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Abstract

Although deep learning techniques show promising results for many neuroimaging tasks
in research settings, they have not yet found widespread use in clinical scenarios. One of
the reasons for this problem is that many machine learning models only identify correla-
tions between the input images and the outputs of interest, which can lead to many practical
problems, such as encoding of uninformative biases and reduced explainability. Thus, recent
research is exploring if integrating a priori causal knowledge into deep learning models is a
potential avenue to identify these problems. However, encoding causal reasoning and gen-
erating genuine counterfactuals necessitates computationally expensive invertible processes,
thus restricting analyses to a small number of causal variables and rendering them infeasi-
ble for generating even 2D images. To overcome these limitations, this work introduces a
new causal generative architecture named Masked Causal Flow (MACAW) for neuroimaging
applications. Within this context, three main contributions are described. First, a novel ap-
proach that integrates complex causal structures into normalizing flows is proposed. Second,
counterfactual prediction is performed to identify the changes in effect variables associated
with a cause variable. Finally, an explicit Bayesian inference for classification is derived and
implemented, providing an inherent uncertainty estimation. The feasibility of the proposed
method was first evaluated using synthetic data and then using MRI brain data from more
than 23000 participants of the UK biobank study. The evaluation results show that the
proposed method can (1) accurately encode causal reasoning and generate counterfactuals
highlighting the structural changes in the brain known to be associated with aging, (2) ac-
curately predict a subject’s age from a single 2D MRI slice, and (3) generate new samples
assuming other values for subject-specific indicators such as age, sex, and body mass index.

1 Introduction

Recent advances in medical imaging and the emerging availability of digital health records have resulted in
an abundance of data in healthcare. This wealth of data, along with the continuing increase in computing
resources, has helped the field of medical image analysis enter a new era — deep learning. This leap holds
significant promise for disease prevention, diagnosis, and treatment planning (MacEachern & Forkert), |2021)).
However, the translation of deep learning techniques from academic research into clinical deployment has
been slow (Winder et al.,|2024). The primary challenge often lies in the mismatch between the data used for
training and the data encountered in real clinical scenarios (Castro et al.,[2020). This mismatch often causes
models that perform well in research settings to generalize poorly when applied to clinical environments.
Furthermore, the limited clinical translation of deep learning models can be partly attributed to their “black
box” nature, which lacks inherent explainability for their decisions (Vercio et al.l |2020]).

Both of these issues can be primarily related to the way these models are trained. More precisely, these
discriminative deep learning techniques are designed to maximize accuracy on a given dataset. This approach
encourages models to exploit all possible correlations in the data, including shortcuts, to improve performance
on that specific dataset. As a result, these models often capture spurious correlations and uninformative
biases present in imaging data (Souza et al.,[2024). Thus, while they excel in research settings, they frequently
fail to generalize effectively or provide meaningful explanations for their predictions when they are deployed
in clinical settings.
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One approach to better analyze and interpret the available medical data is to move beyond correlation-
based analyses and instead utilize causally informed models. This approach has not only the potential to
identify which variables (e.g., age, sex, race, scanner type, etc.) causally affect medical images but also to
what extent. Within this context, causal discovery methods address the question of which variables have an
impact, while causal reasoning methods explore how they affect the images (Sanchez et al., 2022b). While
causal discovery is beyond the scope of this work, we demonstrate in this work how true causal reasoning can
be achieved using medical images through generative modeling. This causal generative modeling provides a
powerful framework to explore variables related to the data-generating process in a transparent manner.

A straightforward approach to causal generative modelling is integrating a known structural causal model
(SCM) into an existing generative framework. Pearl (2012)) describes a causal model as comprising three
levels of complexity, referred to as the “causal ladder”. These levels, in order of increasing complexity, are
association, intervention, and counterfactuals. Association pertains to correlations in the data and is solely
focused on modeling the probability distribution in the dataset. Intervention relies on structural assumptions
about the underlying data-generation process and involves exploring interactions with variables to observe
how outcomes change on a population level. Many existing deep generative models, such as conditional
VAEs, conditional GANs, and causal generative neural networks, only fulfill the requirements up to the
intervention level. Lastly, Counterfactuals can be used to investigate hypothetical scenarios on an individual
level, encompassing both interventional and associational inquiries. A counterfactual query essentially asks
the trained causal generative model, “How would a subject’s data appear if it had been acquired under
different conditions?”. The generation of counterfactuals not only provides causal insights into metadata and
medical images but also holds significant potential in tasks with practical applications such as fairness, bias
mitigation, data augmentation, data harmonization, and digital twins (Pawlowski et al.; [2020)).

While the term “counterfactual” is frequently employed in literature, only a few models, such as Deep
Structural Causal Models (DSCMs) (Pawlowski et al., 2020), Neural Causal Models (NCMs) (Xia et al.,
2022), Hierarchical Variational Autoencoders (H-VAE) (Ribeiro et al.||2023)), VQ-VAE and generalized linear
models (Peng et all [2024), and Diffusion SCM (Diff-SCM) (Sanchez & Tsaftaris, 2022b)), have the ability to
produce causally-grounded counterfactuals by following the Abduction-Action-Prediction steps as defined by
Pearl| (2012)). Other methods in this domain mostly focus on generating realistic adversarial images aimed at
deceiving classifiers. This scarcity of true counterfactual models for images arises from the requirement for
invertible deep networks to achieve genuine counterfactual generation. To date, only the normalizing flow
model is invertible by nature and has been previously used for causal modeling (Pawlowski et al., 2020). In
this series of studies, each causal variable within a graph is modeled by a separate conditional normalizing
flow, necessitating multiple normalizing flow models to represent the complete causal framework.

