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OBS-DIFF: ACCURATE PRUNING FOR DIFFUSION
MODELS IN ONE-SHOT

Anonymous authors
Paper under double-blind review

Dense 20% 30% 40% 50%

Prompt: A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil painting. Intricate details.

Negative Prompt: low quality, bad quality, blur, ugly, worst quality

M
agnitude

DSnoT
W

anda
Ours (OBS-Diff)

Figure 1: Qualitative comparison of unstructured pruning methods on the SD3-Medium
model (Esser et al., 2024). We evaluate Magnitude, DSnoT (Zhang et al., 2024c), Wanda (Sun
et al., 2024), and our method (OBS-Diff) at various sparsity levels (20%, 30%, 40%, and 50%) us-
ing the same prompt and negative prompt. All images are generated at a resolution of 512× 512.

ABSTRACT

Large-scale text-to-image diffusion models, while powerful, suffer from pro-
hibitive computational cost. Existing one-shot network pruning methods can
hardly be directly applied to them due to the iterative denoising nature of dif-
fusion models. To bridge the gap, this paper presents OBS-Diff, a novel one-shot
pruning framework that enables accurate and training-free compression of large-
scale text-to-image diffusion models. Specifically, (i) OBS-Diff revitalizes the
classic Optimal Brain Surgeon (OBS), adapting it to the complex architectures
of modern diffusion models and supporting diverse pruning granularity, including
unstructured, N:M semi-structured, and structured (MHA heads and FFN neu-
rons) sparsity; (ii) To align the pruning criteria with the iterative dynamics of the
diffusion process, by examining the problem from an error-accumulation perspec-
tive, we propose a novel timestep-aware Hessian construction that incorporates
a logarithmic-decrease weighting scheme, assigning greater importance to earlier
timesteps to mitigate potential error accumulation; (iii) Furthermore, a compu-
tationally efficient group-wise sequential pruning strategy is proposed to amor-
tize the expensive calibration process. Extensive experiments show that OBS-Diff
achieves state-of-the-art one-shot pruning for diffusion models, delivering infer-
ence acceleration with minimal degradation in visual quality.

1
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1 INTRODUCTION

Recent advances in text-to-image generation have been largely driven by large-scale diffusion mod-
els (Rombach et al., 2022; Ramesh et al., 2022; Xie et al., 2024). These models, such as the Stable
Diffusion 3 and 3.5 series (Esser et al., 2024), are capable of producing stunning images from tex-
tual prompts, revolutionizing fields from digital art to content creation. However, their massive
parameter counts—often in the billions (e.g., 8B in Stable Diffusion 3.5-Large)—create prohibitive
computational and memory demands, severely limiting their broader accessibility.

To improve the efficiency of the diffusion models, multiple research avenues have been proposed.
One major line of work focuses on accelerating the sampling process by reducing the number of
denoising steps (Song et al., 2021; Lu et al., 2022) or knowledge distillation (Salimans & Ho, 2022;
Sauer et al., 2024). Orthogonal to these efforts, model compression aims to reduce the intrinsic
computational and memory footprint of the model itself. This category includes methods like quan-
tization (He et al., 2023; Li et al., 2023b; Shang et al., 2023; Li et al., 2023a) and pruning, which is
the primary focus of our work.

The rapid evolution of diffusion models underscores the severe limitations of existing pruning tech-
niques. Current methods often lack generality (Fang et al., 2023; Li et al., 2023c; Kim et al., 2024),
as they are typically tailored to specific architectures like the U-Net and are not easily adapted
to large-scale, text-to-image diffusion models with diverse structures (e.g., Multimodal Diffusion
Transformer). Moreover, the efficiency gains from pruning are frequently undermined by compu-
tationally expensive requirements, such as the need for gradient information during pruning (Fang
et al., 2023; Zhang et al., 2024b) or a costly post-pruning fine-tuning stage. Furthermore, unstruc-
tured and semi-structured pruning remains largely unexplored for large-scale text-to-image diffu-
sion models. All of these motivate our central research question: Can we develop a general and
training-free pruning framework capable of pruning diffusion models with diverse architec-
tures and supporting multiple pruning granularities in a one-shot manner?

