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Abstract

The solution set of a system of polynomial
equations typically contains ill-behaved, singu-
lar points. Resolution is a fundamental process in
geometry in which we replace singular points with
smooth points, while keeping the rest of the solu-
tion set unchanged. Resolutions are not unique:
the usual way to describe them involves repeat-
edly performing a fundamental operation known
as ”blowing-up”, and the complexity of the res-
olution highly depends on certain choices. The
process can be translated into various versions of
a 2-player game, the so-called Hironaka game,
and a winning strategy for the first player pro-
vides a solution to the resolution problem. In this
paper we introduce a new approach to the Hiron-
aka game that uses reinforcement learning agents
to find optimal resolutions of singularities. In
certain domains, the trained model outperforms
state-of-the-art selection heuristics in total num-
ber of polynomial additions performed, which
provides a proof-of-concept that recent develop-
ments in machine learning have the potential to
improve performance of algorithms in symbolic
computation.

1. Introduction
Systems of multivariate polynomial equations, for instance

x2z + yz2 + 3y = 0

x2yz − 3 = 0
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play a central role in various scientific and engineering fields,
as well as geometry and topology. If the number of variables
is n, then the solution set, which is also called variety in
algebraic geometry, is a subset of Rn with rich geometry.
The main technical challenge in solving these equations is
the presence of ill-behaved, so-called singular points of the
solution set. Geometrically, singularities can manifest as
self-intersections, cusps, folds, or other irregularities in the
shape of the solution set, see Appendix A for formal defini-
tion. In applications, such as computer graphics, robotics,
and computer vision, these irregularities can lead to visual
artifacts, inaccurate simulations, or incorrect interpretations
of data. When solving systems of polynomial equations,
singularities can cause numerical instability. Near singular
points, the equations can become ill-conditioned, leading
to inaccuracies, divergence, or difficulty in finding reliable
solutions. This is particularly relevant in applications where
high precision and accuracy are required, such as scientific
simulations or engineering design.

A fundamental problem in geometry about such systems is
to remove these singular points by slightly modifying the
solution set. This process is called resolution of singularities,
and the main technical tool doing so is called blowing up.
For a toy example take one equation

y2 − x3 + x2 = 0

with a node (double point) singularity at (0, 0). To resolve
this singularity, we substitute y = xt to get x2(t2−x−1) =
0, which has the green and black component. The non-
singular blown-up curve is the black curve t2 − x− 1 = 0.
This resolution ”blows up” the origin: it replaces the origin
with the projectivized tangent space of R2 at the origin.

Resolution of singularities is an old, central problem in
geometry with a long history. Resolution of curves goes
back to Newton, Riemann and Albanese, while resolution
of surfaces has been extensively studied by the 19th cen-
tury Italian algebraic geometry school. In 1964, Hironaka
proved that resolution is possible for any singularity in char-
acteristic 0 (Hironaka, 1964). This groundbreaking result
re-defined the landscape of geometry and earned Hiron-
aka the Fields Medal in 1970. While his initial proof was
quite technical, subsequent algorithmic proofs (Wlodarczyk,
2005; Abramovich et al., 2019) have been discovered with
reduced complexity, resulting in resolution trees that outline
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Figure 1: A nodal singularity and its resolution. The red
curve is y2−x3+x2 = 0. The black curve is t2−x−1 = 0,
which is obtained as the main component by substituting
y = xt to get x2(t2 − x − 1) = 0. The green line is the
x = 0 component in the equation x2(t2 − x− 1) = 0.

the blow-up procedure. However, it is important to note
that because the resolution of a singularity is not unique,
discovering minimal resolutions remains a critical task in
many mathematical fields. Interested readers can refer to
(Kollár, 2007; Abramovich, 2018) for more details.

In this article we introduce a new approach that harnesses
the power of deep reinforcement learning to seek out ”good”
solutions for resolving singularities. The idea starts with
a classical observation by Hironaka (Hironaka, 1970): by
playing a particular two-player game known as Hironaka’s
polyhedra game (see 2), one can obtain solutions that lead
to local resolutions of some singularity types. However, it
should be noted that this relationship does not hold in the re-
verse direction. We have identified two crucial observations
in this regard:

• The Hironaka game is a Markov Decision Pro-
cess(MDP) where actions only depend on the current
game state (determined by the coordinates of discrete
points in a space).

• The game can be generalized to resolutions of singular-
ities under different constraints (resolving hypersurface
singularities, only using weighted blow-ups, or even
fully general resolutions such as (Hauser & Schicho,
2012))

The main focus of this article is to highlight that solutions
to certain Markov Decision Processes (MDP) can be used
to resolve specific singularities. Moreover, Reinforcement
Learning is a commonly used technique to solve MDP.

The format of all such games is as follows: the game state
consists of a finite set of points in either Zn or Qn. Two
players alternate turns and make decisions from a finite (but
possibly extensive) range of actions that determine a linear
transformation to be carried out on the space. After these

transformations, a winning condition for the first player is
checked (such as whether the Newton polytope has only one
vertex). The primary objective of the first player is to win
the game in the fewest possible moves, while the second
player’s goal is to hinder the first player from winning by
using adversarial actions. It should be noted that if the
first player is not strategic enough, the game may continue
indefinitely.

In general, the relationship between games and resolutions
can be summarized as follows: the state of the game corre-
sponds to a certain Newton polytope of the singularity on an
affine chart. The first player chooses the blow-up center, and
the second player chooses an affine chart on the blow-up.
The linear transformation encodes how the Newton polytope
changes under the blow-up using the transition of this affine
chart.

On the math side, this work was motivated and subsequently
guided by recent developments in the intersection theory of
an important moduli space, the Hilbert scheme of points on
manifolds (Bérczi & Szenes, 2012; Bérczi, 2017). Several
classical problems in enumerative geometry and mathemati-
cal physics can be reformulated using so-called tautological
integrals over Hilbert schemes, and recent results show that
the integral formula is not unique: any resolution tree of a
certain singularity encodes a formula, which is a rational
sum over the leaves of the tree. Hence the formula’s com-
plexity highly depends on the size of the resolution tree, and
finding optimal trees using reinforcement learning is crucial
in the analysis of the formula, which leads to new insights
into these enumerative geometry questions. In particular,
our random hitting host (described in §3.5.3) has provided a
formula for a classical problem in topological enumerative
geometry, see §4 for details.

