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ABSTRACT

Learning the structure of a causal graphical model using both observational and
interventional data is a fundamental problem in many scientific fields. A promising
direction is continuous optimization for score-based methods, which, however, re-
quire constrained optimization to enforce acyclicity or lack convergence guarantees.
In this paper, we present ENCO, an efficient structure learning method for directed,
acyclic causal graphs leveraging observational and interventional data. ENCO
formulates the graph search as an optimization of independent edge likelihoods,
with the edge orientation being modeled as a separate parameter. Consequently, we
provide for ENCO convergence guarantees when interventions on all variables are
available, without having to constrain the score function with respect to acyclicity.
In experiments, we show that ENCO can efficiently recover graphs with hundreds
of nodes, an order of magnitude larger than what was previously possible, while
handling deterministic variables and discovering latent confounders.

1 INTRODUCTION

Uncovering and understanding causal mechanisms is an important problem not only in machine
learning (Schölkopf et al., 2021; Pearl, 2009) but also in various scientific disciplines such as
computational biology (Friedman et al., 2000; Sachs et al., 2005), epidemiology (Robins et al., 2000;
Vandenbroucke et al., 2016), and economics (Pearl, 2009; Hicks et al., 1980). A common task of
interest is causal structure learning (Pearl, 2009; Peters et al., 2017), which aims at learning a directed
acyclic graph (DAG) in which edges represent causal relations between variables. While observational
data alone is in general not sufficient to identify the DAG (Yang et al., 2018; Hauser & Bühlmann,
2012), interventional data can improve identifiability up to finding the exact graph (Eberhardt et al.,
2005; Eberhardt, 2008). Unfortunately, the solution space of DAGs grows super-exponentially with
the variable count, requiring efficient methods for large graphs. Current methods are typically applied
to a few dozens of variables and cannot scale so well, which is imperative for modern applications
like learning causal relations with gene editing interventions (Dixit et al., 2016; Macosko et al., 2015).

A promising new direction for scaling up DAG discovery methods are continuous-optimization
methods (Zheng et al., 2018; 2020; Zhu et al., 2020; Ke et al., 2019; Brouillard et al., 2020; Yu
et al., 2019). In contrast to score-based and constrained-based (Peters et al., 2017; Guo et al., 2020)
methods, continuous-optimization methods reinterpret the search over discrete graph topologies as
a continuous problem with neural networks as function approximators, for which efficient solvers
are amenable. To restrict the search space to acyclic graphs, Zheng et al. (2018) first proposed to
view the search as a constrained optimization problem using an augmented Lagrangian procedure to
solve it. While several improvements have been explored (Zheng et al., 2020; Brouillard et al., 2020;
Yu et al., 2019; Lachapelle et al., 2020), constrained optimization methods remain slow and hard to
train. Alternatively, it is possible to apply a regularizer (Zhu et al., 2020; Ke et al., 2019) to penalize
cyclic graphs. While simpler to optimize, methods relying on acyclicity regularizers commonly lack
guarantees for finding the correct causal graph, often converging to suboptimal solutions. Despite the
advances, beyond linear, continuous settings (Ng et al., 2020; Varando, 2020) continuous optimization
methods still cannot scale to more than 100 variables, often due to difficulties in enforcing acyclicity.
∗Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
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In this work, we address both problems. By modeling the orientation of an edge as a separate
parameter, we can define the score function without any acyclicity constraints or regularizers. This
allows for unbiased low-variance gradient estimators that scale learning to much larger graphs. Yet,
if we are able to intervene on all variables, the proposed optimization is guaranteed to converge to the
correct, acyclic graph. Importantly, since such interventions might not always be available, we show
that our algorithm performs robustly even when intervening on fewer variables and having small
sample sizes. We call our method ENCO for Efficient Neural Causal Discovery.

We make the following four contributions. Firstly, we propose ENCO, a causal structure learning
method for observational and interventional data using continuous optimization. Different from
recent methods, ENCO models the edge orientation as a separate parameter. Secondly, we derive
unbiased, low-variance gradient estimators, which is crucial for scaling up the model to large numbers
of variables. Thirdly, we show that ENCO is guaranteed to converge to the correct causal graph if
interventions on all variables are available, despite not having any acyclicity constraints. Yet, we show
in practice that the algorithm works on partial intervention sets as well. Fourthly, we extend ENCO
to detecting latent confounders. In various experimental settings, ENCO recovers graphs accurately,
making less than one error on graphs with 1,000 variables in less than nine hours of computation.

2 BACKGROUND AND RELATED WORK

2.1 CAUSAL GRAPHICAL MODELS

A causal graphical model (CGM) is defined by a distribution P over a set of random variables
X = {X1, ..., XN} and a directed acyclic graph (DAG) G = (V,E). Each node i ∈ V corresponds
to the random variable Xi and an edge (i, j) ∈ E represents a direct causal relation from variable
Xi to Xj : Xi → Xj . A joint distribution P is faithful to a graph G if all and only the conditional
independencies present in P are entailed by G (Pearl, 1988). Vice versa, a distribution P is Markov to
a graph G if the joint distribution can be factorized as p(X) =

∏N
i=1 pi(Xi|pa(Xi)) where pa(Xi)

is the set of parents of the node i in G. An important concept which distinguishes CGMs from
standard Bayesian Networks are interventions. An intervention on a variable Xi describes the local
replacement of its conditional distribution pi(Xi|pa(Xi)) by a new distribution p̃(Xi|pa(Xi)). Xi is
thereby referred to as the intervention target. An intervention is “perfect” when the new distribution
is independent of the original parents, i.e. p̃(Xi|pa(Xi)) = p̃(Xi).

2.2 CAUSAL STRUCTURE LEARNING

Discovering the graph G from samples of a joint distribution P is called causal structure learning or
causal discovery, a fundamental problem in causality (Pearl, 2009; Peters et al., 2017). While often
performed from observational data, i.e. samples from P (see Glymour et al. (2019) for an overview),
we focus in this paper on algorithms that recover graphs from joint observational and interventional
data. Commonly, such methods are grouped into constraint-based and score-based approaches.

Constraint-based methods use conditional independence tests to identify causal relations (Monti
et al., 2019; Spirtes et al., 2000; Kocaoglu et al., 2019; Jaber et al., 2020; Sun et al., 2007; Hyttinen
et al., 2014). For instance, the Invariant Causal Prediction (ICP) algorithm (Peters et al., 2016;
Christina et al., 2018) exploits that causal mechanisms remain unchanged under an intervention
except the one intervened on (Pearl, 2009; Schölkopf et al., 2012). We rely on a similar idea by
testing for mechanisms that generalize from the observational to the interventional setting. Another
line of work is to extend methods working on observations only to interventions by incorporating
those as additional constraints in the structure learning process (Mooij et al., 2020; Jaber et al., 2020).

Score-based methods, on the other hand, search through the space of all possible causal structures
with the goal of optimizing a specified metric (Tsamardinos et al., 2006; Ke et al., 2019; Goudet et al.,
2017; Zhu et al., 2020). This metric, also referred to as score function, is usually a combination of
how well the structure fits the data, for instance in terms of log-likelihood, as well as regularizers for
encouraging sparsity. Since the search space of DAGs is super-exponential in the number of nodes,
many methods rely on a greedy search, yet returning graphs in the true equivalence class (Meek,
1997; Hauser & Bühlmann, 2012; Wang et al., 2017; Yang et al., 2018). For instance, GIES (Hauser
& Bühlmann, 2012) repeatedly adds, removes, and flips the directions of edges in a proposal graph
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Figure 1: Visualization of the two training stages of ENCO, distribution fitting and graph fitting,
on an example graph with 3 variables (X1, X2, X3). The graph on the right further shows how the
parameters γ and θ correspond to edge probabilities. We learn those parameters by comparing
multiple graph samples on how well they generalize from observational to interventional data.

until no higher-scoring graph can be found. The Interventional Greedy SP (IGSP) algorithm (Wang
et al., 2017) is a hybrid method using conditional independence tests in its score function.

Continuous-optimization methods are score-based methods that avoid the combinatorial greedy
search over DAGs by using gradient-based methods (Zheng et al., 2018; Ke et al., 2019; Lachapelle
et al., 2020; Yu et al., 2019; Zheng et al., 2020; Zhu et al., 2020; Brouillard et al., 2020). Thereby, the
adjacency matrix is parameterized by weights that represent linear factors or probabilities of having
an edge between a pair of nodes. The main challenge of such methods is how to limit the search space
to acyclic graphs. One common approach is to view the search as a constrained optimization problem
and deploy an augmented Lagrangian procedure to solve it (Zheng et al., 2018; 2020; Yu et al., 2019;
Brouillard et al., 2020), including NOTEARS (Zheng et al., 2018) and DCDI (Brouillard et al., 2020).
Alternatively, Ke et al. (2019); Ng et al. (2020) propose to use a regularization term penalizing cyclic
graphs while allowing unconstrained optimization. However, the regularizer must be designed and
weighted such that the correct, acyclic causal graph is the global optimum of the score function.

3 EFFICIENT NEURAL CAUSAL DISCOVERY

3.1 SCOPE AND ASSUMPTIONS

We consider the task of finding a directed acyclic graph G = (V,E) with N variables of an unknown
CGM given observational and interventional samples. Firstly, we assume that: (1) The CGM is
causally sufficient, i.e., all common causes of variables are included and observable; (2) We have N
interventional datasets, each sparsely intervening on a different variable; (3) The interventions are
“perfect” and “stochastic”, meaning the intervention does not set the variable necessarily to a single
value. Thereby, we do not strictly require faithfulness, thus also recovering some graphs violating
faithfulness. We emphasize that we place no constraints on the domains of the variables (they can
be discrete, continuous, or mixed) or the distributions of the interventions. We discuss later how to
extend the algorithm to infer causal mechanisms in graphs with latent confounding causal variables.
Further, we discuss how to extend the algorithm to support interventions to subsets of variables only.

3.2 OVERVIEW

ENCO learns a causal graph from observational and interventional data by modelling a probability
for every possible directed edge between pairs of variables. The goal is that the probabilities
corresponding to the edges of the ground truth graph converge to one, while the probabilities of
all other edges converge to zero. For this to happen, we exploit the idea of independent causal
mechanisms (Pearl, 2009; Peters et al., 2016), according to which the conditional distributions for all
variables in the ground-truth CGM stay invariant under an intervention, except for the intervened
ones. By contrast, for graphs modelling the same joint distribution but with a flipped or additional
edge, this does not hold (Peters et al., 2016). In short, we search for the graph which generalizes best
from observational to interventional data. To implement the optimization, we alternate between two
learning stages, that is distribution fitting and graph fitting, visually summarized in Figure 1. Ke et al.
(2019) proposed a similar two-phase framework, but importantly differ in the graph parameterization.

Distribution fitting trains a neural network fφi per variable Xi parameterized by φi to model its
observational, conditional data distribution p(Xi|...). The input to the network are all other variables,
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X−i. For simplicity, we want this neural network to model the conditional of the variable Xi with
respect to any possible set of parent variables. We, therefore, apply a dropout-like scheme to the
input to simulate different sets of parents, similar as (Ke et al., 2019; Ivanov et al., 2019; Li et al.,
2020; Brouillard et al., 2020). In that case, during training, we randomly set an input variable Xj to
zero based on the probability of its corresponding edge Xj → Xi, and minimize

min
φi

EXEM [− log fφi(Xi;M−i �X−i)] , (1)

where Mj ∼ Ber(p(Xj → Xi)). For categorical random variables Xi, we apply a softmax output
activation for fφi , and for continuous ones, we use Normalizing Flows (Rezende & Mohamed, 2015).

Graph fitting uses the learned networks to score and compare different graphs on interventional data.
For parameterizing the edge probabilities, we use two sets of parameters: γ ∈ RN×N represents
the existence of edges in a graph, and θ ∈ RN×N the orientation of the edges. The likelihood of an
edge is determined by p(Xi → Xj) = σ(γij) · σ(θij), with σ(...) being the sigmoid function and
θij = −θji. The probability of the two orientations always sum to one. The benefit of separating
the edge probabilities into two independent parameters γ and θ is that it gives us more control over
the gradient updates. The existence of an (undirected) edge can usually be already learned from
observational or arbitrary interventional data alone, excluding deterministic variables (Pearl, 2009).
In contrast, the orientation can only be reliably detected from data for which an intervention is
performed on its adjacent nodes, i.e., Xi or Xj for learning θij . While other interventions eventually
provide information on the edge direction, e.g., intervening on a node Xk which is a child of Xi

and a parent of Xj , we do not know the relation of Xk to Xi and Xj at this stage, as we are in the
process of learning the structure. Despite having just one variable for the orientation, γij and γji are
learned as two separate parameters. One reason is that on interventional data, an edge can improve the
log-likelihood estimate in one direction, but not necessarily the other, leading to conflicting gradients.

We optimize the graph parameters γ and θ by minimizing

L̃ = EÎ∼pI(I)Ep̃Î(X)Epγ,θ(C)

[
N∑

i=1

LC(Xi)

]
+ λsparse

N∑

i=1

N∑

j=1

σ(γij) · σ(θij) (2)

where pI(I) is the distribution over which variable to intervene on (usually uniform), and p̃Î(X) the
joint distribution of all variables under the intervention Î . In other words, these two distributions
represent our interventional data distribution. With pγ,θ(C), we denote the distribution over adjacency
matrices C under γ,θ, where Cij ∼ Ber(σ(γij)σ(θij)). LC(Xi) is the negative log-likelihood
estimate of variable Xi conditioned on the parents according to C: LC(Xi) = − log fφi(Xi;C·,i �
X−i). The second term of Equation 2 is an `1-regularizer on the edge probabilities. It acts as a prior,
selecting the sparsest graph of those with similar likelihood estimates by removing redundant edges.

Prediction. Alternating between the distribution and graph fitting stages allows us to fine-tune the
neural networks to the most probable parent sets along the training. After training, we obtain a graph
prediction by selecting the edges for which σ(γij) and σ(θij) are greater than 0.5. The orientation
parameters prevent loops between any two variables, since σ(θij) can only be greater than 0.5 in
one direction. Although the orientation parameters do not guarantee the absence of loops with more
variable, we show that under certain conditions ENCO yet converges to the correct, acyclic graph.

3.3 LOW-VARIANCE GRADIENT ESTIMATORS FOR EDGE PARAMETERS

To update γ and θ based on Equation 2, we need to determine their gradients through the expectation
Epγ,θ(C), where C is a discrete variable. For this, we apply REINFORCE (Williams, 1992). For
clarity of exposition, we limit the discussion here to the final results and provide the detailed
derivations in Appendix A. For parameter γij , we obtain the following gradient:

∂

∂γij
L̃ = σ′(γij) · σ(θij) · EX,C−ij

[
LXi→Xj (Xj)− LXi 6→Xj (Xj) + λsparse

]
(3)

where EX,C−ij summarizes for brevity the three expectations in Equation 2, excluding the edge
Xi → Xj from C. Further, LXi→Xj (Xj) denotes the negative log-likelihood for Xj , if we include
the edge Xi → Xj to the adjacency matrix C−ij , i.e., Cij = 1, and LXi 6→Xj (Xj) if we set Cij = 0.
The gradient in Equation 3 can be intuitively explained: if by the addition of the edge Xi → Xj , the
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log-likelihood estimate of Xj is improved by more than λsparse, we increase the corresponding edge
parameter γij ; otherwise, we decrease it.

We derive the gradients for the orientation parameters θ similarly. As mentioned before, we only take
the gradients for θij when we perform an intervention on either Xi or Xj . This leads us to:

∂

∂θij
L̃ = σ′(θij)

(
p(IXi) · σ(γij) · EIXi ,X,C−ij

[
LXi→Xj (Xj)− LXi 6→Xj (Xj)

]
−

p(IXj ) · σ(γji) · EIXj ,X,C−ij

[
LXj→Xi(Xi)− LXj 6→Xi(Xi)

] ) (4)

The probability of taking an intervention on Xi is represented by p(IXi) (usually uniform across
variables), and EIXi ,X,C−ij the same expectation as before under the intervention on Xi. When
the oriented edge Xi → Xj improves the log-likelihood of Xj under intervention on Xi, then the
first part of the gradient increases θij . In contrast, when the true edge is Xj → Xi, the correlation
between Xi and Xj learned from observational data would yield a worse likelihood estimate of Xj

on interventional data on Xi than without the edge Xj → Xi. This is because p(Xj |Xi, ...) does not
stay invariant under intervening on Xi. The same dynamic holds for interventions on Xj . Lastly, for
independent nodes, the expectation of the gradient is zero.

Based on Equations 3 and 4, we obtain a tractable, unbiased gradient estimator by using Monte-Carlo
sampling. Luckily, samples can be shared across variables, making training efficient. We first sample
an intervention, a corresponding data batch, and K graphs from pγ,θ(C) (K usually between 20 and
100). We then evaluate the log likelihoods of all variables for these graphs on the batch, and estimate
LXi→Xj (Xj) and LXi 6→Xj (Xj) for all pairs of variables Xi and Xj by simply averaging the results
for the two cases separately. Finally, the estimates are used to determine the gradients for γ and θ.

Low variance. Previous methods (Ke et al., 2019; Bengio et al., 2020) relied on a different
REINFORCE-like estimator proposed by Bengio et al. (2020). Adjusting their estimator to our
setting of the parameter γij , for instance, the gradient looks as follows:

gij = σ(θij) · EX
[
EC [(σ(γij)− Cij) · LC(Xj)]

EC [LC(Xj)]
+ λsparse

]
(5)

0 1000 2000 3000 4000
Number of graph samples

10
3

10
2

10
1

A
vg

. g
ra

di
en

t s
td

 o
f 

ij ENCO (Ours)
W-REINFORCE

Figure 2: ENCO estimates gradients
of significantly lower variance com-
pared to (Bengio et al., 2020).

where gij represents the gradient of γij . Performing Monte-
Carlo sampling for estimating the gradient leads to a biased
estimate which becomes asymptotically unbiased with in-
creasing number of samples (Bengio et al., 2020). The di-
vision by the expectation of LC(Xj) is done for variance
reduction (Mahmood et al., 2014). Equation 5, however, is
still sensitive to the proportion of sampled Cij being one
or zero. A major benefit of our gradient formulation in
Equation 3, instead, is that it removes this noise by con-
sidering the difference of the two independent Monte-Carlo
estimates LXi→Xj (Xj) and LXi 6→Xj (Xj). Hence, we can
use a smaller sample size than previous methods and attain
10 times lower standard deviation, as visualized in Figure 2.

3.4 CONVERGENCE GUARANTEES

Next, we discuss the conditions under which ENCO convergences to the correct causal graph. We
show that not only does the global optimum of Equation 2 correspond to the true graph, but also that
there exist no other local minima ENCO can converge to. We outline the derivation and proof of these
conditions in Appendix B, and limit our discussion here to the main assumptions and implications.

To construct a theoretical argument, we make the following assumptions. First, we assume that sparse
interventions have been performed on all variables. Later, we show how to extend the algorithm to
avoid this strong assumption. Further, given a CGM, we assume that its joint distribution p(X) is
Markovian with respect to the true graph G. In other words, the parent set pa(Xi) reflects the inputs
to the causal generation mechanism of Xi. We assume that there exist no latent confounders in G.
Also, we assume the neural networks in ENCO are sufficiently large and sufficient observational data
is provided to model the conditional distributions of the CGM up to an arbitrary small error.

Under these assumptions, we produce the following conditions for convergence:
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Theorem 3.1. Given a causal graph G with variables X1, ..., XN and conditional observational
distributions p(Xi|...), the proposed method ENCO will converge to the true, causal graph G, if the
following conditions hold for all edges Xi → Xj in G:

1. For all possible sets of parents of Xj excluding Xi, by adding Xi the log-likelihood estimate
of Xj is improved or unchanged under the intervention on Xi:

∀p̂a(Xj) ⊆ X−i,j : EIXi ,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] ≥ 0 (6)

2. For at least one set of nodes p̂a(Xj), for which the probability to be sampled as parents of Xj

is greater than 0, Equation 6 must be strictly greater than zero.