Alternatively, our work demonstrates, for the first time, that a single normalizing flow model coupled with
masked autoencoders is sufficient to efficiently model complex causal structures. While we only consider three
causal variables in the experiments in this work, the approach presented can be easily extended to any number
of causal variables by defining the corresponding adjacency matrix. Within this context, we demonstrate
that combining a standard dimensionality reduction technique, such as kernel principal component analysis
(KPCA), with normalizing flows can effectively encode a given causal structure. In theory, the KPCA
technique can be replaced with any dimensionality reduction technique. Within its medical context, a
relevant previous study is the work by Wilms et al.| (2022)) on counterfactual image generation and Bayesian
classification. The key difference to the work presented here lies in their exclusive focus on a setup assuming
independence between conditioning variables, while the method presented in this work encodes a complex
causal structure of interactions between variables using masked autoencoders. Thus, the main contributions
of this work can be summarized as follows:

1. We present and evaluate a novel method named masked causal low (MACAW) for encoding the
causal structures of the data-generating process into a generative model.

2. Using this model, we generate new high-resolution brain images and evaluate counterfactuals asso-
ciated with brain aging.
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3. The model’s explicit density estimation enables direct Bayesian classification, eliminating the need
for a separate discriminative model.

2 Background

2.1 Causal graphical models

Causal graphical models employ nodes to depict variables and edges to illustrate their connections within
a directed acyclic graph (DAG) to provide an intuitive method for defining and exploring dependencies.
The two important conditions, the Markov condition and faithfulness condition, ensure that conditional
independence in the joint probability distribution is accurately reflected in the causal graphical model.
Readers interested in these concepts can find in-depth information in the book by [Peters et al.| (2017)).

Consider the d-dimensional random vector x = [71, ..., z4]T € R? which follows the distribution p,(x). Let
a causal graphical model G be a DAG containing d nodes, each represented by z; € [1,d]; the connection
between nodes is defined by adjacency matrix A € {0, 1}dXd It is essential to emphasize that the adja-
cency matrix of any topologically ordered DAG is always triangular. Assuming Markovianity, G is a valid

representation of py(x) if and only if the probability density px(x) can be factorized as follows:

d
px(x) = [ px(@ilm(as) (1)
i=1

Here, m(z;) denotes the set of parents of the node x;, where w(z;) = {z;;A;, = 1}. The basic network
structure (adjacency matrix A) is typically established by making use of existing causal knowledge in the
field. In cases with no or limited existing causal knowledge about the data-generating process, causal
discovery algorithms can be utilized for this purpose (Glymour et al., 2019).

The typical method for modeling a probabilistic causal model is to use Structural Equation Modeling (SEM)
with random noise. The structural equation for each variable x; is defined as S; : z; = f;(n(z;), n,),
where n; represents the mutually independent exogenous noise variable of the noise distribution p,. In this
formulation, the observational distribution of variables py(x) can be conceptualized as being generated by
sampling from a noise distribution p,, and then applying a set of structural equations S to the sampled
values. This implies that the observed variables are influenced by both, the noise distribution and the causal
relationships represented by the structural equations.

The causal calculus (Pearl, |2012)) was created for the utilization of a causal model. Specifically, the do()
operator enables an intervention in the model. When applying the do() operator, specific functions are
replaced with a constant in an SEM. Similarly, in the corresponding DAG, the edges going into the target
of intervention are removed, but the edges exiting the target are retained.

2.2 Normalizing flows

Normalizing flows are used to model complex probability distributions, denoted as py, by applying a sequence
of transformations T = T o---0T} to a simple density prior p,. Transformations in T must be both invertible
and differentiable to allow training of the model using the change of variables formula:

px(x) = p,(T 7" (x))|detJp-1 (x)| (2)

Here, detJp-1 is the determinant of the Jacobian of the inverse transformations. Efficient model optimization
hinges on the ease of computing this determinant. As a result, Jacobians of the determinants are often
designed as triangular matrices, allowing for computation in O(n) time. Various techniques have been
introduced in the literature to achieve this triangular structure, with common approaches including the use
of coupling and autoregressive functions.
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Of particular relevance to this work, we briefly describe autoregressive functions next. Autoregressive func-
tions transform a variable x; using variables x; to z;_1, which in turn constrains the Jacobian of the
transformation to be lower triangular. This is similar to writing a multivariate density px as a product of
univariate conditional densities:

d

Px(x) :px(xl)pr(xiM'l:ifl) (3)

=2

Following this step, the flow model is trained directly through maximum likelihood optimization using
equation equation 2] More detailed descriptions about normalizing flows are, for example, provided by
Kobyzev et al.| (2021)).

2.3 Related work

This subsection outlines the role of related works in shaping the development of the proposed MACAW model.
Specifically, our research is built upon the foundations laid by [Wehenkel & Louppe| (2021) in their work on
graphical flows and [Khemakhem et al| (2021)) in their study on causal flows. Theoretical underpinnings of
our framework closely align with these studies, and our work builds directly on these established proofs.

Wehenkel & Louppe (2021)) highlighted the similarity between equations equation [I| and equation [3] and
argued that autoregressive transformations can be interpreted as a method to model a causal network
with a predetermined node ordering. Conversely, in the case of a specific DAG with a predefined causal
relationship, the autoregressive conditioners can be selectively masked to incorporate the causal relationship
into the model. Based on this new perspective, they proposed the graphical normalizing flow technique, a
new invertible transformation with either a prescribed or a learnable graphical structure to inject domain
knowledge into normalizing flows. In a similar work, [Khemakhem et al.| (2021) suggested that SEMs and
autoregressive flows are similar and introduced a framework called causal autoregressive flow (CAREFL)
for causal discovery. Furthermore, they showed that normalizing flows can generate effective counterfactual
queries due to their invertible nature.