On the machine learning side, the work is inspired by recent
breakthrough results (Davies et al., 2021) in ML-assisted
proofs in pure mathematical problems, and by the deep rein-
forcement learning techniques which has been a powerful
tool to solve problems that can be phrased as (or close to)
a Markov decision process (Peifer et al., 2020). With the
success of AlphaZero ((Silver et al., 2018)), the deep re-
inforcement learning is further amplified by the power of
planning using tree search when the rules of the environment
is perfectly understood. By connecting with the problem
of resolution of singularities, we hope to provide deep rein-
forcement learning an additional use case that has a broad
impact in mathematics with its own special challenges.

Deep reinforcement learning has recently shown potential
in various mathematical domains where computation is a
crucial aspect. One such instance is the application of deep
reinforcement learning to Buchberger’s algorithm (Peifer
et al., 2020), which was proposed by Dylan Peifer, Michael
Stillman, and Daniel Halpern-Leistner. Their approach em-
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ploys reinforcement learning agents for S-pair selection,
which is a process involving a two-player game, similar to
the Hironaka game we discussed.

This article, while heavily focusing on the mathematical mo-
tivations and the mathematics-reinforcement learning trans-
lations, aims to also show some preliminary experiments
suggesting the feasibility of applying deep reinforcement
learning in the family of singularity resolution problems.

Acknowledgement The first author is indebted to the or-
ganisers and members of the ”Machine Learning for the
Working Mathematician” seminar organised by Joel Gibson,
Georg Gottwald, and Geordie Williamson at University of
Sydney (MLMW) We are also deeply indebted to High Flyer
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2. A fundamental version of the game
All of the games discussed in this paper can be regarded
as variations of one fundamental, simple version. The two
players play asymmetric roles, and for convenience we call
Player 1 the “host”, and Player 2 the “agent”. The rules of
this basic version are the following:

A state is represented by a finite set of lattice points

S ⊂ Zn
+ = {(x1, . . . , xn) : xi > 0 integer for 1 ≤ i ≤ n}.

• the host chooses a subset I ⊂ {1, 2, · · · , n} such that
|I| ≥ 2, and

• the agent chooses a number i ∈ I .

The selected pair (I, i) deteremines the following linear
change of variables:

TI,i : xj 7→

8<:xj , if i ̸= jP
k2I

xk, if i = j ,

After S is transformed into TI,i(S) ⊂ Zn
+, we remove

all points sitting in the interior of the Newton polygon
spanned by TI,i(S). That is, the new state is S0 =
TI,i(S) \N(TI,i(S)) where

N(TI,i(S))

={(x1, · · · , xn) ∈ TI,i(S) : ∃(x01, · · · , x0n) ∈ S0

such that xi ≤ x0i, ∀1 ≤ i ≤ n}.

A state is terminal if it consists of one single point. In this
case, the game will not continue and the host is the winner.
The host can also have an incentive to terminate the game

Algorithm 1 The Hironaka game

Input: Finite set S ⊂ Zn
+

while Newton polygon of S has ≥ 2 vertices do:
Player 1: Choose subset I ⊂ {1, . . . , n} with |I| ≥ 2
Player 2: Choose an element i ∈ I
Transformation: TI,i : Zn

+ → Zn
+; new set is TI,i(S).

in the fewest possible steps, and the resulting solutions can
have significant mathematical implications.

A host with a winning strategy against all possible agents
corresponds to a resolution of the singularity corresponding
to the initial state of the game. An example can be seen in
this video. To connect with our context, for example, the
E8 singularity corresponds to games with the initial state of
{(2, 0, 0), (0, 3, 0), (0, 0, 5)}.

The game does not necessarily terminate in finite number
of steps. But the existence of a winning strategy is implied
by Hironaka’s Fields medal result (Hironaka, 1964). How-
ever, the winning strategy is executed and the quality of the
strategy (e.g., minimal amount of game steps against the
smartest agents) still concern many directions in algebraic
geometry.
Remark 2.1. Although the original Hironaka game does
not contain this step, we can reduce the length of the game
(and hence the blow-up process) by a simple additional step
when we form the new state S0 from S. We call this the
translation step: for a set of points Z ⊂ Zn

+ let

zmin
i = min

(z1,...,zn)2Z
zi

denote the minimal ith coordinate in Z, and zmin =
(zmin

1 , . . . , zmin
n ). Then the shifted set is

Zsh = {z − zmin : z ∈ Z}

and the modified rule is that the new state in the Hironaka
game is

S0 = (TI,i(S) \N(TI,i(S)))
sh.

Geometrically, this corresponds to removing exceptional di-
visors, and keeping only the strict transform of the singular-
ity. In Figure 1 the strict transform is the black (nonsingular)
blown-up curve.
Remark 2.2. We make two observations on the rules.

1. As one might have already noticed from the rules, the
removal of interior points of the Newton polytope is in
fact not necessary. One may simply carry on without
removal of any point, and only draw the Newton poly-
tope to declare the terminal state if all but one points
are in the interior. This observation is helpful in avoid-
ing our discussions becoming lengthy when we define
its Markov Decision Process later.
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2. In this particular version of the game, we can freely
scale the points in Zn by a common scalar. This al-
lows for a few equivalent implementations including
bounding the game states inside a unit sphere.

3. Reinforcement learning
Reinforcement learning (RL) has recently shown remarkable
success in a variety of applications, from playing games to
robotic control and natural language processing. This, in
principle, also applies to our mathematical problem which
can be phrased as a Markov Decision Problem (MDP).

We focus on two popular RL algorithms, Monte Carlo tree
search (MCTS) and Deep Q-Networks (DQN). MCTS is
a planning algorithm that searches the tree of possible ac-
tions to find the best sequence of actions that leads to the
optimal solution. DQN, on the other hand, is a value-based
algorithm that uses a deep neural network to approximate
the action-value function and update the policy. In addition
to MCTS and DQN, Proximal Policy Optimization (PPO) is
a popular on-policy RL algorithm that has shown promising
results in several applications. However, in our study, we
only used MCTS and DQN for solving the optimization
problem.

Some examples of the influential applications in the field of
RL include [1] for DQN, [2] for MCTS, and [3] for PPO.

While our experimental results are not able to determin-
istically solve all singularities of a specifical dimension,
they demonstrate the feasibility of using MCTS and DQN
for solving Hironaka-style games and similar optimization
problems. We observe improvements in the policy during
training, which suggests that further refinement and explo-
ration of RL techniques could lead to better performance.
We will highlights the challenges and opportunities of apply-
ing RL techniques to mathematical optimization problems
and provides a valuable contribution to the field of RL. We
hope that our work will inspire further research in this direc-
tion and pave the way for more successful applications of
RL in solving optimization problems.

3.1. The asymmetric objectives

Just like most RL setups, we have a set of game states S
(in the basic Hironaka game: S = (Zn)k where k is the
number of points in a given initial state). The rules of the
games can be phrased as MDPs (section 2), and the two
players can have their rewards functions to optimize (will
be detailed in section 3.2).