3. The effect of Xi on Xj cannot be described by other variables up to λsparse:

min
p̂a⊆gpai(Xj)

EÎ∼pI−j (I)Ep̃Î(X)

[
log p(Xj |p̂a, Xi)− log p(Xj |p̂a)

]
> λsparse (7)

where gpai(Xj) is the set of nodes excluding Xi which, according to the ground truth graph,
could have an edge to Xj without introducing a cycle, and pI−j (I) refers to the distribution
over interventions pI(I) excluding the intervention on variable Xj .

Further, for all other pairs Xi, Xj for which Xj is a descendant of Xi, condition 1 and 2 must hold.

Condition 1 and 2 ensure that the orientations can be learned from interventions. Intuitively, ancestors
and descendants in the graph have to be dependent when intervening on the ancestors. This aligns
with the technical interpretation in Theorem 3.1 that the likelihood estimate of the child variable must
improve when intervening and conditioning on its ancestor variables. Condition 3 states intuitively
that the sparsity regularizer needs to be selected such that it chooses the sparsest graph among those
graphs with equal joint distributions as the ground truth graph, without trading sparsity for worse
distribution estimates. The specific condition in Theorem 3.1 ensures thereby that the set can be
learned with a gradient-based algorithm. We emphasize that this condition only gives an upper bound
for λsparse when sufficiently large datasets are available. In practice, the graph can thus be recovered
with a sufficiently small sparsity regularizer and dependencies among variables under interventions.
We provide more details for various settings and further intuition in Appendix B.

Interventions on fewer variables. It is straightforward to extend ENCO to support interventions
on fewer variables. Normally, in the graph fitting stage, we sample one intervention at a time. We
can, thus, simply restrict the sampling only to the interventions that are possible (or provided in the
dataset). In this case, we update the orientation parameters θij of only those edges that connect to an
intervened variable, either Xi or Xj , as before. For all other orientation parameters, we extend the
gradient estimator to include interventions on all variables. Although this estimate is more noisy and
does not have convergence guarantees, it can still be informative about the edge orientations.

Enforcing acyclicity When the conditions are violated, e.g. by limited data, cycles can occur in the
prediction. Since ENCO learns the orientations as a separate parameter, we can remove cycles by
finding the global order of variables O ∈ SN , with SN being the set of permutations, that maximizes
the pairwise orientation probabilities: argmaxO

∏N
i=1

∏N
j=i+1 σ(θOi,Oj ). This utilizes the learned

ancestor-descendant relations, making the algorithm more robust to noise in single interventions.

3.5 HANDLING LATENT CONFOUNDERS

So far, we have assumed that all variables of the graph are observable and can be intervened on. A
common issue in causal discovery is the existence of latent confounders, i.e., an unobserved common
cause of two or more variables introducing dependencies between each other. In the presence of latent
confounders, structure learning methods may predict false positive edges. Interestingly, in the context
of ENCO latent confounders for two variables Xi, Xj cause a unique pattern of learned parameters.
When intervening on Xi or Xj , having an edge between the two variables is disadvantageous, as
in the intervened graph Xi and Xj are (conditionally) independent. For interventions on all other
variables, however, an edge can be beneficial as Xi and Xj are correlated.

Exploiting this, we extend ENCO to detect latent confounders. We focus on latent confounders
between two variables that do not have any direct edges with each other, and assume that the
confounder is not a child of any other observed variable. For all other edges besides between Xi
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Table 1: Comparing structure learning methods in terms of structural hamming distance (SHD) on
common graph structures (lower is better), averaged over 25 graphs each. ENCO outperforms all
baselines, and by enforcing acyclicity after training, can recover most graphs with minimal errors.

Graph type bidiag chain collider full jungle random

GIES 33.6 (±7.5) 17.5 (±7.3) 24.0 (±2.9) 216.5 (±15.2) 33.1 (±2.9) 57.5 (±14.2)
IGSP 32.7 (±5.1) 14.6 (±2.3) 23.7 (±2.3) 253.8 (±12.6) 35.9 (±5.2) 65.4 (±8.0)
GES + Orientating 14.8 (±2.6) 0.5 (±0.7) 20.8 (±2.4) 282.8 (±4.2) 14.7 (±3.1) 60.1 (±8.9)
SDI 9.0 (±2.6) 3.9 (±2.0) 16.1 (±2.4) 153.9 (±10.3) 6.9 (±2.3) 10.8 (±3.9)
DCDI 16.9 (±2.0) 10.1 (±1.1) 10.9 (±3.6) 21.0 (±4.8) 17.9 (±4.1) 7.7 (±3.2)

ENCO (ours) 2.2 (±1.4) 1.7 (±1.3) 1.6 (±1.6) 9.2 (±3.4) 1.7 (±1.3) 4.6 (±1.9)
ENCO-acyclic (ours) 0.0 (±0.0) 0.0 (±0.0) 1.6 (±1.6) 5.3 (±2.3) 0.6 (±1.1) 0.2 (±0.5)

and Xj , we can still rely on the guarantees in Section 3.4 since Equation 7 already includes the
possibility of additional edges in such cases. After convergence, we score every pair of variables on
how likely they share a latent confounder using a function lc(·) that is maximized in the scenario
mentioned above. For this, we define γij = γ

(I)
ij + γ

(O)
ij where γ(I)ij is only updated with gradients

from Equation 3 under interventions on Xi, and γ(O)
ij on all others. With this separation, we define

the following score function which is maximized by latent confounders:

lc(Xi, Xj) = σ
(
γ
(O)
ij

)
· σ
(
γ
(O)
ji

)
·
(
1− σ

(
γ
(I)
ij

))
·
(
1− σ

(
γ
(I)
ji

))
(8)

To converge to the mentioned values, especially of γ(O)
ij , we need a similar condition as in Equation 7:

the improvement on the log-likelihood estimate gained by the edge Xi → Xj and conditioned on all
other parents of Xj needs to be larger than λsparse on interventional data excluding Xi and Xj . If this
is not the case, the sparsity regularizer will instead remove the edge between Xi and Xj preventing
any false predictions among observed variables. For all other pairs of variables, at least one of the
terms in Equation 8 converges to zero. Thus, we can detect latent confounders by checking whether
the score function lc(Xi, Xj) is greater than a threshold hyperparameter τ ∈ (0.0, 1.0). We discuss
possible guarantees in Appendix B, and experimentally verify this approach in Section 4.5.

4 EXPERIMENTS

We evaluate ENCO on structure learning on synthetic datasets for systematic comparisons and real-
world datasets for benchmarking against other methods in the literature. The experiments focus on
graphs with categorical variables, and experiments on continuous data are included in Appendix D.5.
Our code is publicly available at https://github.com/phlippe/ENCO.

4.1 EXPERIMENTAL SETUP

Graphs and datasets. Given a ground-truth causal graphical model, all methods are tasked to recover
the original DAG from a set of observational and interventional data points for each variable. In case
of synthetic graphs, we follow the setup of Ke et al. (2019) and create the conditional distributions
from neural networks. These networks take as input the categorical values of its variable’s parents,
and are initialized orthogonally to output a non-trivial distribution.

Baselines. We compare ENCO to GIES (Hauser & Bühlmann, 2012) and IGSP (Wang et al., 2017;
Yang et al., 2018) as greedy score-based approaches, and DCDI (Brouillard et al., 2020) and SDI (Ke
et al., 2019) as continuous optimization methods. Further, as a common observational baseline, we
apply GES (Chickering, 2002) on the observational data to obtain a graph skeleton, and orient each
edge by learning the skeleton on the corresponding interventional distribution. We perform a separate
hyperparameter search for all baselines, and use the same neural network setup for SDI, DCDI, and
ENCO. Appendix C provides a detailed overview of the hyperparameters for all experiments.

4.2 CAUSAL STRUCTURE LEARNING ON COMMON GRAPH STRUCTURES

We first experiment on synthetic graphs. We pick six common graph structures and sample 5,000
observational data points and 200 per intervention. The graphs chain and full represent the
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Figure 4: Experiments on graphs with interventions on fewer variables. Additional graphs are shown
in Appendix D.2. ENCO outperforms DCDI on bidiag and jungle, even for very few interventions.

minimally- and maximally-connected DAGs. The graph bidiag is a chain with 2-hop connections,
and jungle is a tree-like graph. In the collider graph, one node has all other nodes as parents.
Finally, random has a randomly sampled graph structure with a likelihood of 0.3 of two nodes being
connected by a direct edge. For each graph structure, we generate 25 graphs with 25 nodes each, on
which we report the average performance and standard deviation. Following common practice, we
use structural hamming distance (SHD) as evaluation metric. SHD counts the number of edges that
need to be removed, added, or flipped in order to obtain the ground truth graph.

Table 1 shows that the continuous optimization methods outperform the greedy search approaches on
categorical variables. SDI works reasonably well on sparse graphs, but struggles with nodes that have
many parents. DCDI can recover the collider and full graph to a better degree, yet degrades for sparse
graphs. ENCO performs well on all graph structures, outperforming all baselines. For sparse graphs,
cycles can occur due to limited sample size. However, with enforcing acyclicity, ENCO-acyclic
is able to recover four out of six graphs with less than one error on average. We further include
experiments with various sample sizes in Appendix D.1. While other methods do not reliably recover
the causal graph even for large sample sizes, ENCO attains low errors even with smaller sample sizes.

4.3 SCALABILITY
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Figure 3: Evaluating SDI, DCDI, and ENCO on
large graphs in terms of SHD (lower is better).
Dots represent single experiments, lines connect
the averages. DCDI ran OOM for 1000 nodes.

Next, we test ENCO on graphs with large sets
of variables. We create random graphs ranging
from N = 100 to N = 1,000 nodes with larger
sample sizes. Every node has on average 8 edges
and a maximum of 10 parents. The challenge of
large graphs is that the number of possible edges
grows quadratically and the number of DAGs
super-exponentially, requiring efficient methods.

We compare ENCO to the two best performing
baselines from Table 1, SDI and DCDI. All meth-
ods were given the same setup of neural networks
and a maximum runtime which corresponds to 30
epochs for ENCO. We plot the SHD over graph
size and runtime in Figure 3. ENCO recovers the
causal graphs perfectly with no errors except for
the 1,000-node graph, for which it misses only
one out of 1 million edges in 2 out of 10 experiments. SDI and DCDI achieve considerably worse
performance. This shows that ENCO can efficiently be applied to 1,000 variables while maintaining
its convergence guarantees, underlining the benefit of its low-variance gradient estimators.

4.4 INTERVENTIONS ON FEWER VARIABLES

We perform experiments on the same datasets as in Section 4.2, but provide interventional data only
for a randomly sampled subset of the 25 variables of each graph. We compare ENCO to DCDI,
which supports partial intervention sets, and plot the SHD over the number of intervened variables in
Figure 4. Despite ENCO’s guarantees only holding for full interventions, it is still competitive and
outperforms DCDI in most settings. Importantly, enforcing acyclicity has an even greater impact on
fewer interventions as more orientations are trained on non-adjacent interventions (see Appendix B.4
for detailed discussion). We conclude that ENCO works competitively with partial interventions too.
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Table 3: Results on graphs from the BnLearn library measured in structural hamming distance (lower
is better). Results are averaged over 5 seeds with standard deviations listed in Appendix C.5. Despite
deterministic variables and rare events, ENCO can recover all graphs with almost no errors.

Dataset cancer asia sachs child alarm diabetes pigs
(5 nodes) (8 nodes) (11 nodes) (20 nodes) (37 nodes) (413 nodes) (441 nodes)

SDI 3.0 4.0 7.0 11.2 24.4 422.4 18.0
DCDI 4.0 5.0 5.4 8.4 30.0 - -

ENCO (Ours) 0.0 0.0 0.0 0.0 1.0 2.0 0.0

4.5 DETECTING LATENT CONFOUNDERS

Table 2: Results of ENCO on detecting la-
tent confounders. The missed confounders
do not affect other edge predictions.

Metrics ENCO

SHD 0.0 (±0.0)
Confounder recall 96.8% (±9.5%)
Confounder precision 100.0% (±0.0%)

To test the detection of latent confounders, we create a
set of 25 random graphs with 5 additional latent con-
founders. The dataset is generated in the same way as
before, except that we remove the latent variable from
the input data and increase the observational and inter-
ventional sample size (see Appendix C.3 for ablation
studies). After training, we predict the existence of a
latent confounder on any pair of variables Xi and Xj

if lc(Xi, Xj) is greater than τ . We choose τ = 0.4 but
verify in Appendix C.3 that the method is not sensitive to the specific value of τ . As shown in Table 2,
ENCO detects more than 95% of the latent confounders without any false positives. What is more,
the few mistakes do not affect the detection of all other edges, which are recovered perfectly.

4.6 REAL-WORLD INSPIRED DATA

Finally, we evaluate ENCO on causal graphs from the Bayesian Network Repository (BnLearn)
(Scutari, 2010). The repository contains graphs inspired by real-world applications that are used as
benchmarks in literature. In comparison to the synthetic graphs, the real-world graphs are sparser
with a maximum of 6 parents per node and contain nodes with strongly peaked marginal distributions.
They also include deterministic variables, making the task challenging even for small graphs.

We evaluate ENCO, SDI, and DCDI on 7 graphs with increasing sizes, see Table 3. We observe
that ENCO recovers almost all real-world causal graphs without errors, independent of their size. In
contrast, SDI suffers from more mistakes as the graphs become larger. An exception is pigs (Scutari,
2010), which has a maximum of 2 parents per node, and hence is easier to learn. The most challenging
graph is diabetes (Andreassen et al., 1991) due to its large size and many deterministic variables.
ENCO makes only two mistakes, showing that it can handle deterministic variables well. We discuss
results on small sample sizes in Appendix C.5, observing similar trends. We conclude that ENCO can
reliably perform structure learning on a wide variety of settings, including deterministic variables.

5 CONCLUSION

We propose ENCO, an efficient causal structure learning method leveraging observational and
interventional data. Compared to previous work, ENCO models the edge orientations as separate
parameters and uses an objective unconstrained with respect to acyclicity. This allows for easier
optimization and low-variance gradient estimators while having convergence guarantees. As a
consequence, the algorithm can efficiently scale to graphs that are at least one order of magnitude
larger graphs than what was possible. Experiments corroborate the capabilities of ENCO compared
to the state-of-the-art on an extensive array of settings on graph sizes, sizes of observational and
interventional data, latent confounding, as well as on both partial and full intervention sets.

Limitations. The convergence guarantees of ENCO require interventions on all variables, although
experiments on fewer interventions have shown promising results. Future work includes investigating
guarantee extensions of ENCO to this setting. A second limitation is that the orientations are
missing transitivity: if X1 � X2 and X2 � X3, then X1 � X3 must hold. A potential direction is
incorporating transitive relations for improving convergence speed and results on fewer interventions.
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ETHICS STATEMENT

Causal structure learning algorithms such as the proposed method are mainly used to uncover and
understand causal mechanisms from data. The knowledge of the underlying causal mechanisms can
then be applied to decide on specific actions that influence variables or factors in a desired way. For
instance, by knowing that the environmental pollution in a city has an impact on the risk of cancer
of its residents, one can try to reduce the pollution to decrease the risk of cancer. The applications
of causal structure learning are ranging across many scientific disciplines, including computational
biology (Friedman et al., 2000; Sachs et al., 2005; Opgen-Rhein & Strimmer, 2007), epidemiology
(Robins et al., 2000; Vandenbroucke et al., 2016), and economics (Pearl, 2009; Hicks et al., 1980). We
envision that our work can have positive impacts on those fields. One example we want to highlight
is the field of genomics. Recent advances have enabled to perform gene knockdown experiments
in a large scale, providing large amounts of interventional data (Dixit et al., 2016; Macosko et al.,
2015). Gaining insights into how specific genes and diseases interact can lead to the development of
novel pharmaceutic methods for treating current diseases. Since the number of variables in those
experiments is tremendous, efficient causal structure learning algorithms are needed. The proposed
method constitutes a first step towards this goal, and our work can foster future work for creating
algorithms scaling beyond 10,000 variables.

Since the possible applications are fairly wide-ranging, there might be potential impacts we cannot
forecast at the current time. This includes misuses of the method for unethical purposes. For instance,
the method can be used to justify gender and race as causes for irrelevant variables if the output is
misinterpreted, initial assumptions of the model are ignored, or the input data has been manipulated.
Hence, the obligation to use this method in a correct way within ethical boundaries lies on the user.
We emphasize this responsibility of the user in the license of our code.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have published the source code of the proposed method ENCO at
https://github.com/phlippe/ENCO. The code includes instructions on how to download
the datasets, and reproduce the experiments in Section 4 and additional experiments in Appendix D.
Further, for all experiments of Section 4, we have included a detailed overview in Appendix C of
(a) the used data and its generation process, (b) all hyperparameters used for all methods, and (c)
additional details on the results. All experiments have been repeated with 5 to 25 seeds to obtain
stable, reproducible results. Appendix C.1.2 outlines the packages that have been used for running
the baselines.

The computation resources deployed for all experiments are a 24-core CPU with a single NVIDIA
RTX3090 GPU. All experiments can be reproduced on a computer with a single GPU, and only the
experiments on graphs larger than 100 variables require a GPU memory of about 24GB. The other
experiments can be performed on smaller GPUs as well.
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A GRADIENT ESTIMATORS

The following section describes in detail the derivation of the gradient estimators discussed in
Section 3.3. We consider the problem of causal structure learning where we parameterize the graph
by edge existence parameters γ and orientation parameters θ. Our objective is to optimize γ and
θ such that we maximize the probability of interventional data, i.e., data generated from the true
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graphs under (arbitrary) interventions on single variables. Thereby, the likelihood estimates have
been trained on observational data only. Additionally, we want to ensure that the graph is as sparse
as possible to prevent unnecessary connections. Thus, an `1 regularizer is added on top of the edge
probabilities. The full objective can be written as follows:

L̃ = EÎ∼pI(I)Ep̃Î(X)Epγ,θ(C)

[
N∑

i=1

LC(Xi)

]
+ λsparse

N∑

i=1

N∑

j=1

σ(γij)σ(θij) (9)

where:

• N is the number of variables in the causal graph (X1, ..., XN );
• pI(I) is the distribution over interventions that are performed. This distribution can be set

as a hyperparameter to weight certain interventions higher than others. In our experiments,
we assume it to be uniform across interventions on variables;

• p̃Î(X) is the joint distribution of all variables under the intervention Î;
• pγ,θ(C) is the distribution over adjacency matrices C, which we model as a product of

independent edge probabilities: pγ,θ(C) =
∏N
i=1

∏N
j=1,j 6=i σ(γij) · σ(θij);

• LC(Xi) is the negative log-likelihood estimate of variable Xi under sampled adjacency
matrix C: LC(Xi) = − log fφi(Xi;C·,i �X−i);

• λsparse is a hyperparameter representing the regularization weight.

Based on this objective, we derive the gradient estimators for optimizing both edge existence and
orientation parameters.

A.1 LOW-VARIANCE GRADIENT ESTIMATOR FOR EDGE PARAMETERS

In order to optimize the edge parameters via SGD, we need to determine the gradient ∂
∂γij
L̃. Since L

consists of a sum of two terms, i.e., the log-likelihood estimate and the regularization, we can look at
both parts separately. To prevent any confusion of index variables, we will use k, l as indices for the
parameter γkl for which we determine the gradient, i.e., ∂

∂γkl
L̃, and i, j as indices for sums.

