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Abstract
Multi-task reinforcement learning challenges
agents to master diverse skills simultaneously,
and Meta-World emerged as the gold standard
benchmark for evaluating these algorithms. How-
ever, since the introduction of the Meta-World
benchmark there have been numerous undocu-
mented changes which inhibit fair comparison of
multi-task and meta reinforcement learning algo-
rithms. This work strives to disambiguate these
results from the literature, while also producing
an open-source version of Meta-World that has
full reproducibility of past results.

1. Introduction
Reinforcement learning (RL) has made significant progress
in real-world applications such as the magnetic control of
plasma in nuclear fusion (Degrave et al., 2022), control-
ling the location of stratospheric balloons (Bellemare et al.,
2020), or managing a power grid (Yoon et al., 2021). How-
ever, each of these RL agents are limited in their abilities
as they are only trained to accomplish a single task. While
existing benchmarks have pushed progress in specific ar-
eas, such as high-fidelity robotic manipulation, or multi-task
and meta learning (Wang et al., 2021; Kannan et al., 2021;
Bellemare et al., 2013; Nikulin et al., 2023), they tend to
be limited to one specific mode of training and evaluation.
Evaluating the ability of reinforcement learning agents to
both master diverse skills and generalize to entirely new
challenges remains a critical bottleneck.

To train RL agents that can accomplish multiple tasks si-
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multaneously, researchers have generally taken one of two
approaches. The first is to simultaneously train on multiple
tasks with the goal of maximizing accumulated rewards on
the same set of tasks. The second approach is to perform
meta-learning on a sub-set of tasks where the goal of the
RL agent is to learn skills that generalize to a broader set
of tasks. Given the significant amount of overlap between
these two approaches, Meta-World (Yu et al., 2020b) was
proposed to enable effective research on both. Indeed, it has
been widely used in foundational multi-task research (Yang
et al., 2020; Hendawy et al., 2024; Sun et al., 2022; McLean
et al., 2025), as well as single task RL research (Eysenbach
et al., 2022; Nauman & Cygan, 2025).

Since its introduction, however, there have been inconsis-
tencies with the versioning of the benchmark, obfuscating
effective comparisons between various algorithms, which
we empirically demonstrate below. To address these in-
consistencies, we re-engineer the benchmark to facilitate
research, benchmarking, customization, and reproducibility.
Specifically, our contributions are as follows:

1. We perform an empirical comparison of various multi-
task algorithms across past reward functions, highlight-
ing the inconsistencies in cross-version comparisons.
We then propose insights for future benchmark design
based on the empirical results.

2. We add a new task set, in addition to the existing task
sets, and introduce the ability for users to create custom
multi-task task sets.

3. We upgrade the library to be compatible with the lat-
est Gymnasium API (Towers et al., 2024) & Mujoco
Python bindings (Todorov et al., 2012), removing the
dependencies on the unsupported packages of OpenAI
gym (Brockman et al., 2016) & Mujoco-Py1.

2. Meta-World
In this section we provide an overview of the Meta-World
benchmark. In Appendix A we provide additional infor-
mation on the different components of Meta-World. Meta-

1https://github.com/Farama-Foundation/Metaworld/
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World contains 50 different robotic manipulation tasks for a
single Sawyer Robot Arm2 to solve. Some tasks involve ap-
plying force to an object (i.e. door-close, drawer-close, and
coffee-push), while some tasks require grasping and manip-
ulating an object (i.e. pick-place, and assembly), and some
combine these two applications of force (i.e. drawer-open,
disassembly). In Appendix A we visualize the included
tasks in Meta-World.

2.1. Task Sets

To evaluate algorithms in the multi-task setting the MT10 &
MT50 task sets are used. In these sets of 10 and 50 tasks,
an algorithm is tasked with learning a distribution of tasks
with both parametric and task variations. The parametric
variations of each task are the random goal or object lo-
cations that can be used, where the task variations are the
various types of tasks (i.e. pick-place, reach, push). The
agent is evaluated on the same tasks that it is trained on. The
evaluation metric for multi-task RL is the mean success rate
of an agent across all evaluation tasks.