Both of these studies primarily focused on identifying the causal structure or topology within a given dataset,
operating with limited variables. Specifically, the counterfactual implementation only permitted coupling
flows, accommodating two sets of independent variables. In contrast, the primary focus of our work is
to develop a method for classification and counterfactual generation for higher-dimensional datasets, such
as images, and to encode complex (non-autoregressive) causal structures into the flows. Consequently, a
model is required that scales effectively for larger dimensions and allows the parallel execution of the flow.
Therefore, we introduce a neural network called the causally masked autoencoder (C-MADE) in this work,
which is inspired by the masked encoder developed by |Germain et al.| (2015). This implementation requires
only a single forward pass to compute all causal dependencies and their respective conditional likelihoods,
making it a computationally efficient density estimator compared to existing alternatives. Subsequently,
multiple C-MADEs are arranged in sequence to form the Masked Causal Flow (MACAW), akin to how
Papamakarios et al| (2017)) utilized stacked MADEs to create masked autoregressive flows. The following
section provides a detailed explanation of this method.

3 Methods

3.1 Causally-masked autoencoders (C-MADE)

We constructed C-MADE networks to efficiently represent the causal structure using a neural network for a
given causal graphical model G with the adjacency matrix A. For simplicity, we assume that a neural network
has the same number of input units (x) and output units (z). Since the output z; must depend only on its
parents 7(2;) C x, there must be no computational path between the output unit z; and any non-parent
input units. A convenient way of zeroing connections is multiplying each matrix element-wise with a binary
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Figure 1: A causal DAG (left) and its respective C-MADE network (center). The MACAW architecture
(right) consists of multiple C-MADE networks connected in a series, thereby forming a normalizing flow.

mask matrix derived from A, whose entries that are set to zero corresponding to the connections that need
to be removed. Thus, the masks are essentially responsible for satisfying the causal structure.

Furthermore, we assume that our input is D-dimensional, i.e., x = [21, ...,z p], where the adjacency matrix
A characterizes the causal graph. To impose the causal property, we first assign an integer to each unit in
the input and output layers from 1 to D. After numbering all the units, causal constraints on each unit are
simply imposed by masking the connections based on matrix A.

While hidden layers can be added to this network, the causal parental structure has to be accurately main-
tained through the hidden layers. In this setup, i** hidden neuron in j** layer, h?, is connected to its parents
w(hf ) € b/~ as well as hz ~! which ensures that the learned hidden values are propagated to the final layer.
This can be done by augmenting the adjacency matrix A’s diagonal units to 1 for all input-hidden layer
connections and hidden-hidden layer connections. Moreover, the number of neurons in a hidden layer must
be a multiple of D to preserve the causal structure. If a hidden layer has n x D neurons, A can be duplicated
n times and stacked to create the adjacency matrix for that layer. However, as the neurons in the final layer
(output layer) are connected only to their parents, the network becomes strictly triangular, thus preserving
the initial causal DAG structure. Figure [I] shows a causal graph and its corresponding C-MADE network.

3.2 Masked Causal Flow (MACAW)

Let us consider a normalizing flow model whose transformed probability density p(z) is given as the product of
prior distributions. The prior distributions for the source variables (variables that do not have parents) should
be selected to resemble their original distributions closely. This is because the distributions of these variables
are not modified throughout the training process. A standard normal prior is assigned to all variables that
are not sources. Thus, a non-source variable z;’s distribution is given by p(z;|7(2;)) = N(0,1). This can
be achieved by using the change of variable formula equation [2] with a series of affine transformations T},
where ¢t € [1, K|. The transformed variables are denoted as m;. For notation consistency, we assign x = my
and z = mg. Each affine transformation 7; has scale and shift vectors, s; and by, estimated by a unique
C-MADE network C;.

(Stabt) = Ot(mt—l) (4)

m; = exp(s;)my_1 + b, (5)

Since C-MADE is constructed as a causal network, the predicted affine transformation parameters of a
variable can be considered as a function of its parents. Thus, the likelihood of the transformed probability
density complies with equation equation [2| The negative log-likelihood of p(z) was used as the loss function
to optimize the C-MADE networks’ weights. Following the optimization, the likelihood of a data point can
readily be measured using a forward flow. Stacking multiple C-MADEs in a sequence provides the flexibility
required to transform a complex distribution to the defined distribution (Papamakarios et al., 2017)).



Under review as submission to TMLR

3.2.1 Generative sampling

To generate data using the trained model, we start by sampling the source variables from their prior distri-
bution. Next, we proceed to sample each of the other variables iteratively by performing a backward flow.
Moreover, in the case of interventional sampling, we have the option to set a particular value for a variable
and continue sampling the remaining variables as usual.

3.2.2 Counterfactual inference

Counterfactual queries aim to assess statements about hypothetical situations of already existing obser-
vations. Let’s assume that the MACAW was used to model the density of dataset X containing data
vectors [xY,...,xM]. Within this context, one observed data vector from the dataset is denoted as
x%% = [z1,...,zp]. For instance, if variable z; had taken the value z; = a in our observed feature vector
x°% counterfactual queries can be used to determine what the value of variable z; would have been. This
is denoted as ¥; ;¢ . According to Pearl (2012), generating causal counterfactuals requires three steps:
abduction, action, and prediction. The abduction step evaluates the probability distribution over latent vari-
ables z°* given observations x°?*. In our model, this can be simply done using a forward flow, computing
the transformation z°** = T(x°**). The next step (action) is to intervene and fix the value of z; to a
specific value «, denoted as do(z; = a|x = x°*%), which makes it independent of its causes m(z;). In this
step, the corresponding value of change of x; ;¢ o is adjusted in the transformed space ngs. The final step
(prediction) is performed by computing an inverse transformation pass of the intervened z°®® to generate
the counterfactual feature vector x¢/, which is done through a backward flow. The algorithm [1] outlines the
steps for the counterfactual process (Khemakhem et al., 2021)).