As a first step, we determine the gradients for the regularization term. Those can be found by taking
the derivative of the sigmoid:

∂

∂γkl
λsparse

N∑

i=1

N∑

j=1

σ(γij)σ(θij) = σ(γkl) · (1− σ(γkl)) · σ(θkl)λsparse (10)

Thus, it is straight-forward to calculate for any edge parameter. In the following, we use σ′(...) to
abbreviate the derivate of the sigmoid: σ′(γkl) = σ(γkl)(1− σ(γkl)).
For the log-likelihood term, we start by reorganizing the expectations to simplify the gradient
expression. The derivate term ∂

∂γkl
can be moved inside the two expectations over interventional data

since those are independent of the graph parameters. Thus, we can write:

∂

∂γkl
L̃′ = EÎ∼pI(I)Ep̃Î(X)

∂

∂γkl
Epγ,θ(C)

[
N∑

i=1

LC(Xi)

]
(11)

For readability, we denote L̃′ to be the objective in Equation 9 without the regularizer.

Next, we take a closer look at the derivate of the expectation over adjacency matrices. Note that
we have defined the adjacency matrix distribution as pγ,θ(C) =

∏N
i=1

∏N
j=1,j 6=i σ(γij)σ(θij), with

Cij = 1 representing the edge Xi → Xj . Since a parameter γij only influences the likelihood of the
edge Xi → Xj and no other edges, we can reduce the expectation to a single binary variable over
which we need to differentiate the expectation:

∂

∂γkl
Epγ,θ(C)

[
N∑

i=1

LC(Xi)

]
= Epγ,θ(C−kl)

[
∂

∂γkl
Epγ,θ(Ckl)

[
N∑

i=1

LC(Xi)

]]
(12)
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Figure 5: Visualizing the gradient calculation for the incoming edges of X2 in an example graph with
three variables. The intervention is being performed on X1, and the data is used to calculate the log-
likelihood estimates under the three randomly sampled graphs: LC1(X2),LC2(X2) and LC3(X2).
Those terms are assigned to the Monte-Carlo estimators for LXi→X2(X2) and LXi 6→X2(X2), and
finally used to determine the gradients for γ and θ. The same process is performed for X3 as well.

where pγ,θ(Ckl) = σ(γkl) · σ(θkl). The first expectation over pγ,θ(C−kl) is independent of γkl as
we have defined the adjacency matrix distribution to be a product of independent edge probabilities.

The log-likelihood estimate of a variable, LC(Xi), depends on the adjacency matrix column C·,i
which represents the input connections to the node Xi. All other edges have no influence on the
log-likelihood estimate of Xi. Hence, the parameter γkl only influences LC(Xl), and thus we can
reduce the sum inside the expectation to:

∂

∂γkl
Epγ,θ(Ckl)

[
N∑

i=1

LC(Xi)

]
=

∂

∂γkl
Epγ,θ(Ckl) [LC(Xl)] (13)

The REINFORCE trick is a simple method to move the derivative of a discrete distribution inside the
expectation. Applied to our situation, we obtain:

∂

∂γkl
Epγ,θ(Ckl) [LC(Xl)] = Epγ,θ(Ckl)

[
LC(Xl)

∂ log pγ,θ(Ckl)

∂γkl

]
(14)

This leaves us with two cases in the expectation: Ckl = 0 and Ckl = 1. In other words, we need to
distinguish between samples of C where we have the edge Xk → Xl, and where we do not have such
an edge (Xk 6→ Xl). Thus, we can also write the expectation as a weighted sum of those two cases:

Epγ,θ(C)

[
LC(Xl)

∂ log pγ,θ(Ckl)

∂γkl

]
= σ(γkl) · σ(θkl) · LXk→Xl(Xl) ·

∂ log σ(γkl) · σ(θkl)
∂γkl

+

(1− σ(γkl) · σ(θkl)) · LXl 6→Xk(Xk) ·
∂ log (1− σ(γkl) · σ(θkl))

∂γkl
(15)

We useLXk→Xl(Xl) to denote the (expected) negative log likelihood forXl under adjacency matrices
where we have an edge from Xk to Xl:

LXk→Xl(Xl) = Epγ,θ(C−kl),Ckl=1 [LC(Xl)] (16)

LXk 6→Xl(Xl) = Epγ,θ(C−kl),Ckl=0 [LC(Xl)] (17)

The final step is to solve the two derivative terms in Equation 14. This is done as follows:

∂ log σ(γkl) · σ(θkl)
∂γkl

=
∂ log σ(γkl) + log σ(θkl)

∂γkl
= 1− σ(γkl) (18)

∂ log (1− σ(γkl) · σ(θkl))
∂γkl

= −σ(γkl) · (1− σ(γkl)) · σ(θkl)
1− σ(γkl) · σ(θkl)

(19)
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Figure 6: Plotting the gradient estimate variance of ENCO for three variables of γ compared to
previous REINFORCE-like approach by Bengio et al. (2020) on an example graph with K = 100.
The gradients have been scaled to match in terms of averages. We can see a clear reduction in variance
with the gradient estimator of ENCO allowing us to use lower sample sizes.

Putting these results back in the original equation and adding the sparsity regularizer, we get:

∂

∂γij
L̃ = σ(γij) · (1− σ(γij)) · σ(θij) · EX,C−ij

[
LXi→Xj (Xj)− LXi 6→Xj (Xj) + λsparse

]
(20)

To align the result with the gradient in Section 3.3, we switch the index notation from k, l to i, j
again. The expectation EX,C−ij is a short form for the expectations EÎ∼pI(I)Ep̃Î(X)Epγ,θ(C−ij).
From this expression, we can see that the gradients of γij are proportional to the difference of the
expected negative log-likelihood of Xj with having an edge between Xi → Xj , and the cases where
Xi 6→ Xj . The sparsity regularizer thereby biases the difference towards the no-edge case. The value
of γij and θij only scale the gradient, but do not influence its direction.

In order to train this objective on a dataset of interventional data, we can use Monte-Carlo sampling
to obtain an unbiased gradient estimator. Note that the adjacency matrix samples to estimate
LXi→Xj (Xj) and LXi 6→Xj (Xj) are not required to be the same. For efficiency, we instead sample
K adjacency matrices from pγ,θ(C), evaluate the likelihood of a batch X under all these graphs.
Afterwards, we assign the evaluated samples to one of the two cases, depending on Cij being zero or
one. This way, we can reuse the same graph samples for all edge parameters γ. We visualize the
gradient calculation in Figure 5. In the cases where we perform an intervention on Xi, we do not
optimize γij for this step and set the gradients to zero. The same holds for gradient steps where we
do not have any samples for one of the two log-likelihood estimates.

A.1.1 COMPARISON TO PREVIOUS GRADIENT ESTIMATORS

As discussed in Section 3, previous work on similar structure learning methods (Bengio et al., 2020;
Ke et al., 2019) relied on a different estimator. In terms of derivation, the main difference is the
continuation from Equation 14 on. In our proposed method, we write the expectation as the sum
of two terms that can independently be approximated via Monte-Carlo sampling. In comparison,
Bengio et al. (2020) proposed to directly apply a Monte-Carlo sampler to Equation 14, and apply an
importance sampling weight to reduce the variance. This estimator is also used in the method SDI
(Ke et al., 2019) to which we have experimentally compared our method.

Figure 2 compared the gradient estimator in terms of standard deviation. The gradient estimator of
ENCO achieves a 10 times lower standard deviation compared to Bengio et al. (2020) making it much
more efficient. Since the estimator by Bengio et al. (2020) is biased and has a different mean, we
have scaled both estimators to have the same mean. Specifically, we have applied ENCO to random
graphs from our experiments on synthetic graphs (see Section 4.2), and evaluated 64, 000 sampled
adjacency matrices in terms of log-likelihood estimates. These 64, 000 samples are grouped into sets
of K samples which we have used to estimate the gradients of γ. We evaluated different values of K,
from K = 20 to K = 4000, and plotted the standard deviation of those estimates in Figure 2. We
have also visualized three examples as violin plots in Figure 6 that demonstrate that despite both
estimators having a similar mean, the variance of gradient estimates is much higher for Bengio et al.
(2020).
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To verify that the improvement of ENCO is not just because of the gradient estimators, we have
performed an ablation study with ENCO deploying the gradient estimator of Bengio et al. (2020) in
Appendix D.3.

A.2 LOW-VARIANCE GRADIENT ESTIMATOR FOR ORIENTATION PARAMETERS

To derive the gradients for the orientation parameters θ, we can mostly follow the same approach as
for the edge existence parameters γ. However, we have to keep in mind the constraint θkl = −θlk
which ensures that the orientation probability sums to one: σ(θkl) + σ(θlk) = 1.

To determine the gradient of the likelihood term, we can separate the two gradients of θkl and θlk.
This is because θkl only influences the expectation over LC(Xl), while θlk concerns LC(Xk). We
can follow Equation 11 to Equation 20 of Section A.1 by swapping θkl and γkl. For the derivative
through the expectation, we obtain the following gradient:

∂

∂θkl
Epγ,θ(C) [LC(Xl)] = σ′(θkl) · σ(γkl) · Epγ,θ(C−kl) [LXk→Xl(Xl)− LXk 6→Xl(Xl)] (21)

Since we have the condition that θkl = −θlk, the full gradient for θkl would therefore consist of
the gradient above minus the gradient of Equation 21 with respect to θji. However, as discussed in
Section 3.3, the orientation of an edge cannot be learned from observational data in this framework.
Hence, we only want to use the gradients of θkl if we intervene on node Xk, which gives us the
following gradient expression:

∂

∂θij
L̃ = σ′(θij)

(
p(IXi) · σ(γij) · EIXi ,X,C−ij

[
LXi→Xj (Xj)− LXi 6→Xj (Xj)

]
−

p(IXj ) · σ(γji) · EIXj ,X,C−ij

[
LXj→Xi(Xi)− LXj 6→Xi(Xi)

] ) (22)

To align the equation with the one in Section 3.3, we swap the indices k, l with i, j again. The
first line represents cases where we have an intervention on the variable Xi, while we have it over
interventions on the variable Xj in the second line. The two terms are weighted based on the edge
existence likelihood σ(γij) and σ(γji) respectively, and the likelihood of performing an intervention
on Xi or Xj . In our experiments, we use a uniform probability across interventions on variables, but
emphasize that this is not strictly required. Moreover, one could design heuristics that selects the
intervention to update the parameters on with the aim of increasing computational efficiency. The
gradient estimators presented in Equation 22 would still be valid in such a case.

We clarify that we do not consider the gradients of θij with respect to the edge regularizer. This is
done for two reasons. Firstly, the orientation parameter models only the direction of the edge, not
whether it exists or not. The regularizer would increase θij if the edge existence for the opposite
direction would be greater than for the direction from Xi to Xj , i.e.γij < γji, and decrease θij if
we have γij > γji. However, the orientation should only model the causal direction of an edge.
Hence, we do not gain any value from a causal perspective when adding the regularizer to the
gradient. Secondly, the regularizer would require us to take additional assumptions for guaranteeing
the discovery of the true graph upon convergence. In experiments with using a regularizer in the
θ-gradient, we did not observe any difference to the experiments without the regularizer.

We note that the orientation parameters are considered to be pairwise independent. In other words,
θij and θkl are considered independent parameters if i 6= k, l and j 6= k, l. Global order distributions
such as Plackett-Luce (Plackett, 1975; Luce, 1959) can be used to also incorporate transitive relations.
However, those require high variance gradient estimators and struggled with chains in early experi-
ments. The pairwise orientation parameters provide much easier optimization while still providing
convergence guarantees for the full intervention setting.

A.3 TRAINING LOOP

Finally, we give an overview over the full training loop in Algorithm 1. The distribution over
interventions p(I) is set to a uniform distribution for all our experiments. However, the distribution

19



Published as a conference paper at ICLR 2022

can also be replaced by a heuristic which selects interventions to increase computational efficiency.
To keep the convergence guarantees, p(I) would have to guarantee a non-zero probability to pick any
variable. In experiments, we experienced that the Adam optimizer (Kingma & Ba, 2015) speeds up
the convergence of the parameters γ and θ while not interfering with the convergence guarantees in
practice.

Algorithm 1: Learning algorithm of ENCO

Data: N variables {X1, ..., XN}; observational dataset Dobs; interventional datasets Dint(Î) for
sparse, perfect interventions on all variables; distribution over interventions p(I)

Result: A graph structure corresponding to the cuasal relations among variables
Initialize γ = 0,θ = 0
for number of epochs do

/* Distribution fitting */
for F iterations do

X ∼ Dobs
for i← 1 to N do

Ml ∼ Ber(σ(γli) · σ(θli))
L = − log fφi(Xi;M−i �X−i)
φi ← Adam(φi,∇φiL)

end
end
/* Graph fitting */
for G iterations do

/* Sample an intervention */

Î ∼ p(I) with intervention target Xt

X ∼ Dint(Î)
/* Evaluate multiple graph samples for gradient estimator */
for k = 1 to K do

C(k) ∼ Ber(σ(γ) · σ(θ))
for i = 1 to N do
LC(k)(Xi)← − log fφi(Xi;C

(k)
:,i �X−i)

end
end
/* Update parameters */
for i = 1 to N do

for j = 1 to N where j 6= i and j 6= t do
/* Considering edge Xi → Xj */

LXi→Xj (Xj)←
∑K
k=1 C

(k)
ij ·LC(k) (Xj)∑K
k=1 C

(k)
ij

LXi 6→Xj (Xj)←
∑K
k=1(1−C

(k)
ij )·L

C(k) (Xj)∑K
k=1(1−C

(k)
ij )

γij ← γij − σ′(γij) · σ(θij) ·
[
LXi→Xj (Xj)− LXi 6→Xj (Xj) + λsparse

]

if i == t then
θij ← θij − σ′(θij) · σ(γij) ·

[
LXi→Xj (Xj)− LXi 6→Xj (Xj)

]
θji ← −θij

end
end

end
end

end
return G = (V,E) with V =X and
E = {(Xi, Xj) | i, j ∈ [1, N ] and i 6= j and σ(γij) > 0.5 and σ(θij) > 0.5}
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B CONDITIONS FOR CONVERGING TO THE TRUE CAUSAL GRAPH

The following section gives an overview and proves the conditions under which ENCO converges to
the correct causal graph given sufficient time and data. We emphasize that we provide conditions here
for which no local optima exist, meaning that if ENCO converges, it returns the correct causal graph.
This is a stronger statement than showing that the global optimum corresponds to the true graph,
since a gradient-based algorithm can get stuck in a local optimum. We will discuss the conditions for
the global optimum in Appendix B.2.5.

To make the proof more accessible, we will first discuss the assumptions that are needed for the
guarantee, and then give a sketch of the proof. The proof will first assume that we work in the data
limit, i.e. have given sufficient data, such that we can derive conditions that solely depend on the
causal graphical model. In Appendix B.2.3, we extend the proof to the limited data setting.

B.1 ASSUMPTIONS

Assumption 1 We are given a dataset of observational data from the joint distribution p(X).
Additionally, we have N interventional datasets for N variables where in each intervention a different
node is intervened on (the intervention size for each dataset is therefore 1).

Assumption 2 A common assumption in causal structure learning is that the data distribution over
all variables p(X) is Markovian and faithful with respect to the causal graph we are trying to model.
This means that the graph represents the (conditional) independence relations between variables in the
data, and (conditional) independence relations in the data reflect the edges in the graph. For ENCO,
faithfulness is not strictly required. This is because we work with interventional data. Instead, we rely
on the Markov property and assume that for all variables, the parent set pa(Xi) reflects the inputs to
the causal generation mechanism of Xi. This allows us to also handle deterministic variables.

Assumption 3 For this proof, we assume that all variables of the graph are known and observable,
and no latent confounders exist. Latent confounders can introduce dependencies between variables
which are not reflected by the ground truth graph solely on the observed variables. We discuss the
extension of latent confounders in Section 3.5 and Appendix B.3.

Assumption 4 ENCO relies on neural networks to determine the conditional data distributions
p(Xi|...). Hence, for providing a guarantee, we assume that in the graph learning step the neural
networks have been sufficiently trained such that they accurately model all possible conditional
distribution p(Xi|...). In practice, the neural networks might have a slight error. However, as long as
enough data, network complexity, and training time is provided, it is fair to assume that the difference
between the modeled distribution and the true conditional is smaller than an arbitrary constant ε,
based on the universal approximation theorem (Hornik et al., 1989). For the limited data setting, see
Appendix B.2.3.

Assumption 5 We are given a sufficiently large interventional dataset such that sampling data
points from it models the exact interventional distribution under the true causal graph. This can
be achieved by, for example, sampling directly from the causal graph, or having an infinitely large
dataset. For the limited data setting, see Appendix B.2.3.

B.2 CONVERGENCE CONDITIONS

The proof of the convergence conditions consists of the following three main steps:

Step 1 We show under which conditions the orientation parameters θij will converge to +∞, i.e.
σ(θij)→ 1, if Xi is an ancestor of Xj . Similarly, if Xi is a descendant of Xj , the parameter
θij will converge to −∞, i.e. σ(θij)→ 0.

Step 2 Under the assumption that the orientation parameters have converged as in Step 1, we show
that for edges in the true graph, γij will converge to 1. Note that we need to take additional
assumptions/conditions with respect to λsparse here.
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Step 3 Once the parameters γij and θij have converged for the edges in the ground truth graph, we
show that all other edges will be removed by the sparsity regularizer.

The following paragraphs provide more details for each step. Note that causal graphs that do not
fulfill all parts of the convergence guarantee can still eventually be recovered. The reason is that
the conditions listed in the theorems below ensure that there exists no local minima for θ and γ to
converge in. Although local minima exist, the optimization process might converge to the global
minimum of the true causal graph.
Theorem B.1. Consider the edge Xi → Xj in the true causal graph. The orientation parameter θij
converges to σ(θij) = 1 if the following two conditions are fulfilled:

(1) for all possible sets of parents of Xj excluding Xi, adding Xi improves the log-likelihood
estimate of Xj under the intervention on Xi, or leaves it unchanged:

∀p̂a(Xj) ⊆ X−i,j : EIXi ,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] ≥ 0 (23)

(2) there exists a set of nodes p̂a(Xj), for which the probability to be sampled as parents of Xj

is greater than 0, and the following condition holds:

∃p̂a(Xj) ⊆ X−i,j : EIXi ,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] > 0 (24)

Proof. Based on the conditions in Equations 23 and 24, we need to show that the gradient of θij
is negative in expectation, independent of other values of γ and θ. For readability, we define the
following function:

T (Xk, Xl) = EIXk ,X,C−kl [LXk→Xl(Xl)− LXk 6→Xl(Xl)] (25)

Hence, the gradient of θij can be written as:

∂

∂θij
L̃ = σ′(θij) ·

(
p(IXi) · σ(γij) · T (Xi, Xj)− p(IXj ) · σ(γji) · T (Xj , Xi)

)
(26)

Looking at the gradient of θij in Equation 26, the conditions correspond to T (Xi, Xj) being smaller
or equals to zero. Note that the sign is flipped because in T (Xi, Xj), we have negative log-likelihoods
represented by LXk→Xl(Xl), while in Equations 23 and 24, we have log-likelihoods. Further, the
other factors of σ′(θij), σ(γij) and p(IX) are all limited in the range of (0, 1) meaning that the sign
of the gradient is solely determined by T (Xi, Xj) and T (Xj , Xi). If T (Xi, Xj) − T (Xj , Xi) is
smaller than zero, then the gradient of θij is negative, i.e.increasing θij .