But a subtle point in the translation between mathematical
setup and the RL environment is the following.

A resolution of a singularity corresponds to a

fixed and deterministic policy of the first player
on all states reachable from a given initial state
S. In particular, a full policy of the first player
is determined by its reactions upon all possible
actions from the second player.

This suggests that the second player is only an adversarial
challenger that is allowed to freely explore/retry and find
the best way to delay the game from ending.

So, the overall goal is slightly different than optimizing
a single pair of policies: we view a fixed resolution of
singularity as a “host” of the game against all possible
adversarial agents. They have asymmetric objectives:

• An adversarial agent needs to delay the games of one
host for as long as possible.

• But the best host needs to be able to terminate in finite
steps against all agents, or even minimize the amount
of steps against the best adversarial agent.

This is also why in section 2, we call the first player the
“host”, and the second player the “agent”.

3.2. The Markov Decision Processes

3.2.1. THE TRAINING SETUPS OF THE 2-PLAYER
PROBLEM

More formally, the basic Hironaka game can be converted
into Markov Decision Process (MDP) if one of the players
is fixed. As mentioned before, the process this article adopts
goes into two steps:

1. Fix a host to search for the best adversarial agent;

2. Fix one or more adversarial agent with top perfor-
mances and search for a better host policy.

And the training will be continuously iterating through these
two processes.

We also note that there are two different ways to set up this
two-player problem.

• One may unify the host’s and the agent’s observation
space, action space and reward space by leaving place-
holders in their definitions of states and actions. It will
turn into a symmetric game that can be improved by
self-play.

• One may fix a pool of host policies and adversarial
agents, simulate the playoffs and select the elites using
evolution methods.
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The first view is especially useful when incorporating plan-
ning (e.g. using MCTS) into the RL setup. Whether to
improve by self-play will influence implementation details,
and it is not yet clear which one is better.

The second view is rather interesting from research perspec-
tives. It requires a formulation of rewards that aggregates
across the whole pool of fixed agents. One can only apply
the group-evaluation idea only as an evaluation metric (Elo
rating, etc.), or go with full-scale evolution experiments in
search for strategies that are universally good. These are
very involved directions. We have made some preliminary
experiments of maintaining dynamic pools of DQN agents
and select players using MAP-Elites, but the results are not
yet enough for a systematic presentation. We leave them for
future research.

For this article, we do not go into details about these two
alternatives. We focus on the iterations of the 2-step process
fixing agents and hosts in turn.

3.2.2. SEARCHING FOR THE BEST ADVERSARIAL AGENT

The first process is to fix a host in search for the best adver-
sarial agent policy. We define the MDP as follows.

At a time step t, let St ⊂ (Zn)k be the current state of
the game. For a fixed host policy, a choice of coordinates
It ⊂ {1, 2, · · · , n} will be made along with a given game
state. The agent’s observation st = (St, It) is such a pair
consisting of the game state and the host’s choice.

Strictly speaking, the action space of the agent is exactly
the finite set It. But to fit the definition of MDP, we can
simply define the action space A to be the full {1, · · · , n}
and impose a probability 0 for actions outside It.

The reward Rat
(st, st+1) for a given action at ∈ A can be

simply defined as 0 if the game state St+1 is not terminal,
and −1 if St+1 is terminal.

As a common practice, we look for a policy π which deter-
mines the actions by at = π(st), optimizing the following
objective:

E

" 1X
t=0

γtRat
(st, st+1)

#
,

where γ is a discount factor between 0 and 1, E is the
mathematical expectation over all transitions. By having
this discounted sum, it also encourages the agent to delay
the end the game (if at all) as much as possible. Since we are
working on a deterministic MDP with deterministic policies,
the E becomes redundant for a fixed initial state and the host
policy. Thus, following the definitions, we are performing
a search algorithm over agent actions that optimizes the
discounted sum of rewards.

3.2.3. SEARCHING FOR THE BEST HOST

Once a strong agent policy is found, we in turn fix the
agent policy, and look for a good host policy to counter that.
The MDP is very similar except that the state st consists
of St only, and the action space at ranges over all subsets
I ⊂ {1, · · · , n} with more than 1 element. The reward
R0at

(st, st+1) is 0 if st+1 does not terminate, and 1 if st+1

terminates.

A potential risk of this iterative approach is that the evolution
of host-agent pair might get stuck in loops countering each
other without achieving high performances over all counter-
parties. Therefore, at least theoretically, the optimizing
objective for host player

Eπ

" 1X
t=0

γtR0at
(st, st+1)

#
(1)

must average over all agent policies π.

In practice, evaluating Equation (1) is often impractical.
What we do is to simply fix a collection of agent policies P ,
and average over them:

1

|P|
X
π2P

" 1X
t=0

γtRat(st, st+1)

#
. (2)

Although a host is trained against a limited number of agents,
generalizability is observed and will be demonstrated later
in Figure 2.

3.3. A simple metric

We introduce a metric which is helpful in measuring the
performance of the host and agent during evaluations. The
metric is based on the idea that for a fixed amount of time
steps, a smart host should be able to play more games while
a smart agent should be able to play fewer games. On the
host side this means more low-turn solutions while on the
agent side this means that more games are elongated in
terms of steps, induced by the competent adversary.

Given a bounded subset V ⊂ (Zn)k of initial states and a
fixed host-agent pair, a process of continuous game-play is
run for a fixed number of steps m, with an immediate restart
after terminal state by uniformly sampling another initial
state from V . Denote such an m-step game sequence by
Gm. The metric is a simple ratio between the number of
games played and the number of steps taken:

ρV,m = EGm
(ρGm

(m)) =
EGm

(gGm
(m))

m

where EGm
is the mathematical expectation over all game

sequences Gm and g(m) is the number of different games
during these m steps. If a limit

ρV = lim
m!1

EGm
(ρGm

(m))
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exists, it could be a good measure for the pair of host and
agent: If ρV is high, the host policy is uniformly stronger
than the agent, vice versa. Our tests suggest the existence of
the limit, but for a formal proof significantly more formality
linking the proofs of the Hironaka theorem to our MDP
formulation is needed. Our experiments show that

1. empirically ρV,m is observed to have a tendency of
convergence after sampling enough games and let m
grow;

2. in practice, we fix a uniform and sufficiently large m
and only use ρV,m as the metric due to efficiency.

For the rest of this paper, for each experiment we fix a
sufficiently large integer N , and we sample initial states
from the set

V = {(x1, · · · , xn) | 1 ≤ xi ≤ N, ∀1 ≤ i ≤ n}k.