In the domain of Large Language Models (LLMs), one-shot and training-free pruning methods like
SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2024) have achieved remarkable suc-
cess. Subsequent SlimGPT (Ling et al., 2024) and SoBP (Wei et al., 2024) further explored training-
free structured pruning. These layer-wise post-training pruning method approaches efficiently com-
press massive models without requiring costly retraining. However, the existing training-free prun-
ing methods from the LLM field, such as SparseGPT, cannot be directly applied to the diffusion
model. This is due to the unique challenges posed by diffusion models: their iterative nature, where
parameters are shared across multiple denoising steps. Furthermore, the complex architectures in-
troduce additional difficulties for pruning.

To bridge this gap, we introduce OBS-Diff, a novel one-shot, training-free pruning framework de-
signed specifically for large-scale text-to-image diffusion models. Our approach revitalizes the clas-
sic Optimal Brain Surgeon (OBS) (Hassibi et al., 1992) and tailors it to the unique, iterative nature of
the diffusion denoising process. By reformulating the pruning objective to account for the temporal
dynamics of generation and introducing a computationally efficient calibration strategy, OBS-Diff
efficiently removes redundant weights with minimal impact on performance, all without requiring
any training during the pruning process or fine-tuning.

Our contributions are summarized as below:

• We adapt the OBS framework to handle the complex architectures of modern diffusion models,
such as the Multimodal Diffusion Transformer (MMDiT), and demonstrate OBS-Diff versatil-
ity across unstructured, semi-structured (e.g., 2:4 sparsity patterns), and structured pruning (e.g.,
removing entire attention heads or FFN neurons).

• Recognizing that errors introduced in the early stages of the iterative denoising process have a
compounding effect, we propose a Timestep-Aware Hessian Construction. This novel construc-
tion weights the importance of parameters according to their influence across the entire denoising
trajectory, prioritizing the more sensitive early steps through a logarithmic weighting scheme.

• To overcome the prohibitive cost of sequential calibration in iterative models, we devise a group-
wise sequential pruning strategy built upon “Module Packages”. This approach amortizes the
expensive data collection process by processing layers in batches, striking an effective balance
between computational time and memory requirements for the pruning process.
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• Extensive experiments demonstrate that OBS-Diff sets a new state-of-the-art for training-free dif-
fusion model pruning. It achieves inference acceleration while maintaining high visual quality,
outperforming other layer-wise pruning methods across various sparsity levels and patterns.

2 RELATED WORK

Pruning for Diffusion Models. Several methods have explored pruning for diffusion models. An
early approach, Diff-pruning (Fang et al., 2023), introduced a gradient-based method for structured
pruning. However, its demonstration on small-scale, non-text-to-image models (e.g., DDPMs) and
its dependency on expensive retraining limit its applicability to modern, large-scale systems with
diverse architectures. A significant line of research has since focused on compressing the UNet-
based text-to-image diffusion models, with works like SnapFusion (Li et al., 2023c), MobileDif-
fusion (Zhao et al., 2024), BK-SDM (Kim et al., 2024), LAPTOP-Diff (Zhang et al., 2024a), and
LD-Pruner (Castells et al., 2024) all targeting less salient components of the UNet architecture.

Other works have explored different architectures or techniques; for instance, Tinyfusion (Fang
et al., 2025) introduced depth pruning for the DiT architecture. More recently, EcoDiff (Zhang
et al., 2024b) introduced a general pruning framework for text-to-image models applicable to di-
verse architectures; however, it remains dependent on a costly training phase to learn a pruning
mask and requires extensive hyperparameter tuning. A common theme among these methods is a
dependency on training or fine-tuning and a primary focus on architecture-specific, structured prun-
ing. Furthermore, unstructured and semi-structured pruning for large-scale, text-to-image diffusion
models remains a largely unexplored area.