First, we look at when T (Xi, Xj) < 0. The condition in Equation 23 ensures that conditioning Xj

on a true parent Xi when intervening on Xi does not lead to a worse log-likelihood estimate than
without. While this condition might seem natural, there are special cases where this condition does
not hold for all variables (see Section B.2.4). The second condition, Equation 24, guarantees that
there is at least one parent set for which T (Xi, Xj) is negative. Therefore, in expectation over all
possible adjacency matrices pγ,θ(C), T (Xi, Xj) is smaller than zero if the two conditions hold.

To guarantee that the whole gradient of θij is negative, we also need to show that for interventions
on Xj , T (Xj , Xi) can only be positive. When intervening on Xj , Xi and Xj become independent
as the edge Xi → Xj is removed in the intervened graph. A distribution p(Xi|Xj , ...) relying on
correlations between Xi and Xj from observational data cannot achieve a better estimate than the
same distribution when removing Xj . This is because the cross entropy is minimized when the
sampled distribution, in this case p(Xi), is equal to the log-likelihood estimator (Cover & Thomas,
2005):

−
∑

xi,xj

p(Xi = xi) log p(Xi = xi) ≤
∑

xi,xj

p(Xi = xi) log q(Xi = xi|Xj = xj) (27)

The only situation where Xi and Xj can become conditionally dependent under interventions on Xj

is ifXi andXj share a collider Xk, andXi is being conditioned on the collider Xk and Xj . However,
this requires that θki has negative gradients, i.e. θki increasing, when intervening on Xk. This cannot
be the case since under interventions on Xk, Xi and Xk become conditionally independent, and the
correlations learned from observational data cannot be transferred to the interventional setting. If Xk
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and Xi again share a collider, we can apply this argumentation recursively until a node Xn does not
share a collider with Xi. The recursion will always come to an end as we have a finite set of nodes,
and the causal graph is assumed to be acyclic.

Thus, if the conditions in Equations 23 and 24 hold for an edge Xi → Xj in the causal graph, we
can guarantee that with sufficient time and data, the corresponding orientation parameter θij will
converge to σ(θij) = 1.

Theorem B.2. Consider a pair of variables Xi, Xj for which Xi is an ancestor of Xj without direct
edge in the true causal graph. Then, the orientation parameter of the edge Xi → Xj converges to
σ(θij) = 1 if the same conditions as in Theorem B.1 hold for the pair of Xi, Xj .

Proof. To show this theorem, we need to consider two cases for a pair of variables Xi and Xj : Xi

and Xj are conditionally independent under a sampled adjacency matrix C, or Xi and Xj are not
independent. Both cases need to be considered for an intervention on Xi with the log-likelihood
estimate of Xj , and an intervention on Xj with the log-likelihood estimate of Xi.

First, we discuss interventions on Xi. If under the sampled adjacency matrix C, Xj is conditionally
independent of Xi, the difference in the log-likelihood estimates T (Xi, Xj) is zero in expectation.
The variables can be independent if, for example, the parents of Xj are all parents of the true causal
graph. If Xj is not conditionally independent of Xi, the conditions in Equations 23 and 24 from
Theorem B.1 ensure that Xi has, in expectation, a positive effect on the log-likelihood estimate of
Xj . Thus, under interventions on Xi, the gradient of θij is smaller or equals to zero, i.e.increases θij .

Next, we consider interventions on Xj . If under the sampled adjacency matrix Xi is conditionally
independent of Xj , the difference in the log-likelihood estimates T (Xj , Xi) is zero. The variables
can be independent if Xi is conditioned on variables that d-separate Xi and Xj in the true causal
graph. For instance, having the children of Xi as parents of Xi creates this scenario. However, for
this scenario to take place, one or more orientation parameters of parent-child or ancestor-descendant
pairs must be incorrectly converged. In case of a parent-child pair Xi, Xk, Theorem B.1 shows that
σ(θik) will converge to one removing any possibility of a reversed edge to be sampled. In case of
an ancestor-descendant pair Xi, Xl, we can apply a recursive argument: as Xl d-separates Xi and
Xj , Xl must come before Xj in the causal order. If for the gradient θil, we have a similar scenario
with Xi being conditionally independent of Xj , the same argument applies. This can be recursively
applied until no more variables except direct children of Xi can d-separate Xi and Xj . In that case,
σ(θik) will converge to one, which leads to all other orientation parameters to converge to one as well.
If Xi is not conditionally independent of Xj , we can rely back on the argumentation of Theorem B.1
when we have an edge Xi → Xj : as in the intervened causal graph, Xi and Xj are independent, any
correlation learned from observational data can only lead to a worse log-likelihood estimate. In cases
of colliders, we can rely on the recursive argument from before. Thus, under interventions on Xj , the
gradient of θij must be smaller or equals to zero in expectation, i.e.increases θij .

Therefore, we can conclude that σ(θij) converges to one for any ancestor-descendant pairs Xi, Xj

under the conditions in Theorem B.1.

Theorem B.3. Consider an edge Xi → Xj in the true causal graph. The parameter γij converges
to σ(γij) = 1 if the following condition holds:

min
p̂a⊆gpai(Xj)

EÎ∼pI−j (I)Ep̃Î(X)

[
log p(Xj |p̂a, Xi)− log p(Xj |p̂a)

]
> λsparse (28)

where gpai(Xj) is the set of nodes excluding Xi which, according to the ground truth graph,
could have an edge to Xj without introducing a cycle, and pI−j (I) refers to the distribution over
interventions pI(I) excluding the intervention on variable Xj .

Proof. To show this convergence, we assume that the orientation parameters have converged cor-
responding to Theorem B.1 and B.2. The parameter γij converges to σ(γij) = 1 if its gradient,
∂

∂γij
L̃, is negative independent of other values of γ and orientation parameters θ that are not included

in Theorem B.1 and B.2. The gradient of γij includes an expectation over adjacency matrices
pγ,θ(C). Based on the converged θ-values, we only need to consider sets of nodes as parents for
Xj that contain parents, ancestors, or (conditionally) independent nodes according to the ground
truth graph. This sets of parents is represented by gpai(Xj). Among those remaining parent sets,
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we need to ensure that for any such set, the gradient is negative. The condition in Equation 28
corresponds to the inequality ∂

∂γij
L̃ < 0 since the term on the left represents the log-likelihood

difference LXi→Xj (Xj)−LXi 6→Xj (Xj) in the gradients of γij in Equation 20 with a flipped sign.
For readability and better interpretation, λsparse has been moved on the right site of the inequality. This
is possible as λsparse is independent of the two expectations in Equation 28. If the inequality holds for
all parent sets p̂a), the gradient of γij can be guaranteed to be negative in expectation, independent of
the other values of γ. Since the distribution over parent sets p̂a) depends on other values of γ, the
condition in Equation 28 ensures that even for the parent set with the lowest log-likelihood difference,
it is still larger than λsparse. If this condition holds, then the gradient of ∂

∂γij
L̃ will be smaller than

zero independent of other values of γ.

The condition in Equation 28 introduces a dependency between convergence guarantees and the
regularizer parameter λsparse. The lower we set the regularization weight λsparse, the more edges
we can guarantee to recover. If the regularization weight is set too high, we can eventually obtain
false negative edge predictions. If the regularization weight is set very low, we take a longer time
to converge as it requires lower gradient variance or more update steps, and is more sensitive in a
limited data regime. Nonetheless, if sufficient computational resources and data is provided, any
value of λsparse > 0 can be used.
Theorem B.4. Assume for all edges Xi → Xj in the true causal graph, σ(θij) and σ(γij) have
converged to one. Then, the likelihood of all other edges, i.e.σ(θlk) · σ(θlk), will converge to zero
under the condition that λsparse > 0.

Proof. If all edges in the ground truth graph have converged, all other pairs of variables Xl, Xk

are (conditionally) independent in the graph. This statement follows from the Markov property of
the graph and excludes ancestor-descendant pairs Xi, Xj . The possibility of having edges from
descendants to ancestors has been removed by the fact that the orientation parameters θij have
converged according to Theorem B.2. Thus, for those cases, we already have the guarantee that
σ(θij) · σ(θij) converges to zero.

For a conditionally independent pair Xl, Xk, the difference of the log-likelihood estimate in the
gradient of γlk, i.e.LXl→Xk(Xk)− LXl 6→Xk(Xk), is zero in expectation since independent nodes
do not share any information. Thus, the gradient remaining is:

∂

∂γlk
L̃ = σ′(γlk) · σ(θlk) · λsparse (29)

Since the gradient is positive independent of the values of γlk and θlk, γlk will decrease until it
converges to σ(γlk) = 0.

Hence, if γlk decreases for all pairs of (conditionally) independent variables Xl, Xk in the ground
truth graph, and σ(θlk) converged to zero for children and descendants, the product σ(γlk) · σ(θlk)
will converge to zero for all edges not existing in the ground truth graph.

For graphs that fulfill all conditions in the Theorems B.1 and B.4, ENCO is guaranteed to converge
given sufficient data and time. The conditions in the theorems ensure that there exist no local minima
or saddle points in the loss surface of the objective in Equation 2 with respect to γ and θ.

Summary We can summarize the conditions discussed above as follows. Given a causal graph G
with variables X1, ..., XN and sparse interventions on all variables, the proposed method ENCO will
converge to the true, causal graph G, if the following three conditions hold for all edges Xi → Xj in
the true causal graph G:

1. For all possible sets of parents of Xj excluding Xi, adding Xi improves the log-likelihood
estimate of Xj under the intervention on Xi, or leaves it unchanged:

∀p̂a(Xj) ⊆ X−i,j : EIXi ,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] ≥ 0 (30)

2. There exists a set of nodes p̂a(Xj), for which the probability to be sampled as parents of Xj

is greater than 0, and the following condition holds:

∃p̂a(Xj) ⊆ X−i,j : EIXi ,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] > 0 (31)
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X1 X2 X3

Figure 7: Example graph for which we check the convergence conditions described in Appendix B.2.
The conditional distributions are given in Equation 33 to 35.

3. The effect of Xi on Xj cannot be described by other variables up to λsparse:

min
p̂a⊆gpai(Xj)

EÎ∼pI−j (I)Ep̃Î(X)

[
log p(Xj |p̂a, Xi)− log p(Xj |p̂a)

]
> λsparse (32)

where gpai(Xj) is the set of nodes excluding Xi which, according to the ground truth graph,
could have an edge to Xj without introducing a cycle.

Further, for all other pairs Xi, Xj for which Xj is a descendant of Xi, conditions (1) and (2) need to
hold as well.

B.2.1 EXAMPLE FOR CHECKING CONVERGENCE CONDITIONS

In the following, we will provide a walkthrough for how the conditions above can be checked on a
simple example graph. For further details on the precise calculations, we provide a Jupyter Notebook
that contains all calculations in this example1.

Suppose we have a graph with 3 binary variables, X1, X2, X3, with the causal graph being X1 →
X2 → X3, i.e., a small chain. For simplicity, let us assume that the true, conditional distributions are
the following:

p(X1) = Bern(0.7) (33)

p(X2|X1) =

{
X1 with prob. 0.6
X1 ⊕ 1 with prob. 0.4

(34)

p(X3|X2) =

{
X2 with prob. 0.2
X2 ⊕ 1 with prob. 0.8

(35)

In other words, X2 is equals to the value of X1 with a probability of 0.6, and the opposite binary
value otherwise. Similarly, X3 is equals to the value of X2 with a probability of 0.2, and the opposite
binary value with a probability of 0.8. Therefore, the sample with the highest probability in this joint
distribution would be X1 = 1, X2 = 1, X3 = 0. Further, we assume that all interventions replace
the respective conditional distribution by a uniform distribution, i.e., pIXi (Xi) = Bern(0.5). Next,
we will check the conditions for the edges in G, i.e., X1 → X2 and X2 → X3, and the remaining
ancestor-descendant pair X1, X3.

Edge X1 → X2:

• Condition 1: the possible parent sets that exclude X1 and X2 are X3 and the empty set. For
the empty set, we get:

EIX1
,X [log p(X2|X1)− log p(X2)] ≈ 0.023 ≥ 0

For conditioning on X3, we obtain:

EIX1
,X [log p(X2|X1, X3)− log p(X2|X3)] ≈ 0.015 ≥ 0

Since both values are greater than zero, condition 1 is fulfilled for X1 → X2.

• Condition 2: is already fulfilled by the equations in condition 1 since all parent sets have a
difference greater than zero.

1The calculations can be found in the notebook called convergence_guarantees_ENCO.ipynb,
see https://github.com/phlippe/ENCO/blob/main/convergence_guarantees_ENCO.
ipynb .
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• Condition 3: the set gpa1(X2) is the empty set since X3 is a descendant of X2, and no other
nodes exist in the graph. Thus, the parent set minimizing the expression on the left can only
be the empty set, and we can calculate it as follows:

EÎ∼pI−2
(I)Ep̃Î(X)

[
log p(X2|X1)−log p(X2)

]
≈ 1/2 · 0.023︸ ︷︷ ︸

IX1

+1/2 · 0.017︸ ︷︷ ︸
IX3

= 0.020 > λsparse

with assuming pI(I) being the uniform distribution, and excluding IX2
since we do not

update γ12 in this case. Hence, as long as λsparse is smaller than 0.02, the condition is
fulfilled.

Edge X2 → X3:

• Condition 1: the possible parent sets that exclude X2 and X3 are X1 and the empty set. For
the empty set, we get:

EIX2
,X [log p(X3|X2)− log p(X3)] ≈ 0.194 ≥ 0

For conditioning on X1, we obtain:

EIX2
,X [log p(X3|X2, X1)− log p(X3|X1)] ≈ 0.200 ≥ 0

Since both values are greater than zero, condition 1 is fulfilled for X2 → X3.
• Condition 2: is already fulfilled by the equations in condition 1 since all parent sets have a

difference greater than zero.
• Condition 3: the set gpa2(X3) contains the variable X1 since we can introduce an edge
X1 → X3 without introducing acyclicity in the true, causal graph. Thus, we need to
compare two parent sets for finding the minimum of the left-side term: X1 and the empty
set. First, we consider the empty set:

EÎ∼pI−3
(I)Ep̃Î(X)

[
log p(X3|X2)−log p(X3)

]
≈ 1/2 · 0.194︸ ︷︷ ︸

IX1

+1/2 · 0.194︸ ︷︷ ︸
IX2

= 0.194 > λsparse

Again, we exclude IX3 since we do not update γ23 in this case. The second case considers
X1 as additional parent set p̂a:

EÎ∼pI−3
(I)Ep̃Î(X)

[
log p(X3|X2, X1)− log p(X3|X1)

]
≈ 1/2 · 0.186︸ ︷︷ ︸

IX1

+1/2 · 0.200︸ ︷︷ ︸
IX2

= 0.193 > λsparse

The minimum of both values is 0.193. Hence, the edge X2 → X3 can be recovered if
0.193 > λsparse.

Ancestor-descendant pair X1, X3:

• Condition 1: the possible parent sets that exclude X1 and X3 are X2 and the empty set. For
the empty set, we get:

EIX1
,X [log p(X3|X1)− log p(X3)] ≈ 0.008 ≥ 0

For conditioning on X2, we obtain:

EIX1
,X [log p(X3|X1, X2)− log p(X3|X2)] = 0 ≥ 0

The difference is zero because X3 is independent of X1 when conditioned on X2:
p(X3|X1, X2) = p(X3|X2) Since both values are greater or equals to zero, condition
1 is fulfilled for the pair X1, X3.

• Condition 2: from condition 1, we can see that the parent set of p̂a(X3) being the empty
set is the only option that fulfills the condition being greater than zero. Since we start the
optimization process with an initialization that assigns a non-zero probability to all possible
parent sets, it follows that p̂a(X3) being the empty set has a probability greater than zero
throughout the optimization process. Hence, condition 2 is fulfilled as well.
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Summary: in conclusion, for the discussed example, we can guarantee that ENCO converges to
the correct causal graph if λsparse < 0.02. To experimentally verify this results, we applied ENCO
on this graph with two hyperparameter settings for the sparsity regularizer: λsparse = 0.019 and
λsparse = 0.021. We considered a very large sample size, more specifically 10k per intervention and
100k observational samples, to simulate the data limit regime. For λsparse = 0.019, ENCO was able
to recover the graph without errors while for λsparse = 0.021, the edge X1 → X2 was, as expected,
missed. This verifies the theoretical result above with respect to λsparse. Note that if the condition is
not fulfilled by selecting a too large sparsity regularizer, this does not necessarily mean that ENCO
will not be able to recover the graph. This is because we consider the ’worst-case’ parent set in
condition 3, while this case might not be in the true causal graph to which the other edges converge.

B.2.2 INTUITION BEHIND CONDITION 1 AND 2

As mentioned in the text, condition 1 and 2 of Theorem 3.1 ensure that the orientation probabilities
cannot converge to any local optima. Since the conditions explicitly involve the data distributions and
implicitly the gradient estimators, we provide below an assumption from a data generation mechanism
perspective as an alternative, that ensures condition 1 and 2 to be satisfied.

Firstly, we assume that ancestors and descendants are not independent under interventions on the
ancestors. Note that there can exist graphs where the ancestors are independent of descendants,
for instance in a linear Gaussian setting when the ancestor has a weight of zero on the descendant.
However, those graphs, violating faithfulness, are impossible to find for any causal discovery method
since the variables are independent under any setting. In terms of condition 1 and 2, it would imply
that the inequality is always zero.

Next, we show that under the previous assumption, local optima of the orientation probabilities can
only occur in the following structure: for an edge Xi → Xj , there exist one or more parent(s) of Xj

sharing a common confounder Xk with Xi, where Xk is not a direct parent of Xj . An example of
this structure is the following: X1 → X2, X3; X2, X3 → X4 where the orientations of the edges
X2 → X4 and X3 → X4 could have a local optimum. This statement can be proven as follows by
using the do-calculus (Pearl, 2009). Suppose a graph that includes the three variables X1, X2, X3

with X1 → X2, X3 → X2, and X2 having no parents besides X1 and X3. If X1 and X3 do not
share a confounder, then, from do-calculus, we know that p(X2|do(X1 = x1)) = p(X2|X1 = x1)
and p(X2|do(X3 = x3)) = p(X2|X3 = x3). Furthermore, since the conditional entropy of a
variable can only be smaller or equals to the marginal, i.e. H(X) ≥ H(X|Y ), estimating X2 under
interventions on X1 can only be improved by conditioning on X1, and similarly for X3. Thus,
condition 1 is strictly fulfilled when parents do not share a confounder under the previous assumption
of no independence in all possible settings. Now, consider the situation where X1 and X3 share a
common confounder. Then, from do-calculus, we can state that there can exist a parameterization of
the conditional distributions for which p(X2|do(X1 = x1)) 6= p(X2|X1 = x1). Under this setting,
we cannot guarantee that condition 1 is always fulfilled. However, whether this parent-confounder
structure above actually leads to a local optimum or not depends on the distributions, which condition
1 models. Intuitively, this requires the mutual information between the two or more parents to be
very high, and the initial edge probabilities of those edges to be very low. Further, as the results show,
this combination of events is not very common in practice, meaning that as long as the ancestor and
descendant are not independent under the interventions, we usually converge to a graph with the
correct orientation.

Besides, if the confounderXj ofX1 andX3 is a parent ofX2, then the local optimum would disappear
with learning that edge since p(X2|do(X1 = x1), Xj) = p(X2|X1 = x1, Xj). In conclusion, for
many of the graph structures like chain, bidiag, collider, full and jungle, this shows that there does not
exist any local optima for the orientation probabilities. Only for the certain structures of confounded
parents, there may exist local optima that depend on the specific distribution parameterization.

B.2.3 LIMITED DATA REGIME

Assumption (3) and (4) are taken with respect to the data limit such that the conditions derived in the
next section solely depend on the given causal graphical model. However, in practice, we often have
a limited data set. The proof presented for the data limit is straightforward to extend to this setting
with the following modification:
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Figure 8: Causal graph structures for which, under specific parameterization of the conditional
distributions, the conditions for guaranteeing convergence can be violated.