For notation convenience, we later drop the notion V in
ρV,m, ρV and only denote them by ρm and ρ.

Although it is very useful in evaluation and selection of
policies, there are a couple limitations of this metric:

1. There are subtle differences between ρV and our math-
ematical goal: look for the host policy that consistently
generates blow-ups that require as few steps as possible
in all charts (i.e., against all agent policies).

2. The limit is not proven to exist, and estimating it re-
quires many sampling from random games.

Nevertheless, by using this empirical metric, we are able to
select strong policies. For example, the one showcased in
Appendix C is selected among a sequence of checkpoints
using its empirical ρ value against two very basic hard-coded
agent benchmark (choose-first agent and choose-last agent).

3.4. Agent benchmarks and generalizability

Back to (2), since we sample a set of agents, the simplest
scenario is when they are fixed policies throughout the train-
ing. We have the following simple benchmarks.

3.4.1. CONSTANT AGENTS AND RANDOM AGENTS

There are two obvious choices to hard-code agent strategies:
the constant policy and the random policy.

For the constant policy, we focus on the special case where
the agent always choose the first available coordinate from
the host’s choice I ⊂ {1, · · · , n}, ordered according to the
coordinate labels. We call it the choose-first agent for short.

Choose-first agent is in fact one of the strongest hard-coded
policy we have in terms of the empirical metric ρ introduced

in section 3.3. This obviously generalizes to all agents who
always choose a fixed action such as “choose-last”.

3.4.2. GENERALIZABILITY ON DIFFERENT AGENTS

Since in practice, we sample a limited number of agents in
the objective (2), it is important to ask whether the training
against one agent can be generalized to another. We ob-
serve that hosts trained against constant policies can already
generalize its performance to other policies.

Figure 2: Host trained against the choose-first agent and the
random agent

An example is shown in Figure 2. The host is a 2-layer resid-
ual network with a 256 hidden dimension trained against the
fixed choose-first agent using double DQN ((Hasselt et al.,
2016)). The plot includes the evaluations of the same host
network against the choose-first agent and the random agent
throughout its training process. The y-axis are approximated
by ρn with n = 1000 and use log scales. The x-axis starts
at 200-step for warm-ups. We observe the following:

• The host vs choose-first curve in Figure 2 shows an ex-
pected improvement throughout training, as the choose-
first agent is directly used in the roll-outs as the fixed
adversarial agent.

• The host vs random curve in Figure 2 shows a corre-
lated (though not fully in sync) trajectory of improve-
ments against random agent policy against whom the
host policy has never played.

.

3.5. Host benchmarks

Other than a learned host network, there are the following
host strategies coming from or inspired by the mathematical
literatures.
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3.5.1. THE ZEILLINGER HOST

We start with the simplest policy that is guaranteed to termi-
nate in �nite steps due to Zeillinger (Zeillinger, 2006).

Let N be the Newton polyhedron of the �nite set of points
S 2 Zn . Zeillinger proved that the host wins the polyhedra
game if he uses the following strategy:

1. If N is an orthant, the game is already won.

2. If N is not an orthant, chooseI = f k; lg � f 1; : : : ng
with 1 � k < l � n such thatwk , is a minimal and
wl is a maximal component of a characteristic vector
(w1; : : : ; wn ) of N .

The de�nition of the characteristic vector is a bit technical,
but can be found in (Zeillinger, 2006). The main point is
that the Zeillinger host always picks a pair of coordinates.
Although it is a winning strategy, the length of the game
against any agent–and hence the size of the resolution tree–
is large. Zeillinger's strategy limits each choice to a �nite
number of pairs(k; l ) any of which ends the game in �nite
steps. But since the choices are not unique, there might be a
number of choices at each step resulting in different depths
of the trees.

3.5.2. THE SPIVAKOVSKY HOST

The �rst known strategy with guaranteed �nite termination
predates Zeillinger and was given by Spivakovsky (Spi-
vakovsky, 1983). The Spivakovsky host works with coor-
dinate subsetsI � f 1; : : : ; ng which are hitting sets: we
call I � f 1; : : : ; ng a hitting set if at least one coordinate
in I is nonzero for all vertices of the Newton polygonN .
We leave the exact technical details of howI is selected for
(Zeillinger, 2006; Spivakovsky, 1983), but we point out two
key features:

1. At each step the Spivakovsky host picks a hitting set
of the Newton polygonN .

2. The Spivakovsky host works with big hitting sets, and
hence it is relatively slow, the game is long.

3.5.3. THE RANDOM HITTING HOST

Our hand-made calculations with Thom polynomials for a
slightly modi�ed game (the Thom game) suggest that for an
optimal (i.e minimal) resolution tree the host should pick a
hitting set at each step, and the size of this should be small.
However, deterministic selection of a minimal hitting set,
such as constant selection policy, does not work in general:
one can stuck in an in�nite loop of transformations. Hence
we introduced the following Random Hitting host:

1. The host picks a minimial hitting set at each step

Table 1:� -evaluation.

random choose-�rst choose-last

MCTS 0.215 0.126 0.115
Choose-all 0.253 0.032 0.032
Zeillinger 0.232 0.157 0.161

2. The choice is random among the hitting sets of minimal
size.

Based on a large number of examples, the Random Hitting
host performs the best. A future direction of research will
be to �nd the best performing host who works with minimal
hitting sets, using a reinforcement learning model.

3.6. Planning with tree search

Our strongest performer is obtained through AlphaZero-
style RL training with MCTS planning (see for example,
(Silver et al., 2018)). The idea of mixing deep learning and
MCTS planning is to use the policy network as a heuristic
to guide the Monte Carlo tree search in order to determine
the action distribution of a state. The Monte Carlo tree
search in turn provides an improved policy comparing to the
vanilla result from the policy network. Using the MCTS-
improved policies, the subsequent self-plays are collected
and used to improve the policy network in a supervised
manner. The key point is that this feedback loop achieves
policy improvements in an overall unsupervised way. But
this is in practice dif�cult to stabilize, and it requires efforts
to experiment the model architectures and tune the hyper-
parameters.

We approximate the� metric mentioned in section 3.3 and
summarize in Table 1.

The MCTS host is trained for surface singularities (states
coming fromZ3) with a maximum of20points. The host is
trained against an agent network that also improves using
MCTS. We perform the training back-and-forth by �rst
�xing the agent policy, then �xing the host policy, and then
back �xing the agent policy, etc. For more training details,
we refer to Appendix C.

In Table 1,

• “MCTS” is our policy guided by the trained network
and perform MCTS for100steps.