Layer-Wise Pruning Methods. Early post-training compression methods, notably Optimal Brain
Damage (OBD) (LeCun et al., 1989) and Optimal Brain Surgeon (OBS) (Hassibi et al., 1992),
utilized Hessian-based saliency scores to prune individual weights. However, the prohibitive cost
of computing and storing the full Hessian matrix limited their scalability. This challenge spurred
the development of layer-wise approaches such as L-OBS (Dong et al., 2017) and Optimal Brain
Compression (OBC) (Frantar & Alistarh, 2022), which approximate the Hessian locally to make
pruning tractable.

As models scaled to billions of parameters, particularly in Large Language Models (LLMs), new
methods emerged. SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2024), and DSnoT
(Zhang et al., 2024c) focused on efficient unstructured and semi-structured (N:M pattern) pruning.
Subsequently, SlimGPT (Ling et al., 2024) and SoBP (Wei et al., 2024) extended the OBS methodol-
ogy to a structured granularity. The applicability of the OBS framework has also been demonstrated
in other architectures, such as the Mamba model via SparseSSM (Tuo & Wang, 2025). Nevertheless,
this family of compression methods remains unexplored in the field of diffusion models.

3 PRELIMINARIES

3.1 LAYER-WISE POST-TRAINING PRUNING

Post-training pruning often decomposes the global network compression problem into a series of
independent, layer-wise subproblems (Hubara et al., 2021; Nagel et al., 2020; Aghasi et al., 2017).
For each layer l, the objective is to find a pruned weight matrix Ŵl that minimizes the output
reconstruction error, given input activations Xl and a target sparsity Sl. This is formulated as:

argminŴl

∥∥∥WlXl − ŴlXl

∥∥∥2
2

s.t. sparsity(Ŵl) = Sl, (1)

where ∥ · ∥22 is the squared Euclidean norm. The network is pruned by sequentially solving this
optimization problem for each layer.

3.2 OPTIMAL BRAIN SURGEON FOR LAYER-WISE PRUNING

The Optimal Brain Surgeon (OBS) framework (Hassibi et al., 1992) offers an efficient solution to
the layer-wise problem in Eq. (1). A key insight of OBS is that the ℓ2-norm objective allows the
problem to be decoupled into independent subproblems for each row of the weight matrix Wl.

3
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Figure 2: Illustration of the proposed OBS-Diff framework applied to the MMDiT architecture.
Target modules are first partitioned into a predefined number of “Module Packages” and processed
sequentially. For each package, hooks capture layer activations during a forward pass with a calibra-
tion dataset. This data, combined with weights from a dedicated timestep weighting scheme, is used
to construct Hessian matrices. These matrices guide the Optimal Brain Surgeon (OBS) algorithm to
simultaneously prune all layers within the current package before proceeding to the next.

For each row, OBS approximates the objective with a second-order Taylor expansion centered
around the current weights. This relies on the Hessian of the reconstruction error, H = 2XlX

T
l .

This approximation yields a closed-form solution to identify the least salient weight wq—the one
whose removal minimally increases the error—and to compute the optimal update δw for the re-
maining weights in its row. The saliency score Lq and the update are defined as:

Lq =
w2

q

2[H−1]qq
, δw = − wq

[H−1]qq
H−1

:,q , (2)

where [H−1]qq is the q-th diagonal element of the inverse Hessian and H−1
:,q is its q-th column.

This process is repeated iteratively until the target sparsity Sl is reached. After each weight is
removed, the inverse Hessian must be updated. To circumvent the prohibitive cost of full re-inversion
and the error accumulation of approximate rank-one updates, SparseGPT (Frantar & Alistarh, 2023)
imposes a fixed pruning order. This structural constraint enables efficient and stable updates to the
inverse Hessian information using methods like Cholesky decomposition (Frantar et al., 2024) as
weights are progressively removed.