• The conditional distributions p(X|...) are replaced by the conditional distributions that
follow from the given, observational data.

• The expectations over the interventional data p̃Î(X) is replaced by the joint distribution
over samples given for the intervention Î .

• Theorem B.1 and B.2 for the edge Xi → Xj are extended as follows:

(3) For all possible sets of parents of Xi excluding Xj , adding Xj does not improve the
log-likelihood estimate of Xi under the intervention on Xj , or leaves it unchanged:

∀p̂a(Xi) ⊆ X−i,j : EIXj ,X [log p(Xi|p̂a(Xi), Xj)− log p(Xi|p̂a(Xi))] ≤ 0 (36)

This condition is the inverse statement of Equation 23, in the sense that we consider
interventions on the child/descendant Xj . In the data limit, this naturally follows from
Equation 23 and Equation 24, but in the limited data regime, we might have violations of
Equation 36 due to biases in our samples. Violations of Equation 36 are the cause of ENCO
predicting cyclic graphs as seen in Section 4.2.

• Finally, Theorem B.4 does not necessarily hold anymore since noise in our data can lead to
an overestimation of edges. Thus, we add the following condition:

(1) For all pairs of variables Xi, Xj for which there exists no direct causal relation in the
true causal graph, and Xj not being the ancestor of Xi, the following condition has to
hold:

min
p̂a⊆(gpai(Xj)\pa(Xj))

EÎ∼pI−j (I)Ep̃Î(X)

[
log p(Xj |pa(Xj), p̂a, Xi)−log p(Xj |pa(Xj), p̂a)

]
< λsparse

(37)
where gpai(Xj) is the set of nodes excluding Xi which, according to the ground truth
graph, could have an edge to Xj without introducing a cycle.

This condition ensures that no correlations due to sample biases introduce additional edges
in the causal graphs.

If the conditions discussed above hold with respect to the given observational and interventional
dataset, we can guarantee that ENCO will converge to the true causal graph given sufficient time.

B.2.4 GRAPHS WITH LIMITED GUARANTEES

Most common causal graphs fulfill the conditions mentioned above, as long as a small enough value
for λsparse is chosen. Still, there are situations where we cannot guarantee that ENCO convergences
to the correct causal graph independent of the chosen value of λsparse. Here, we want to discuss two
scenarios visualized in Figure 8 under which the guarantees fail. Still, we want to emphasize that
despite graphs not fulfilling the conditions, ENCO might still converge to the correct DAG for those
as the guarantee conditions assume the worst-case scenarios for θ and γ in all situations.

The first example we discuss is based on a fork structure where we have three binary variables,
{X1, X2, X3}, and the edges X1 → X3 and X2 → X3 (see Figure 8a). The parameterization we
look at is a (noisy) XOR-gate for X3 with its two input variables X1, X2 being independent of
each other and uniformly distributed. The conditional probability distribution p(X3|X1, X2) can be
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summarized in the following probability function:

p(X3 = 1|X1, X2) =





ε if X1 = 0, X2 = 0

1− ε if X1 = 1, X2 = 0

ε if X1 = 0, X2 = 1

1− ε if X1 = 1, X2 = 1

(38)

In other words, if X1 6= X2, X3 is equals 1 with a likelihood of 1− ε. If X1 = X2, X3 is equals 1
with a likelihood of ε. The issue that this probability table creates is the following. Knowing only one
out of the two variables does not improve the log likelihood estimate for the output. This is because
X1 and X2 are independent of each other, and p(X3|X1) = p(X3) is a uniform distribution. Hence,
the worst-case parent set in Equation 6 would be the empty set, and leads to an expected difference
log-likelihood difference of zero. As λsparse is required to be greater than zero for Theorem B.4, we
cannot fulfill the condition for that graph. This means that an empty graph without any edges is
a local minimum to which ENCO could converge. Yet, when the edge probabilities are non-zero,
we will sample adjacency matrices with both input variables being a parent of X3 with a non-zero
probability. Hence, the log-likelihood difference for X1 and X2 to X3 is unequal zero. Further, this
graph is still often correctly discovered despite ENCO not having a convergence guarantee for it.
We have conducted experiments on this graph with ε = {0.1, 0.2, 0.3, 0.4, 0.45} using a sparsity
regularizer of λsparse = 1e-4, and in all cases, ENCO converged to the correct, acyclic graph. Note
that values close to 0.5 for ε are most challenging, because the difference between the true conditional
and marginal distribution goes against zero.

The second example we want to discuss aims at graphs that violate the condition in Theorem B.1,
more specifically Equation 23. The graph we consider is a fully connected graph with three variables
X1, X2, X3 (see Figure 8b). The scenario can be described as follows: if knowing X2 informs
the log-likelihood estimate of X3 more about X1 than about X2 itself, an intervention on X2 and
a sampled graph with the edge X2 → X3 could lead to a worse likelihood estimate of X3 than
without the edge. For this scenario to happen, p(X2|X1) must be close to deterministic. Additionally,
p(X3|X1, X2) must be much less reliant on X2 than on X1, such as in the following probability
density:

p(X3 = 1|X1, X2) =





ε1 if X1 = 0, X2 = 0

1− ε1 if X1 = 1, X2 = 0

ε2 if X1 = 0, X2 = 1

1− ε2 if X1 = 1, X2 = 1

(39)

The two variables ε1, ε2 represent small constants close to zero. In this case, the graph can violate the
condition in Equation 23 since intervening on X2 breaks the dependency between X1 and X2. The
conditional distribution p(X3|X2) learned from observational data relies on the dependency between
X1 and X2 which can make it to a worse estimate than p(X3). Note that if the edge X1 → X3 is
learned by ENCO though, this will not constitute a problem anymore since with conditioning on X1,
i.e. p(X3|X2, X1), the edge X2 → X3 will gain a gradient towards the correct graph. Thus, when γ
and θ are not initialized with the worst-case values, the graph with both X1 and X2 as parents of X3

can be sampled and provides gradients in the correct direction. Further, we did not observe any of
these situations in the synthetic and real-world graphs we experimented on.

B.2.5 CONDITIONS FOR THE GLOBAL OPTIMUM

So far, the discussion focused on proving that the optimization space does not contain any local
optima with respect to the graph parameters γ and θ besides the global optimum. If these conditions
are violated, ENCO might still converge to the correct solution, since we are not guaranteed to find
and get stuck in one of these local optima. Thus, in this section, we provide conditions under which
the ground truth graph is the global optimum of the objective in Equation 2. Graphs that fulfill
these conditions are very likely to be correctly identified by ENCO, but with a suboptimal choice of
hyperparameters, initial starting conditions etc., we could return an incorrect graph.

The conditions and proof follow a similar structure to those as before for the local optima. We first
discuss when we can guarantee that the global optima has the same orientation of edges, and then
when we also find the correct parent set of the remaining variables.
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Theorem B.5. For every pair of variables Xi, Xj where Xi is a parent of Xj , the graph Ĝ that
optimizes objective in Equation 2 models the orientation Xi → Xj , if there exists an edge between
Xi and Xj in Ĝ, under the following conditions:

• Xi and Xj are not independent under observational data.

• Under interventions on Xi, Xi and Xj are not independent given the true parent set of Xj .

Proof. If Xi and Xj are independent under observational data, the observational distributions would
not identify any correlation among those two variables. Hence, transferring them for any graph to
interventional data would have p(Xi|...) = p(Xi|Xj , ...), thus making the objective invariant to the
orientation of the edge, and removing any edge between Xi and Xj for sparsity.

If Xi and Xj are dependent, we can prove the statement by showing that modeling the orientation
Xj → Xi will strictly lead to a worse estimate under the intervention on Xj since the orientation
parameters are optimized by comparing the interventions of the two adjacent variables. Under
interventions on Xi, the causal mechanism p(Xj |pa(Xj)), with pa(Xj) being the parent set of the
ground truth graph including Xi, remains invariant under interventions on Xi, and is strictly better
than p(Xj |pa(Xj)\Xi) for estimatingXj due to the direct causal relation. Under interventions onXj ,
the causal mechanism p(Xi|Xj , ...) leads to a strictly worse estimate as discussed in Theorem B.1,
since the dependency between Xi and Xj does not exist in the interventional regime. Hence, the
inverse orientation of the edge Xi → Xj , i.e. Xj → Xi cannot be part of the global optimum.

Theorem B.6. For every pair of variables Xi, Xj where Xi is an ancestor but not direct parents of
Xj , the graph Ĝ that optimizes objective in Equation 2 does not include the edge Xj → Xi if the
conditions in Theorem B.5 hold.

Proof. To show this statement, we need to consider different independence relations between Xi

and Xj . First, if Xi and Xj are independent in the observational dataset given any conditional set,
the edge will be removed since any edge between two independent variables is removed for any
λsparse > 0. The same holds if Xi and Xj are independent for interventions on Xi and Xj .

If they are dependent, we can follow a similar argument as in Theorem B.2. The causal mechanism
p(Xj |Xi, ...) transfers from observational to interventional data on Xi since on interventions on
Xi, the causal mechanism of Xj is not changed. Further, when intervening on Xj , Xi and Xj

become independent such that any mechanism p(Xi|Xj , ...) cannot transfer except if Xi and Xj are
independent under interventions on Xj . In this case, the edge will be again removed by the sparsity
regularizer. This shows that for any setting, the orientation of the edge Xj → Xi cannot lead to a
better estimate than Xi → Xj , and in case of independence, the edge Xj → Xi will be removed as
well.

Theorem B.7. The graph Ĝ that optimizes objective in Equation 2 models the same parent sets for
each variable under the following conditions:

• The conditions in Theorem B.5 hold.

• For any variable Xi with its true parent set pa(Xi), there does not exist a smaller parent
set p̂a ⊂ X \ Xi, descendants(Xi) which approximates the log-likelihood of Xi up to
λsparse · (|pa(Xi)| − |p̂a|) on average.

• The regularization parameter λsparse is greater than zero.

Proof. If the orientations for all edges are according to the ground truth graph in the global optimum
following Theorem B.5 and B.6, the parent set for a variable Xi is limited to those variables which
are not descendants of Xi. From the ground truth graph, we know that, conditioned on the true
parent set pa(Xi), Xi is independent of all other non-descendant variables. Thus, the log-likelihood
estimate of Xi, i.e. the left part of the objective in Equation 2, is optimized by p(Xi|pa(Xi)). To
show that this is also the global optimum when combining with the regularizer, we need to consider
those parent sets of Xi which obtain a lower penalty, i.e. smaller parent sets. The difference between
two parent sets pa(Xi) and p̂a in terms of the regularizer corresponds to λsparse · (|pa(Xi)| − |p̂a|).
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Figure 9: Visualization of the different graph structures we need to consider in the guarantee
discussion of latent confounder detection. Latent variables Xl are shown in white, all other variables
are observed. (a) The two children of Xl, X1 and X2, are independent of each other. (b) X1 is an
ancestor of X3, and the two variables have a shared latent confounder Xl.

Thus, if there exists no parent set for which this difference is greater than the penalty for the worse
log-likelihood estimate, the true parent set pa(Xi) constitutes the global optimum.

B.3 CONVERGENCE CONDITIONS FOR LATENT CONFOUNDER DETECTION

In Section 3.5, we have discussed that ENCO can be extended to graph with latent confounders.
For this, we have to record the gradients of γij for the interventional data on Xi and all other
interventional data separately. We define γij = γ

(I)
ij +γ

(O)
ij where γ(I)ij is only updated with gradients

from Equation 3 under interventions on Xi, and γ(O)
ij on all others. The score to detect latent

confounders is:

lc(Xi, Xj) = σ
(
γ
(O)
ij

)
· σ
(
γ
(O)
ji

)
·
(
1− σ

(
γ
(I)
ij

))
·
(
1− σ

(
γ
(I)
ji

))
(40)

In this section, we show under which conditions the score lc(Xi, Xj) converges to one if Xi and Xj

share a latent confounder. We restrict our discussion to latent confounders between two variables that
do not have any direct edges with each other, and assume that the confounder is not a child of any
other observed variable. We assume that the causal graph based on the observed variable fulfills all
conditions of Theorem B.1 to B.4 in Section B.2, meaning that without the latent confounders, the
graph could have been recovered without errors. Under those conditions, we can also show that the
graph among observed variables with latent confounders is also correctly recovered. This is since the
latent confounders only affect Theorem B.4: if Xi and Xj share a latent confounder, they are not
conditionally independent given their observed parents. Thus, we can rely on the fact that all edges
in the true causal graph will be found according to Theorem B.1 to B.4, and the edges with latent
confounders do not fulfill Theorem B.4.

For all pairs of variables that do not share a latent confounder, lc(Xi, Xj) converges to zero. The
edges that are removed in Theorem B.4 converge to σ(γ(O)

ij ) = 0 which sets lc(Xi, Xj) to zero. For
edges that have been recovered, we state in Equation 24 that the gradient for interventional data must
be negative for interventions on the parent. Hence, σ(γ(I)ji ) converges to one which brings lc(Xi, Xj)
to zero again.

For variables that share a latent confounder, we distinguish between two cases that are visualized
in Figure 9. In the first case, we assume that Xi and Xj are independent in the true causal graph
excluding the latent confounder. This means that an intervention on Xi does not cause any change in
Xj , and vice versa. The second case describes the situation where Xi is an ancestor of Xj . The case
of Xi being a parent of Xj has been excluded in earlier assumptions as in those cases, we cannot
separate the causal effect of Xi on Xj based on its causal relation and the latent confounder.

In case that the two children of the latent confounder are not an ancestor-descendant pair, we can
provide a guarantee under the following conditions.

Theorem B.8. Consider a pair of variables Xi, Xj that share a latent confounder Xl. Assume that
Xi and Xj are conditionally independent given the latent confounder and their observed parents.
Further, all other edges in the causal graph have been recovered under the conditions of Theorem B.1
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to B.4. The confounder score lc(Xi, Xj) converges to one if the following two conditions hold:

EÎ∼pI-Xi
(I)Ep̃Î(X)

[
log p(Xj |pa(Xj), Xi)− log p(Xj |pa(Xj))

]
> λsparse (41)

EÎ∼pI-Xj
(I)Ep̃Î(X)

[
log p(Xi|pa(Xi), Xj)− log p(Xi|pa(Xi))

]
> λsparse (42)

Proof. We need to show that under the two conditions above, σ(γ(O)
ij ) and σ(γ(O)

ji ) are guaranteed to

converge to one while σ(γ(I)ij ) and σ(γ(I)ji ) converge to zero. The distribution pI-Xk
(I) represents the

distribution over interventions excluding the ones performed on the variable Xk. The two conditions
resemble Equation 28 with the difference that the intervention on the potential parent variable is
excluded, and the parent set is the true parent set of the correct causal graph. This is because all other
edges have been correctly recovered, and the two conditions are concerning σ(γ(O)

ij ). If the condition

in Equation 41 holds, it corresponds to a negative gradient in γ(O)
ij following the argumentation in

Theorem B.3. The same holds for γ(O)
ji . Therefore, σ(γ(O)

ij ) and σ(γ(O)
ji ) are guaranteed to converge

to one under the conditions given in Theorem B.8.

For the interventional parameters γ(I)ij and γ(I)ji , we show that the gradient can only be positive,

i.e.decreasing γ(I)ij and γ(I)ji . Under the intervention on Xi, Xi and Xj become independent since
we assume perfect interventions. In this case, the log-likelihood estimate of Xj cannot be improved
by conditioning on Xi. Hence, the difference LXi→Xj (Xj)− LXi 6→Xj (Xj) is greater or equal to
zero. When further considering the sparsity regularizer λsparse, the gradient of γij under interventions
on Xi can only be positive, i.e.decreasing γ(I)ij . The same argument holds for γ(I)ji . Thus, we can

conclude that σ(γ(I)ij ) and σ(γ(I)ji ) converge to zero.

If the conditions of Theorem B.8 are not fulfilled, σ(γ(O)
ij ) and σ(γ(O)

ji ) might converge to zero. This
results in the score lc(Xi, Xj) being zero, but also σ(γij) converging to zero. Hence, we do not get
any false positive edge predictions as we have seen in the experiments of Section 4.5.

For the second case where Xi is an ancestor of Xj , we cannot give such a guarantee because
of Theorem B.2. Theorem B.2 states that σ(θij) converges to one for ancestor-descendant pairs.
However, σ(θji) is a factor in the gradients of γji. This means that if σ(θji) converges to zero
according to Theorem B.2, we cannot guarantee that γji converges to the desired value since
its gradient becomes zero. Nevertheless, 59.2% of the latent confounders in our experiments of
Section 4.5 were on ancestor-descendant pairs. ENCO detects a majority of those confounders,
showing that ENCO still works on such confounders despite not having guarantees. Further, we show
in Section C.3 that the confounder scores lc(Xi, Xj) indeed converge to one for detected confounders,
and zero for all other edges.

B.4 CONVERGENCE FOR PARTIAL INTERVENTION SETS

In Section 4.4, we have experimentally shown that ENCO works on partial intervention sets as well.
Here, we will discuss convergence guarantees in the situation when interventions are not provided on
all variables.

We start with discussing the case where, for a graph with N variables, we are given samples of
interventions on N − 1 variables. In this case, we can rely on the previous convergence guarantees
discussed in Appendix B.2 with minor modifications. Specifically, for the variable Xi on which we
do not have interventions, the orientation parameters θi· are only updated by interventions on other
variables. Hence, for this variable Xi, the following conditions need to hold instead of Theorem B.1:

• For all possible sets of parents of Xi excluding Xj , adding Xj does not improve the
log-likelihood estimate of Xi under the intervention on Xj , or leaves it unchanged:

∀p̂a(Xi) ⊆ X−i,j : EIXj ,X [log p(Xi|p̂a(Xi), Xj)− log p(Xi|p̂a(Xi))] ≤ 0 (43)

For at least one parent set p̂a(Xi), which has a probability greater than zero to be sampled,
this inequality is strictly smaller than zero.
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This condition ensures that θij converges to the correct values, where Xi is the parent or ancestor of
Xj . Thus, in conclusion, we can provide convergence guarantees if N − 1 interventions are provided.

Next, we can consider the case of having N − 2 interventions. With the conditions above, we
can ensure that the all orientation parameters are learned, excluding θij where Xi and Xj are the
variables for which we have not obtained interventions. In this case, we cannot give strict convergence
guarantees for the edge Xi ↔ Xj , especially when Xi and Xj have a direct causal relationship.
If Xj is the child of Xi, we might obtain the edge Xj → Xi which violates the assumptions in
the second and third step of the proof. Therefore, we cannot give guarantees of correctness for
incoming/outgoing edges of Xi and Xj , and might make incorrect predictions of edges between
these two variables.

When taking the next step to having M interventions provided, ENCO can create more incorrect
predictions. For the variables for which interventions are provided, we can use the same convergence
guarantees (Theorem B.1-B.4) since all conditions are independent across variables. For variables
without interventions, we cannot rely on those. While we have observed that learning the missing θ’s
from other interventions give reasonable results, we see a degradation of performance the further the
distance is between a node and the closest intervened variable. As an example, suppose we have a
chain with 5 variables, i.e. X1 → X2 → X3 → X4 → X5, and we are provided with an intervention
on X1 only. This allows us to learn the orientation between X1 and X2. The orientation between X2

and X3 is often learned correctly as well because adding the edge X2 → X3 instead of X3 → X2

gives a greater decrease in overall log-likelihood, since part of the information from X3 to predict X2

is already included in X1. However, the further we go away from X1, the less information is shared
between the child and the intervened variable. Moreover, the likelihood of a mistake occurring due to
limited data further increases. This is why the orientation of the edge X4 → X5 is not always learned
correctly, which can also cause false positive edges.