• “Choose-all” is the constant host policy that picks the
full set of coordinate in every single move.

• “Zeillinger” uses the strategy in section 3.5.1. It is
theoretically proven to be a winning strategy against
all possible adversarial agents.
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In the Appendix C, we demonstrate this MCTS host pol-
icy on a few mathematical meaningful examples (du Val
singularities).

There are two note-worthy features about this host policy:

• most of the host policies (including those with high�
trained from direct applications of DQN, PPO, etc.) are
almost never capable of ending the game in �nite steps
againstall possible agent policy. This problem occurs
even for initial states with as few as2-3 points. But
our MCTS host is demonstrated to end all the initial
states corresponding to du Val singularities in �nite
steps against all possible agents.

• Although Zeillinger host always guarantees a resolu-
tion, it always blows up codimension-2 strata and in a
lot of cases almost never a minimal resolution. But in
Appendix C, we show that our host is able to provide
minimal or close-to-minimal resolutions for some du
Val singularities.

This shows the feasibility of applying deep RL to �nding
useful host policies corresponding to valid or even minimal
resolutions of singularities. We only tried the most basic
implementations and there are still a wide range of possi-
ble improvements. We are still exploring it in an ongoing
research.

4. Applications and conclusions

While the existence of resolutions of singularities is proved
(in characteristic zero), the development of effective al-
gorithms for resolving singularities remains a challenge.
Constructing explicit resolutions can be computationally
demanding and often involves deep geometric and combi-
natorial techniques. Developing ef�cient algorithms that
work in general settings is an ongoing research area. Our
work offers evidence for the relevance of an ML-approach
towards two main challenges:

Minimal resolutions: Given that multiple resolutions of
a singular variety may exist, a natural question is whether
there exists a notion of ”minimal resolution.” Minimal reso-
lutions capture the essential geometric and arithmetic proper-
ties of the singularity and provide a canonical representation.
Understanding the existence and uniqueness of minimal res-
olutions is an active research topic.

Classi�cation of singularities: While there are some well-
understood classes of singularities, such as ordinary double
points or rational singularities, a complete classi�cation of
singularities is still an open problem. Developing a com-
prehensive classi�cation scheme by extracting patterns of
resolution trees using ML would contribute to a deeper un-
derstanding of singularities and their resolutions.

4.1. Topology of maps with an outlook

This work was originally motivated by the �rst authors' pure
math paper (B́erczi) on the topology of maps, hence in this
�nal section we collect applications which are closer to the
authors' expertise. Global singularity theory is a classical
subject in geometry which classi�es singularities of maps
f : Cn ! Cm , and describes topological reasons for their
appearance. One of its central questions is to determine the
(cohomological) locus wheref has a given type of singular-
ity. This (cohomology) locus is called the Thom polynomial
of the singularity, named after René Thom, who introduced
and studied them in the 1950's.

In (Bérczi & Szenes, 2012) a formula for Thom polynomials
of Morin singularities was developed, which can be reduced
to toric geometry, in particular, to a sum of rational expres-
sions over leaves of the blow-up tree obtained by a variant
of the Hironaka game (which we call the Thom game) on a
special singularity. The formula has the form

Tpn;m
k = Res

z= 1

 
X

L 2T k

RL (z)

!
kY

i =1

cf (1=zi )dz

where:z = ( z1; : : : ; zk ) are the residue variables, and the
iterated residue is the coef�cient of(z1 : : : zk ) � 1 after we
expand the rational expression on the contourz1 � : : : �
zk ; Tk is the set of leaves of an (arbitrary) blow-up tree of a
certain Thom idealI k ; RL is a rational expression assigned
to the labelL ; cf (1=zi ) stands for a generating function of
cohomology classes for the mapf : Cn ! Cm (these are
called Chern classes).

Using a modi�ed resolution game, the Thom game (see Ap-
pendix), we managed to construct a blow-up treeTk in the
theorem fork � 7. The complexity of the formula is deter-
mined by the complexity of the Thom tree, but unfortunately,
these resolution trees are quickly becoming oversized ask
increases, and �nding small resolution trees is crucial in
understanding the structure and symmetries of the formula.
Our formula fork = 7 is a new result: we only knew Thom
polynomials before up tok = 6 .

We believe our approach has big potential in tackling other
classical questions in enumerative geometry, such as

• The Chern positivity conjecture of Thom polynomials.
Rimányi (Rimányi, 2001) conjectured that the Thom
polynomials expressed in the Chern classes off have
nonnegative integer coef�cients. This conjecture re-
mained hopeless and intact since its formulation.

• Counting plane curves with given set of singularities.
• Counting maps between manifolds with given set of

singularities
• Determining (cohomological) locus of maps where the

map has given singularities.
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• Conjectures on integrals in mathematical physics
(Segre-Verlinde duality)
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A. Appendix: A brief mathematical background

In 1964 Hironaka proved that it was possible to resolve singularities of varieties over �elds of characteristic 0 by repeatedly
blowing up along non-singular subvarieties, using a very complicated argument by induction on the dimension. Over the
last 60 years several other proofs were discovered, with reduced complexity, including Bierstone & Milman (Bierstone
& Milman, 1997), Encinas & Villamayor (Encinas & Villamayor, 1998), Wlodarczyk (Wlodarczyk, 2005), McQuillen
(McQuillan, 2020) and Abramovich & Tempkin & Wlodarchyk (Abramovich et al., 2019).

A resolution can be described by a series of blowing-ups, and these elementary operations can be arranged into a blow-up
graph, which is a rooted tree labelled by clusters of variables. This tree is not unique; its size and complexity highly depend
on some choices. Our knowledge about this complexity is very limited. To study the complexity of resolution trees, and to
�nd optimal resolutions using reinforcement learning is the ultimate goal of what we propose in this paper.

A.1. What is a resolution of singularity

An af�ne algebraic variety

X = f (x1; : : : ; xn ) : f 1(x1; : : : ; xn ) = : : : = f k (x1; : : : ; xn ) = 0 g � An

is the common zero locus of polynomial equations. Af�ne varieties play central role in mathematics, physics and biology.
Af�ne varieties cut out by one polynomial equation are called af�ne hypersurfaces. E.g

X = f (x1; : : : ; xn ) : f (x1; : : : ; xn ) = 0 g

A.2. Singularities

We can think of varieties as ”shapes in af�ne spaces”, and at a generic pointx 2 X the variety locally isAr for somer ,
which we call the dimension ofX . However, there are special, ill-behaved points, where the local geometry ofX is less
patent.

The af�ne varietyX is singular at a pointa 2 X if the Jacobian matrix

Jac(X; a ) =
�

@fi
@xj

�
(a)

at a is of rank smaller thann � dim(X ). The set of singular points ofX is called the singular locus ofX .

