevant original papers.
Guidelines:

¢ The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: the details of the shared scripts are documented in the README.md.
Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [Yes]

Justification: We included the instruction of the experiment in the "Behavioral tasks" part, and the
compensation information in the appendix.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human subjects

16.

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]
Justification: The experiment is IRB approved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method and algorithm development does not involve LLMs as original compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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