2.2. Reward Functions

The original publication of Meta-World (Yu et al., 2020b)
created a set of dense reward functions. These rewards,
which we will refer to as V1, were designed by creating
the pick-place reward function, and then modifying the
pick-place reward function to solve a new task. For the
pick-place reward function, the rewards guide the agent to:
reach towards an object, grasp the object, and move the
object to a goal location. To create subsequent rewards this
structure would be modified for each new task. For example,
for the reach task, the reward function would be modified to
only include the component of rewards for reaching towards
the goal. The portion of the reward function for moving
towards an object and gripping the object would be removed.
However, at some point these V1 rewards were overwritten
by a new set of dense rewards, which we will refer to as
V2. These rewards were written with fuzzy constraints that
allowed for rewards to be in the range (0, 10) and episodic
returns across tasks are from a more narrow distribution. To
highlight the differences in rewards, in Figure 1 we plot the
per-timestep rewards for the pick-place task across the V1
and V2 rewards. For V1, the rewards start slightly negative
and then reach a maximum reward for success of around
1200. For V2, the rewards start at zero and reach 10 when
the task is solved. We include the full reasoning behind
designing these reward functions in Appendix A.

2Sawyer Arm Information

3. Empirical Results
Due to historical versioning issues in Meta-World, various
works have reported results across different reward func-
tions. These results are not comparable, as the two sets of
reward functions have different design philosophies and per-
task reward scales as illustrated in Figure 1. In Section 3.1,
we provide a comparative analysis on a number of multi-task
RL methods over the V1 and V2 reward functions. Section
3.2 provides some analysis of our additional task set, MT25.

First, we select and implement the following multi-task RL
algorithms: PCGrad (Yu et al., 2020a), multi-task, multi-
head, soft actor-critic (MTMHSAC) (Yu et al., 2020b), Soft-
Modularization (SM) (Yang et al., 2020), Parameter Com-
positional (PaCo) (Sun et al., 2022), and Mixture of Orthog-
onal Experts (MOORE) (Hendawy et al., 2024).

In order to compare the statistical results of each set of
experiments we follow recommendations from Agarwal
et al. (2021), where we report results over 10 random seeds
and use interquartile mean (IQM) to compare results in-
stead of simple averaging. For each graph we plot the
IQM performance through training, while also including
the 95% confidence interval. Each method is evaluated for
50 evaluation episodes per task, once for each goal location.
Hyperparameters for each method are gathered from their
respective publications. We implement each method into
our open-source baselines code base using JAX (Bradbury
et al., 2018) 3.

3.1. Multi-task RL results

In this section we outline the MT10 and MT50 results across
both the V1 and V2 reward functions, while also corrob-
orating, and refuting, recent results in multi-task RL. In
Table 1 we report the performance of the methods that are
commonly incorrectly compared due to aforementioned ver-
sioning issues. The Pub columns indicate values gathered
directly from the publication of the method, while the other
columns are performance values that we gather using our
own implementations of each method.

In Figure 2 we report the IQM learning curves for MT10
and MT50, respectively, trained on each of the selected
multi-task RL methods: MTMHSAC, SM, MOORE, PaCo,
and PCGrad.

When examining the MT10 results, we find that algorithms
generally struggle with the V1 rewards on MT10. This
seems to indicate that the V1 rewards are more difficult to
optimize as the algorithms have lower performance when
compared with the V2 rewards. In the MT10 V2 setting,
our results indicate that the V2 reward function is some-
what easier to optimize as the performance of each tested

3https://github.com/rainx0r/metaworld-algorithms
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(a) (b)

Figure 1: (a) Per-timestep rewards for the pick-place task from Meta-World. (Left) The Y-axis shows the scale of the V1
rewards, while the right Y-axis shows the scale of the V2 rewards. The right plot shows the Q-Values per-update batch
through training on MT10 (log scale). (b) Q-Function loss and mean success rate of the MTMHSAC on MT10. The left
y-axis is the Q-Function loss (log scale), while the right y-axis is the mean success rate. Both blue plots are the V1 rewards,
while both red plots are the V2 rewards. Plots with circular points are Q-Function loss, while plots with X points are success
rates (with 95% CIs).

algorithm increases compared to the V1 results. Here we
find that PCGrad and SM are again the two top performing
methods.

Moving on to the MT50 setting, we observe much the same:
final performance on the V1 rewards is much lower than
on the V2 ones, even more so than on MT10, indicating
that the optimization difficulties not only continue as the
number of tasks grows but even become exacerbated with
more tasks. Therefore, perhaps owing to their respective
methods of alleviating said issue, SM and PCGrad continue
to outperform the rest of the baselines, though much less so
on the V2 rewards, where MOORE is on par with SM.