A.3. Blow-up: turning singularities into smooth points

Resolution of singularities is a classical central problem in geometry. By resolution we mean that we substitute the original,
possibly singularX with a nonsingularY with a proper birational mapf : Y ! X such thatf is an isomorphism over
some open dense subset of X.

The celebrated Hironaka theorem (Hironaka, 1964) from 1964 asserts that such resolution exists for allX , and it can
be constructed as a series of elementary operations, called blowing up. Blowing up or blow-up is a type of geometric
transformation which replaces a subspace of a given space with all the tangent directions pointing out of that subspace.

For example, the blow-up of a point in a plane replaces the point with the projectivized tangent space at that point, and this
gives a resolution of the nodal curvey2 � x2(x + 1) = 0 . Over the �eld of real numbers, a picture can be illustrated in
Figure 3.

More precisely, Hironaka proved that the resolution of singularities can be achieved by a sequence of blowups

Y = X n ! X n � 1 ! : : : ! X 0 = X

if the characteristic of the base �eld is zero.

This beautiful and fundamental work was recognized with a Fields medal in 1970. Villamayor, as well as Bierstone and
Milman independently, have described the algorithmic nature of the process of resolving singularities in characteristic zero.
Hironaka's theorem has been proven through de Jong's innovative ideas, leading to simple proofs by Abramovich and
de Jong, as well as by Bogomolov and Pantvev. The most recent signi�cant development in devising a straightforward
resolution algorithm has been made by Abramovich, Tempkin, and Vlodarczyk, as well as by McQuillen, who proposed a
simple stacky presentation through the use of weighted blow-ups.
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Figure 3: Blowing up the nodal red curve y2 − x2(x+ 1) = 0: substitute y = xt to get x2(t2 − x− 1) = 0, which has the
green and black component. The non-singular blown-up curve is the black curve t2 − x− 1 = 0

B. Solutions to the resolution problem
In the literature, there appear several proofs for Hironaka’s celebrated theorem on the resolution of singularities of varieties
of arbitrary dimension defined over fields of characteristic zero. These proofs associate invariants to singularities, and show
that certain type of blow-ups improve the invariant.

We can interpret resolution as a game between two players. Player A attempts to improve the singularities. Player B is some
malevolent adversary who tries to keep the singularities alive as long as possible. The first player chooses the centres of the
blowups, the second provides new order functions after each blowup.

The formulation of the resolution as a game goes back to Hironaka himself. He introduced the polyhedra game where Player
A has a winning strategy, which provide resolution of hypersurface singularities. He formulated a ”hard” polyhedra game,
where a winning strategy for Player A would imply the resolution theorem in full generality, but such winning strategy does
not necessarily exist. Later Hauser defined a game which provided a new proof of the Hironaka theorem.

The most basic version of the game is defined in section 2. Here we list some (but not all) known variations with their key
features. We introduce the Thom game, which provides formulas for Thom polynomials and integrals over Hilbert scheme
of points as explained in section 4.

B.1. Hauser game

This version of the Hironaka game was suggested by Hauser (Hauser & Schicho, 2012). A simple winning strategy was
given by Zeillinger (Zeillinger, 2006), which gives a resolution process for hypersurfaces singularities.

The rules:

• states: A finite set of points S ⊂ Nn, such that S is the set of vertices of the positive convex hull ∆ = {S + Rn
+}.

• move: The host chooses a subset I ⊂ {1, 2, · · · , n} such that |I| ≥ 2. The agent chooses a number i ∈ I .

• state change: Given the pair (I, i) chosen by the host and agent, for x = (x1, · · · , xn) ∈ Zn we define TI,i(x) =
(x01, . . . , x

0
n) where

x0j =

8<:xj , if i ̸= jP
k2I

xk, if i = j ,
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The new state S0 is formed by the vertices of the Newton polyhedron of ∆0 = {TI,i(x) : x ∈ S}.

• terminal states: a state S is terminal if it consists of one single point.

In short, the host wants to reduce the size of S as quickly as possible, but the agent wants to keep the size of S large.

B.2. Hironaka’s polyhedra game

This is the original Hironaka game from 1970, see (Hironaka, 1964). A winning strategy for the host was given by Mark
Spivakovsky in 1980 (Spivakovsky, 1983) which proved the resolution theorem for hypersurfaces.

The rules:

• states: A finite set of rational points S ⊂ Qn, such that
Pn

i=1 xi > 1 for all (x1, . . . , xn) ∈ S, and S is the set of
vertices of the positive convex hull ∆ = {S + Rn

+}.

• move: The host chooses a subset I ⊂ {1, 2, · · · , n} such that |I| ≥ 2 and
P

i2I xi ≥ 1 for all (x1, . . . , xn) ∈ S. The
agent chooses a number i ∈ I .

• state change: Given the pair (I, i) chosen by the host and agent, for x = (x1, · · · , xn) ∈ Zn we define TI,i(x) =
(x01, . . . , x

0
n) where

x0j =

8<:xj , if i ̸= jP
k2I

xk − 1, if i = j ,

The new state S0 is formed by the vertices of the Newton polyhedron of ∆0 = {TI,j(x) : x ∈ S}.

• terminal states: a state S is terminal if it consists a point (x1, . . . , xn) such that
Pn

i=1 xi ≤ 1.

B.3. Hard polyhedra game

The hard polyhedra game was proposed by Hironaka in 1978 (Hironaka, 1967) Hironaka has proved that a winning strategy
for the host of this game would imply the local uniformization theorem for an algebraic variety over an algebraically closed
field of any characteristic. However, a famous result of Mark Spivakovsky (Spivakovsky, 1982) showed that the host does
not always have a winning strategy

The rules:

• states: A finite set of rational points S ⊂ Qn, such that
Pn

i=1 xi > 1 for all (x1, . . . , xn) ∈ S, the denominators are
bounded by some fix N , and S is the set of vertices of the positive convex hull ∆ = {S + Rn

+}.

• move: The host chooses a subset I ⊂ {1, 2, · · · , n} such that |I| ≥ 2 and
P

i2I xi ≥ 1 for all (x1, . . . , xn) ∈ S.
The agent chooses some element i ∈ S and modifies the Newton polygon ∆ to a set ∆� by the following procedure:
first, the agent selects a finite number of points y = (y1, . . . , yn), all of whose coordinates are rational numbers with
denominators bounded by N as above, and for each of which there exists an x = (x1, . . . , xn) ∈ ∆ which satisfy some
basic relations. ∆� is then taken to be the positive convex hull of ∆ ∪ {selected points}.