Algorithm 1 Counterfactual query

obs

Require: observed data x°*%, cf variable z;, and cf value o
1. Abduction - forward flow: z°%% < T'(x°%)
2. Action - change hypothetical values in the z space
(a) 290« Tj(xfrlzz,), Tj 4+ )

7T
(b) sz;fj%a — 2% for i # j
L . —1(,0b
3. Prediction - backward flow : Xu, 0 < T7 (25 0)

3.2.3 Bayesian classification

Let’s denote our input distribution p(x) as a joint distribution of a set of features f and a parent variable ¢
that we need to classify, which can take one value from {c!,...,cf}. Thus, p(x) can be written as p(c,f).
When we set ¢ = ¢!, the forward flow of the network provides the posterior of p(c = ¢, f). This can be easily
computed for all possible values of ¢ {c!,...,cf} simply by setting the class variable accordingly. Thus, for
a given class ¢ = ¢, the posterior can be computed using Bayes’ theorem as follows:

» plc=c',f)
ple=cf) = =————= (6)
Zc p(C =d, f)
Then, the class with the maximum a-posteriori (MAP) is chosen as the predicted class label. It is important
to note that for each class variable, it is necessary to evaluate all possible posterior values and perform a
forward pass with each of them.

3.3 Dimensionality reduction

As described earlier, normalizing flows are known for their resource-hungry nature. Consequently, to maintain
the dimensions of the variables throughout the flows, a naive implementation of MACAW results in severe
computational challenges. Therefore, when dealing with images, operating with all image pixels is impractical
and even 2D images have to be projected onto a low-dimensional latent space before applying the MACAW
model for density estimation. In this work, we utilized Kernel Principal Components Analysis (KPCA) to
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reduce the dimensionality of the training images. However, this technique can easily be replaced with any
dimensionality reduction technique. The basic idea of this method is to project data that is not linearly
separable onto a higher-dimensional space, thereby transforming it into a linearly separable form. We selected
this technique for two primary reasons: (1) projected features are not linearly correlated with each other,
as they are projections onto an orthogonal basis. This property reduces the dependence between projected
image features, leading us to assume that this makes the optimization faster. (2) The inverse (preimage) of
the projected KPCA features (here: polynomial kernel with a degree of 3) can be computed efficiently using
existing algorithms.

3.4 Quantitative evaluation

Assessing the effectiveness of counterfactual image generation techniques poses challenges due to the absence
of real-world ground truth. [Monteiro et al.| (2023) and then Melistas et al.[ (2024) proposed a framework for
evaluating counterfactual images generated by various generative techniques. Their framework uses struc-
tural causal models and employs the counterfactual inference based on Pearl’s Abduction-Action-Prediction
steps to assess the performance of the different methods. In line with their study, we also conduct a specific
set of experiments to evaluate the quality of our counterfactuals in terms of Realism and Effectiveness.

Realism: We used the Fréchet Inception Distance (FID) to quantify the semantic similarity between the
generated counterfactual images and images in the training set. Therefore, real and generated samples were
passed through an Inception v3 model (Szegedy et all [2015) (pre-trained on Imagenet) to extract their
semantic features and to calculate the FID between these two feature representations. A lower FID indicates
that the features contain similar semantic information.

Effectiveness:  Effectiveness aims to assess how well a counterfactual query performs. To quantitatively
evaluate the effectiveness of a particular counterfactual image, we trained a separate discriminative deep
learning model on the training set to predict the value of the intervened variable based on the image. While
this traditional inference model may capture spurious correlations in the training data, it still provides
information about the degree of confidence in the counterfactual generations.

4 Experiments and Results

We performed two experiments to investigate the effectiveness of MACAW. In the first experiment, we used
synthetic data with a known causal structure to demonstrate that likelihood estimation, intervention, and
counterfactual analysis function as expected. In the second experiment, we utilized the UK Biobank brain
MRI images to showcase the practical applications and benefits of interventional sampling, counterfactual
inference, and Bayesian classification that are only possible with a true causal deep learning framework.

4.1 Synthetic data
4.1.1 Data

The first experiment aimed to evaluate if the proposed MACAW model can effectively learn the given causal
structure within a dataset and accurately perform interventional and counterfactual queries. Therefore, we
created a synthetic dataset with predefined structural equations for sample generation to investigate this in
detail. The causal structure of this dataset and the specific structural equations are defined as follows:

o = No
r1 = Ny
Ty = 2x9 + 1 + N2 (7)

I3 = 2(130 “+ ns3

T4 = 6xaw3 + Ny

Where the noise variable n; was sampled from uniform &/ and normal N distributions as follows:
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ng ~ U(O, 1)
ng ~ N(O, 05)

ny ~ N(l, 1)
Ng ~ N(0701)

Ng n~ N(O, 2) (8)

We generated 10,000 samples using equation[7]and partitioned it for training (70%) and testing (30%). Next,
we defined prior distributions for the latent variables as follows: zg - drawn from a uniform distribution
U(0,1), z; - drawn from a normal distribution N(1,1), while all other latent variables followed standard
Gaussian distributions.

4.1.2 Training

For this experiment, our MACAW model consisted of 10 C-MADEs, each consisting of three hidden layers
with 15 neurons each. During the training process, we utilized the negative log-likelihood as the loss function
and halted training when reaching the point of minimal validation loss.

