
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNLEASHING GRAPH TRANSFORMERS
WITH GREEN AND MARTIN KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers (GTs) are rapidly emerging as superior models, surpassing
traditional message-passing neural networks in graph-level tasks. For optimal
performance, it is essential to design GT architectures that embed graph induc-
tive biases and utilize global attention mechanisms through effective structural
encodings (SEs). In this work, we introduce novel SEs derived from a rigorous
theoretical analysis of random walks (RWs), specifically leveraging the Green
and Martin kernels. The Green and Martin kernels are mathematical tools used to
observe the long-term behavior of RWs on graphs. By integrating these kernels into
the encoding process, we enhance their capability to accurately represent complex
graph structures. Our empirical evaluations demonstrate that these approaches en-
able GTs to achieve state-of-the-art performance on 7 out of 8 benchmark datasets.
These include molecular datasets characterized by intricate, non-aperiodic sub-
structures such as benzene rings, and directed acyclic graphs common in the circuit
domain. We attribute these performance improvement to the effective capture of the
characteristics of non-aperiodic substructures and directed acyclic graphs by our
extending encodings. The results not only validate the effectiveness of integrating
the Green and Martin kernels into RW-based encodings but also underscore their
potential to substantially enhance the learning capabilities of GTs across diverse
applications.

1 INTRODUCTION

Graph Transformers (GTs) (1; 2; 3; 4; 5; 6) have been proposed as a superior alternative to conven-
tional Message Passing Neural Networks (MPNNs) (7), mitigating MPNNs’ well-known issues such
as over-smoothing (8; 9), over-squashing (10; 11), under-reaching (12; 13), and limited expressive
power (14; 15). For GTs to perform effectively, it is essential to incorporate inductive biases (16)
specific to graph data. Additionally, global attention of GTs requires structural encodings (SEs) that
enable precise differentiation of nodes within the graph and its substructures (17). Recent model,
GRIT (6), has shown state-of-the-art (SOTA) performance for various benchmarks by implicitly
incorporating the graph inductive bias from message-passing and the global attention advantages of
Transformer (18) by using Relative Random Walk Probabilities (RRWP) as the SE.

Random walks (RWs) have been extensively studied as a means of exploring the structure of graphs.
Several results (19; 20; 21) have demonstrated that the long-term behavior of a RW encapsulates
the topological information of the graph. There are two mathematical quantities that capture this
long-term behavior, providing valuable insights into the graph’s characteristics. The Green kernel
is classically defined as a “pseudo-inverse operator” used to find solutions to equations (22). Anal-
ogously, the Green kernel on a graph can be defined by the Moore-Penrose Inverse of the graph
Laplacian matrix in (23; 24), in which the Green kernel is utilized for calculating various probabilistic
quantities. In the context of RWs on graphs, it represents the expected number of visits to one node
from another (25). The Martin kernel, on the other hand, is an important function in probability
theory and potential theory, particularly within the framework of Martin boundary theory (26). By
utilizing Martin kernel, one can construct the harmonic potential function, which is essential tool for
analyzing behavior of the Brownian motion (27). The Martin kernel is defined on graphs analogously
and used for constructing the harmonic potential function (20). Moreover, it is equal to the probability
that a RW starting from one node will reach another node within a finite time (21).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this study, we introduce two extended concepts from the theory of RWs—the Green and Martin
kernels (21; 25; 28)—as new SEs. To the best of our knowledge, our paper is the first to introduce
these concepts to design SEs. We apply these new SEs to the recently developed GRIT model (6)
and demonstrate that they outperform existing methods on various benchmark datasets, including the
molecular and circuit domains. Through this targeted innovation, we present new SEs that are not
only specialized for non-aperiodic substructures and DAGs, but also enhanced performance across
diverse benchmarks.

In summary, our contributions are as follows. (i) We propose new SEs, Green Kernel Structural
Encoding (GKSE) and Martin Kernel Structural Encoding (MKSE), based on the Green and Martin
kernels, which extend the RWs. (ii) We integrate GKSE and MKSE into the GRIT, demonstrating that
GKSE and MKSE surpass SOTA performance across various graph benchmarks, including those with
small, medium, large, and long-range interactions. (iii) In molecular graphs containing numerous
non-aperiodic substructures (e.g., benzene rings), our methods demonstrate efficient learning and
strong performance on ZINC (29) and PCQM4Mv2 (30). (iv) We demonstrate that GKSE and MKSE
efficiently learn circuit domain data, which is represented as a DAG, and provide several baseline
benchmark results on Open Circuit Benchmark (OCB), the first graph benchmark dataset in the
circuit domain.

2 RELATED WORK

Graph Transformers. Graph Neural Networks (GNNs) have advanced considerably, evolving
from MPNNs (7) to sophisticated GTs. GTs capitalize on Transformers’ flexibility and scalability,
incorporating SEs to enhance learning from graph data. Notably, NAGphormer (31), AGT (32) and
TokenGT (33) leverage Laplacian eigenvectors as SEs, demonstrating strong performance in node
classification tasks by effectively capturing the global structure of graphs. In addition, the magnetic
Laplacian have been explored for SEs, emphasizing the importance of directed graphs (34).

GT models have also evolved to incorporate edge attributes, improving their abbility to capture the
structural information present in graphs. The Graphormer (1) and EGT (2) enhance the self-attention
mechanism by integrating edge attributes, which improve the interaction between node attributes
during the learning process. Moreover, several models have introduced relative SEs to handle edge
attributes more effectively. GraphGPS (5) applies relative SEs to facilitate interaction between
local message-passing and global self-attention mechanism. In particular, the GRIT (6) employs a
multimodal approach to incorporating both node and edge attributes into the self-attention mechanism.
It achieves high performance by utilizing RRWP, an SE based on RWs, effectively capturing the
structural properties of graphs. For comprehensive insights into GTs, readers can refer to detailed
surveys that cover recent methodologies, challenges, and future research opportunities (35; 36).

Structural Encodings for Graphs. GTs encounter notable challenges in encoding structural informa-
tion, which are crucial for distinguishing non-isomorphic structures and utilizing graph symmetries.
In this paper, we consider and utilize SE as node and edge representations that are invariant to graph
isomorphisms, in order to better capture the structural information of the graph (37).

For SEs, the use of graph Laplacians in graph analysis has been widely explored. One study intro-
duced globally consistent anisotropic kernels using Laplacian eigenvectors to incorporate directional
information in GNNs (38). Additionally, other research has generalized graph Laplacians, demon-
strating their effectiveness in capturing the geometric structure of graphs (17; 39). Researchers have
tackled the constraints of spectral methods through the development of SignNet and BasisNet, which
maintain invariance to sign flips and the basis symmetries of eigenvectors (40). Additionally, another
study leveraged the eigenvectors of the Magnetic Laplacian to integrate directional information
into SEs (34; 41). Furthermore, an alternative approach utilized the Hodge 1-Laplacian spectrum
for creating edge-level SEs (42). On the other hand, the Random Walk-based Structural Encoding
(RWSE) has been proposed (43), while direction- and structure-aware SEs for directed graphs based
on directional RWs have been developed (34). In addition, the RRWPs were proposed using RW
probabilities and learned relative SEs (6). This was extended by applying edge-level RWs on a
simplicial complex for edge SEs in graphs (42).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 MATHEMATICAL BACKGROUND

The Green and Martin kernels are mathematical tools that capture the long-term behavior of RWs on
graphs. Specifically, both kernels are functions of node pairs, and from this perspective, we utilize
them as absolute or relative SEs for GNNs or GTs. When used as SEs, these kernels leverage the
RW information that inherently reflects the topological properties of the graph, enabling the model
to better capture structural patterns. We begin by describing RWs on grpahs as a stochastic process,
focusing on the Green and Martin kernels.

3.1 RANDOM WALK ON GRAPHS AS A STOCHASTIC PROCESS

Let G = (V, E) be a graph, and let P : V × V → R represent the transition probability kernel of G,
that is, P(x, y) denotes the probability that a RW starting at node x moves to node y in the next step.
We define P(i) : V × V → R for i ∈ N, by performing the convolution of P with itself as follows:
for x, y ∈ V ,

P(i)(x, y) =

∫
V
P(i−1)(x, z)P(z, y) dz. (1)

We note that if G is a finite graph with n nodes, P can be represented as an n× n matrix defined by
P = D−1A, where D is the diagonal matrix with the degrees of the nodes as its diagonal entries,
and A is the adjacency matrix of the graph G. In this case, P(i) is the matrix Pi, which is obtained
by multiplying P by itself i times.

We define the sequence spaces Ω(x) ⊂ VN∪{0} for x ∈ V as follows:

Ω(x) =
{
ω = (x, ω1, ω2, . . .) ∈ VN∪{0} | (x, ω1), (ωi, ωi+1) ∈ E , ∀i ∈ N

}
, (2)

that is, the space of all forward trajectories derived from the RW on G starting from the node x. We
simply denote by Ω = ∪x∈VΩ(x), which is the space of all forward trajectories.

We define the probability measure Pω∈Ω(x) on Ω(x) such that, for u1, . . . , uk ∈ V ,

Pω∈Ω(x)({ω ∈ Ω(x) | ωi = ui, ∀i = 1, . . . , k}) := P(x, u1) ·
k−1∏
i=1

P(ui, ui+1), (3)

which means the probability that a RW starting at node x passes through u1, . . . , uk in that specific
order.

Lastly, we define the set of random variables X = {Xi : Ω → V}i∈N∪{0} by Xi(ω) = ωi for all
i ∈ N ∪ {0} and ω ∈ Ω. We intentionally omit further mathematical details, such as σ-algebra and
precise construction of measure, for the sake of simplicity. For a more detailed explanation, please
refer to (44).

The triple (Ω, (Pω∈Ω(x))x∈V , X) uniquely determines the RW on a graph. For example, for x, y ∈ V
and i ∈ N ∪ {0}, the probability that a RW starting from x will visit y after i step is Pω∈Ω(x)[Xi(ω) =
y]. We note that the transition probability matrix P also uniquely determines the RW. Observe that
the kernel P(i) represents the probability moving from one node to another node in i steps. In other
word, the value P(i)(x, y) is equal to Pω∈Ω(x)[Xi(ω) = y].