• state change: Given the pair (I, i) chosen by the host, for x = (x1, · · · , xn) ∈ Zn we define TI,i(x) = (x01, . . . , x
0
n)

where

x0j =

8<:xj , if i ̸= jP
k2I

xk − 1, if i = j ,

The new state S0 is formed by the vertices of the Newton polyhedron of ∆0 = {TI,j(x) : x ∈ S}.

• terminal states: a state S is terminal if it consists a point (x1, . . . , xn) such that
Pn

i=1 xi ≤ 1.
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B.4. The Stratify game

In 2012 Hauser and Schicho (Hauser & Schicho, 2012) introduced a combinatorial game, called Stratify. It exhibits the
axiomatic and logical structure of the existing proofs for the resolution of singularities of algebraic varieties in characteristic
zero. The resolution is typically built on a sequence of blowups in smooth centres which are chosen as the smallest stratum
of a suitable stratification of the variety. The choice of the stratification and the proof of termination of the resolution
procedure are both established by induction on the ambient dimension.

B.5. Thom game

This is a modified version of the Hironaka game which we developed in the present paper to find optimal solutions for
Thom polynomials and integrals over the Hilbert scheme of points as explained in section 4. The Thom game is a weighted
version of the Hironaka game. It has a winning strategy, and every run of the game provides a blow-up tree, which encodes a
formula for Thom polynomials of singularities, answering long-standing question in enumerative geometry.

The rules:

• states: A pair (S,w), where: S is a finite set of points S ⊂ Nn, such that S is the set of vertices of the positive convex
hull ∆ = {S + Rn

+}; w = (w1, . . . , wn) ∈ Nn is a weight vector associating a nonnegative integer weight to all
coordinates.

• move: The host chooses a subset I ⊂ {1, 2, · · · , n} such that |I| ≥ 2 and
P

i2I xi ≥ 1 for all (x1, . . . , xn) ∈ S. The
agent chooses an i ∈ I such that wi is minimal in {wj : j ∈ I}.

• state change: Given the pair (I, i) chosen by the host and agent, for x = (x1, · · · , xn) ∈ Zn we define TI,i(x) =
(x01, . . . , x

0
n) where

x0j =

8<:xj , if i ̸= jP
k2I

xk, if i = j ,

The new state S0 is formed by the vertices of the Newton polyhedron of ∆0 = {TI,i(x) : x ∈ S}, shifted by a positive
integer multiple of (−1, . . . ,−1) such that S0 still sits in the positive quadrant, but any further shift will move it out.
The new weight vector is

w0j =

(
wj , if j = i or j /∈ I

wj − wi if j ∈ I \ {i}
,

• terminal states: a state S is terminal if it consists of one single point.

B.6. The Abramovich-Tempkin-Wlodarczyk game

In 2020 Abramovich, Tempkin and Wlodarczyk (Abramovich et al., 2019) introduced a new resolution algorithm, based
on weighted blow-ups. Quillen (McQuillan, 2020) independently concluded similar results. Their resolution process uses
intrinstic invariants of singularities which improves after each blow-up, resulting in a significantly simpler proof of the
Hironaka theorem. In their original version, there is no choice in the blowing-up process, and our calculations with the Thom
ideals indicate that the ATW resolution can be far from being optimal in terms of the number of leaves of the blowing-up
tree. However we are working on transforming the ATW algorithm into a game with a view towards an ML approach.

C. A host trained with MCTS
The host in section 3.6 is trained using a custom implementation of AlphaZero, with host and agent being different neural
network and trained back-and-forth using MCTS planning taking turn fixing the counter-party. We evaluate the host against
the choose-first agent and the choose-last agent (the benchmark agents who always pick the first/last action) and cherry-pick
the checkpoint who has the best ρ score against both of them.

Both host and agent networks use the simplest fully-connected neural network with ReLU as their activation functions. The
detailed spec is in Table 2.
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Table 2: model details

number of layers hidden dimension batch size learning rate

host 8 256 512 0.0001
agent 6 256 512 0.0001

The rule of the game uses the basic Hironaka game (section 2) with one extra transformation at the beginning of each turn:
translating all points altogether, so that all coordinates remain non-negative while for each coordinate, at least one point
touches the coordinate plane (the coordinate being 0). In the resolution of hypersurface singularities, this corresponds to
removing exceptional divisors and only looking at the strict transforms.

Although our policy does not outperform a guaranteed winning strategy in terms of ρ (see Table 1), it is getting close. Note
that ρ�1 only measures the overall average steps to end a game, which does not reveal other information such as whether it
is guaranteed winning or whether the resolution is minimal.

In the following subsections, we fix our host policy, and demonstrate a few complete state-action trees against all agent
choices with initial states corresponding to du Val singularities on surfaces.

C.1. Conventions

Let us first explain some conventions and notation changes.

In this section, we make a minor change of notation:

• the label of coordinates will be 0-based instead of 1-based (see the notation of section 2). Concretely, host action
I ⊂ {0, 1, · · · , n− 1}.

We would also like to repeat and highlight the additional translation rule during state transition:

• after the linear transformation, we post-compose with a translation, so that all coordinates remain non-negative while
for each coordinate, there exists at least one point which touches the coordinate plane (the coordinate being 0)

Recall that the during the state transition, the host first chooses a subset I ⊂ {0, · · · , n− 1} and agent chooses a number
from I . Although the state transition consists of 1) host action, 2) agent action, we note that

• it is only necessary to draw the agent actions as edges, because all possible agent choices will recover the subset I .

Therefore, in the full trees we will demonstrate, the edges only correspond to agent choice, and they will be labeled by their
corresponding coordinate.

C.2. A2 surface singularity

We first show the tree of A2 singularity where the host easily found the minimal resolution. We use this simple example to
explain in details about how to parse our pictures.

We consider affine surfaces defined in C3, and name the three coordinates x, y, z. The initial state (the root) consists of three
points: (2, 0, 0), (0, 2, 0), (0, 0, 3) corresponding to the hypersurface x2 + y2 + z3 = 0.

There are 3 edges coming out of the root and labelled as 0, 1, 2. This implies that our policy chose the action of I = {0, 1, 2}
(according to the notation of 2) which corresponds to the blow-up center x = y = z = 0. The agent now has 3 charts
(actions) to pick from.

For example, after taking action 0, according to the rule of the basic Hironaka game plus our additional translation rule, the
three points undergo the following operations:

• becoming (2, 0, 0), (2, 2, 0), (2, 0, 3) after adding the first and the second coordinate to the third coordinate;
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Figure 4: The host policy on A2 singularity

• removing (2, 2, 0) and (2, 0, 3) as they are in the interior of the Newton polytope.