Through our empirical results and analysis, we find that
the implementation of the V2 reward functions does follow
the design principle that was intended. In Figure 1(b) we
find that when training the MTMHSAC agent on the V1
& V2 rewards, that the Q-Function loss of the V2 trained
MTMHSAC agent is much lower than the V1 MTMHSAC,
and the V2 rewards lead to a higher success rate overall for
the agent. In fact, we find that all tested algorithms perform
better on the V2 rewards than the V1 rewards. This seems to
show that in multi-task RL the capability of the Q-Function
to model state-action values is tied to the overall success
rate of the agent, which agrees with recent work (McLean
et al., 2025).

3.2. Results over various task set sizes

Finally, in Figure 3, we explore the effects of introduc-
ing an additional task set to the Meta-World benchmark.
We discuss the construction of MT25 in Appendix B. The

introduction of MT25 and customizable task sets offers sig-
nificant practical advantages for researchers. Conducting
experiments on MT50 can be computationally expensive,
where MT25 provides a middle ground that reduces com-
putational costs by approximately 50% compared to MT50
while still offering more robust insights than the smaller
MT10 benchmark. Our own experiments had walltimes of:
MT10 ∼ 6 hours, MT25 ∼ 12 hours, and MT50 ∼ 25 hours
on an AMD Epyc 7402 24-Core Processor with an NVIDIA
A100 PCI GPU. This efficiency allows researchers to con-
duct preliminary experiments and algorithm comparisons
more rapidly, reserving full MT50 evaluations for finalized
methods.

4. Overall Benchmark Improvements
Through this update process, we have made several impor-
tant updates and upgrades to Meta-World. The following
sections highlights what we deem to be the most important
ones.

4.1. Gymnasium Integration

By aligning Meta-World with the Gymnasium standard
rather than maintaining its custom environment implemen-
tation, we enable researchers to leverage the full ecosys-
tem of Gymnasium tools and infrastructure. This integra-
tion is particularly valuable for performance optimization
through Gymnasium’s vectorized environment capabilities.
The AsyncVectorEnv wrapper, for example, explicitly adds
support for parallel environment stepping across multiple
CPU cores, increasing throughput for multi-task experi-
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(a) (b)

Figure 2: Results on (a) MT10, and (b) MT50

ments that require interaction with numerous environments
simultaneously.

Beyond performance benefits, this standardization grants
immediate access to Gymnasium’s extensive library of wrap-
pers for observation processing, reward shaping, and moni-
toring - eliminating the need for custom implementations of
these common functionalities. Furthermore, this alignment
reduces the learning curve for new users who are already
familiar with the Gymnasium API, allowing researchers to
focus on algorithm development rather than environment
interfacing details. This integration represents not just a
technical improvement but a significant step toward broader
accessibility and standardization in reinforcement learning
research.

4.2. Quality of Life Improvements

The streamlined benchmark creation process significantly
reduces the barrier to entry for new users. Previously, envi-
ronment instantiation required detailed knowledge of Meta-
World’s internal architecture and multiple configuration
steps. With the new gym.make interface, users can create
environments using a single, intuitive command, following
the familiar Gymnasium paradigm. This simplification not
only saves development time but also reduces the likelihood
of configuration errors. In Figure 8 we show how we have
simplified the environment creation process.

4.3. Full Reproducibility of Past Results

Maintaining backward compatibility while introducing these
improvements ensures that researchers can reproduce and
build upon previous Meta-World results. We have care-
fully preserved the core functionality and task definitions
from earlier versions while adding new capabilities. This
approach allows researchers to verify their implementations

against established benchmarks and directly compare their
results with previous work. The updated code base includes
comprehensive documentation of any minor variations in
task definitions or reward structures, ensuring transparency
in how modern implementations relate to historical results.

These improvements collectively modernize Meta-World
while preserving its value as a research benchmark. The
combination of standardized interfaces, improved usability,
and maintained reproducibility positions Meta-World as an
even more valuable tool for reinforcement learning research.

5. Conclusion
In this work we highlighted a discrepancy in the multi-
task literature due to issues with the software versioning of
the Meta-World benchmark. Through empirical evaluation,
we demonstrated that inconsistent reward functions led to
incorrect conclusions about algorithm performance, with
multi-task RL methods showing significant sensitivity to
reward scaling differences.