3.2 GREEN KERNEL AND MARTIN KERNEL ON GRAPHS

In this subsection, we introduce the Green kernel and Martin kernel, which are essential tools in
understanding RWs on graphs. The Green kernel represents the expected number of visits from one
node to another, while the Martin kernel describes the probability of reaching a specific node from
another within a finite number of steps. One can formulate both kernels as follows: for x, y ∈ V ,

(Green kernel) G(x, y) = Eω∈Ω(x)[L
(∞)
y (ω)]; (4)

(Martin kernel) M(x, y) = Pω∈Ω(x)[τy(ω) < ∞], (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where L
(k)
y : Ω → N ∪ {0} is the counting function and τy : Ω → N ∪ {0} is the first hitting time

map, which are defined as follows: for ω ∈ Ω,

L(k)
y (ω) =

k∑
i=0

1{Xi(ω)=y}; (6)

τy(ω) =min{i ∈ N ∪ {0} | Xi(ω) = x}. (7)

Both kernels are deeply connected to the underlying structure of the graph, as they reflect important
topological properties of the graph (21; 25; 20). However, it is important to note that the Green and
Martin kernels are primarily meaningful in transient graphs, where RWs do not return to the starting
node infinitely often. In fact, for a recurrent graph, which is a non-transient graph, the value of Green
kernel is always +∞ and the value of Martin kernel remains constantly 1.

3.3 ADAPTING GREEN AND MARTIN KERNELS FOR RECURRENT GRAPHS

Most graph data in practical applications tends to be recurrent rather than transient, which makes the
computation of the traditional Green and Martin kernels less meaningful. In finite graphs, RWs are
recurrent unless there is a sink region that terminates the walk (i.e., a killed process). This issue arises
because the traditional Green and Martin kernels capture the long-term behavior of RWs over infinite
time, where RWs repeatedly revisit nodes. To address this limitation, we developed new versions
of the Green and Martin kernels by restricting the RW to a finite number of steps. This approach
allows us to create new kernels for our proposed SEs, which reflect meaningful RW properties even
in recurrent graphs by capturing the behavior over a finite horizon.

One further issue is that, for all x ∈ V , the value of the Martin kernel at (x, x) is always 1 because the
RW immediately revisits itself at step 0. As a result, even when using the finite-step Martin kernel,
the absolute SE consists of constant 1s. To resolve this, we replace the first hitting time map τx with
the first return time map τ+x : Ω → N ∪ {0}, which is defined as

τ+x (ω) := min{i ∈ N | Xi(ω) = x}, ∀ω ∈ Ω. (8)

By modifying the definition of the Martin kernel to use the first return time map, the absolute
SE reflects the topology of the graph. More specifically, it becomes the probability that a RW
starting from a node returns to itself. This adjustment ensures that the SE reflects more meaningful
information about the graph structure. Importantly, the relative SE remains unaffected by this change.

4 METHODOLOGY: INTRODUCING GKSE AND MKSE

In this section, we introduce our proposed Green Kernel Structural Encoding (GKSE) and Martin
Kernel Structural Encoding (MKSE), which are designed to reflect the theoretical significance of the
Green and Martin kernels discussed in the previous section. Moreover, these encodings incorporate
all the considerations discussed in section 3.3, leading to the development of new mathematical
constructs that effectively capture meaningful structural properties of graphs.

4.1 GREEN AND MARTIN KERNEL STRUCTURAL ENCODINGS

Applying observations in previous section 3.3, we now introduce our GKSE and MKSE. First, we
define the finite-step Green kernel and finite-step Martin kernel to capture meaningful RW behavior
within a limited number of steps, whose meanings are as follows: for x, y ∈ V and k ∈ N ∪ {0},

(finite-step Green kernel) Eω∈Ω(x)[L
(k)
y (ω)]; (9)

(finite-step Martin kernel) Pω∈Ω(x)[τ
+
y (ω) ≤ k]. (10)

Mathematically, the finite-step Green kernel represents the expected number of visits from one node
to another within k steps, while the finite-step Martin kernel approximates the probability of reaching
a specific node from another within k steps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Based on these definitions, we construct the GKSE : V × V → RK and MKSE : V × V → RK with
the dimension K of SE as follows: for x, y ∈ V ,

GKSE (x, y) = [G(0)(x, y),G(1)(x, y), . . . ,G(K−1)(x, y)]; (11)

MKSE (x, y) = [M(0)(x, y),M(1)(x, y), . . . ,M(K−1)(x, y)], (12)

where G(k) and M(k) are finite-step Green and Martin kernels (eq. (9), eq. (10)), respectively,
whose actual formulations are described in the section 4.2. These new encodings provide significant
structural information while overcoming the limitations of traditional kernels, making them applicable
to recurrent graphs. It can be easily checked that these SEs are invariant under graph isomorphisms.

For application to GNN models, the GKSE and MKSE are used as relative SEs in attention mecha-
nisms or message-passing operations. Furthermore, their diagonal components are used as absolute
SEs by concatenating or summing them with node features. For more details, please refer to (45).

4.2 COMPUTATION OF FINITE-STEP GREEN AND MARTIN KERNELS

In this subsection, we introduce the practical method for calculating the finite-step Green and Martin
kernels. While the theoretical definition of the Green and Martin kernels may seem complex, its
actual computation can be efficiently performed using a recursive approach. In fact, its computation
speed is comparable to that of RRWP, with the detailed computation times provided in Appendix B.2.

Finite-step Green Kernel. The finite-step Green kernel can be calculated using the following
recurrence relation: for k ∈ N ∪ {0},{

G(0) = I;

G(k+1) = I+P ⋆G(k),
(13)

where I(x, y) is 1 if x = y and 0 otherwise. Here, ⋆ denotes convolution of kernels, which, in the
case of a finite graph, corresponds to matrix multiplication.

The following theorem shows that the theoretical definition of the finite-step Green kernel (eq. (9))
and its practical computation (eq. (13)) are consistent. The proof is provided in Appendix C.2.
Theorem 1. For k ∈ N ∪ {0} and x, y ∈ V , let G(k) be the finite-step Green kernel as computed by
eq. (13). Then, the following equality holds:

G(k)(x, y) = Eω∈Ω(x)[L
(k)
y (ω)], (14)

where Eω∈Ω(x)[·] means the expectation taken with respect to the probability Pω∈Ω(x).

Finite-step Martin Kernel. Before introducing the finite-step Martin kernel, we first observe that
the traditional Martin kernel M on graphs is defined by M(x, y) := G(x, y)/G(y, y) for x, y ∈ V .
Based on this definition, the finite-step Martin kernel (with the first hitting time map) M̃(k) can be
computed using the following formula: for x, y ∈ V and k ∈ N ∪ {0},

M̃(k)(x, y) =
G(k)(x, y)

G(k)(y, y)
(15)

To apply the first return time map in the finite-step Martin kernel M(k), we use the following
modification: for x, y ∈ V and k ∈ N ∪ {0},

M(k)(x, y) =

{
(P ⋆ M̃(k−1))(x, y) if x = y;

M̃(k)(x, y) if x ̸= y.
(16)

Although the finite-step Martin kernel computed using eq. (16) may not exactly match the eq. (10), it
provides a close approximation. The folowing theorem ensures that this approximation is accurate.
The proof is provided in Appendix C.4.
Theorem 2. For k ∈ N ∪ {0} and x, y ∈ V , let M(k) be the finite-step Martin kernel as computed
by eq. (16). Then, the following inequalities hold:

1. 0 ≤ Pω∈Ω(x)[τ
+
y (ω) ≤ k]−M(k)(x, y) ≤ H(k)(x, y)

G(k−δ(x,y))(y, y)
; (17)

2.
1

G(k−δ(x,y))(y, y)
≤ M(k)(x, y)

Pω∈Ω(x)[τ
+
y (ω) ≤ k]

≤ 1, (18)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where H(k)(x, y) = Eω∈Ω(x)[τ
+
y (ω) ; τ+y (ω) ≤ k] = Eω∈Ω(x)[1{τ+

y (ω)≤k} τ
+
y (ω)] is the k-step

hitting time, meaning the expectation of the first hitting time within k-steps and δ is the Dirac function
given by δ(x, y) = 1 if x = y and otherwise 0.

In the above theorem, eq. (18) ensures the approximation when k is small, while eq. (17) guarantees
the approximation when k is large. In fact, as k becomes large, G(k)(y, y) increases sublinearly,
and for finite graphs, G(k)(x, y) converges to a specific constant. Consequently, the lower bound in
eq. (18) is close to 1 when k is small, and the upper bound in eq. (17) converges to 0 as k becomes
large.

4.3 EXPRESSIVENESS OF GKSE AND MKSE

As we conclude this section, we focus on the expressiveness of the newly proposed GKSE and
MKSE. We begin by clarifying the concept of expressiveness comparison between two SEs. We
say that SE1 is more expressive than SE2 if there exists continuous function that, when applied to
SE1, can produce SE2. The following theorem compares GKSE and MKSE with other RW-based SE,
specifically RRWP.
Theorem 3. The following two statements hold:

1. The expressiveness of GKSE is equivalent to that of RRWP.

2. MKSE possess a unique expressiveness independent of RRWP.

We prove the theorem in generalized RW setting, as stated in Appendix D.2. Additionally, We
present further results on expressiveness in Appendix D.3 with the corresponding proofs provided in
Appendix D.4.

Next, we compare GKSE and MKSE with other SE when they combined with the Generalized
Distance Weisfeiler-Lehman test (GD-WL), which is a variant of Weisfeiler-Lehman test that uses a
distance between nodes to update node colors as follows: for x ∈ V ,

χt(x) = hash({{(d(x, y), χt−1(y)) : y ∈ V}}). (19)

The distance in GD-WL can be chosen from any graph kernel, such as the shortest path distance
(SPD). By utilizing GKSE and MKSE as the distance, we obtain the following result. The proof is
provided in Appendix D.4.
Theorem 4. GD-WL with GKSE or MKSE is strictly stronger than GD-WL with SPD.

5 EXPERIMENTAL RESULTS

5.1 BENCHMARKING OF GKSE AND MKSE

We evaluate GKSE and MKSE on a comprehensive suite of graph-level task benchmarks, encom-
passing three datasets from the Benchmarking GNNs (29) and two datasets from the Long-Range
Graph Benchmark (LRGB) (46). In addition to these, we conduct experiments on the larger dataset
PCQM4Mv2 from the Open Graph Benchmark - Large Scale Challenge (OGB-LSC) (30) to further
validate the scalability and effectiveness of our approaches. Furthermore, we evaluate our methods
on the Open Circuit Benchmark (OCB) (47), the first benchmark specifically designed for the cir-
cuit domain. Detailed descriptions of the experimental setup and configurations can be found in
Appendix A.