4.1.3 Generative sampling

After model training, we generated 10,000 random samples using the MACAW model. The distribution
from SEMs and those generated using MACAW were very similar. Table 1 outlines the mean and the
variance of the variables generated. We further compared the maximum mean discrepancy (MMD) between
the ground-truth and generated datasets, obtaining a value of 3.187 x 10™*, which indicates only a small
distance between the two distributions. In addition, we have included the generated versus ground-truth
data distributions in the appendix.

Table 1: Mean and the variance of generated samples using SEM and MACAW.

i) I3 Ty
SEM | MACAW | SEM | MACAW | SEM MACAW
Mean 4.01 | 3.99 299 | 299 73.96 74.55
Variance | 5.32 | 5.92 0.58 | 0.3 2429.86 | 2863.50
1e5 Cf(x2=2) Cf vs Ground truth
(a) 6004 (b)
§ 4 4 400 /
% 3 § 2001
g 21 E 01 __— -
= —200 A
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04 -600 o
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x2 Cf values
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Figure 2: (a) The sum of the absolute difference between each variable in the test set after the counterfactual
query for the action do(zy = 2|x = x°%*), (b) The expected values of the predicted counterfactual values and
respective ground truth values.

4.1.4 Counterfactuals

To measure the accuracy of the counterfactual inference quantitatively, we estimated the counterfactual
values for the action do(ra = 2|x = x°*%) in the test set. We computed the absolute difference between
the observed values and the counterfactual values and then summed them up. Fig. a) shows that the
counterfactual query only affected x5 and x4 while other variables remained unaffected, as expected based
on the causal structure depicted in equation [7] Next, we compared the counterfactual values with their
respective ground truth value. These ground truth values were directly determined by substituting xo = 2
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Figure 3: (a) Predefined causal graph for the UKBB dataset, incorporating age, sex, and BMI values. (b)
Corresponding adjacency matrix, where filled cells indicate 1 and unfilled cells indicate 0.

in the equation x4 = 6222% + n4, where the noise term ny was computed as x$** — 6x3**x3%. Fig. b)
shows that the expected values of the ground truth and counterfactual values are perfectly aligned in the
range of [-5,15], which is due to 99% of x5 values falling within this range during training.

4.2 UK Biobank images
4.2.1 Data

The second and main experiment used neuroimaging data from the UK Biobank (UKBB) cohort
. This study retrieved data under application 77508: Explainable and interpretable machine
learning solutions in computational medicine. The UKBB’s T1-weighted structural magnetic resonance
imaging (MRI) used a 3D MPRAGE sequence with a 1-mm isotropic resolution and 208 x 256 x 256 mm
field of view. In the first step, starting with all subjects with available T1-weighted MRI data, participants
with diagnosed brain-related disorders based on ICD10 codes (data field 41202, chapter V - Mental and
behavioral disorders and chapter VI -Diseases of the nervous system) were excluded. We obtained the
participants’ sex information from the genetic sex data field (22001) and their age from the recorded values
during the imaging visit (data field: 21003-2.0). Participants younger than 46 and older than 81 were
excluded from the analysis because there was not a sufficient number of participants in these specific age
groups to perform the age-stratified train-test split. Additionally, the body mass index (BMI) values were
retrieved directly using the UKBB data field 21001. Subjects with NaN values for either sex, age, or BMI
were excluded from this work, resulting in a sample size of 23,692 (male = 11,050, female = 12,642).

All T1-weighted MRI data of the selected participants were aligned to the SRI24 atlas
2010), using the affine registration implemented in ANTs (Avants et al) 2011). From the 3D stack of data,
we specifically chose the axial slice of a subject’s image that primarily covered the lateral ventricular region,
an area of the brain that captures the extent of visible atrophy due to aging. Finally, the data was split into
training and testing sets of 80% and 20%, stratified by age.

4.2.2 Training

For model training, the extracted 2D images underwent center-cropping, leading to image sizes of 180 x 180
pixels. Subsequently, these images were projected onto a 1500-dimensional subspace (latents) using KPCA.
Training all 1500 latents using the same MACAW network did not converge successfully, whereas training
with 60 latents yielded a better likelihood estimation. Consequently, we divided the latents into subgroups
of 60 and trained a separate MACAW model for each group, optimizing the likelihood individually for each
model. Each MACAW model incorporated the causal structure illustrated in Figure [3] In this setup, age
and sex were treated as discrete distributions, while BMI was considered continuous. The prior distributions
for sex and age were determined based on the distribution of the training data, adopting Bernoulli and
categorical distributions, respectively. Gaussian distributions were used as priors for both BMI and the
latents. A 10% validation set was taken from the training set during the training phase to determine the
best early stopping criteria.
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4.2.3 Generative sampling

Generative sampling was conducted in an autoregressive manner using the trained models. The process
began by randomly sampling age, sex, BMI, and 60 components from the first model. This process continued
iteratively until 1,500 components were generated, which were then reconstructed by estimating the preimage
of the KPCA components. During interventional sampling, specific values for one or more parent variables
(age, sex, BMI) were manually defined, while the remaining variables were sampled from the first model.
This autoregressive sampling approach was then repeated using the subsequent models. The results from
the generative and interventional sampling are presented in Figure

Male, 58, BMI:22 Female, 60, BMI:20 Female, 70, BMI:28

Random

Female, 75, BMI:22 Male, 75, BMI:26 Female, 75, BMI:31
0 L

Figure 4: Results from two types of generative sampling: unconditional (top) and interventional (bottom).
For interventional sampling, we set the age variable to 75 years.