This work highlights the need for explicit versioning of
software benchmarks that researchers should report in their
works. Had this versioning been in place throughout the
history of Meta-World, the discrepancies between results
likely would not have happened. In addition to software
versioning, we have also highlighted the need for better
practices when making large changes to an existing bench-
mark that may affect results. Lastly, we find that simply
reporting results from a previous work, rather than running
the method (through one’s own implementation, or open
sourced code), likely also contributed to these issues with
Meta-World. Thus, we believe that users should be run-
ning their own baselines rather than copying numbers from
previous works.
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Due to the issues that we have highlighted in this work,
we argue that benchmark development should prioritize
transparent versioning and explicit documentation of de-
sign decisions that affect performance. Beyond addressing
versioning issues, next-generation multi-task benchmarks
should explore greater task diversity, compositional com-
plexity, and cross-embodiment transfer challenges to better
differentiate algorithmic advances. By building standard-
ized evaluation protocols with these principles in mind, the
community can ensure that reported improvements reflect
genuine algorithmic progress rather than artifacts of imple-
mentation differences or benchmark design variations.
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Figure 3: Effects of various task set sizes on the performance of the MTMHSAC agent.

A. Meta-World
Meta-World is a collection of robotic manipulation tasks with a shared observation & action space designed to learn
multi-task or meta-RL policies on a collection of tasks. In previous works, such as Yang et al. (2020), there is some
discussion of ’fixed’ and ’conditioned’ versions of Meta-World. This distinction does not exist in the current version of
Meta-World, though it may have in earlier versions of Meta-World.

A.1. Additional Quality of Life Improvements

A.1.1. QUALITY OF LIFE IMPROVEMENTS

Figure 8 shows the new streamlined benchmark creation process which significantly reduces the barrier to entry for new
users. Previously, environment instantiation required detailed knowledge of Meta-World’s internal architecture and multiple
configuration steps. With the new gym.make interface, users can create environments using a single, intuitive command,
following the familiar Gymnasium paradigm.

A.1.2. FULL REPRODUCIBILITY OF PAST RESULTS

Maintaining backward compatibility while introducing these improvements ensures that researchers can reproduce and build
upon previous Meta-World results. We have carefully preserved the core functionality and task definitions from earlier
versions while adding new capabilities. This approach allows researchers to verify their implementations against established
benchmarks and directly compare their results with previous work.

7



Meta-World+: An Improved, Standardized, RL Benchmark

Figure 4: Tasks available within Meta-World. Image from Yu et al. (2021).

A.2. Tasks

A.3. Reward function

For each of the 50 available tasks in Meta-World, there are 2 dense reward functions. The first reward function, V1, was
used to produce the results in (cite CoRL paper). The second reward function, V2, was used to produce the results in (cite
Meta-World arxiv paper). We believe that by exposing both the V1 and V2 reward functions to the user, that users can more
accurately compare the results of their algorithms to other published results. This would also allow for users to evaluate
their algorithms on variations of Meta-World benchmarks that may show how well their methods work in various settings.

A.4. Observation & Action Spaces

The observation space and action spaces are inherited from the Gymnasium standard for continuous spaces. The action
space is a 4-tuple where the first three elements of the 4-tuple are the desired end-effector displacement, and the last element
is the position of the gripper fingers.

The observation space is designed to be shared across all 50 available tasks in Meta-World. Thus, they must contain
information for all of the different task scenarios. In order to be used across all tasks, each observation in Meta-World is
39-dimensional. Positions (zero indexed, inclusive) in the observation represent the following attributes:

• [0 : 2]: the XYZ coordinates of the end-effector

• [3]: a scalar value that represents how open/closed the gripper is

• [4 : 6]: the XYZ coordinates of the first object

• [7 : 10]: the quaternion describing the spatial orientations and rotations of object #1

• [11 : 13]: the XYZ coordinates of the second object

• [14 : 17]: the quaternion describing the spatial orientations and rotations of object #2

Both of the objects XYZ coordinates and quaternions can exist (i.e. in the coffee-push task), or if only one object exists
the second object XYZ coordinates and quaternion are zeroed out. List A.4 only outlines an observation of size 18. The
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observation at time t is stacked with the observation from time t− 1, and the XYZ coordinates of the goal, to complete the
39-dimension observation vector. Meta-World is thus a goal-conditioned task. In multi-task reinforcement learning the goal
is visible to the agent, while in meta-reinforcement learning the goal is zeroed out.