Benchmarking GNNs (29). We initially test our methods on three graph-level task benchmark
datasets from the BenchmarkingGNN (29): ZINC, MNIST, and CIFAR10. We primarily compare our
methods against the SOTA GT model, GRIT (6), and various baselines described in Appendix A.2.
To ensure a fair comparison with prior studies, we adopted experimental settings similar to those in
the GraphGPS (5) and GRIT (6) papers, maintaining parameter limits of approximately 500K for
ZINC and approximately 100K for MNIST and CIFAR10. Detailed hyperparameter configurations
are provided in the Table 6. The experimental results are summarized in Table 1. In our experiments,
GRIT+GKSE achieved SOTA performances on MNIST, and the second-best performances on ZINC
and CIFAR10 when paired with GRIT+RRWP (6). GRIT+MKSE achieved SOTA performances on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Test performance on three graph-task benchmarks from the Benchmarking GNNs (29).
Shown is the mean ± s.d. of 4 runs with different random seeds. Highlighted are the top first, second,
and third results.

Model ZINC MNIST CIFAR10

MAE↓ Accuracy↑ Accuracy↑
GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381
GAT 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527
GraphSAGE 0.398 ± 0.002 97.312 ± 0.097 65.767 ± 0.308
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311
PNA 0.188 ± 0.004 97.940 ± 0.120 70.350 ± 0.630
CRaW1 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259

EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356
GRIT+RRWP 0.059 ± 0.001 98.108 ± 0.111 76.468 ± 0.881

GRIT+GKSE (ours) 0.058 ± 0.002 98.305 ± 0.125 76.718 ± 0.919
GRIT+MKSE (ours) 0.056 ± 0.021 98.235 ± 0.155 77.365 ± 0.640

ZINC and CIFAR10, and exhibited the second-best performance on MNIST. These findings indicate
that GKSE, and MKSE can surpass a range of existing methods on small to medium-sized datasets.

Long-Range Graph Benchmark (46). We further evaluate our methods on two peptide graph
benchmarks from the LRGB (46) suite: Peptides-func and Peptides-struct. These benchmarks were
selected to test the capability of our methods in capturing long-range dependencies within input graphs.
Our methods was compared against various baselines described in Appendix A.2. Our experimental
setup and hyperparameter choices closely followed those used in the baseline tested in GRIT (6), with
exceptions made for batch size and RW steps. Detailed hyperparameter configurations are provided
in the Table 7. The results, presented in the Table 2, indicate that on the Peptides-struct dataset,
an 11-task regression benchmark, GRIT+GKSE model achieved the best performance, followed
by MKSE and RRWP. On the Peptides-func dataset, a 10-label classification task, GRIT+GKSE
and GRIT+MKSE performed comparably to GRIT+RRWP. These findings demonstrate our SEs’
proficiency in learning long-range interactions. Notably, the superior performance of GKSE and
MKSE on the Peptides-struct dataset, which uses the same graph structures as Peptides-func, suggests
that our SEs are particularly effective in multi-task regression scenarios, outperforming GRIT+RRWP
despite its established efficacy in multi-label classification tasks.

PCQM4Mv2 from OGB-LSC (30). The PCQM4Mv2 dataset (30), one of the largest molecular
datasets available, serves as a critical benchmark for GTs. Our methods was compared against
various baselines described in Appendix A.2. Given the extensive size of the dataset, we followed the
setup of prior studies (5). Due to time constraints, we did not engage in hyperparameter exploration;
instead, we utilized the hyperparameter settings from GraphGPS (5). Detailed descriptions of the
experimental setup and hyperparameters can be found in Appendix A.1 and Table 7, respectively. We
carried out experiments with 4 random seeds to confirm our proposed SEs’ performance and found
that GRIT+GKSE achieved an MAE of 0.0837, which is much better than previsouly reported results,
as illustrated in the Table 3.

Open Circuit Benchmark (47). We conduct experiments using our methods on two datasets from
the OCB (47), specifically Ckt-Bench101 and Ckt-Bench301. These datasets represent the first
analog circuit benchmarks modeled as DAGs. In our evaluation, we compared our methods against
various baselines described in Appendix A.2. Detailed information on dataset preparation and the
experimental hyperparameters can be found in Appendix A.1 and Table 8, respectively. As shown in
the left-hand side of Table 4, the GT models outperformed the MPNNs, with GRIT+GKSE achieving
the best results and GRIT+MKSE achieving the second-best results or comparable with GRIT+RRWP.
These results suggest that GKSE and MKSE are highly effective on datasets modeled as DAGs,
further demonstrating their versatility and robustness in various graph structures.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Test performance on two benchmarks from the LRGB (46). Shown is the mean ± s.d. of 4
runs with different random seeds. Highlighted are the top first, second, and third results.

Model Peptides-func Peptides-struct
AP↑ MAE↓

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GatedGCN 0.5864 ± 0.0077 0.3420 ± 0.0013
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006
GatedGCN+EdgeRWSE 0.6002 ± 0.0048 0.2679 ± 0.0015
GatedGCN+Hodge1Lap 0.5926 ± 0.0059 0.2632 ± 0.0008

Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043
SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012
GPS 0.6535 ± 0.0041 0.2500 ± 0.0005
GPS+EdgeRWSE 0.6625 ± 0.0042 0.2501 ± 0.0012
GPS+Hodge1Lap 0.6584 ± 0.0033 0.2505 ± 0.0014
GRIT+RRWP 0.6988 ± 0.0082 0.2460 ± 0.0012

GRIT+GKSE (ours) 0.6976 ± 0.0097 0.2452 ± 0.0012
GRIT+MKSE (ours) 0.6784 ± 0.0057 0.2457 ± 0.0013

Table 3: Test performance on PCQM4Mv2 benchmark from the OGB-LSC (30). Shown is the result
of a single run, excluding experiments with GKSE and MKSE, which consists of 4 runs with different
random seeds. Highlighted are the top first, second, and third results.

Model MAE ↓ # Param
GCN 0.1379 2.0M
GCN-virtual 0.1153 4.9M
GIN 0.1195 3.8M
GIN-virtual 0.1083 6.7M

TokenGT (ORF) 0.0962 48.6M
TokenGT (Lap) 0.0910 48.5M
GRPE 0.0890 46.2M
EGT 0.0869 89.3M
Graphormer 0.0864 48.3M
Specformer-medium 0.0916 4.1M
GPS-small 0.0938 6.2M
GPS-medium 0.0858 19.4M
GRIT+RRWP 0.0859 16.6M

GRIT+GKSE (ours) 0.0837 ± 0.0002 11.8M
GRIT+MKSE (ours) 0.0839 ± 0.0002 11.8M

5.2 SENSITIVITY ANALYSIS

We conducted a sensitivity analysis on the parameter K for RRWP and GKSE using the Ckt-Bench101
dataset. The results, presented in the right-hand side of Table 4, provide insights into how varying
K impacts model performance. For this analysis, all other hyperparameters were held constant.
Notably, GKSE outperformed RRWP across most values of K, except for K = 15. Furthermore,
GKSE maintained the same MAE values at K = 18 (where RRWP performed best) even when
utilizing a shorter SE length of K = 6. Remarkably, at an extremely short K = 3, the performance
of GKSE remained comparable to that of GraphGPS, as indicated in the left-hand side of Table 4.
These findings suggest that GKSE are highly efficient in representing DAGs. The robustness of
their performance across different values of K indicates their capability to effectively capture graph
structures with reduced SE lengths, demonstrating their adaptability and efficiency in various graph
scenarios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: (Left) Test performance on two benchmarks from the OCB (47). Shown is the mean ± s.d.
of 4 runs with different random seeds. Highlighted are the top first, second, and third results. (Right)
Sensitivity Analysis of K steps of RRWP and GKSE on Ckt-Bench101 (47) dataset. Shown is the
mean ± s.d. of 4 runs with different random seeds. Highlighted indicate comparable values to the
GRIT+GKSE, GRIT+RRWP, and GPS+LapPE in the Ckt-Bench101 column of Left-hand side Table,
respectively.

Model Ckt-Bench101 Ckt-Bench301

MAE↓ MAE↓

GCN 0.0801 ± 0.0017 0.0584 ± 0.0006
GAT 0.0719 ± 0.0012 0.0583 ± 0.0016
GIN 0.0691 ± 0.0011 0.0528 ± 0.0004
GraphSAGE 0.0662 ± 0.0004 0.0545 ± 0.0005
GatedGCN 0.0668 ± 0.0006 0.0527 ± 0.0004

GPS+LapPE 0.0440 ± 0.0011 0.0199 ± 0.0004
GRIT+DAGPE 0.0444 ± 0.0011 0.0240 ± 0.0004
GRIT+RRWP 0.0418 ± 0.0021 0.0190 ± 0.0005

GRIT+GKSE (ours) 0.0395 ± 0.0033 0.0188 ± 0.0004
GRIT+MKSE (ours) 0.0409 ± 0.0016 0.0192 ± 0.0004

K GRIT+RRWP GRIT+GKSE

MAE↓ MAE↓

3 0.0443 ± 0.0009 0.0440 ± 0.0003
6 0.0425 ± 0.0010 0.0418 ± 0.0010
9 0.0434 ± 0.0008 0.0423 ± 0.0015
12 0.0435 ± 0.0008 0.0429 ± 0.0010
15 0.0427 ± 0.0003 0.0431 ± 0.0015
18 0.0418 ± 0.0021 0.0395 ± 0.0033
21 0.0440 ± 0.0004 0.0409 ± 0.0005
24 0.0430 ± 0.0022 0.0424 ± 0.0021
27 0.0426 ± 0.0012 0.0423 ± 0.0017
30 0.0433 ± 0.0016 0.0426 ± 0.0010

RR
W

P

k=1 k=2 k=3 k=4 k=5

GS
KE

M
KS

E

Figure 1: Visualization of RRWP, GKSE, and MKSE on a fluorescein molecule graph for k-steps
ranging from 1 to 5. In each graph, the thickness and color intensity of the edges represent the
magnitude of the corresponding SE values, with higher values indicated by thicker and darker edges.