4.2.4 Counterfactuals

Counterfactual inference was performed on data points within the test set. Using this setup, we aimed to
estimate how an image would appear if the person had different biological characteristics, including age, sex,
and BMI. Counterfactuals were generated independently for each model and then reconstructed, following a
process similar to the generative sampling. Figure [f] visually demonstrates that age has an expected impact
on the ventricular and sulci regions. Increasing the age tends to enlarge the ventricular area while decreasing
the age variable reduces the ventricular volume. Furthermore, changes in the sulci regions are also observed
when changing the age variable. When considering sex-related counterfactuals, variations in brain size and
subtle changes [Lotze et al| (2019) in the ventricular regions can be observed in the figure. Furthermore,
when generating counterfactual images to illustrate sex differences, the BMI values appropriately change,
with males exhibiting higher BMI values. This is attributed to the causal influence of sex on BMI. Finally,
BMI changes result in alterations of the lateral and ventricular parts of the brain, which may be related to
accelerated brain aging (Beck et al] [2021)). In addition, Fig [6] displays results from counterfactual queries
simulating brain aging.

To assess the effectiveness of counterfactual inference, we generated counterfactual age values for the entire
test set, consisting of 4,739 images. Essentially, the query asks what would happen if everyone in the test
set had age a, denoted as CF,,, where a € [55,60,65,70,75]. The following experiments are conducted to
assess these counterfactuals.

Realism: In the first step, the FID between the training and test sets was measured to serve as the lower
bound. Subsequently, all images in the test set were blurred using Gaussian blur with a standard deviation
of 1, and the FID between each original test image and smoothed test image was measured as a comparative
baseline. Finally, the distance between each C'F, defined above and the training set was calculated. The
results displayed in Table 2 demonstrate that the generated counterfactual images show superior realism
compared to even slightly blurred images. Additionally, it was observed that realism was notably high for
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Figure 5: Tllustration of the outcomes of counterfactual queries, where causal factors of randomly selected raw
images were altered to generate new counterfactual images. Every column represents a distinct counterfactual
query, identified by "do(.)” commands.
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Figure 6: Results from counterfactual queries simulating brain aging. Each counterfactual image corresponds
to a unique query “do(Age = x)”.

the counterfactual images geerated for the age of 65, which aligns with the centered age distribution of the
data.

Effectiveness: To assess whether the generated counterfactuals indeed contain predictive age information,
we trained a separate classifier trained on the entire training set. Specifically, we utilized a popular archi-
tecture for brain age estimation, the SFCN model (Peng et al, 2021)) trained for 2D slices, which achieved a
mean absolute error (MAE) of 3.63 for test images. Subsequently, the CF, sets were tested for age prediction
using the counterfactual age « as the ground-truth target value for MAE computation. Table 2 displays
these results, showing that C'Fgg and CFgs performed reasonably well. Since the UKBB has a large amount
of training data for these age bins, it can be speculated that the model performs better when the queried
counterfactual age is closer to the actual age (less severe changes on average). Therefore, to evaluate how
the generated images change with counterfactual age differences, we computed the difference between the
actual age and the counterfactual query age for all C'F, sets and subsequently measured the MAE value
for this counterfactual age gap. Figure [7] illustrates these results, indicating that the counterfactual query
performs well within the age range of -10 to +10.
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Table 2: Realism and effectiveness are measured on test, blurred, and counterfactual images. FID: Fréchet
Inception Distance, MAE: Mean Absolute Error.

Test Blurred CF55 CFGO CF65 CF70 CF75
Realism (FID) | 0.49 | 53.23 3.12 2.09 2.48 6.02 11.78
Effectiveness (MAE) | | 3.63 | - 725 | 482 | 471 | 6.72 | 10.23

i

Cf age gap vs Absolute error

25

Absolute error
= [ N
o [6,] o
HER
— 00—
—0—
—
—
— e

-29.0 -24.0 -19.0 -14.0 -9.0 -4.0 1.0 6.0 11.0 16.0 21.0 26.0
Cf age gap

Figure 7: The figure displays how the effectiveness (MAE) of the generated images changes with the difference
between actual age and queried counterfactual age. The dotted lines show the MAE of the test set (unaltered
images).

4.2.5 Classification

Next, we employed the model’s Bayesian classification abilities to predict the age of each participant in the
test dataset as described in section [3.2.3] Therefore, we computed the posterior for each age and selected
the age with the maximum a-posteriori (MAP) value as the predicted age. The overall accuracy of this
prediction resulted in an MAE of 5.047 (standard deviation (std) = 0.052) when we used the first model (60
latents) for classification. Figure [§] illustrates the posterior distribution for a participant and the disparity
between actual and predicted values. The figures show that (1) the prediction assigns higher posterior values
around the true chronological age and lower for distant ages, and (2) the error in the prediction distribution
is centered around 0. These two results indicate that the model identifies the causal connection between age
and images quite effectively.

4.3 Comparison with H-VAE

Our proposed model was compared with H-VAE using the default configuration provided in the original paper
Ribeiro et al.| (2023) using a controlled synthetic MRI generation setup based on the SimBA benchmarking
dataset |Stanley et al. (2023). SimBA enables precise manipulation of medical image—specific effects and
provides paired counterfactual datasets that allow direct assessment of how specific changes influence model
behavior. We leveraged these ground-truth counterfactual datasets to evaluate how well MACAW and
H-VAE produce medical image counterfactuals.

Both, H-VAE and MACAW, were trained on the same causal graph using the SiImBA dataset. For MACAW,
we selected the model with the best validation likelihood after training with a learning rate of 1 x 1073,
weight decay of 5 x 107°, and four layers, and then generated counterfactual images. H-VAE, which extends
VAEs by modeling each latent variable conditioned on its causal parents, was trained using its original
architecture with a learning rate of 1 x 1073 and weight decay of 5 x 1072. The best-performing model was
used to produce counterfactuals.