Many scenarios of predicting false positive edges can, in theory, be solved by providing an undirected
skeleton of the graph, for example, obtained from observational data. Still, one of the cornerstones
of ENCO is that it does not assume faithfulness. Without faithfulness or any other assumption on
the functional form of the causal mechanisms, the correct undirected graph cannot be recovered
by any method. One of the future directions will be to include faithfulness in ENCO to solve the
scenarios mentioned above, although this would imply that we might not be able to recover edges of
deterministic variables anymore.

B.5 EXAMPLE FOR NON-FAITHFUL GRAPHS

Below we give an example of a distribution which is not faithful with respect to its graph structure,
but can yet be found by ENCO. Suppose we have a chain of three variables, X1 → X2 → X3. For
simplicity, we assume here that all the variables are binary, but the argument can similarly hold for
any categorical data. The distribution p(X1) is an arbitrary function with 0 < p(X1 = 1) < 1,
and the other two conditionals are deterministic functions: p(X2|X1) = δ[X2 = X1], p(X3|X2) =
δ[X3 = X2]. This joint distribution is not faithful to the graph, since X3 is independent of X2 given
X1, which is not implied by the graph. We will now focus our discussion on the edge X1 → X3

to show that, despite the independence, the proposed method ENCO can identify the true parent
set of X3. The first step of ENCO is to fit the neural networks to the observational distributions,
which include p(X3), p(X3|X1), p(X3|X2), p(X3|X1, X2). Now, the update of the edge parameter
γ13 under interventions on X2 can be summarized as follows, where we marginalize out over graph
samples:

∂L
∂γ13

= σ′(γ13) · σ(θ13) · EX

[
p(X2 → X3) · [− log p(X3|X1, X2) + log p(X3|X2)]︸ ︷︷ ︸

Gradients for graph samples with edgeX2→X3

+

p(X2 6→ X3) · [− log p(X3|X1) + log p(X3)]︸ ︷︷ ︸
Gradients for graph samples without edgeX2 6→X3

] (44)

where the samples X are sampled from the graph under interventions on X2. Intuitively, the gradient
points towards increasing the probability of the edge X1 → X3 if adding X1 to the conditionals
improves the log-likelihood estimate of X3 in both graph samples, i.e. where we have the edge
X2 → X3 or not. Thus, to show that the gradient points towards decreasing the probability of the
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edge X1 → X3, we need to show that both of the above log-likelihood differences are greater than
zero (note that positive gradients lead to a decrease since we minimize the objective).

In the first difference, EX [− log p(X3|X1, X2) + log p(X3|X2)], we know that p(X3|X2) is the
optimal estimator, since the ground truth data is generated via this conditional. Thus, independent of
what function the network has learned for p(X3|X1, X2), the difference above can be only greater
or equals to zero. Note that for p(X3|X1, X2), there are value combinations that have never been
observed, i.e. X1 6= X2, such that in practice we can’t guarantee a specific distribution to be learned
for such conditionals. Still, this does not constitute a problem for finding the graph as shown above.

The second difference, EX [− log p(X3|X1) + log p(X3)], can be similarly reasoned. Since X1 is
independent ofX3 under interventions onX2, p(X3|X1) cannot lead to a better estimator than p(X3),
even when trained on the interventional data. However, since p(X3|X1) was trained on observational
data, where there exist a strong correlation between X1 and X3, this estimator must be strictly worse
than p(X3). Hence, this difference will be strictly positive.

To summarize, under interventions on X2, the edge X1 → X3 will be trained towards decreasing its
probability. Further, under interventions on X1, the effect of X1 on X3 can be fully expressed by
conditioning on X2, making this gradient going to zero when the edge probability X2 → X3 goes
towards one. For the edge X2 → X3 itself, the same reasoning as here can be followed such that
independent of whether the edge X1 → X3 is included in the graph or not, conditioning X3 on X2

can only lead to an improvement in its estimator. Therefore, ENCO is able to find the correct graph
despite it not being faithful.
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Figure 10: Visualization of the common graph structures for graphs with 8 nodes. The graphs used in
the experiments had 25 nodes. Note that the graph random is more densely connected for larger
graphs, as the number of possible edges scales quadractically with the number of nodes.

C EXPERIMENTAL DETAILS

The following section gives an overview of the hyperparameters used across experiments. Addition-
ally, we discuss details of the graph generation and the learning process of different algorithms.

C.1 COMMON GRAPH STRUCTURE EXPERIMENTS

C.1.1 DATASETS

Graph generation The six common graph structures we have used for the experiments in Table 1
are visualized in Figure 10. In the graph bidiag, a variable Xi has Xi−2 and Xi−1 as parents, and
consequentlyXi+1 andXi+2 as children. Hence, this graph represents a chain with 2-hop connections.
The graph chain is a bidiag with a single hop, meaning that Xi is the parent of Xi−1 but not
Xi−2. In the graph collider, the variable XN has all other variables, X−i, as parents. In the
graph full, the parents of a variable Xi are all previous variables: pa(Xi) = {X1, X2, ..., Xi−1}.
Hence, it is the densest connected graph possible. The graph jungle represents a binary tree where a
node is also connected to its parent’s parent. Finally, the graph random follows a randomly sampled
adjacency matrix. For every possible pair of variables Xi, Xj , we sample an edge with a likelihood
of 0.3. To determine the orientation of the edges, we assume the causal ordering of Xi � Xi+1. In
other words, if we have an edge between Xi and Xj , it is oriented Xi → Xj is i < j else Xj → Xi.

Conditional distributions In the generated graphs, we use categorical variables that each have 10
categories. To model the ground-truth conditional distributions, we use randomly initialized neural
networks. Specifically, we use MLPs of two layers where the categorical inputs are represented
by embedding vectors. For a variable Xi with M parents, we stack the M embedding vectors to
form the input to the following MLPs. Each embedding has a dimensionality of 4, hence the input
size to the first linear layer is 4M . The hidden size of the layers is 48, and we use a LeakyReLU
activation function in between the two linear layers. Finally, a softmax activation function is used on
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Table 4: Hyperparameter overview for the simulated graphs dataset experiments presented in Table 1.

Hyperparameters SDI ENCO

Sparsity regularizer λsparse {0.01, 0.02, 0.05, 0.1, 0.2} {0.002, 0.004, 0.01}
DAG regularizer {0.2, 0.5, 1.0, 2.0, 5.0} -
Distribution model 2 layers, hidden size 64, LeakyReLU(α = 0.1)
Batch size 128
Learning rate - model {2e-3, 5e-3, 2e-2, 5e-2}
Weight decay - model {1e-5, 1e-4, 1e-5}
Distribution fitting iterations F 1000
Graph fitting iterations G 100
Graph samples K 100
Epochs 50 30
Learning rate - γ {5e-3, 2e-2, 5e-2} {5e-3, 2e-2, 5e-2}
Learning rate - θ - {5e-3, 2e-2, 5e-2, 1e-1}

the output to obtain a distribution over the 10 categories. The MLP and hyperparameters have been
chosen based on the design of networks used in ENCO, SDI (Ke et al., 2019) and DCDI (Brouillard
et al., 2020). For the initialization of the networks, we follow Ke et al. (2019) and use the orthogonal
initialize with a gain of 2.5. The biases are thereby initialized uniformly between −0.5 and 0.5. This
way, we obtain non-trivial, random distributions. Experiments with different synthetic distributions
are provided in Appendix D.7.

C.1.2 METHODS AND HYPERPARAMETERS

Baseline implementation We used existing implementations to run the baselines GIES (Hauser &
Bühlmann, 2012), IGSP (Wang et al., 2017), GES (Chickering, 2002) and DCDI (Brouillard et al.,
2020). For GIES, we used the implementation from the R package pcalg2. To run categorical data,
we used the GaussL0penIntScore score function. For IGSP, we used the implementation of the
python package causaldag3. As IGSP uses conditional independence tests in its score function,
we cast the categorical data into continuous space first and experiment with different kernel-based
independence tests. Due to its long runtime for large dataset sizes, we limit the interventional and
observational data set size to 25k. Larger dataset sizes did not show any significant improvements.
For details on the observational GES experiments, see Section D.6. Finally, we have used the original
python code for DCDI published by the authors4. We have added the same neural networks used by
ENCO into the framework to perform structure learning on categorical data. Bugs in the original
code were corrected to the best of our knowledge. Since SDI (Ke et al., 2019) has a similar learning
structure as ENCO, we have implemented it in the same code base as ENCO. This allows us to
compare the learning algorithms under exact same perquisites. Further, all methods with neural
networks used the deep learning framework PyTorch (Paszke et al., 2019) which ensures a fair run
time comparison across methods.

Hyperparameters To ensure a fair comparison, we performed a hyperparameter search for all
methods. The hyperparameter search was performed on a hold-out set of graphs containing two of
each graph structure.

GIES We performed a hyperparameter search over the regularizer values λ ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200}. The value obtaining the
best results in terms of structural hamming distance (SHD) was λ = 20. The average run
time of GIES was 2mins per graph.

2https://cran.r-project.org/web/packages/pcalg/index.html
3https://github.com/uhlerlab/causaldag
4https://github.com/slachapelle/dcdi
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Figure 11: Learning curves of ENCO in terms of recall and precision on edge predictions for synthetic
graph structures. The orientations for the ground-truth edges are not plotted as they have usually been
correctly learned after the first epoch except for the graph full. Overall, we see that the edge recall
starts very high for all graphs, and the precision catches up over the epochs. This is in line the steps
in the convergence proof in Section B.

IGSP We experimented with two different conditional independence tests, kci and hsic, and
different cutoff values α = {1e-5, 1e-4, 1e-3, 1e-2}. The best hyperparameter setting was
kci with α = 1e-3. The average run time of IGSP was 13mins.

SDI We focused the hyperparameter search for SDI on its two regularizers, λsparse and λDAG, as well
as its learning rate for γ. The other hyperparameters with respect to the neural networks were
kept the same as ENCO for a fair comparison. We show all details of the hyperparameter
search in Table 4. The best combination of regularizers found was λsparse = 0.02 and
λDAG = 0.5. Lower values of λsparse lead to more false positives, especially in sparse
graphs, while a lower value of λDAG caused many two-variable loops. Compared to the
reported hyperparameter by Ke et al. (2019) (λDAG = 0.5, λsparse = 0.1), we found a lower
sparsity regularizer to work better. This is likely because of testing SDI on larger graphs.
In contrast to ENCO, SDI needed a lower learning rate for γ due to its higher variance
gradient estimators. To compensate for it, we ran it for 50 instead of 30 epochs. In general,
SDI achieved lower scores than in the original experiments by Ke et al. (2019) which was
because of the larger graph size and smaller dataset size. The average run time of SDI was
4mins per graph.

DCDI The most crucial hyperparameter in DCDI was the initialization of the constraint factor
µ0. We experimented with a range of µ0 ∈ {1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5} and found
µ0 = 1e-9 to work best. This is close to the reported value of 1e-8 by Brouillard et al. (2020).
Higher values lead to empty graphs, while lower values slowed down the optimization. Ad-
ditionally, we search over the regularizer hyperparameter λ ∈ {1e-3, 1e-2, 1e-1, 1.0, 10.0}
where we found λ = 0.1, which is the same value used by Brouillard et al. (2020). We stop
the search after the Lagrangian constraint is below 1e-7, following Brouillard et al. (2020),
or 50k iterations have been used which was sufficient to converge on all graphs. We have
experimented with using weight decay to prevent overfitting, but did not find it to provide
any gain in terms of structure learning performance. The average run time of DCDI was 16
minutes.

ENCO We outline the hyperparameters of ENCO in Table 4. As discussed in Section 3.4, the most
crucial hyperparameter in ENCO is the sparsity regularizer λsparse. The larger it is, the
faster ENCO converges, but at the same time might miss edges in the ground-truth graph.
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Table 5: Extension of Table 1 with the metric structural intervention distance (SID) (lower is
better), averaged over 25 graphs each. The conclusion is the same as for SHD, namely that ENCO
outperforms all baselines, while the acyclic heuristic has an even greater impact.

Graph type bidiag chain collider full jungle random

GIES 460.0 (±60.1) 224.2 (±87.3) 83.6 (±143.5) 527.9 (±35.7) 441.4 (±26.1) 471.9 (±33.7)
IGSP 423.3 (±48.2) 240.1 (±78.8) 120.7 (±51.4) 554.8 (±26.4) 394.8 (±73.5) 524.0 (±18.8)
SDI 243.7 (±55.1) 70.2 (±46.8) 24.0 (±0.0) 537.1 (±29.2) 180.0 (±56.4) 317.9 (±62.7)
DCDI 369.3 (±47.5) 233.4 (±24.8) 10.9 (±3.6) 183.6 (±54.5) 339.4 (±59.1) 158.6 (±69.1)

ENCO (ours) 28.2 (±18.8) 19.9 (±17.9) 7.4 (±13.3) 63.2 (±22.6) 16.3 (±9.8) 77.6 (±27.2)
ENCO-acyclic (ours) 0.0 (±0.0) 0.0 (±0.0) 7.4 (±13.3) 17.7 (±8.9) 4.6 (±8.1) 5.3 (±11.8)

Lower values allow the detection of more edges for the price of longer training times. We
have found that for the graph structures given, only the graph full was sensitive to the
value of λsparse where λsparse = 0.002 and λsparse = 0.004 performed almost equally well.
In comparison to SDI, ENCO can make use of larger learning rates due to lower variance
gradient estimators. Especially for θ, we have noticed that high learning rates are beneficial.
This is in line with our theoretical guarantees which require the orientation parameters
to converge first. We use the Adam optimizer for γ and θ with the β-hyperparameters
(0.9, 0.9) and (0.9, 0.999) respectively. A lower β2 hyperparameter for γ allows the second
momentum to adapt faster to a change of gradient scale which happens for initial false
positive predictions.
The average run time of ENCO was 2mins per graph. The algorithm could be sped up even
more by reducing the number of graph samples K and model fitting iterations. However,
for graphs of larger than 100 nodes, K = 100 and longer model fitting times showed to be
beneficial. The learning curves in terms of recall and precision are shown in Figure 10.

Enforcing acyclicity ENCO is guaranteed to converge to acyclic graphs in the data limit; arguably,
an assumption that does not always hold. In the presence of cycles, which can occur especially
when low data is available, a simple heuristic is to keep the graph, which maximizes the orientation
probabilities. Specifically, we aim to find the order O ∈ SN , where SN represents the set of all
permutations from 1 to the number of variables N , for which we maximize the following objective:

Ô = argmax
O



N∏

i=1

N∏

j=i+1

σ(θOi,Oj )


 (45)

For small cycles it is easy to do this exhaustively by checking all permutations. For larger cycles, we
apply a simple greedy search that works just as well. Once the order Ô has been found, we remove
all edges Xi → Xj where i comes after j in Ô. This guarantees to result in an acyclic graph.

The intuition behind this heuristic is the following. Cycles are often caused by a single orientation
pair being incorrect due to noise in the interventional data. For example, in a chain X1 → X2 →
X3 → X4 → X5, it can happen that the orientation parameter θ14 is incorrectly learned as orientation
of the edge between X1 and X4 as X4 → X1 if the interventional data on X4 does not show the
independence of X1 and X4. However, most other orientation parameters, e.g. θ12, θ13, θ24, θ34, etc.,
have been likely learned correctly. Thus, it is easy to spot that θ14 is an outlier, and this is what the
simple heuristic above implements.

Results Besides the structural hamming distance, a common alternative metric is structural inter-
vention distance (SID) (Peters & Bühlmann, 2015). In contrast to SHD, SID quantifies the closeness
between two DAGs in terms of their corresponding causal inference statements. Hence, it is suited for
comparing causal discovery methods. The results of the experiments on the synthetic graphs in terms
of SID are shown in Table 5, and show a similar trend as before, namely that ENCO is outperforming
all baselines.

C.2 SCALABILITY EXPERIMENTS

Graph generation For generating the graphs, we use the same strategy as for the graph random
in the previous experiments. The probability of sampling an edge is set to 8/N , meaning that on
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Figure 12: (a) Example graph of 100 variables (best viewed electronically). Every node has on
average 8 edges and a maximum of 10 parents. (b) Plotting recall and precision of the edge predictions
for the training on graphs with 1, 000 nodes. The small standard deviation across graphs shows that
ENCO can reliably recover large graphs.

average, every node has 8 in- and outgoing edges. We limit the number of parents to 10 per node since,
otherwise, we cannot guarantee that the randomly sampled distributions take all parents faithfully into
account. This is also in line with the real-world inspired graphs of the BnLearn repository, which have
a maximum of 6 parents. To give an intuition on the complexity of such graphs, we show an example
graph of 100 nodes in Figure 12a. Accordingly to the number of variables, we have increased the
data set size to 4096 samples per intervention, and 100k observational samples. We did not apply the
order heuristic on the predictions, since ENCO was able to recover acyclic graphs by itself with the
given data.

γ-freezing stage For ENCO, one challenge of large graphs is that the orientation parameters θ are
updated very sparsely. The gradients for θij require data from an intervention on one of its adjacent
nodes Xi or Xj , which we evaluate less frequently with increasing N as we iterate over interventions
on all N nodes. Hence, we require more iterations/epochs just for training the orientation parameters
while wasting a lot of computational resources. To accelerate training of large graphs, we freeze γ
in every second graph fitting stage. Updating only θ allows us to use the same graph sample C−ij
for both LXi→Xj (Xj) and LXi 6→Xj (Xj) since the log-likelihood estimate of Xj only needs to be
evaluated for θij . With this gradient estimator, we experience that as little as 4 graph samples are
sufficient to obtain a reasonable gradient variance. Hence, it is possible to perform more gradient
updates of θ in the same computation time. Note that this is estimator not efficient when training γ as
we require different C−ij samples for every i. In experiments, we alternate the standard graph fitting
step with this pure θ-training stage. We want to emphasize that this approach can also be used for
small graphs obtaining similar results as in Table 1. However, it is less needed because the orientation
parameters are more frequently updated in the first place. Such an approach is not possible for the
baselines, SDI and DCDI, because they do not model the orientation as a separate variable.

Hyperparameters To experiment with large graphs, we mostly keep to the same hyperparameters
as reported in Section C.1. However, all methods showed to gain by a small hyperparameter search.
For SDI and ENCO, we increase the number of distribution fitting iterations as the neural networks
need to model a larger set of possible parents. We also increase the learning rate of γ to 2e-2.
However, while SDI reaches better performance with the increased learning rate at epoch 30, it
showed to perform worse when training for longer. This indicates that high learning rates can lead to
local minima in SDI. Additionally, we noticed that a slightly higher sparsity regularizer improved
convergence speed for ENCO while SDI did not improve with a higher sparsity regularizer. Table 6
shows a hyperparameter overview of ENCO on large-scale graphs, and Figure 12b the learning curve
on graphs of 1, 000 nodes.

For DCDI, we noticed that the hyperparameters around the Lagrangian constraint needed to be
carefully fine-tuned. The Lagrangian constraint can reach values larger than possible to represent
with double, and starts with 8e216 for graphs of 1, 000 nodes. Following Brouillard et al. (2020), we
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normalize the constraint by the value after initialization, which gives us a more reasonable value to
start learning. We performed another hyperparameter search on µ0, noticed however that it did not
have a major impact. In the run time of ENCO, DCDI just starts to increase the weighting factor of
the augmented Lagrangian while the DAG constraint is lower than 1e-10 for the smallest graph. The
best value found was µ0 = 1e-7.

Table 6: Hyperparameter overview of ENCO for the scalability experiments presented in Table 7.
Numbers in the center represent that we use the same value for all graphs.