5.3 ANALYSIS OF EXPERIMENTAL RESULTS

Our proposed SEs exhibited SOTA on 7 out of 8 benchmarks, with superior performance on regression
tasks compared to classification tasks. In particular, our proposed SEs outperformed on PCQM4Mv2
and Ckt-Bench101, which we attribute to the advantage of our proposed approaches in encapsulating
graph structural information more effectively than existing SEs in certain graphs. We have explored
which properties of our proposed SEs contirubte to the improvement in performance compared with
another RW-based SE, specifically RRWP. We investigated the unique characteristics of molecule
and circuit graphs and observed that GKSE and MKSE, compared to RRWP, represents these features
in fundamentally different ways.

First, the molecular graph dataset is characterized by a large number of substructures, such as
hexagonal benzene rings. In Figure 1, we visualize three SE values, RRWP, GKSE, and MKSE, on
the fluorescein molecule graph. For RRWP, the edges with higher RRWP values form hexagons when
k is odd, on the other side they form a star shape when k is even. This phenomenon arises because
the hexagonal subgraph is non-aperiodic. In fact, transition probabilities on non-aperiodic graphs
oscillate indefinitely. Mathematical details supporting this stability are provided in Appendix D.1. In

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

RR
W

P

k=1 k=2 k=3 k=4 k=5

GK
SE

Figure 2: Visualization of RRWP and GKSE on a OCB graph sample for k-steps ranging from 1
to 5. In each graph, the thickness and color intensity of the edges represent the magnitude of the
corresponding SE values, with higher values indicated by thicker and darker edges.

contrast, our proposed SEs provide more stable and consistent representations under non-aperiodic
structures, accurately reflecting the original graph structures, as illustrated in Figure 1 and Figure 3.
Based on our experimental results, we hypothesize that the stability of our proposed SEs in handling
non-aperiodic substructures contributes to their improved performance. However, as our experimental
results address only a limited set of cases, they do not serve as definitive evidence to confirm our
assumptions. Thus, further observations and theoretical investigations are necessary to substantiate
this hypothesis and gain deeper insights into the underlying mechanisms.

Second, our proposed SEs also demonstrate strong performance on datasets with DAG structures,
such as OCB, which is common in the circuit domain. In DAGs, RWs terminate after a finite number
of steps due to the inability to return to previously visited nodes, leading to sparse representations
when using RRWP–especially for values of K that are larger than diameter of the graph. This
sparsity can weaken the representational power of the graph structure. Indeed, in datasets where
graph samples have varying diameters, a fixed hyperparamter K may fit well for some samples but
result in overly sparse SEs for others with low diameters. Such imbalance can negatively affect the
overall learning performance. However, our proposed SEs maintain consistent representations even
for large K, making it suitable for capturing the structural information of DAGs, as shown in Figure 2.
This enhanced efficacy on directed graphs can be attributed to the intrinsic properties of the SEs.

Overall, we infer that our proposed SEs are particularly beneficial for regression tasks involving
non-aperiodic substructures or DAGs. The performance advantage of GKSE and MKSE can be
attributed to their ability to effectively capture intricate structural details in such graphs, thereby
enhancing the learning capabilities of GTs across diverse applications.

6 CONCLUSION

In this work, we introduced novel SEs, GKSE and MKSE, to expedite GTs by leveraging theoretical
insights into the Green and Martin kernels within graph data. These encodings provide a foundational
approach to extending RW-based methods, enhancing the expressiveness and efficiency of GTs. Our
proposed SEs demonstrated significant improvements across multiple benchmarks, outperforming
SOTA methods in 7 out of 8 tasks. These results confirm that our methods not only achieve
superior performance but also effectively represent both molecular and circuit data, aligning with
our theoretical analyses. The ability of GKSE and MKSE to capture unique structural features
across diverse graph domains suggests promising directions for future research. We plan to further
explore these capabilities to develop more expressive SEs with theoretically provable properties
and to design model architectures that fully leverage this enhanced expressiveness. By providing a
deeper understanding of the underlying kernels and a practical approach to improve GTs, this study
contributes to the advancement of graph representation learning. It paves the way for developing
more sophisticated and capable GT models in future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877–28888, 2021.

[2] Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-
attention as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 655–665, 2022.

[3] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469–3489.
PMLR, 2022.

[4] Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. arXiv preprint arXiv:2303.01028, 2023.

[5] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[6] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning, pages 23321–23337. PMLR, 2023.

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[8] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947, 2019.

[9] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing
in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

[10] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205, 2020.

[11] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
arXiv preprint arXiv:2111.14522, 2021.

[12] Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, and
Philip S Yu. Position-aware structure learning for graph topology-imbalance by relieving
under-reaching and over-squashing. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages 1848–1857, 2022.

[13] Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Conference on
Learning Representations (ICLR 2020), 2020.

[14] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[15] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[17] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[19] Russell Lyons. Equivalence of boundary measures on covering trees of finite graphs. Ergodic
Theory and Dynamical Systems, 14(3):575–597, 1994.

[20] Anne Broise-Alamichel, Jouni Parkkonen, and Frédéric Paulin. Equidistribution and counting
under equilibrium states in negative curvature and trees. Springer, 2019.

[21] Martin T Barlow. Random walks and heat kernels on graphs, volume 438. Cambridge University
Press, 2017.

[22] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

[23] Fan Chung and S-T Yau. Discrete green’s functions. Journal of Combinatorial Theory, Series
A, 91(1-2):191–214, 2000.

[24] Hao Xu and Shing-Tung Yau. Discrete green’s functions and random walks on graphs. Journal
of Combinatorial Theory, Series A, 120(2):483–499, 2013.

[25] Russell Lyons and Yuval Peres. Probability on trees and networks, volume 42. Cambridge
University Press, 2017.

[26] Masatsugu Tsuji. Potential theory in modern function theory. Maruzen, 1959.

[27] Frédéric Paulin, Mark Pollicott, and Barbara Schapira. Equilibrium states in negative curvature.
arXiv preprint arXiv:1211.6242, 2012.

[28] Wolfgang Woess. Random walks on infinite graphs and groups. Number 138. Cambridge
university press, 2000.

[29] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023.

[30] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-
lsc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430,
2021.

[31] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph
transformer for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022.

[32] Xiaojun Ma, Qin Chen, Yi Wu, Guojie Song, Liang Wang, and Bo Zheng. Rethinking structural
encodings: Adaptive graph transformer for node classification task. In Proceedings of the ACM
Web Conference 2023, pages 533–544, 2023.

[33] Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Se-
unghoon Hong. Pure transformers are powerful graph learners. Advances in Neural Information
Processing Systems, 35:14582–14595, 2022.

[34] Simon Geisler, Yujia Li, Daniel J Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and
Cosmin Paduraru. Transformers meet directed graphs. In International Conference on Machine
Learning, pages 11144–11172. PMLR, 2023.

[35] Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin
Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview
from architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

[36] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[37] Derek Lim, Joshua Robinson, Stefanie Jegelka, and Haggai Maron. Expressive sign equivariant
networks for spectral geometric learning. Advances in Neural Information Processing Systems,
36, 2024.

[38] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and
Pietro Liò. Directional graph networks. In International Conference on Machine Learning,
pages 748–758. PMLR, 2021.

[39] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34:21618–21629, 2021.

[40] Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
In The Eleventh International Conference on Learning Representations, 2023.

[41] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:
A neural network for directed graphs. Advances in neural information processing systems,
34:27003–27015, 2021.

[42] Cai Zhou, Xiyuan Wang, and Muhan Zhang. Facilitating graph neural networks with random
walk on simplicial complexes. Advances in Neural Information Processing Systems, 36, 2024.

[43] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

[44] Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017.

[45] Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing
graph transformers via positional encodings. arXiv preprint arXiv:2402.14202, 2024.

[46] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

[47] Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang.
Cktgnn: Circuit graph neural network for electronic design automation. arXiv preprint
arXiv:2308.16406, 2023.

[48] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

[49] Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadul-
lah Usmani, Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, and Gajen-
dra PS Raghava. Satpdb: a database of structurally annotated therapeutic peptides. Nucleic
acids research, 44(D1):D1119–D1126, 2016.

[50] Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic computation.
Social networks, 30(2):136–145, 2008.

[51] K-I Goh, Byungnam Kahng, and Doochul Kim. Universal behavior of load distribution in
scale-free networks. Physical review letters, 87(27):278701, 2001.

[52] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

[53] Samuel Johnson, Virginia Domínguez-García, Luca Donetti, and Miguel A Muñoz. Trophic
coherence determines food-web stability. Proceedings of the National Academy of Sciences,
111(50):17923–17928, 2014.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[54] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[55] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[56] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[57] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

[58] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Prin-
cipal neighbourhood aggregation for graph nets. Advances in Neural Information Processing
Systems, 33:13260–13271, 2020.

[59] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d
convolutions on random walks. arXiv preprint arXiv:2102.08786, 2021.

[60] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[61] Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae Kim, and Seung-won Hwang. Grpe:
Relative positional encoding for graph transformer. arXiv preprint arXiv:2201.12787, 2022.

[62] Yuankai Luo, Veronika Thost, and Lei Shi. Transformers over directed acyclic graphs. Advances
in Neural Information Processing Systems, 36, 2024.

[63] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[64] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[65] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks.
Advances in Neural Information Processing Systems, 33:17009–17021, 2020.

[66] Gilbert Strang. Linear algebra and its applications. 2012.

[67] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

[68] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[69] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 DESCRIPTION OF BENCHMARK DATASETS

A detailed overview of the statistical properties and characteristics of the benchmark datasets is
presented in Table 5. The initial five datasets are sourced from the BenchmarkingGNNs (29), followed
by the subsequent two from the LRGB (46), one dataset in the middle is from the OGB-LSC (30),
and the final two datasets are provided by the OCB (47).

Table 5: Overview of the graph learning benchmark datasets used in this study (29; 46; 30; 47)

Dataset # Graphs Avg. #
nodes

Avg. #
edges Directed Prediction

level
Prediction

task Metric

ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classification Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classification Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classification Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classification Weighted Accuracy

Peptides-func 15,535 150.9 307.3 No graph 10-task classification Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

Ckt-Bench101 10,000 9.6 14.5 Yes graph regression Mean Abs. Error
Ckt-Bench301 47,248 9.9 15.5 Yes graph regression Mean Abs. Error

ZINC (29) comprises 12,000 molecular graphs sampled from the ZINC database (48) of commercially
available chemical compounds. These molecular graphs contain between 9 and 37 nodes, where each
node corresponds to a heavy atom from one of 28 possible atom types, and each edge represents one
of three possible bond types. The task associated with this dataset is to predict a molecular property
known as constrained solubility (logP). The dataset is provided with a predefined split of 10,000
training, 1,000 validation, and 1,000 test samples.