Model performance was assessed using an effectiveness metric. A discriminative SFCN was trained on the
SimBA dataset to classify whether images contained the target effect. Using a logit threshold of 0.5, the
pseudo-oracle model correctly identified the target effect in 100% of the ground-truth counterfactuals (test
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Figure 8: Posterior estimated by the model for each age, with the actual age being 75 and the predicted
being 71 (left); distribution of the differences between the actual age and the predicted age for the whole
test set (right).

set), 98.0% of the MACAW-generated counterfactuals, and 83.9% of the H-VAE-generated counterfactuals.
In other words, these results show that the proposed MACAW model was more effective than H-VAE, as its
generated counterfactuals were more likely to be recognized by the pseudo-oracle model as containing the
intended target effect.

Furthermore, we determined and compared the runtime performance of the two generative models using
identical hardware resources (NVIDIA A100 PCle 80GB). H-VAE required approximately 400 epochs to
converge, taking 20 hours, whereas MACAW converged after about 150 epochs in just 6 hours. This demon-
strates the greater computational efficiency of MACAW compared with H-VAE.

5 Discussion

This work presents a novel causal generative framework called MACAW, which satisfies all three levels of
the causal ladder (association, intervention, and counterfactual) and holds considerable promise for various
applications in medical and clinical contexts. Specifically, counterfactual generation offers causal insights at
the individual level, which cannot be achieved using correlation-based approaches. Counterfactuals on the
MRI data revealed brain regions associated with aging, sex differences, and BMI changes that are all in line
with current knowledge.

Disentangling spurious correlations and identifying factors that causally influence medical images has been
challenging. Discriminative deep learning models prioritize achieving accuracy on the training dataset, often
exploiting shortcuts and spurious correlations. This makes it difficult to model and explore how variables
like age, sex, and BMI causally affect medical images. In contrast, the causal generative modeling method
described in this work encodes the data-generating process through a causal DAG, offering causal explana-
tions at both, the population level (interventions) and the individual level (counterfactuals). Furthermore,
causal counterfactual generation offers theoretical benefits withe respect to fairness (Kusner et al., [2018)),
bias mitigation, data augmentation, data harmonization, and digital twin development. Furthermore, it is
important to emphasize the distinction between conditional and causal approaches. In a standard conditional
generation setup, the factors influencing image features are often assumed to be independent. For instance,
when conditioning on the age variable, it is typically assumed that this has no impact on the BMI variable.
However, in our setup, the model considers causal relationships within the dataset. As a result, when we
intervene on the age variable, it correctly influences both, the BMI and the image features, reflecting genuine
causal connections.
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Quantitative assessments employing the metrics related to Realism and Effectiveness confirm that the gener-
ated counterfactual images effectively explain relevant causal information in the images. Furthermore, using
interventional sampling, we created new samples with predefined parent values. This process can generate
samples that align with the characteristics learned from the population. Consequently, these generated sam-
ples can serve as supplementary data for training other deep learning models, particularly in cases where
certain classes have insufficient data. However, potentially more relevant for knowledge discovery in the
biomedical context, it is possible to use the method proposed in this work as the basis for digital twins.

While the primary purpose of our model is counterfactual generation, it can also perform classification using
Bayes’ theorem, similar to other density estimation methods. However, its classification accuracy is lower
compared to CNN-based methods like SFCN for brain age estimation (Peng et all 2021). One potential
reason for this finding is that, unlike task-specific models such as SFCN, our model’s lower-dimensional
subspace must capture features sufficient for accurate image reconstruction. However, the key advantage of
our approach is that a single trained model can classify multiple variables (e.g., age, sex, BMI), whereas
CNN-based methods require separate models for each variable. Although classification is not the model’s
primary focus, it may serve as a solid foundation for developing discriminative deep learning models in the
future.

Thus far, researchers have used VAEs (Pawlowski et all 2020 Ribeiro et al., [2023), GANs (Nemirovsky
et al.l [2021), and diffusion models (Sanchez & Tsaftaris, 2022a; [Sanchez et all 2022a) for counterfactual
image generation. However, for a causal model to truly perform counterfactuals, deterministic invertibility is
essential (Pearl, 2012). Normalizing flows intrinsically offer this invertibility, and the experiments described
in this work demonstrated that a single normalizing flow combined with masked autoencoders is effective in
modeling complex causal structures. The proposed framework is grounded in solid mathematical foundations.
In particular, using masking networks with a DAG-inducing adjacency matrix has been demonstrated as a
valid causal generative prior in several previous studies, including Graphical Normalizing Flows [Wehenkel
& Louppe| (2021)) and Causal Autoregressive Flows — CAREFL Khemakhem et al.| (2021). The theoretical
basis of our framework aligns closely with these prior works, and our approach builds directly upon their
established proofs. While these previous studies primarily focus on causal structure discovery, our work
extends these principles to generate image-based counterfactuals, representing a novel application in this
domain.

We evaluated the generated counterfactuals using a pseudo-oracle model and found that MACAW out-
performed H-VAE in terms of the effectiveness metric, while also achieving faster runtimes due to its
single-normalizing-flow design. More precisely, MACAW’s counterfactual images were more likely to be
identified by the pseudo-oracle classifier as containing the intended effect. While pseudo-oracles provide a
practical solution for assessing the effectiveness of causal generative models, they have important limitations.
For example, pseudo-oracle model can be susceptible to shortcut learning if the classifier relies on spurious
correlations, and ultimately reduces a complex generative behavior to a single global scalar metric repre-
senting whether the classifier judged an intervention to be successful. Therefore, more advanced analytic
methods are needed to thoroughly analyze, debug, and compare the behavior of such generative models
Stanley et al.| (2025]).