Hyperparameters 100 nodes 200 nodes 400 nodes 1000 nodes

Distribution model 2 layers, hidden size 64, LeakyReLU(α = 0.1)
Batch size - model 128 128 128 64
Learning rate - model 5e-3
Distribution fitting iterations F 2000 2000 4000 4000
Graph fitting iterations G 100
Graph samples 100
Learning rate - γ 2e-2
Learning rate - θ 1e-1
θ-training iterations 1000 1000 2000 2000
θ-training graph samples 2 + 2
Sparsity regularizer λsparse {0.002, 0.004, 0.01}
Number of epochs (max.) 30

Results For clarity, we report the results of all methods below. The exact values might not be easily
readable in Figure 3 due to large differences in performance.

Table 7: Results for graphs between 100 and 1000 nodes. We report the average and standard deviation
of the structural hamming distance (SHD) over 10 randomly sampled graphs. †The maximum runtime
of ENCO was measured on an NVIDIA RTX3090. Baselines were executed on the same hardware.

Graph size 100 200 400 1000
Max Runtime† 15mins 45mins 2.5hrs 9hrs

DCDI (Brouillard et al., 2020) 583.1 (±21.8) 1399.0 (±67.5) 4761.2 (±303.4) OOM
SDI (Ke et al., 2019) 35.7 (±2.9) 100.9 (±7.6) 356.3 (±11.5) 1314.4 (±58.5)

ENCO (Ours) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 0.2 (±0.42)

C.3 LATENT CONFOUNDER EXPERIMENTS

Graph generation The graphs used for testing the latent confounding strategy are based on the
random graphs from Section 4.2. We use graphs of 25 nodes, and add 5 extra nodes that represent
latent confounders. Each latent confounder Xl is connected to two randomly sampled nodes Xi,
Xj that do not have a direct connection. However, Xi and Xj can be an ancestor-descendant pair
and have any other (shared) parent set (see Figure 13a). In the adjacency matrix, we add the edges
Xl → Xi and Xl → Xj , and perform the data generation as for the previous graphs. After data
generation, we remove the 5 latent confounders from both observational and interventional data. The
task is to learn the graph structure of the remaining 25 observable variables, as well as detecting
whether there exists a latent confounder between any pair of variables. We use the same setup in
terms of dataset size as before for the observational samples, namely 5k, but increased the samples per
intervention to 512. Little interventional data showed to cause a high variance in the interventional
gradients, γ(I)ij , which is why more false positives occured. The results in for the limited data with 200
interventions, and results in the data limit, i.e. for 10k interventional samples and 100k observational
samples, are shown in Table 8.
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Table 8: Results of ENCO on detecting latent confounders averaged over 25 graphs with 25 nodes
in the data limit (10k samples per intervention, 100k observational samples) and limited data (200
samples per intervention, 5k observational samples). In the data limit, only false negative predictions
of latent confounders occured which did not affect other edge predictions. With little interventional
data, more false positives occur reducing the precision.

Metrics ENCO ENCO ENCO
(10k interv./100k observ.) (512 interv./5k observ.) (200 interv./5k observ.)

SHD 0.0 (±0.0) 1.24 (±1.33) 4.12 (±1.86)
Confounder recall 96.8% (±9.5%) 93.6% (±13.8%) 92.0% (±11.5%)
Confounder precision 100.0% (±0.0%) 96.5% (±7.1%) 83.8% (±16.4%)
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Figure 13: Left: Example of a latent confounder scenario, where Xl is not observed and introduces a
dependency between Xi and Xj on observational data. The dots on the left and right represent even-
tual (observed) parents of Xi and Xj . Right: Plotting the average score lc(Xi, Xj) for confounders
Xi ← Xl → Xj in the true causal graph (orange) and maximum score of any other node pair (blue).
The plot shows the detection of latent confounders in ENCO is not sensitive to the specific value of τ .

Baselines None of our previous continuous optimization baselines, i.e., SDI and DCDI, are able to
deal with latent confounders. To the best of our knowledge, other methods that are able to handle
latent confounders commonly take assumptions that do not hold in our experimental setup. Further,
most methods are able to deal with latent confounders in the sense that they obtain the correct
results despite latent confounding being present. However, in our case, we explicitly predict latent
confounders which is a different task by itself.

Hyperparameters To show that we can perform latent confounder detection without specific
hyperparameters, we use the same hyperparameters as for the experiment on the previous graph
structures (see Appendix C.3). To record γ(I)ij and γ(O)

ij separately, we use separate first and second
order momentum parameters in the Adam optimizer. We plot in Figure 13b the latent confounder
scores lc(Xi, Xj) calculated based on Equation 8. We see that the score converges close to 1 for
pairs with a latent confounder, and for all other, it converges to 0. This verifies our motivation of
the score function discussed in Section 3.5, and also shows that the method is not sensitive to the
threshold hyperparameter τ . We choose τ = 0.4 which was slightly higher than the highest value
recorded for any other pair at early stages of training.

C.4 INTERVENTIONS ON FEWER VARIABLES

Datasets We perform the experiments of interventions on fewer variables on the same graphs and
datasets as used for the initial synthetic graphs (see Section C.1). To simulate having interventions on
fewer variables, we randomly sample a subset of variables for which we include the interventional
data, and remove for all others. The sampled variables are the same for both ENCO and DCDI, and
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differ across graphs. The dataset size is the same as before, namely 200 samples per intervention and
5k observational datasets.

ENCO for partial intervention sets While the theoretical guarantees for convergence to an acyclic
graph apply when interventions on all variables are possible, it is straightforward to extend the ENCO
algorithm to support partial interventions as well. Normally, in the graph fitting stage, we sample
one intervention at a time. We can, thus, simply restrict the sampling only to the interventions that
are possible (or provided in the dataset). In this case, we update the orientation parameters θij
of only those edges that connect to an intervened variable, either Xi or Xj , as before. All other
orientation parameters would remain unchanged throughout the training, since their gradients rely on
interventions missing from the dataset. Instead, we extend the gradient estimator in Equation 4 to
not be exclusive to adjacent interventions, but include interventions on all variables. Specifically, for
the orientation parameter θij without any interventions on Xi or Xj , we use the following gradient
estimator:

∂

∂θij
L̃ = σ′(θij)

(
σ(γij) · EIXk ,X,C−ij

[
LXi→Xj (Xj)− LXi 6→Xj (Xj)

]
−

σ(γji) · EIXk ,X,C−ij

[
LXj→Xi(Xi)− LXj 6→Xi(Xi)

] ) (46)

where we have an intervention on an arbitrary variable Xk with k 6= i, k 6= j. This still represents an
unbiased gradient estimator since in the derivation of the estimator, we excluded interventions on
other variables only to reduce noise.

ENCO has been designed under the assumption that interventional data is provided. When we
have interventional data on only a very small subset of variables, we might not optimally use the
information that is provided by the observational data. To overcome this issue, we can run a causal
discovery method that solely work on observational data and return an undirected graph. This skeleton
can be used as a prior, and prevents false positive edges between conditionally independent variables.

Hyperparameters We reuse the hyperparameters of the experiments on the synthetic graph except
that we use a slighly smaller sparsity regularizer, λsparse = 0.002, and a weight decay of 4e-5. For the
orientation parameters without adjacent intervention, we use a learning rate of 0.1 · lrθ which is 1e-3
for this experiment. For DCDI, we observed that a higher regularization term of λ = 1.0 obtained
best performance. All other hyperparameters are the same as in Section C.1.

Results For additional experimental results, see Section D.2.

C.5 REAL-WORLD INSPIRED EXPERIMENTS

Datasets We perform experiments on a collection of causal graphs from the Bayesian Network
Repository (BnLearn) (Scutari, 2010). The repository contains graphs inspired by real-world appli-
cations that are used as benchmarks in literature. We chose the graphs to reflect a variety of sizes
and different challenges (rare events, deterministic variables, etc.). The chosen graphs are cancer
(Korb & Nicholson, 2010), earthquake (Korb & Nicholson, 2010), asia (Lauritzen & Spiegelhalter,
1988), sachs (Sachs et al., 2005), child (Spiegelhalter & Cowell, 1992), alarm (Beinlich et al., 1989),
diabetes (Andreassen et al., 1991), and pigs (Scutari, 2010). The graphs have been downloaded
from the BnLearn website5. For the small graphs, we have used a dataset size of 50k observational
samples and 512 samples per intervention. This is a larger dataset size than for the synthetic graph
because many edges in the real-world graphs have very small causal effects that cannot be recovered
from limited data, and the goal of the experiment was to show that the convergence conditions also
hold on real-world graphs. Hence, we need more observational and interventional samples. The
results with a smaller dataset size, i.e. 5k observational and 200 interventional samples as before, are
shown in Table 9. For the large graphs, we follow the dataset size for the scalability experiments (see
Section C.2).

Hyperparameters We reuse most of the hyperparameters of the previous experiments. For all
graphs less than 100 nodes, we use the hyperparameters of Appendix C.1, i.e. the synthetic graphs of

5https://www.bnlearn.com/bnrepository/
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Table 9: Results on graphs from the BnLearn library measured in structural hamming distance (lower
is better). Results are averaged over 5 seeds with standard deviations.

Dataset cancer earthquake asia sachs child alarm diabetes pigs
(5 nodes) (5 nodes) (8 nodes) (11 nodes) (20 nodes) (37 nodes) (413 nodes) (441 nodes)

SDI 3.0 (±0.0) 0.4 (±0.5) 4.0 (±0.0) 7.0 (±0.0) 11.2 (±0.4) 24.4 (±1.7) 422.4 (±8.7) 18.0 (±1.6)
DCDI 4.0 (±0.0) 2.0 (±0.0) 5.0 (±0.0) 5.4 (±2.1) 8.4 (±0.7) 30.0 (±4.2) - -

ENCO 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 1.0 (±0.0) 2.0 (±0.0) 0.0 (±0.0)

Table 10: Results on graphs from the BnLearn library measured in structural hamming distance
(lower is better), using 5k observational and 200 interventional samples.

Dataset cancer earthquake asia sachs child alarm
(5 nodes) (5 nodes) (8 nodes) (11 nodes) (20 nodes) (37 nodes)

SDI 3.0 (±0.0) 0.4 (±0.5) 4.6 (±0.5) 8.4 (±0.5) 12.4 (±0.9) 26.6 (±1.1)
DCDI 4.0 (±0.0) 2.0 (±0.0) 4.4 (±0.7) 7.2 (±2.4) 9.8 (±0.6) 31.4 (±0.7)

ENCO 1.2 (±0.4) 0.4 (±0.9) 1.4 (±0.5) 0.4 (±0.5) 0.8 (±1.1) 11.4 (±1.8)

25 nodes. For all graphs larger than 100 nodes, we use the hyperparameters of Appendix C.2, i.e. the
large-scale graphs. One exception is that we allow the fine-tuning of the regularizer parameter for
both sets. For ENCO, we used a slightly smaller regularizer, λsparse = 0.002, for the small graphs,
and a larger one, λsparse = 0.02, for the large graphs. Due to the large amount of deterministic
variables, ENCO tends to predict more false positives in the beginning before removing them one by
one. For SDI, we also found a smaller regularizer, λsparse = 0.01, to work best for the small graphs.
However, in line with the results of Ke et al. (2019), SDI was not able to detect all edges. Even lower
regularizers showed to perform considerably worse on the child dataset, while minor improvements
were made on the small graphs. Hence, we settled for λsparse = 0.01. In terms of run time, both
methods used 100 epochs for the small graphs and 50 for the large graphs.

Results The results including standard deviations can be found in Table 9. The low standard
deviation for ENCO shows that the approach is stable across seeds, even for large graphs. SDI has a
zero standard deviation for a few graphs. In those cases, SDI converged to the same graph across
seeds, but not necessarily the correct graph. We have also applied DCDI (Brouillard et al., 2020) to
the real-world datasets and report the results in Table 9 and 10. DCDI performs relatively similar
to SDI, making a few more mistakes on the very small graphs (< 10 nodes) while being slightly
better on sachs and child. Nonetheless, ENCO outperforms DCDI on all graphs. We do not
report results of DCDI on the largest graphs, diabetes and pigs, because it ran out of memory
for diabetes (larger number of max. categories per variable) and did not converge within the same
time limitations as SDI and ENCO (see Section 4.3 for a comparison on scalability).
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D ADDITIONAL EXPERIMENTS

In this section, we show additional experiments performed as ablation studies of ENCO. First, we
discuss further experiments We then discuss the effect of using our gradient estimators proposed in
Section 3.4 compared to Bengio et al. (2020). Next, we show experiments on synthetic graphs with
deterministic variables violating faithfulness, and experiments on continuous data with Normalizing
Flows. Finally, we discuss experiments with different causal mechanism functions for generating
synthetic, conditional categorical distributions besides neural networks.

D.1 EFFECT OF THE SAMPLE SIZE

The number of samples provided as observational and interventional data is crucial for causal structure
learning methods since the more data we have, the better we can estimate the underlying causal
mechanisms. To gain further insights in the effect of the sample size on ENCO and the compared
baselines, we repeat the experiments of Section 4.2 with different sample sizes.

Large sample size First, we use very large sample sizes to find the upper bound performance level
that we can expect from each method. For this, we sample 100k observational samples per graph,
and 10k samples per intervention. We observed that this is sufficient to model most conditional
probabilities up to a negligible error. The results are shown in Table 11. We find that, in line with the
theoretical guarantees, ENCO can reliably recover most graphs, only making 0.3 mistakes on average
on the full graph. Of the baselines, only DCDI is able to recover the collider graph without errors
since its edges can be independently orientated. For all other graphs, DCDI converges to acyclic
graphs, but incorrectly orients some edges and predicts false positive edges, while being 8 times
slower than ENCO on the same hardware. All other baselines show improved SHD scores than in
Table 1 as well, but are not able to match ENCO’s performance. This shows that, even in the data
limit, ENCO achieves notably better results than concurrent methods.

Next, we consider situations where data is very limited. Thereby, we consider two data sample axes:
observational and interventional data.

Limited interventional data sample sizes We repeat the experiments of Table 1 for ENCO while
limiting the sample size per intervention to 20, 50, and 100 (200 before). The observational dataset
size of 5000 samples is thereby kept constant. We plot the performance for all graph structures in
Figure 14. Overall, the decrease of performance with lower interventional sample size is consistent
across graph structures. With only 20 samples per intervention, it becomes especially hard to reason
about variables with many parents, since the variable’s distribution is determined by many other
parents as well. Yet, for four out of the six graphs, we obtain an SHD of less than 1 with 100
interventional samples, and less than 6 when only 20 samples are available. In conclusion, ENCO
works well with little interventional data if most variables have a small parent set.

Limited observational data sample sizes Similarly as above, we repeat the experiments of Table 1
for ENCO but limit the observational sample size to 1000 and 2000 (5000 before) while keeping
200 samples per interventions. Observational data is important in ENCO for learning the conditional
distributions. For variables with many parents, this becomes more difficult when fewer samples
are available, because the input space grows exponentially with the number of parents. Thus, we

Table 11: Repeating experiments of Table 1 with large sample sizes (10k samples per intervention,
100k observational samples). In line with the theoretical guarantees, ENCO can reliably recover five
out of the six graph structures without errors.

Graph type bidiag chain collider full jungle random

GIES 47.4 (±5.2) 22.3 (±3.5) 13.3 (±3.0) 152.7 (±12.0) 53.9 (±8.9) 86.1 (±12.0)
IGSP 33.0 (±4.2) 12.0 (±1.9) 23.4 (±2.2) 264.6 (±7.4) 38.6 (±5.7) 76.3 (±7.7)
SDI 2.1 (±1.5) 0.8 (±0.9) 14.7 (±4.0) 121.6 (±18.4) 1.8 (±1.6) 1.8 (±1.9)
DCDI 3.7 (±1.5) 4.0 (±1.3) 0.0 (±0.0) 2.8 (±2.1) 1.2 (±1.5) 2.2 (±1.5)

ENCO (Ours) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 0.3 (±0.9) 0.0 (±0.0) 0.0 (±0.0)
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Figure 14: Results of ENCO for different graph structures under limited interventional data sample
size. Note the different scale of the y-axis for the six graphs. While the general trend is the same for
all graphs, i.e. decreasing performance with fewer samples, the order heuristic can reduce the SHD
error by a considerable margin for most graphs.
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Figure 15: Results of ENCO for different graph structures under limited observational data sample
size. Note the different scale of the y-axis for the six graphs. The structure learning performance
remains good for sparse graphs, and suffers for graphs with larger parent sets.

would expect the collider and full graph suffer the most from having less observational data, and
this is indeed the case as shown by the results in Figure 15. The results of all other graphs are less
affected, although interestingly, some become even better with less observational data. For the chain
X1 → X2 → ...XN , for instance, we observed that the learned conditional distributions picked
up spurious correlations among variables, e.g., between X1 and X3 when modeling p(X3|X1, X2)
which are, in the data limit, independent givenX2. Since those correlations do not necessarily transfer
to the interventional setting, it is easier to spot false positive edges, and we can obtain even better
results than for the larger sample sizes. In conclusion, having sufficient observational data is crucial
in ENCO for graphs with variables that have larger parent sets, while being less important for sparser
graphs.

Limited interventional and observational data sample sizes Finally, we combine the smallest
interventional and observational data sample sizes, and also include the results of the previously best
baselines, SDI and DCDI, in Table 12. The results of ENCO show the combination of the previous
two effects: graphs consisting of variables with small parent sets can still be recovered well by ENCO,
while errors increase for the collider and full graph. Similar trends are observed for SDI, while DCDI
showed a considerable decrease in performance for all graphs. In conclusion, ENCO still works well
for graphs with smaller parent sets under a small observational and interventional data regime, and
outperforms related baselines in this setting.
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Table 12: Repeating experiments of Table 1 with very small sample sizes (20 samples per intervention,
1k observational samples). Despite the limited data, ENCO can recover graphs with small parent sets
reasonably well, while the graphs collider and full suffer for all methods.

Graph type bidiag chain collider full jungle random

SDI 10.9 (±2.7) 6.1 (±1.5) 22.1 (±1.9) 211.0 (±6.2) 10.4 (±2.7) 22.7 (±7.4)
DCDI 30.0 (±4.2) 22.0 (±1.5) 23.2 (±1.3) 185.2 (±4.5) 25.8 (±2.7) 40.2 (±8.4)

ENCO (Ours) 9.7 (±3.6) 5.6 (±1.7) 22.7 (±2.1) 132.6 (±8.0) 8.1 (±2.3) 18.4 (±4.8)
ENCO-acyclic (Ours) 2.0 (±2.3) 2.7 (±2.1) 22.9 (±2.3) 88.4 (±6.6) 4.1 (±2.0) 5.3 (±2.5)

4 6 810 15 20 25
Intervened variables

0

20

SH
D

bidiag

4 6 810 15 20 25
Intervened variables

0

20

SH
D

chain

4 6 810 15 20 25
Intervened variables

0

10

20

SH
D

collider

Method
DCDI
ENCO (Ours)
ENCO-acyclic (Ours)

4 6 810 15 20 25
Intervened variables

0

100

SH
D

full

4 6 810 15 20 25
Intervened variables

0

20

40

SH
D

jungle

4 6 810 15 20 25
Intervened variables

0

20
SH

D

random

Figure 16: Results of ENCO and DCDI for different graph structures under fewer interventions
provided. Note the different scale of the y-axis for the six graphs. For four out of six graphs, ENCO
outperforms DCDI even for as few as 4 interventions, especially when enforcing acyclicity. The
detailed numbers of the results are listed in Table 13.