MNIST and CIFAR10 (29) are derived from their corresponding classical image classification
datasets by constructing 8 nearest-neighbor graphs of SLIC superpixels for each image. The resulting
graphs contain 40-75 nodes for MNIST and 85-150 nodes for CIFAR10. The 10-class classifica-
tion tasks and standard dataset splits mirror the original image classification datasets, specifically
55K/5K/10K for MNIST and 45K/5K/10K for CIFAR10 in terms of train/validation/test graphs.
These datasets serve as sanity checks, with most GNNs expected to achieve near 100% accuracy for
MNIST and perform sufficiently well for CIFAR10.

PATTERN and CLUSTER (29) are synthetic datasets derived from a probabilistic block model,
specifically designed for inductive node-level classification tasks. In the PATTERN dataset, the
objective is to identify nodes that belong to one of 100 possible subgraph patterns. These patterns
are randomly generated using different Stochastic Block Model (SBM) parameters from the rest of
the graph. In the CLUSTER dataset, each graph is divided into six clusters, all generated using the
same SBM distribution. Within each cluster, only one node has a unique cluster ID. The task is to
determine the cluster ID for each node based on the structure of the graph.

Peptides-func and Peptides-struct (46) datasets consist of atomic graphs of peptides. Derived from
a collection of 15,535 peptides encompassing a total of 2.3 million nodes from SATPdb (49), these
two datasets share the same set of graphs but differ in their prediction tasks. In the Peptides-func
dataset, the task is to classify each graph into one or more of 10 non-exclusive peptide functional
classes. In the Peptides-struct dataset, the goal is to regress 11 distinct 3D structural properties of
the peptides. These graphs are designed to require inference of long-range interactions (LRI) for
robust performance. With an average of 150.9 nodes per graph and a mean graph diameter of 57, they
provide a challenging benchmark for GTs and other GNNs aimed at capturing LRIs.

PCQM4Mv2 (30) dataset is an extensive graph regression benchmark comprising almost 3.7 million
molecular graphs. The objective is to predict the HOMO-LUMO gap, a quantum mechanical property
computed using Density Functional Theory. The true labels for the original "test-dev" and "test-
challenge" dataset splits are withheld by the OGB-LSC challenge organizers to ensure the integrity
of the competition. Thus, we utilized the original validation set as our test set, excluding 150,000

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

randomly selected molecules to refine the validation process. This adjustment ensures rigorous
evaluation while maintaining consistency with the dataset’s intended use in benchmarking advanced
GNN models.

Ckt-Bench101 and Ckt-Bench301 (47) are pioneering datasets in the circuit domain, specifically de-
signed for optimizing both analog circuit topologies and device parameters. Ckt-Bench101 comprises
10,000 operational amplifier (OpAmp) circuits, each topology represented as a directed acyclic graph
(DAG). Ckt-Bench301 includes 47,248 OpAmp circuits, after excluding 2,752 invalid simulation
results from the original 50,000 entries. For regression tasks, performance metrics for these circuits
have been meticulously extracted using a circuit simulator. The OCB dataset provides critical perfor-
mance metrics such as gain, bandwidth, phase margin, and a figure of merit (a composite metric of
these parameters) as labels. The OCB dataset provides both subgraph-level and node-level graphs for
CktGNN, a nested-GNN leveraging domain-specific knowledge of circuits. In this study, we focused
on extracting node-level graph information and organizing the data for use within the GraphGPS
framework (5). Each node in the dataset has node attributes of a circuit device, annotated with
device-specific types and feature values, including resistance r, capacitance c, and transconductance
gm. Due to the lack of inherent edge attribute values in the domain, we introduced a three-dimensional
edge feature vector derived from the structural properties of the graphs. These features include edge
betweenness (50), edge load centrality (51; 52), and trophic differences (53), all computed using
NetworkX (52). The preprocessed Ckt-Bench101 and Ckt-Bench301 datasets are provided in the
supplementary materials for further research.

A.2 BASELINES

Comparison for the BenchmarkingGNNs, we benchmark our approaches against several widely used
GNN models, including prominent MPNNs and leading GNNs (GCN (54), GAT (55), GIN (14),
GraphSAGE (56), GatedGCN (57), PNA (58), CRaW1 (59)); and GTs with various PE and SE (
EGT (2), GraphGPS (5), GRIT (6)). Comparison for the LRGB, we compare our methods against
various MPNNs with several PESE (GCN (54), GINE (60), GatedGCN (57)) as well as several
GTs (Transformer (18), SAN (3), GraphGPS (5), and GRIT (6), EdgeRWSE, and Hodge1Lap (42)).
Comparison for the PCQM4Mv2, our methods was compared against two MPNNs with and without
virtual nodes (GCN (54), GIN (14)) as well as several GTs (TokenGT (33), GRPE (61), EGT (2),
Graphormer (1), Specformer (4), GraphGPS (5), and GRIT (6)). Comparison for the OCB, we
compare our methods against various MPNNs (GCN (54), GAT (55), GIN (14), GraphSAGE (56),
GatedGCN (57)) as well as two prominent GTs (GraphGPS (5), GRIT (6)). We also implemented
directed acyclic graph positional encodings (DAGPE) (62) as a baseline of DAG. This comprehensive
comparison ensures a robust assessment of our methods’ relative performance across diverse graph
benchmarks.

A.3 DATASET SPLITS AND RANDOM SEEDS

For the datasets under evaluation, we adhere to the standard train/validation/test splits established by
the benchmarks. We conduct four experimental runs on each dataset, utilizing distinct random seeds
(0, 1, 2, 3). We then report both the mean performance and the standard deviation across these runs to
ensure the robustness and reproducibility of our results.

A.4 HYPERPARAMETER SETTINGS

Due to constraints in time and computational resources, an exhaustive or grid search for hyper-
parameters was not conducted. Instead, we primarily adhered to the hyperparameter settings of
GraphGPS (5), making minor adjustments where necessary to align with commonly used parameter
budgets. For benchmarking various datasets, we adhered to the standard parameter budgets widely
accepted in the literature (29; 46). Specifically, we used a maximum of 500K parameters for the
ZINC, PATTERN, CLUSTER, Peptides-func, and Peptides-struct datasets. For the MNIST and
CIFAR10 datasets, the parameter budget was capped at 100K parameters. Across all experiments,
we utilized the AdamW optimizer (63) with default settings of β1 = 0.9, β2 = 0.999, and ϵ = 10−8

same as the GraphGPS (5). The learning rate schedule featured a linear "warm-up" phase at the
beginning of training, followed by a cosine decay. The duration of the warm-up period, the base

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

learning rate, and the total number of epochs were tuned for each dataset. The final hyperparameter
configurations are detailed in Tables 6, 7, and 8.

Table 6: Hyperparameters of GKSE and MKSE for five benchmarks from the Benchmarking-
GNNs (29)

Category Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER

GTs

Transformer Layers 10 3 3 10 16
Hidden dim 64 52 52 64 48
Heads 8 4 4 8 8
Dropout 0 0 0 0 0.01
Attention dropout 0.2 0.5 0.5 0.2 0.5
Graph pooling sum mean mean - -

Training

Batch size 32 16 8 32 16
Learning Rate 0.001 0.001 0.001 0.0005 0.001
Epochs 2000 200 200 100 100
Warmup epochs 50 5 5 5 5
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5

GKSE
ksteps (RW-steps) 19 18 17 26 40
PE encoder linear linear linear linear linear
Parameters 473,217 102,138 99,382 478,593 432,438

MKSE
ksteps (RW-steps) 18 16 17 14 41
PE encoder linear linear linear linear linear
Parameters 473,089 101,930 99,382 477,057 432,534

Table 7: Hyperparameters of GKSE and MKSE for two benchmarks from the LRGB (46) and
PCQM4Mv2 benchmark from the OGB-LSC (30)

Category Hyperparameter Peptides-func Peptides-struct PCQM4Mv2

GTs

Transformer Layers 4 4 16
Hidden dim 96 96 256
Heads 4 8 8
Dropout 0 0 0.1
Attention dropout 0.5 0.5 0.1
Graph pooling mean mean mean

Training

Batch size 8 32 256
Learning Rate 0.0003 0.0003 0.0002
Epochs 200 200 150
Warmup epochs 5 5 10
Weight decay 0 0 0

GKSE
MKSE

ksteps (RW-steps) 26 24 16
PE encoder linear linear linear
Parameters 445,162 449,579 11.8M

B SUPPLEMENTARY EXPERIMENTS

B.1 EXPERIMENTS ON INDUCTIVE NODE-LEVEL TASK

We test our methods on two inductive node-level classification task benchmark datasets from the
BenchmarkingGNN (29): PATTERN and CLUSTER. We primarily compare our methods against
the SOTA GT model, GRIT (6), and various baselines described in Appendix A.2. To ensure a fair
comparison with prior studies, we adopted experimental settings similar to those in the GraphGPS (5)
and GRIT (6) papers, maintaining parameter limits of approximately 500K for both datasets. Detailed
hyperparameter configurations are provided in the Table 6. The experimental results show that except
for GRIT+GKSE performing well on the PATTERN dataset, the other results are slightly lower of
comparable to the GRIT+RRWP as summarized in Table 9. We believe this is partly due to the high

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters of GKSE and MKSE for two benchmark datasets from the Open Circuit
Benchamark (47)

Category Hyperparameter Ckt-Bench101 Ckt-Bench301

MPNNs

Pre Message Passing Layers 2 2
Message Passing Layers 2 2
Post Message Passing Layers 1 1
Hidden dim 64 64
Dropout 0 0
Aggregation mean mean

GTs

Transformer Layers 10 10
Hidden dim 64 64
Heads 8 8
Dropout 0 0
Attention dropout 0.2 0.2
Graph pooling mean mean

Training

Batch size 32 64
Learning Rate 0.001 0.001
Epochs 200 200
Warmup epochs 5 5
Weight decay 1e-5 1e-5

GPS

GPS-MPNN GINE GINE
GPS-GlobAttn Transformer Transformer
PE LapPE LapPE
PE dim 8 8
PE encoder DeepSet DeepSet

RRWP
GKSE
MKSE

ksteps (RW-steps) 18 21
PE encoder linear linear
Parameters 471,745 472,129

Table 9: Test performance on two inductive node-level task benchmarks from the Benchmarking
GNNs. Shown is the mean ± s.d. of 4 runs with different random seeds. Highlighted are the top first,
second, and third results.