4 METHODOLOGY

We propose OBS-Diff, a one-shot, training-free pruning framework tailored for diffusion models.
As illustrated in Figure 2, our method partitions the model into sequential “Module Packages” to
amortize calibration costs. Within each package, we employ a novel Timestep-Aware Hessian con-
struction to prioritize early denoising steps, enabling the simultaneous pruning of all target layers
within the current package.

4.1 TIMESTEP-AWARE HESSIAN CONSTRUCTION

The layer-wise pruning objective defined in Eq. (1) is effective for models with a single forward
pass, but insufficient for diffusion models, which are iterative and operate over a denoising trajectory

4
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parameterized by discrete timesteps t ∈ {1, · · · , T}.1 The impact of pruning-induced errors is not
uniform across this trajectory. Errors introduced in early inference steps (small t) are inherently more
damaging, as they propagate and compound through all subsequent steps (t+ 1, · · · , T ), leading to
larger deviations in the final output.

Therefore, a robust pruning strategy must prioritize preserving network function during these critical
early stages. We reformulate the layer-wise optimization problem to minimize a weighted recon-
struction error that places greater importance on earlier, higher-impact steps:

argmin
Ŵl

Et∼[1,T ]

[
αt

∥∥∥WlXl,t − ŴlXl,t

∥∥∥2
2

]
, (3)

Here, Xl,t is the input to layer l at step t, and αt is a step-dependent weight. We define αt using a
simple and effective logarithmically decreasing schedule:

αt = αmin +
αmax − αmin

ln(T )
ln(T − t+ 1), t ∈ {1, 2, · · · , T}. (4)

This schedule ensures the weight is highest at the beginning of inference and decays smoothly, such
that α1 > α2 > · · · > αT > 0.

By incorporating this weighting, we adapt the Optimal Brain Surgeon framework (Hassibi et al.,
1992). The Hessian, which captures the second-order information of this weighted loss, is now
computed as a weighted sum over all inference steps:

Hl = 2

T∑
t=1

αtE[Xl,tX
T
l,t], (5)

which is termed as Timestep-Aware Hessian. It encapsulates the varying importance of parameters
over the generation process. Saliency scores derived from its inverse are thus more sensitive to
weights that are critical during the early, formative stages of the denoising process, resulting in a
more faithfully pruned model.

4.2 MODULE PACKAGES: A GROUP-WISE SEQUENTIAL PRUNING STRATEGY

Conventional post-training pruning methods, such as SparseGPT (Frantar & Alistarh, 2023), em-
ploy a sequential layer-wise calibration. This paradigm is computationally prohibitive for diffusion
models, as calibrating each layer necessitates executing a full, multi-step denoising trajectory. To
address this bottleneck, we introduce Module Packages, a group-wise strategy that amortizes cali-
bration costs by processing layers in batches.

Our approach is built upon two concepts. A Basic Unit is a set of layers with mutually independent
inputs in a forward pass (e.g., query, key, and value projections), allowing for parallel processing. A
Module Package comprises one or more Basic Units, which are pruned and calibrated collectively.
Our framework processes these packages sequentially. For each package, we first execute a Group-
wise Data Collection phase: we run the complete denoising trajectory once across the calibration
dataset, using forward hooks to concurrently gather input statistics for all modules within the pack-
age. Subsequently, all modules are pruned simultaneously using their respective Timestep-Aware
Hessian matrices.

Crucially, the network state is updated sequentially between packages but remains static within a
package during data collection. This preserves the principle of sequential calibration at a coarser,
group-wise granularity, rendering the process computationally feasible. This strategy drastically
reduces the number of calibration runs, with the primary trade-off being an increased memory foot-
print to store multiple Hessian matrices concurrently. Notably, our empirical results demonstrate that
pruning accuracy has low sensitivity to package granularity, granting practitioners the flexibility to
balance computational cost against memory constraints without a significant performance sacrifice.