D.2 INTERVENTIONS ON FEWER VARIABLES

We have performed the experiments in Section 4.4 using fewer interventions for all six synthetic
graph structures. The results are visualized in Figure 16, and presented in table-form in Table 13.
From the experiments, we can see that ENCO with interventions on only 4 variables matches or
outperforms DCDI with 10 interventions for 4 out of the 6 graph structures (bidiag, chain, full, jungle)
when enforcing acyclicity. Especially on chain-like graphs such as jungle, ENCO achieves lower
SHD scores for the same number of interventions on variables, while DCDI incorrectly orientates
many edges and predicts false positive edges between children. On the graph collider, we observed
a high variance for settings with very few interventions. This is because when we intervene on the
collider node itself, ENCO can deduce the orientation for all edges. Finally, on the graph random,
we observe that enforcing acyclicity for ENCO reduces the error a lot. This is because incorrectly
orientated edges cause more false positives in this densely connected graph, which are removed with
the cycles. We include a longer discussion of the limitations of ENCO on fewer interventions in
Appendix B.4. Still, we conclude that, in practice, ENCO performs competitively to DCDI, even
when very few interventions are provided, and scales better to more interventions.

D.3 ABLATION STUDY ON GRADIENT ESTIMATORS

To analyze the importance of the low-variance gradient estimators in ENCO, we repeat the experiments
on synthetic graph structure from Section 4.2 where the gradient estimators of ENCO have been
replaced by those from Bengio et al. (2020). The results are shown in Table 14. Overall, the scores
are very similar with minor differences for the graphs full and bidiag. In comparisons to the
learning curves in Figure 11, the curves with the gradient estimator of Bengio et al. (2020) are more
noisy, with recall and precision jumping up and down. While ENCO easily converged early to the
correct graphs for all graph types, this model often required the full 30 iterations to reach the optimal
recovery.

46



Published as a conference paper at ICLR 2022

Table 13: Detailed results of the experiments with fewer interventions. See Figure 16 for a visualiza-
tion and discussion.

Graph type bidiag chain collider full jungle random

DCDI 4 vars 25.8 (±2.0) 23.6 (±11.3) 12.5 (±1.8) 143.8 (±10.7) 38.5 (±3.2) 26.3 (±6.2)
DCDI 6 vars 24.3 (±2.2) 14.6 (±2.7) 12.5 (±1.9) 142.2 (±13.5) 32.7 (±3.8) 23.1 (±7.2)
DCDI 8 vars 23.5 (±1.4) 13.3 (±2.4) 12.3 (±2.0) 134.8 (±8.9) 28.8 (±7.4) 19.1 (±5.5)
DCDI 10 vars 22.4 (±1.1) 13.0 (±4.1) 10.8 (±3.6) 126.2 (±4.2) 28.0 (±3.2) 14.8 (±6.3)
DCDI 15 vars 22.0 (±1.9) 12.5 (±2.1) 11.5 (±3.7) 90.2 (±7.1) 25.8 (±2.1) 12.2 (±5.3)
DCDI 20 vars 20.8 (±1.4) 11.5 (±1.3) 12.0 (±2.9) 62.8 (±9.8) 19.8 (±3.3) 10.2 (±3.0)
DCDI 25 vars 16.9 (±2.0) 10.1 (±1.1) 10.9 (±3.6) 21.0 (±4.8) 17.9 (±4.1) 7.7 (±3.2)

ENCO 4 vars 29.8 (±5.6) 19.9 (±3.2) 13.9 (±6.6) 110.6 (±8.6) 30.8 (±6.1) 28.5 (±4.3)
ENCO 6 vars 25.0 (±3.0) 16.4 (±2.8) 10.1 (±6.1) 97.5 (±8.5) 23.6 (±5.1) 23.4 (±3.1)
ENCO 8 vars 20.8 (±3.8) 13.2 (±2.4) 7.0 (±6.3) 86.3 (±8.9) 19.4 (±5.0) 20.8 (±3.5)
ENCO 10 vars 17.7 (±4.7) 10.3 (±1.6) 5.6 (±4.9) 77.3 (±8.5) 15.6 (±3.8) 18.7 (±2.9)
ENCO 15 vars 10.7 (±2.3) 6.9 (±1.5) 3.8 (±2.5) 52.8 (±9.1) 9.3 (±2.3) 13.6 (±2.8)
ENCO 20 vars 5.0 (±2.2) 3.0 (±1.5) 3.4 (±1.9) 32.4 (±4.2) 3.5 (±1.1) 8.8 (±3.1)
ENCO 25 vars 2.2 (±1.4) 1.7 (±1.3) 1.6 (±1.6) 9.2 (±3.4) 1.7 (±1.3) 4.6 (±1.9)

ENCO-acyclic 4 vars 20.4 (±7.5) 10.6 (±4.9) 13.9 (±6.7) 110.6 (±8.6) 19.8 (±6.0) 9.0 (±3.9)
ENCO-acyclic 6 vars 15.8 (±5.9) 7.8 (±4.4) 10.1 (±6.1) 97.5 (±8.5) 15.6 (±3.7) 6.0 (±3.2)
ENCO-acyclic 8 vars 11.2 (±5.4) 5.4 (±3.7) 7.0 (±6.3) 86.3 (±8.9) 12.6 (±4.6) 5.0 (±3.5)
ENCO-acyclic 10 vars 8.5 (±5.8) 4.4 (±3.4) 5.6 (±4.9) 77.3 (±8.5) 9.8 (±3.9) 3.2 (±2.2)
ENCO-acyclic 15 vars 2.5 (±3.7) 3.4 (±2.8) 3.8 (±2.5) 52.8 (±9.1) 5.1 (±2.7) 2.1 (±1.7)
ENCO-acyclic 20 vars 0.3 (±0.7) 0.7 (±1.2) 3.4 (±1.9) 32.4 (±4.2) 1.7 (±1.5) 1.2 (±1.2)
ENCO-acyclic 25 vars 0.0 (±0.0) 0.0 (±0.0) 1.6 (±1.6) 5.3 (±2.3) 0.6 (±1.1) 0.2 (±0.5)

Table 14: Extension of Table 11 with ablation study of using Bengio et al. (2020) gradients with
ENCO.

Graph type bidiag chain collider full jungle random

ENCO (Ours)
- Bengio et al. (2020) grads 0.1 (±0.4) 0.0 (±0.0) 0.0 (±0.0) 1.9 (±1.5) 0.0 (±0.0) 0.0 (±0.0)
- Our gradient estimator 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 0.3 (±0.9) 0.0 (±0.0) 0.0 (±0.0)

The difference between the two gradient estimators becomes more apparent on large graphs. We
repeated the experiments of Section 4.3 on the graphs with 100 nodes using the gradient estimator of
Bengio et al. (2020). Within the 30 epochs, the model obtained an SHD of 15.4 on average over 5
experiments, which is considerably higher than ENCO with the proposed gradient estimators (0.0).
Still, this is only half of the errors that SDI (Ke et al., 2019) with the same gradient estimator achieved.
Hence, we can conclude that the proposed gradient estimators are beneficial for ENCO but not strictly
necessary for small graphs. For large graphs, the low variance of the estimator becomes much more
important.

D.4 DETERMINISTIC VARIABLES

In contrast to algorithms working on observational data, ENCO does not strictly require the faithful-
ness assumption. Hence, we can apply ENCO to graphs with deterministic variables. Deterministic
variables have a distribution that is defined by a one-to-one mapping of its parents’ inputs to an output
value. In other words, we have the following distribution:

p(Xi|pa(Xi)) = 1 [Xi = f(pa(Xi))] (47)

where f is an arbitrary function. The difficulty of deterministic variables is that a variable Xi

can be fully replaced by its parents pa(Xi) in any conditional distribution. The only way we can
identify deterministic variables is from interventional data, where an intervention on Xi breaks the
dependency to its parents.

We have already tested ENCO on deterministic variables in the context of the real-world inspired
graphs of Section 4.6. To have a more detailed analysis, we created synthetic graphs following the
random graph setup with an edge probability of 0.1 and an average of two parents, and maximum
of three parents. An example graph is shown in Figure 17. All variables except the leaf nodes
have deterministic distributions, where the function f(pa(Xi)) is randomly created by picking a
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Table 15: Experiments on graphs with deterministic variables. The performance over 10 experiments
is reported in terms of SHD with standard deviation in brackets. ENCO can recover most of the
graphs with less than two errors.

Graph type deterministic

SDI (Ke et al., 2019) 20.6 (±3.8)

ENCO (Ours) 1.4 (±1.3)
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Figure 17: Example graph for the deterministic setup. We use the random setup with edge proba-
bility 0.1 and limit number of parents to 3. All variables except the leaf nodes have deterministic
distributions.

X1

X2

X3

Figure 18: Example graph for cancelling paths X1 → X2 → X3 and X1 → X3. This can, for
instance, occur when the conditional distribution of X2 is a Dirac delta around X1: p(X2|X1) =
δ[X2 = X1].

random output category for any pair of input values. We create 10 such graphs and use the same
hyperparameter setup as for the synthetic graphs, except that we increase the sparsity regularizer to
λsparse = 0.02. We report the results in Table 15. In line with the results on the real-world graphs,
ENCO is able to recover most graphs with less than two errors. As a baseline, we apply SDI (Ke et al.,
2019) and see a significant higher error rate. The method predicts many false positives, including
two-variable loops, but was also missing out some true positive edges. We conclude that ENCO also
works well on deterministic graphs.

Cancellation of paths Besides deterministic nodes, a common example for faithfulness violation
is the cancellation of two paths. For instance, consider the causal graph with the three variables
X1, X2, X3 shown in Figure 18, and the conditional distribution p(X2|X1) = δ[X2 = X1]. In this
case, the two paths X1 → X2 → X3 and X1 → X3 cancel each other, i.e. X3 is independent of X2

when conditioned on X1, and independent of X1 when conditioned on X2. This implies that only one
of the two graphs is necessary for describing the relations. Yet, ENCO can find the edge X1 → X3 by
observing interventions on X2, since in this case, X1 ⊥⊥ X2 and X1 6⊥⊥ X3|X2. The remaining edges
can be learned in the same manner. We also emperically verify this by running ENCO on the graph
structure of Figure 18 with the three variables being binary. We set p(X2|X1) = δ[X2 = X1] for
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Table 16: Experiments on graph with continuous data from Brouillard et al. (2020). The suffix “-G”
denotes that the neural networks model a Gaussian density, and “-DSF” a two-layer deep sigmoidal
flow. ENCO outperforms all baselines in this scenario, verifying that ENCO also works on continuous
data well.

Graph type Linear Nonlinear with additive noise Nonlinear with non-additive noise

GIES 0.6 (±1.3) 9.1 (±5.3) 4.4 (±6.1)
IGSP (best) 1.9 (±1.8) 5.3 (±3.0) 4.1 (±2.8)
DCDI-G 1.3 (±1.9) 5.2 (±7.5) 2.3 (±3.6)
DCDI-DSF 0.9 (±1.3) 4.2 (±5.6) 7.0 (±10.7)
GES + Orientating 2.5 (±4.3) 12.5 (±9.2) 7.9 (±7.4)

ENCO-G (ours) 0.0 (±0.0) 0.2 (±0.4) 0.1 (±0.3)
ENCO-DSF (ours) 0.3 (±0.7) 1.4 (±1.4) 1.2 (±1.5)

canceling the two paths, and the remaining distributions are randomly initialized. ENCO reconstructs
the graph without errors, showing that it also works in practice.

D.5 CONTINUOUS DATA

We verify that ENCO works just as well with continuous data by performing the experiments on
datasets from Brouillard et al. (2020) that contained interventions on all variables. In these datasets,
the graphs consist of 10 variables with an average of one edge per variable, and deploy three different
causal mechanisms: linear, nonlinear additive noise models, and nonlinear models with non-additive
noise using neural networks. The datasets contain 909 observational samples and 909 samples per
intervention. All results of GIES, IGSP, and DCDI have been taken from Brouillard et al. (2020)
(Appendix C.7, Table 22-24). We follow the setup of Brouillard et al. (2020) and compare two
different neural network setups. First, we use MLPs that model a Gaussian density by predicting a
mean and variance variable (denoted by suffix G). The second setup uses normalizing flows, more
specifically a two-layer deep sigmoidal flow (Huang et al., 2018), which is flexible enough to model
more complex distributions (denoted by suffix DSF). The rest of the experimental setup in ENCO is
identical to the categorical case.

Results are shown in Table 16, and the observations are the same as with categorical data. ENCO
outperforms all other methods in all settings, especially for the more complex distributions. The
higher error rate for the DSF setup is mostly due to overfitting of the flow models. We conclude that
ENCO works as accurately for both continuous and categorical data.

D.6 SKELETON LEARNING WITH OBSERVATIONAL BASELINE

To show the benefit of learning a graph from observational and interventional data jointly, we compare
ENCO to a simple observational baseline. This baseline first learns the skeleton of the graph by
applying greedy equivalence search (GES) (Chickering, 2002) on the observational data. Then, for
each interventional dataset, we apply GES as well and use those skeletons to orientate the edges of
the original one. This can be done by checking for each undirected edge X − Y whether X → Y is
in the skeleton of interventions on X or not. As a reference implementation of GES, we have used
the one provided in the Causal Discovery Toolbox (Kalainathan et al., 2020).

The results on continuous data are shown in Table 16. Since GES assumes linear mechanisms and
gaussianity of the data, it is unsurprising that it performs better on the linear Gaussian dataset than
on the non-linear datasets. However, on all the three datasets, it constitutes the lowest performance
compared to the other methods, including ENCO. This highlights the benefits of incorporating
interventional data in the learning of the skeleton and graph structure. To gain further insights in
comparison to the constraint-based baseline, we repeat the experiments with smaller sample sizes. The
original dataset has 909 samples for observational data and per intervention, and we sub-sample 500
and 100 of those respectively for simulating smaller dataset sizes. The results of those experiments
can be found in Table 17. It is apparent that the results of GES on the linear dataset get considerably
worse with fewer data samples being available, while ENCO-G is able to reconstruct most graphs
still without errors. Especially for the small dataset of 100 samples, we noticed that the skeletons
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Table 17: Experiments on graph with continuous data from Brouillard et al. (2020) with smaller
sample sizes for both observational and interventional datasets (in brackets). ENCO shows to perform
much better in smaller sample sizes than a skeleton+orientation method, underlining the benefit of
learning the whole graph from observational and interventional data jointly.

Graph type Linear Gaussian Nonlinear with additive noise Nonlinear with non-additive noise

GES + Orientating (909) 2.5 (±4.3) 12.5 (±9.2) 7.9 (±7.4)
ENCO-G (ours) (909) 0.0 (±0.0) 0.2 (±0.4) 0.1 (±0.3)

GES + Orientating (500) 3.2 (±4.3) 12.0 (±9.2) 9.2 (±7.5)
ENCO-G (ours) (500) 0.1 (±0.3) 0.5 (±0.7) 0.0 (±0.0)

GES + Orientating (100) 6.1 (±5.3) 10.2 (±6.7) 9.0 (±6.5)
ENCO-G (ours) (100) 0.2 (±0.4) 0.9 (±1.1) 1.3 (±0.8)

Table 18: Comparing structure learning methods in terms of structural hamming distance (SHD) on
common graph structures (lower is better), averaged over 25 graphs each. ENCO outperforms all
baselines, and by enforcing acyclicity after training, can recover most graphs with minimal errors.

Graph type bidiag chain collider full jungle random

GIES 33.6 (±7.5) 17.5 (±7.3) 24.0 (±2.9) 216.5 (±15.2) 33.1 (±2.9) 57.5 (±14.2)
IGSP 32.7 (±5.1) 14.6 (±2.3) 23.7 (±2.3) 253.8 (±12.6) 35.9 (±5.2) 65.4 (±8.0)
SDI 9.0 (±2.6) 3.9 (±2.0) 16.1 (±2.4) 153.9 (±10.3) 6.9 (±2.3) 10.8 (±3.9)
DCDI 16.9 (±2.0) 10.1 (±1.1) 10.9 (±3.6) 21.0 (±4.8) 17.9 (±4.1) 7.7 (±3.2)
GES + Orientating 14.8 (±2.6) 0.5 (±0.7) 20.8 (±2.4) 282.8 (±4.2) 14.7 (±3.1) 60.1 (±8.9)

ENCO (ours) 2.2 (±1.4) 1.7 (±1.3) 1.6 (±1.6) 9.2 (±3.4) 1.7 (±1.3) 4.6 (±1.9)
ENCO-acyclic (ours) 0.0 (±0.0) 0.0 (±0.0) 1.6 (±1.6) 5.3 (±2.3) 0.6 (±1.1) 0.2 (±0.5)

Table 19: Experiments with a different data simulator, introducing independence among parents for
each variable. Similar to the neural-based synthetic data, ENCO recovers most graphs with a minor
error rate, outperforming other baselines.

Graph type bidiag chain collider full jungle random

GIES 30.7 (±3.1) 16.9 (±2.4) 18.6 (±2.5) 238.6 (±4.0) 30.1 (±3.5) 110.0 (±11.8)
IGSP 27.0 (±4.2) 14.0 (±2.8) 25.0 (±1.4) 259.5 (±3.5) 24.0 (±7.1) 112.5 (±4.9)
SDI 12.6 (±2.7) 7.6 (±2.6) 2.8 (±1.6) 99.0 (±7.5) 14.8 (±3.2) 36.7 (±4.7)
DCDI 15.7 (±1.9) 8.4 (±1.3) 4.7 (±2.5) 25.3 (±6.2) 18.9 (±3.7) 9.8 (±3.6)

ENCO (ours) 0.5 (±0.6) 0.4 (±0.6) 0.9 (±0.8) 1.0 (±1.2) 1.2 (±1.2) 1.9 (±1.8)
ENCO-acyclic (ours) 0.0 (±0.0) 0.0 (±0.0) 0.8 (±0.8) 0.2 (±0.4) 0.3 (±0.6) 0.1 (±0.3)

found by GES on observational data already contained couple of mistakes. This shows that for small
datasets, observational data alone might not be sufficient to find the correct skeleton while by jointly
learning from observational and interventional data, we can yet find the graph up to minor errors.

Further, we also apply GES on the categorical data with an additional hyperparameter search over
the penalty discount. The results in Table 18 give a similar conclusion as on the continuous data.
While the baseline attains good scores for chains, it makes considerably more errors on all other
graph structures than ENCO. This shows that ENCO is much more robust by jointly learning from
observational and interventional data.

D.7 NON-NEURAL BASED DATA SIMULATORS

Using neural networks to generate the simulated data might give SDI, DCDI and ENCO an advantage
in our comparisons since they rely on similar neural networks to model the distribution. To verify
that ENCO works for other simulated data similarly well, we run experiments on categorical data
with other function forms for the causal mechanisms instead of neural networks. Since there is
no straightforward way of defining ’linear’ mechanisms for categorical data, we instead express a
conditional distribution as a product of independent, single conditionals:

p(Xi|pa(Xi)) =

∏
Xj∈pa(Xi) p(Xi|Xj)∑

x̃i

∏
Xj∈pa(Xi) p(Xi = x̃i|Xj)

(48)
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with p(Xi|Xj) =
exp(αXi,Xj )∑
Xi

exp(αXi,Xj )
, α·,· ∼ N (0, 2). Hence, the effect of each variable in the

parent set is independent of all others, similar to linear functions in the continuous case. The
individual probability densities represent a softmax distribution over variables sampled from a
Gaussian distribution.

We apply GIES, IGSP, DCDI, SDI and ENCO to the same set of synthetic graph structures with
these new causal mechanisms. Similar to the previous experiments, we provide 200 samples per
intervention and 5k observational samples to the algorithms, and repeat the experiments with 25
independently sampled graphs. The results in Table 19 give the same conclusion as the experiments
on neural-based causal mechanisms, namely that ENCO outperforms all baselines. Most methods
experience a decrease in performance since the average causal effect of each parent is lower than
in the neural case where more complex interactions between parents can be modeled. Still, ENCO
only shows minor decreases, having less than one mistake on average for every graph structure when
applying the orientation heuristic.
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