Model PATTERN CLUSTER

W. Accuracy↑ W. Accuracy↑
GCN 71.892 ± 0.334 68.498 ± 0.976
GAT 78.271 ± 0.186 70.587 ± 0.447
GIN 85.387 ± 0.136 64.716 ± 1.553
GraphSAGE 50.492 ± 0.001 63.844 ± 0.110
GatedGCN 85.568 ± 0.088 73.840 ± 0.326

SAN 86.581 ± 0.037 76.691 ± 0.065
EGT 86.821 ± 0.020 79.232 ± 0.348
GPS 86.685 ± 0.059 78.016 ± 0.180
GRIT+RRWP 87.196 ± 0.076 80.026 ± 0.277

GRIT+GKSE (ours) 87.328 ± 0.216 79.858 ± 0.034
GRIT+MKSE (ours) 87.150 ± 0.194 79.729 ± 0.145

average number of edges in graphs of PATTERN and CLUSTER. The dense connectivity in these
datasets may hinder the ability of RWs to represent structural nuances effectively. Additionally, the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

synthetic nature of the datasets, derived from SBM with specific patterns and clustring tasks, might
require alternative encoding strategies better suited for dense graphs and node-level classification.

B.2 ASYMTOTIC COMPLEXITY, EXPERIMENTAL ENVIRONMENT AND COMPUTING
RESOURCES

The asymtotic complexities of GKSE and MKSE are O(K|V||E|) and O(K|V||E|+K|E|) respec-
tively, where K is the number of hops of PEs, |E| is the number of edges and |V| is the number of
nodes, the asymtotic complexity of GRIT (6). We implemented our study based on the GraphGPS (5)
and GRIT (6) repositories, leveraging the PyG (64) library and its GraphGym (65) module. All
experiments were conducted in a compute cluster environment equipped with various CPUs, as well
as NVIDIA A6000 (48GB) and A100 (40GB) GPUs. As shown in Table 10, we present the runtime
and GPU memory consumption metrics for the GRIT+RRWP baseline, GKSE and MKSE on the
ZINC dataset. The runtime measurements were obtained using the GraphGPS pipeline, while the
GPU memory usage was monitored via the NVIDIA System Management Interface (nvidia-smi). All
these experiments are carried out on a single NVIDIA A100 (40GB) GPU.

Table 10: Computing result statistics of GRIT+RRWP, GRIT+GKSE, and GRIT+MKSE on ZINC
dataset with hyperparameters at Table 6

ZINC GRIT+RRWP GRIT+GKSE (ours) GRIT+MKSE (ours)
MAE↓ 0.059 ± 0.001 0.058 ± 0.002 0.056 ± 0.021
PE Precompute-time 7.9 sec 9.5 sec 18.0 sec
GPU Memory 1252MB 1277MB 1208MB
Training time 23.8 sec/epoch 23.6 sec/epoch 23.1 sec/epoch

C MATHEMATICAL DETAILS

In this section, we will examine the RW from the perspective of stochastic processes and discuss the
specific meanings and implications of the Green kernel and Martin kernel hold in that context. For
convenience, we use the following notations:

Px = Pω∈Ω(x); (20)

Ex = Eω∈Ω(x). (21)

C.1 MARKOV PROPERTIES

We note that a RW on a graph defined in section 3.1 is a Markov process. A Markov process possesses
two key properties: the simple Markov property for fixed times and the strong Markov property for
the first hitting times. These properties are stated in the following lemma, which is essential for
proving various theoretical results.

For j ∈ N ∪ {0}, we define the shift map θj : Ω → Ω by

θj((ω0, ω1, . . .)) = (ωj , ωj+1, . . .), ∀(ω0, ω1, . . .) ∈ Ω. (22)

We see that Xi(θjω) = Xi+j(ω) for i ∈ N ∪ {0} and ω ∈ Ω.

Lemma 1. Let x, y ∈ V and j ∈ N ∪ {0}. Let ξ, η be random variables with some regularity
conditions. Then

1. (simple Markov property) Ex [ξ(η ◦ θj)] = Ex

[
ξ EXj [η]

]
;

2. (strong Markov property) Ex

[
ξ(η ◦ θτy)

]
= Ex [ξ Ey[η]] .

The detailed statement can be found in the (21). In this paper, we present only a brief version and omit
the detailed conditions. Nevertheless, all random variables in the proofs below satisfy the regularity
conditions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.2 FINITE STEP GREEN FUNCTION

In section 4.2, we define the finite-step Green kernel G(k) using recursive relations as in eq. (13). We
can describe G(k) in the explicit form as follows: for k ∈ N and x, y ∈ V ,

G(k)(x, y) =

k∑
i=0

P(i)(x, y), (23)

in which P(0) = I.

In order to interpret the finite-step Green kernel in terms of the stochastic process as described in the
previous subsection, we first define the counting function L

(k)
y : Ω → N ∪ {0} formally, as follows:

for ω ∈ Ω,

L(k)
y (ω) =

k∑
i=0

1{Xi(ω)=y}, (24)

where 1{Xi(·)=y} : Ω → {0, 1} is the indicator function, meaning it takes the value 1 if Xi(ω) = y

and 0 otherwise. It follows directly from the definition that the value of L(k)
y (ω) is equal to the

number of times that the trajectory ω visits node y within k-steps.

We now turn to Theorem 1. As described above, for ω ∈ Ω, the value of L(k)
y (ω) is equal to the

number of times that the trajectory ω visits node y within k-steps. Recall that the probability Px is
concentrated on the set of all trajectories starting at node x. Thus, after applying the expectation
Ex[·] to the counting function L

(k)
y , its value is equal to the expected number of times that a trajectory

starting at node x visits node y within k-steps. Finally, we provide the following proof at the end of
this section.

Proof of Theorem 1. The proof is inspired by (21), which addresses the case when k = ∞. It follows
from the definition that:

Ex

[
L(k)
y

]
= Ex

[
k∑

i=0

1{Xi(ω)=y}

]

=

k∑
i=0

Ex

[
1{Xi(ω)=y}

]
=

k∑
i=0

Px[Xi(ω) = y]

=

k∑
i=0

Pi(x, y)

= G(k)(x, y).

Thus, we prove the theorem.

C.3 FINITE-STEP MARTIN KERNEL WITH THE FIRST HITTING TIME MAP

To prove the theorem 2, we first observe what the finite-step Martin kernel with the first hitting time
map M̃(k) approximates. The following lemmas will be used in the proof of theorem 2.

Lemma 2. For k ∈ N ∪ {0} and x, y ∈ V , let M̃(k) be defined in eq. (15). Then, the following
equality holds:

0 ≤ Px[τy ≤ k]− M̃(k)(x, y) ≤ H̃(k)(x, y)

G(k)(y, y)
, (25)

where H̃(k)(x, y) = Ex[τy ; τy ≤ k] = Ex[1{τy≤k} τy] is the k-step hitting time, meaning the
expectation of the first hitting time within k-steps.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. By Theorem 1, we have

G(k)(x, y) = Ex

[
L(k)
y

]
= Ex

[
1{τy≤k}L

(k)
y

]
. (26)

The second equality comes from the fact that if τy(ω) > k, then L
(k)
y (ω) = 0 for all ω ∈ Ω.

Observe that

L(k)
y =

k∑
i=0

1{Xi=y}

=

k∑
i=τy

1{Xi=y}

=

k−τy∑
i=0

1{Xi+τy=y}

=

k−τy∑
i=0

1{Xi=y} ◦ θτy

= L(k−τy)
y ◦ θτy .

(27)

Combining with eq. (26) and eq. (27), we have

G(k)(x, y) = Ex

[
1{τy≤k}

(
L(k−τy)
y ◦ θτy

)]
(28)

= Ex

[
1{τy≤k} Ey

[
L(k−τy)
y

]]
(29)

= Ex

[
1{τy≤k} Ey

[
L(k)
y

]]
− Ex

1{τy≤k} Ey

 k∑
i=k−τy+1

1{Xi=y}

 . (30)

Here, the strong Markov property in Lemma 1 is applied for the second equality. We note that
Ey

[
L
(k−τy)
y

]
, which is in eq. (29), is not a constant, but a function of ω ∈ Ω such that X0(ω) = x.

For the first term in eq. (30),

Ex

[
1{τy≤k} Ey

[
L(k)
y

]]
= Ex

[
1{τy≤k}

]
Ey

[
L(k)
y

]
= Px[τy ≤ k]G(k)(y, y). (31)

For the second therm in eq. (30), we first observe that for ω ∈ Ω such that X0(ω) = x,

0 ≤
k∑

i=k−τy(ω)+1

1{Xi(ω)=y} ≤ τy(ω), (32)

and hence,

0 ≤ Ey

 k∑
i=k−τy(ω)+1

1{Xi(ω)=y}

 ≤ Ey [τy(ω)] = τy(ω). (33)

Thus the second term in eq. (30) is

0 ≤ Ex

1{τy≤k} Ey

 k∑
i=k−τy+1

1{Xi=y}

≤ Ex

[
1{τy≤k} τy

]
= Ex [τy ; τy ≤ k]

= H̃(k)(x, y).

(34)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Using eq. (28-34), we have

Px[τy ≤ k]G(k)(y, y)− H̃(k)(x, y) ≤ G(k)(x, y) ≤ Px[τy ≤ k]G(k)(y, y), (35)

or

0 ≤ Px[τy ≤ k]− G(k)(x, y)

G(k)(y, y)
≤ H̃(k)(x, y)

G(k)(y, y)
. (36)

We complete the proof.