A.5. Tasks & Task-Sets

import gymnasium as gym
import metaworld
# this registers the Meta-World environments with Gymnasium

# create a MT1 environment object
envs = gym.make(’Meta-World/MT1’, env_name=’reach-v3’, seed=42)

# create a MT10 environment object
envs = gym.make(’Meta-World/MT10’, vector_strategy=’sync’, seed=42)

# create a MT50 environment object
envs = gym.make(’Meta-World/MT50’, vector_strategy=’sync’, seed=42)

# create a custom benchmark environment object
envs = gym.make(’Meta-World/MT-custom’, env_names=[’env1-v3’, ’env2-v3’, ..., ’envN-v3’],

vector_strategy=’sync’, seed=42)

Figure 5: Multi-task environment creation examples. Note that multi-task algorithms are evaluated on the training
environments.

import gymnasium as gym
import metaworld
# this registers the Meta-World environments with Gymnasium

# create ML1 environment objects
train_envs = gym.make(’Meta-World/ML-1-train’, env_name=’reach-v3’, seed=42)
test_envs = gym.make(’Meta-World/ML-1-test’, env_name=’reach-v3’, seed=42)

# create ML10 environment objects
train_envs = gym.make(’Meta-World/ML10-train’, vector_strategy=’sync’, seed=42)
test_envs = gym.make(’Meta-World/ML10-test’, vector_strategy=’sync’, seed=42)

# create a ML45 environment object
train_envs = gym.make(’Meta-World/ML45-train’, vector_strategy=’sync’, seed=42)
test_envs = gym.make(’Meta-World/ML45-test’, vector_strategy=’sync’, seed=42)

# create a custom ML benchmark environment object
train_envs = gym.make(’Meta-World/ML-custom’, env_names=[’env1-v3’, ’env2-v3’, ..., ’envN-

v3’], vector_strategy=’sync’, seed=42)
test_envs = gym.make(’Meta-World/ML-custom’, env_names=[’env1-v3’, ’env2-v3’, ..., ’envN-

v3’], vector_strategy=’sync’, seed=42)

Figure 6: Meta-learning environment creation examples. Note that meta-learning tasks have a distinction between training
and testing environments.

B. MT25 and ML25 Construction
To create a new task set, we used the results from training on MT50. To create the training task set of 25 tasks, we select 12
tasks that are solved in MT50 and 13 tasks that are not solved.

9



Meta-World+: An Improved, Standardized, RL Benchmark

import gymnasium as gym
import metaworld
# this registers the Meta-World environments with Gymnasium
from metaworld.evaluation import evaluation, metalearning_evaluation, Agent,

MetaLearningAgent

# Multi-task
# Explicitly subclassing is optional but recommended
class MyAgent(Agent):

def eval_action(self, observations):
... # agent action selection logic

agent = MyAgent()
envs = gym.make(’Meta-World/MT10’, vector_strategy=’sync’, seed=42)
mean_success_rate, mean_returns, success_rate_per_task = evaluation(agent, envs)

# Meta-Learning
# Explicitly subclassing is optional but recommended
class MyMetaLearningAgent(MetaLearningAgent):

def eval_action(self, observations):
# agent action selection logic
...

def adapt_action(self, observations):
# agent action selection logic
...
# this can also return values needed for adaptation like logprobs

def adapt(self, rollouts) -> None:
# Adaptation logic here, this should mutate the agent object itself
...

agent = MyMetaLearningAgent()
test_envs = gym.make(’Meta-World/ML10-test’, vector_strategy=’sync’, seed=42)
mean_success_rate, mean_returns, success_rate_per_task = metalearning_evaluation(agent,

test_envs)

Figure 7: Sample code for evaluating agents on Meta-World.

Algorithm Pub MT10 MT10 V1 MT10 V2 Pub MT50 MT50 V1 MT50 V2
SM 71.8 71.4 84.9 61.0 60.6 65.8

PaCo 85.4 26.2 73.6 57.3 18.6 58.4
MOORE 88.7 61.4 83.2 72.9 61.2 65.3

Table 1: Comparing results from a recent multi-task RL publication (Hendawy et al., 2024), to the results we empirically
validate across the V1 & V2 reward functions. Pub MT10 and Pub MT50 are from Hendawy et al. (2024), while the V1 and
V2 columns are of our own implementations. Bolded results indicate the reward function that was used to produce the result
for that specific method.
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Figure 8: (Left) Old environment creation process, (Right) New environment creation process.
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