• translating (2, 0, 0) to (0, 0, 0) according to our extra rule of translation explained in the beginning of Appendix C.

Since we have only one point left, the game terminates at (0, 0, 0) after the agent took the action 0.

The only way to continue the game is for the agent to take the action 2. After this action, the three points first become
(2, 0, 2), (0, 2, 2), (0, 0, 3). None of the points are interior points, therefore all of them survive and get translated to
(2, 0, 0), (0, 2, 0), (0, 0, 1) along the vector (0, 0,−2) so that the first two points have the third coordinate being 0.

The next host action is also I = {0, 1, 2}. Note that the A2 singularity is already smoothed after this blow-up, while the
game can still continue after the agent takes action 0 or 1. This is simply because the terminating condition of the basic
Hironaka game is merely a sufficient condition of smoothness. For example, the state (1, 0, 0), (0, 0, 1) corresponds to the
hyperplane x+ z = 0 which is already smooth. One can easily modify the terminating rule to include this case (e.g. the
sum of all coordinates being 1 for at least one point), but we do not do so for consistency.

As a result, this A2 resolution according to the host policy is the minimal resolution.

For readers not having algebraic geometry background, we encourage them to still continue with the D4 singularity where
we prepared a detailed chart-by-chart analysis demonstrating how to parse the blow-up information purely mathematically.

C.3. D4 surface singularity

We start with the equation

x2 + y2z + z3 = 0

which defines a rational double point of type D4.

The host demonstrates a slightly different blow-up path that ended up with the same D4 Dynkin diagram. The mapping
between our full policy tree and the RL environment is already explained in the A2 example. So, we use this example to
demonstrate a chart-by-chart calculation for readers not coming from algebraic geometry background and still looking to
verify the geometry on the mathematical side.

C.4. A more detailed chart-by-chart analysis

Now we are looking at the D4 resolution (Figure 5).

Recall that the game may not end even when the chart is smooth. We mark the ealiest smooth states in blue. Throwing away
all the sub-trees coming after the blue nodes, we see that it takes two blow-ups to resolve this D4 singularity.
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Figure 5: The host policy on D4 singularity

C.4.1. STEP 1, HOST MOVE

The host chose the coordinates I = {0, 2} as the first step, which corresponds to blowing up the line defined by x = z = 0.
The resulting surface is no longer an affine surface, and to look at the whole picture, one must try to observe through two
different charts (think about atlas, charts in manifold theory):

• (u, v, w) through the change of variables u = x, v = y, uw = z.

• (u0, v0, w0) through u0w0 = x, v0 = y, w0 = z.

Choosing any chart corresponds to an agent action. And the change of variables corresponds to the linear transformations
of the game states when looking at the exponents. This step is particularly surprising for me at a first glance, as the usual
approach is to blow up x = y = z = 0 (e.g., the first chart would be u = x, uv = y, uw = z, etc). But turns out it doesn’t
hurt the result.

A smart agent should choose the second chart, as the origin of the first chart is a already smooth point. Let us check this
statement by hand: Plugging in u = x, v = y, uw = z, we obtain

u2 + uv2w + u3w3 = u(u+ v2w + u2w3) = 0.

The equation now defines two surfaces:

• u = 0 which corresponds to the exceptional divisor of the blowup of A3. It is the ”shadow” coming from the
modification of the outer space A3, and spans outside the surface.

• u+ v2w+ u2w3 = 0 which corresponds to the strict transform of the original surface. It is the real modification of the
original surface, and it is what we care. One can apply the Jacobian criterion to verify that this is a smooth surface.

From the first chart, we can see that the exceptional curves consist of two lines: they are defined by u+ v2w + u2w3 =
0, u = 0. By plugging u = 0 in, the system of equation becomes v2w = 0, u = 0, or equivalently, the line u = v = 0
unions the line u = w = 0.

C.4.2. STEP 1, AGENT MOVE

The agent chose the second chart. Now by plugging in u0w0 = x, v0 = y, w0 = z, we obtain u02w02 + v02w0 + w03 =
w0(u02w0 + v02 + w02) = 0. Again,
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• w0 = 0 is the exceptional divisor of the blowup on the ambient space A3.

• u02w0 + v02 + w02 = 0 is a singular surface. It glues together with u+ v2w + u2w3 = 0 and we are just seeing the
two parts of the same surface.

(As a side note, the two exceptional divisors from different charts u = 0 and w0 = 0 are not mutually exclusive. They glue
together to form one single quasi-projective variety. We are also looking at two parts of the same exceptional divisor. As a
result, the exceptional line u = v = 0 and w0 = v0 = 0 are in fact charts of the same P1.)

An easy application of Jacobian criterion tells us that the origin (0, 0, 0) on u02w0 + v02 +w02 = 0 still needs to be resolved.

C.4.3. STEP 2, HOST MOVE AND AGENT MOVE

Now we rinse and repeat from the new equation u02w0 + v02 + w02 = 0. The host chose all coordinates this time, which
corresponds to blowing up at u0 = v0 = w0 = 0. With the analysis above as well as the help from the blowup tree, we see
that only one chart is interesting (agent’s choice of coordinate 0). Altogether, they correspond to the change of variable:

u00 = u0, u00v00 = v0, u00w00 = w0.

By plugging in, we see u003w00 + u002v002 + u002w002 = u002(u00w00 + v002 + w002) = 0. Ignoring the exceptional divisor
u00 = 0 (for now), we move on to the next singular surface u00w00 + v002 + w002 = 0.

The next step can be easily carried out by imitating our previous procedures, and we leave it as an exercise for the interested
readers.

Now, if we backtrace all the steps and keep track of the exceptional curves, passing to its dual graph, we will see the famous
Dynkin diagram D4.

C.5. A few more surface singularities

In addition, we include the full action trees of A3 and D5 as follows.

C.5.1. A3

Figure 6: The host policy on A3 singularity

The host policy tree on A3 is very similar to A2. But the difference is that the first blow-up created two different components
in the exceptional locus. From the equation, the agent’s choice at coordinate 2 corresponds to plugging in x = uz, y = vz
in x2 + y2 + z4 = 0. The exceptional locus becomes the intersection of z = 0 and u2 + v2 + z2 = 0 and it consists of two
complex lines intersecting at the origin.

C.5.2. D5

The full action tree of D5 of our policy is shown in Figure 7. Note that it is not exactly a minimal resolution, but very close.
The host’s suboptimal choice is marked in red. Had the host chosen I = {0, 1, 2} for the state transition, it resolves the
singularity with 1 fewer step and recovers the D5 minimal resolution.
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