Lemma 3. For k ∈ N ∪ {0} and x, y ∈ V , let M̃(k) be defined in eq. (15). Then, the following
equality holds:

1

G(k)(y, y)
≤ M̃(k)(x, y)

Px[τy ≤ k]
≤ 1 (37)

Proof. From eq. (29), we have

G(k)(x, y) = Ex

[
1{τy≤kEy

[
L(k−τy)
y

]]
(38)

=

k∑
i=0

Ex

[
1{τy=i}Ey

[
L(k−i)
y

]]
(39)

=

k∑
i=0

Px [τy = i]G(k−i)(y, y) (40)

≥
k∑

i=0

Px [τy = i] (41)

= Px [τy ≤ k] . (42)

Thus, we have

1 ≤ G(k)(x, y)

Px [τy ≤ k]
, (43)

and hence
1

G(k)(y, y)
≤ M̃(k)(x, y)

Px [τy ≤ k]
. (44)

The upperbound comes from the lowerbound in Lemma 2, which is

0 ≤ Px[τy ≤ k]− M̃(k)(x, y). (45)

These two inequalities complete the proof.

C.4 FINITE STEP MARTIN KERNEL

Recall that, for y ∈ V , the first hitting time map τy and the first return time map τ+y is defined as
follows: for ω ∈ Ω,

τy(ω) = min{i ∈ N ∪ {0} : Xi(ω) = y}; (46)

τ+y (ω) = min{i ∈ N : Xi(ω) = y}. (47)

We note that if ω starts from a node other than y, then τy(ω) = τ+y (ω). This is because random walk
requires at least one step to visit another node, so the minimum in eq. (46) cannot be attained when
i = 0.

Proof of 1 in Theorem 2. Let k ∈ N. We first prove the case when x = y ∈ V . By the definition of
the first return time and the first hitting time, for ω ∈ Ω,

τ+x (ω) = min{i ≥ 1 : Xi(ω) = x}
= min{i ≥ 0 : Xi+1(ω) = x}+ 1

= min{i ≥ 0 : Xi(θ1ω) = x}+ 1

= τx(θ1ω) + 1.

(48)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

By eq. (48), we have

Px[τ
+
x ≤ k] = Ex

[
1{τ+

x ≤k}

]
= Ex

[
1{τx◦θ1≤k−1}

]
= Ex

[
1{τx≤k−1} ◦ θ1

]
= Ex

[
EX1

[
1{τx≤k−1}

]]
= Ex [PX1

[τx ≤ k − 1]]

=
∑
z∈V

Px[X1 = z]Pz[τx ≤ k − 1]

=
∑
z∈V

P(x, z)Pz[τx ≤ k − 1].

(49)

Here, the third equality comes from the simple Markov property in Lemma 1.

From Lemma 2,

M̃(k−1)(z, x)− H̃(k−1)(z, x)

G(k−1)(x, x)
≤ Pz[τx ≤ k − 1] ≤ M̃(k−1)(z, x). (50)

Combining with eq. (49) and eq. (50), we get the following two inequalities

Px[τ
+
x ≤ k] ≤

∑
z∈V

P(x, z) M̃(k−1)(z, x) =
(
P ⋆ M̃(k−1)

)
(x, x) (51)

Px[τ
+
x ≤ k] ≥

∑
z∈V

P(x, z)

(
M̃(k−1)(z, x)− H̃(k−1)(z, x)

G(k−1)(x, x)

)
(52)

=
(
P ⋆ M̃(k−1)

)
(x, x)−

(
P ⋆ H̃(k−1)

)
(x, x)

G(k−1)(x, x)

By definition,
(
P ⋆M(k−1)

)
(x, x) = M(k)(x, x).

It remains to show
(
P ⋆ H̃(k−1)

)
(x, x) ≤ H(k)(x, x). Indeed,(

P ⋆ H̃(k−1)
)
(x, x) =

∑
z∈V

P(x, z) H̃(k−1)(z, x)

=
∑
z∈V

Px[X1 = z]Ez[τx ; τx ≤ k − 1]

= Ex

[
EX1

[
1{τx≤k−1} τx

]]
= Ex

[(
1{τx≤k−1} τx

)
◦ θ1

]
= Ex

[
1{τ+

x ≤k}(τ
+
x − 1)

]
= Ex

[
τ+x ; τ+x ≤ k

]
− Px[τ

+
y ≤ k]

≤ Ex

[
τ+x ; τ+x ≤ k

]
= H(k)(x, x)

(53)

Here, the fourth equality comes from the simple Markov property in Lemma 1 and the fifth equality
comes from eq. (48).

Now, we prove the case when x ̸= y ∈ V . Obeserve that τy(ω) = τ+y (ω) for all ω ∈ Ω such that
X0(ω) = x, since a RW requires at least one step to move from node x to y. Thus we have

Px[τ
+
y ≤ k] = Px[τy ≤ k] (54)

H(k)(x, y) = Ex[τ
+
y ; τ+y ≤ k] = Ex[τy ; τy ≤ k] = H̃(k)(x, y). (55)

We also have M(k)(x, y) = M̃(k)(x, y) by definition. The proof follows from Lemma 2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof of 2 in Theorem 2. Let k ∈ N. We first prove the case when x = y ∈ V . From Lemma 3,

Px[τx ≤ k − 1]

G(k−1)(x, x)
≤ M̃(k−1)(x, x) ≤ Px[τx ≤ k − 1]. (56)

Applying convolution to each instance with P, by eq. (49) and the definition of M(k), we have

Px[τ
+
x ≤ k]

G(k−1)(x, x)
≤ M(k)(x, x) ≤ Px[τ

+
x ≤ k], (57)

which complete the proof in the case x = y.

Now, we prove the case when x ̸= y ∈ V . By eq. (54), eq. (55) and the definition of M(k), the proof
follows from the Lemma 3.

D REPRESENTATIONAL POWER

D.1 APERIODICITY OF GRAPHS

Let G = (V, E) be a graph. The period pG of G is defined by the greatest common divisor of the
lengths of its cycles:

pG := gcd{n : X0(ω) = Xn(ω), ω ∈ Ω}. (58)

We call a graph G is aperiodic if pG = 1 and non-aperiodic if pG > 1.

One important remark about the period of a graph is it affects the spectrum of the transition probability
matrix P of the graph. By the Perron-Frobenius theorem for irreducible non-negative matrix (66),
there exists exact pG eigenvalues attaining the maximal absolute value.

For example, the hexagon graph C6, which is the cycle graph on 6 nodes as illustrated in Fig-
ure 3, has pC6

= 2 and its transition probability matrix has eigenvalues 1 and −1. In this
case, the eigenvectors associated with the eigenvalues 1 and −1 is ϕ1 = (1, 1, 1, 1, 1, 1)T and
ϕ−1 = (1,−1, 1,−1, 1,−1)T , respectively. It can be observed by spectral analysis that for any
vector v ∈ R6 that is not spanned by ϕ1 or ϕ−1, Pkv oscillates between ϕ1 + ϕ−1 and ϕ1 − ϕ−1 as
k → +∞. This phenomenon may leads to the unstability of RRWP.

Formally, let 1x be the one-hot vector supported at a node x ∈ V . Then we have

P(x, y) = 1T
x P1y, ∀x, y ∈ V. (59)

Since 1y is not spanned by ϕ1 or ϕ−1, P1y oscillates as k → +∞ and hence P(x, y) also oscillates
as k → +∞.

However, G(k)(x, y) diverges to +∞ and M(k)(x, y) converges to 1 as k → +∞ for recurrent
graphs. Thus, G(k) and M(k) do not oscillate indefinitely as illustrated in Figure 3, indicating that
they are more stable under the choice of K ∈ N ∪ {0} and capture the structural property of a graph
well.

Despite the above observations, it remains unclear whether the absence of oscillation in GKSE and
MKSE actually enables better detection of non-aperiodic substructures. As noted in (67), detecting
specific substructures is an extremely challenging task and is proven to be infeasible with many
existing GNN models. Nevertheless, since GKSE and MKSE exhibit distinct patterns compared to
traditional methods, we are optimistic that they could provide some advantage. Further research is
necessary to confirm this hypothesis.

D.2 GENERALIZED RWS

Mathematically, the transition probability matrix can be defined as a real-valued matrix whose row
sums equal 0 or 1. We allow the row sum to be 0 since we consider the sink node with an out-degree
of 0. To avoid irregular cases, we assume that there exists a positive lower bound ℓ < 1 for the
transition probabilities. The assumption is not superflous since a transition probability matrix for a
simple RW also satisfies this assumption with ℓ = 1/dmax, where dmax is the maximum degree of
the nodes in the graph. Formally, the transition probability matrix P for a generalized RW satisfies

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

RR
W

P

k=1 k=2 k=3 k=4 k=5 k=6

GK
SE

M
KS

E

Figure 3: Visualization of RRWP, GKSE, and MKSE on a hexagon graph for k-steps ranging from 1
to 6.

1.
∑

z∈V P(z, y) = 0 or 1, ∀y ∈ V;
2. P(x, y) > ℓ, ∀(x, y) ∈ E .

In this generalized setting, RRWP, GKSE, and MKSE can still be defined in accordance with the
transition probability matrix P for general RWs. We will prove the theorems and corollaries in the
generalized setting.

D.3 EXPRESSIVENESS OF GKSE AND MKSE

In this section, we present several theoretical results illustrating the expressiveness of GKSE and
MKSE when combined with MLP. Our findings are inspired by the study in (6), yet extend to more
general scenarios involving RWs with non-identical transition probabilities. We note that, in the case
of a simple RW, the transition probabilities from one node to an adjacent node in the next step are
identical.

The following theorem, a restatement of Theorem 3 (1), suggests that the expressiveness of GKSE
when integrated with an MLP is equivalent to that of RRWP. Analogous to the proposition in (6), we
derive Corollary 1, which implies that GKSE can approximate various graph propagation matrices
with precision up to an arbitrary positive error ϵ. We prove the theoretical results in the general
setting, specifically for non-simple RW case

Theorem 5. GKSE with MLP has exactly the same expressive power as RRWP with MLP.

Corollary 1. Let n,K ∈ N and let ϵ > 0 be sufficiently small. Then there exists MLP from RK to
R or RK such that the for any GKSE ∈ Rn×n×K derived from a graph with n nodes, MLP(GKSE)
can approximate any of the following: for all x, y ∈ V ,

(a) MLP(GKSE(x, y)) ≈ SPDK−1(x, y);

(b) MLP(GKSE(x, y)) ≈
(∑K−1

k=0 θkP
k
)
(x, y);

(c) MLP(GKSE(x, y)) ≈ (θ0I+ θ1A) (x, y)

within ϵ error. Here, SPDK−1(x, y) represents the K − 1 truncated shortest path distance, and
θk ∈ R are arbitrary coefficients.