Due to the high dimensionality of the image space, we project images onto a latent space to enable feasible
model training. The dimensionality of the latent variables affects the model in two ways. First, it impacts
the reconstruction of the final counterfactual image, as using fewer latent variables may lead to information
loss. Second, it determines how effectively the causal parents can influence the generated images, with larger
latent spaces potentially diluting this effect. The ranked structure of principal components is particularly
useful in this context. For instance, the first 50 principal components capture over 90% of the variance in the
images in our experiments, while the remaining components were found to contribute only minor changes
to the generated counterfactuals. Consequently, even if the causal influence of the parents diminishes the
later latent components, it has minimal effect on counterfactual performance. An extensive ablation study
on this topic has been conducted previously (Ohara et al.| (2025).

This study has several limitations, with one of the most notable being the reliance on a predefined causal
graph. In our research, we assumed the availability of a causal graph for the UKBB dataset. However, a
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predefined causal graph may not be readily available in many real-world scenarios. Typically, researchers
need to estimate causal relationships from existing domain knowledge or through randomized controlled
trials, which may not always be feasible or ethical. In cases where a predefined causal graph is absent,
causal discovery techniques can be employed (Glymour et al., |2019). Within this context, it is important
to emphasize that estimating causal relationships solely from observational and cross-sectional data can be
an extremely challenging task, often even impossible. Additionally, to capture the complex structure of the
brain associated with aging, it is necessary to extend our method to 3D images, which still remains as our
future work. Another potential limitation of the proposed model relates to the computational demands of
the classification task. Specifically, for each class variable, it is necessary to evaluate all possible values and
perform a forward pass with each of them. Consequently, this process incurs a computational cost several
times greater (equal to the number of classes) than the typical computational load associated with a standard
discriminative network. Moreover, this classification process is limited to anti-causal prediction, meaning it
involves predicting a top-level parent variable based on its effects.

In conclusion, the experimental results demonstrate the potential and effectiveness of MACAW in generating
interventional and counterfactual images, as well as performing Bayesian classification. Future research
should prioritize the development of a technique that seamlessly integrates dimensionality reduction and
the normalizing flow framework into a single model. This integration, in turn, would facilitate the efficient
processing of 3D images, ensuring that the model effectively captures all crucial information. The proposed
technique holds potential for exploring and identifying potential new biomarkers for various diseases.
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A Appendix

A.1 Additional results for 1-D experiment
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Figure 10: We generated samples from the model by intervening with two conditions: do(zg = 1.5|x = x
and do(z1 = 0.5|x = x°%*). The red lines represent the expected values as derived from the equations (the
gold standard). It is evident that the distribution’s mean closely matches these expected equation-based

values.

Figure 11: The figure displays both the observational and counterfactual distributions, along with the
differences between the gold standard and the predicted values.
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A.2 MorphoMNIST

To demonstrate an application of imaging data with a known causal graph, we applied MACAW to the
MorphoMNIST dataset |Castro et al.| (2019)). This is an extension to the popular MNIST hand-written digits
dataset and includes additional measured features such as area (in square pixels), thickness (in pixels), and
slant (in radians). These measured morphological features and the digit labels can be regarded as the causes
of the underlying data-generating process. More precisely, we first decide which number we want to draw
and decide its thickness and slant, and then draw the digit, which is defined in the causal graph The
dataset consists of 60,000 training images and 10,000 test images, where each image is 2D, grayscale, and
with a size of 28 x 28. For this experiment, we first defined a causal graph as depicted in Figure [[2] This
graph resembles the one employed by Pawloski et al. [Pawlowski et al. (2020) in their study. However, we
incorporated area and slant into the graph as additional causes to create a more complex causal structure.

Latents

Figure 12: Predefined causal graph for morphoMNIST dataset incorporating measured features like area (in
square pixels), thickness (in pixels), and slant (in radians)

Unconditional sampling Interventional sampling: do(Thickness=4)

5161019
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Figure 13: The figure displays results from unconditional and interventional sampling, where interventional
sampling involved setting cause variables to specific values. This enables the generation of images with
desired properties.

For this experiment, the image was first projected onto a 50-dimensional subspace using the dimensionality
reduction technique outlined in the section [3.:3] These 50-dimensional latents, along with digit labels, thick-
ness, slant, and area, were then used for the training of the MACAW model. The digit labels were encoded
using a one-hot representation, and the one-hot Bernoulli distribution was used as the prior. For all other
variables (thickness, area, slant, and latents), standard normal distributions were used as the prior. A total
of 63 variables (10 for one-hot label variables, 3 for causal features, and 50 for latents) were then transformed
to the specified prior distributions using negative log-likelihood as the chosen loss function. The training
was stopped early when the validation loss reached its minimum.

Figure [13] shows the results from the unconditional and interventional sampling. To perform interventional
sampling, we predefined a cause to a specific value. Results of the selected counterfactual queries are il-
lustrated in Figure In this process, test images were randomly chosen, and their causal factors were
modified through counterfactual queries, practically creating new images for an alternate reality. For exam-
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ple, a counterfactual query, as outlined in was used to ask, “How would the sample look if it had a

thickness of 47"

s alglolé]13]6
e olololo
do(Thickness=4) a 8 o 6 3 6
e o | F 1O 3| £

Figure 14: The figure shows the outcomes of counterfactual queries, where causal factors of selected test
images (observations) were altered to generate new images. Every row represents a distinct counterfactual
query, identified as "do(.)" commands.
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Figure 15: Figure depicts the likelihood distribution across class labels, highlighting the similarity in their
likelihoods.

For Bayesian classification, we evaluated the likelihood for each class label, ranging from 0 to 9, by conducting
a forward pass with the corresponding label. Subsequently, the class with the highest likelihood was chosen
as the predicted class. In Figure the likelihoods for each class are presented, revealing that visually
similar class labels tend to exhibit similar likelihoods. Overall, the proposed model achieved an accuracy
rate of 94.6%.
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