We prove that MKSE possesses a unique expressiveness that cannot be achieved by RRWP alone,
highlighting its potential to enhance the representational capability of GNNs in distinguishing
complex graph structures. Furthermore, despite its different representational range, MKSE can also
approximate several graph propagation matrices, as stated in Proposition 1. The proofs can be found
in Appendix D.4. We begin by restating Theorem 3 (2) as follows.

Theorem 6. RRWP with MLP cannot approximate MKSE.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proposition 1. Let n,K ∈ N and let ϵ > 0 be sufficiently small. Then there exists MLP from RK

to R or RK such that the for any MKSE ∈ Rn×n×K derived from a graph with n nodes and no
self-loop, MLP(MKSE) can approximate any of the following: for all x, y ∈ V ,

(a) MLP(MKSE(x, y)) ≈ SPDK−1(x, y) ;

(b) MLP(MKSE(x, y)) ≈ (θ0I+ θ1A) (x, y)

within ϵ error. Here, SPDK−1(x, y) represents the K − 1 truncated shortest path distance, and
θk ∈ R are arbitrary coefficients.

D.4 PROOFS: EXPRESSIVENESS OF GKSE AND MKSE

For convenience, we denote SEs as follows: for K ∈ N,

(RRWP) R = [I,P(1), . . . ,P(K−1)] ∈ Rn×n×K ; (60)

(GKSE) G = [I,G(1), . . . ,G(K−1)] ∈ Rn×n×K ; (61)

(MKSE) M = [I,M(1), . . . ,M(K−1)] ∈ Rn×n×K . (62)

Proof of Theorem 5. Let K ∈ N. It suffices to show that there exists a continuous bijective function
φ : RK → RK with continuous inverse such that for all x, y ∈ V , φ (G(x, y)) = R(x, y). The
reason this completes the proof is as follows. Supppose there exists a function that can be expressed
by some continuous function f as f (R(x, y)). Then, by the above observation, it is equivalent
to (f ◦ φ) (G(x, y)). The converse also holds. Therefore, according to the standard universal
approximation reuslts (68), the expressivenss of GKSE with MLP is entirely equivalent to the
expressiveness of RRWP with MLP.

Now, we define the linear map φ : RK → RK by

φ(x0, x1, . . . , xK−1) = (x0, x1 − x0, x2 − x1, . . . , xK−1 − xK−2). (63)

By the definition, for all x, y ∈ V , φ (G(x, y)) = R(x, y). Obviously, it is continuous and has
continuous inverse φ−1 given by

φ−1(x0, x1, . . . , xK−1) = (x0, x0 + x1, x0 + x1 + x2, . . . , x0 + · · ·+ xK−1). (64)

This completes the proof.

Proof of Corollary 1. We first prove the Proposition 3.1 from (6) in the generalized RW setting stated
in Appendix D.2. Then by Theorem 5, the results follows.

We claim that for all k = 1, . . . ,K − 1, each nonzero entry of Pk is greater than ℓk. We will prove
the claim by using induction. The case when k = 1 is obvious by definition. Then we assume that
the claim holds for k. We note that for x, y ∈ V with Pk+1(x, y) ̸= 0,

Pk+1(x, y) =
∑

z∈V:P
k(x,z) ̸=0

& (z,y)∈E

Pk(x, z)P(z, y) (65)

Since Pk+1(x, y) ̸= 0, there exists at least one such z ∈ V . Also, by assumption, Pk(x, z) > ℓk and
P(z, y) > ℓ. Thus we have P(k+1)(x, y) > ℓk+1, proving the claim.

Following the claim, by replacing the lower bound L with ℓK−1 in the proof of Proposition 3.1 in (6),
the proof is completed.

Proof of Theorem 6. We will prove the theorem by providing two examples of graphs with 6 nodes
for which each RRWP with MLP cannot approximate each MKSE simulteneously. Suppose that
there exists a function φ : RK → RK constructed by MLP such that for all graphs with 6 nodes and
x, y ∈ V , φ(R(x, y)) approximates M(x, y) within ϵ < 1/15 error.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

x y

1

x y

2

Figure 4: (Left) (4,2)-lollipop graph and (Right) A graph consisting of a 4-cycle and a 2-path
connected by a single edge.

Consider the graph G1, which is the (4, 2)-lollipop graph consisting of the complete graph K4 on 4
nodes, the path graph P2 on 2 nodes, and one edge connecting K4 and P2. Also, consider the graph
G2, which is obtained by G1 by replacing K4 with the cycle graph C4 on 4 nodes. Let x, y ∈ V be the
nodes of G1 or G2, where x is the terminal node of P2, and y is in the K4 or C4 connected to P2. We
visualize G1,G2 and x, y in Figure 4.

Now, for i = 1, 2, we denote RRWP, GKSE, and MKSE with K = 3 for Gi by Ri, Gi, and Mi,
respectively. Then, we have

R1(x, y) =

(
0, 0,

1

2

)T

, R2(x, y) =

(
0, 0,

1

2

)T

;

R1(y, y) =

(
1, 0,

3

8

)T

, R2(y, y) =

(
1, 0,

1

2

)T

.

(66)

Using eq. (66), we obtain

G1(x, y) =

(
0, 0,

1

2

)T

, G2(x, y) =

(
0, 0,

1

2

)T

;

G1(y, y) =

(
1, 1,

11

8

)T

, G2(y, y) =

(
1, 1,

3

2

)T

,

(67)

and hence

M1(x, y) =

(
0, 0,

4

11

)T

, M2(x, y) =

(
0, 0,

1

3

)
. (68)

Observe that R1(x, y) = R2(x, y) but ∥M1(x, y)−M2(x, y)∥∞ = 1/15 > ϵ. Thus, we conclude
that φ(0, 0, 1/2) cannot approxiate both M1(x, y) and M2(x, y) simulteneously within ϵ error. This
contradiction proves the theorem.

Proof of Proposition 1. From the proof of Corollary 1, for k = 1, . . . ,K − 1 and x, y ∈ V with
Pk(x, y) ̸= 0, we have Pk(x, y) > ℓK−1.

Now, let k = 1, . . . ,K − 1 and let x, y ∈ V such that G(k)(x, y) ̸= 0. Then, by the definition of
GKSE, one of the Pi(x, y) is nonzero among i = 0, . . . k. Thus, we have G(k)(x, y) > ℓK−1. Also,
we note that Pi(x, y) ≤ 1 for all i = 1, . . . , k and x, y ∈ V , which implies that G(k)(x, y) ≤ k < K
for all i = 1, . . . , k and x, y ∈ V . Lastly, it is obvious from the definition of the MKSE that
Gk(x, y) ̸= 0 iff M(k)(x, y).

Using these observation, we have that for k = 0, . . . ,K − 1 and x, y ∈ V such that M(k)(x, y) ̸= 0,

M(k)(x, y) =
G(k)(x, y)

G(k)(y, y)
>

ℓK−1

K
. (69)

(a) Let f1 : RK → RK be a continuous function such that f1(x)i = 0 if xi ≤ 0 and 1 if xi ≥
ℓK−1/K. Then we have that for k = 0, . . . ,K − 1,

f1(M(x, y))k =

{
1 if (x can reach y in k hops) or (x = y)
0 else.

(70)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Let f2 : RK → RK be defined by f2(x)k = maxk′≤k xk′ , which is continuous. Then we have for
k = 0, . . . ,K − 1,

f2 ◦ f1(M(x, y))k =

{
1 if SPD(x, y) ≤ k

0 else.
(71)

The remainder of the proof follows the same steps as the proof of Proposition 3.1 in (6).

(b) Observe that

f1(M(x, y))1 =

{
1 if (x can reach y in 1 hops) or (x = y)
0 else.

(72)

By the assumption that a graph have no self-loop, the cases where (x can reach y in 1 hops) and
(x = y) do not occur simultaneously. Thus we have f1(M(x, y)) = (I+A)(x, y), where A is the
adjacency matrix of the graph.

Now we take f3 : RK → R2 given by f3(x) = ((θ0 − θ1)x0, θ1x1) and f4 : R2 → R given by
ft(x0, x1) = x0 + x1. Then we have

f4 ◦ f3 ◦ f1(M(x, y)) = θ0I+ θ1A. (73)

The remainder of the proof follows the same steps as the proof of Proposition 3.1 in (6).

Proof of Theorem 4. We will prove the theorem based on the proof of Proposition 3.2 in (6). We note
that

min{k : G(k)(x, y) ̸= 0} = min{k : M(k)(x, y) ̸= 0} = SPD (x, y), (74)
where SPD is the shortest path distance. This shows that GKSE and MKSE are more expressive than
SPD, and thus, they refine SPD. Using this observation, along with Lemma 2 in (69), we conclude
that GD-WL with GKSE or MKSE is stronger than GD-WL with SPD.

Next, we prove that GD-WL with GKSE or MKSE is strcitly stronger by providing some example
graphs. Specifically, the Desargues graph and the Dodecahedral graph cannot be distinguished by
GD-WL with SPD. However, GD-WL with GKSE or MKSE, using at least 5 steps, can distinguish
between them.

28

	Introduction
	Related Work
	Mathematical Background
	Random Walk on Graphs as a Stochastic Process
	Green Kernel and Martin Kernel on Graphs
	Adapting Green and Martin Kernels for Recurrent Graphs

	Methodology: Introducing GKSE and MKSE
	Green and Martin Kernel Structural Encodings
	Computation of finite-step Green and Martin Kernels
	Expressiveness of GKSE and MKSE

	Experimental Results
	Benchmarking of GKSE and MKSE
	Sensitivity Analysis
	Analysis of Experimental Results

	Conclusion
	Experimental Details
	Description of Benchmark Datasets
	Baselines
	Dataset Splits and Random Seeds
	Hyperparameter Settings

	Supplementary Experiments
	Experiments on inductive node-level task
	Asymtotic Complexity, Experimental Environment and Computing Resources

	Mathematical Details
	Markov Properties
	Finite Step Green Function
	Finite-Step Martin Kernel with the first hitting time map
	Finite Step Martin Kernel

	Representational Power
	Aperiodicity of Graphs
	Generalized RWs
	Expressiveness of GKSE and MKSE
	Proofs: Expressiveness of GKSE and MKSE