4.3 EXTENSION TO SEMI-STRUCTURED AND STRUCTURED PRUNING

A key advantage of our OBS-Diff framework is its adaptability. While focusing on unstructured
pruning, it readily extends to both semi-structured and structured sparsity.

1Here, t denotes the sequential index of the denoising iteration during inference, where T is the total number
of inference steps (e.g., for T = 28, t ranges from 1, 2, · · · , 28).

5
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Semi-Structured Pruning. For semi-structured patterns like 2:4 sparsity, the extension is direct.
Within each block of four weights, we simply prune the two with the lowest per-weight OBS-Diff
saliency scores, efficiently creating hardware-friendly models.

Structured Pruning. For structured pruning of Feed-Forward Network (FFN) layers, we assess a
neuron’s importance by aggregating the saliency of its associated weights. The saliency Lq for an
entire neuron (column q) and the corresponding weight update are:

Lq =

∑
W 2

:,q

2[H−1]qq
, δW = − W:,q

[H−1]qq
H−1

:,q , (6)

where the lowest-scoring neurons are removed.

Similarly, for Multi-Head Attention (MHA), we prune entire heads. Our approach, inspired by
SlimGPT (Ling et al., 2024), quantifies the saliency of each head.

The calculation begins with the full Hessian matrix, H, for the output projection layer. For the j-th
head, we consider its weight matrix Wj and the corresponding Hessian block Hj. The total saliency
for this head, Lj , is found by aggregating the importance of its individual weights. The saliency is
calculated as:

Lj =

d∑
k=1

∑
(Wj)

2
:,k

(Hj
−1)k,k

, (7)

where (Wj):,k is the k-th column of the weight matrix Wj , (Hj
−1)k,k is the k-th diagonal element

of the inverse Hessian block, and d is the dimension of each head.

However, MMDiT’s joint attention mechanism presents a unique challenge. Shared attention heads
process concatenated multi-modal inputs, but are fed into separate, modality-specific output paths.
This structure yields two distinct importance rankings for the same set of heads (one for each modal-
ity), while OBS-Diff processes the two output projection matrices after separation. To resolve this,
we fuse these rankings into a single, decisive list using Reciprocal Rank Fusion (RRF):

SRRF
j =

1

k + rankA(j)
+

1

k + rankB(j)
, (8)

where rankA(j) is the rank of head j for modality A, and k is a stabilizing hyperparameter (e.g.,
60). This fused score provides a unified ranking to guide the pruning of shared attention heads.

Subsequently, the weights of the entire output projection layer are updated using the full Hessian
matrix, H, following the formulation presented in Eq. (6).

5 EXPERIMENTS

5.1 SETTINGS

Models. To demonstrate the generalizability of OBS-Diff, we evaluate it across a diverse range
of text-to-image models: Stable Diffusion v2.1-base (866M) (Rombach et al., 2022), Stable Dif-
fusion 3-Medium (2B) (Esser et al., 2024), Stable Diffusion 3.5-Large (8B), and Flux.1-dev (12B)
(Black Forest Labs, 2024). For comparison with prior work, we also evaluate our method on DDPM
(35.7M) (Ho et al., 2020) trained on the CIFAR-10 (32 × 32) dataset (Krizhevsky et al., 2009).

Baselines. For text-to-image models, we compare against methods adapted from the Large Lan-
guage Model (LLM) domain for unstructured/semi-structured sparsity, namely Wanda (Sun et al.,
2024) and DSnoT (Zhang et al., 2024c), as well as standard magnitude pruning. For structured prun-
ing, we employ an L1-norm based baseline (Li et al., 2017) and EcoDiff (Zhang et al., 2024b). On
the CIFAR-10 DDPM, our method is directly compared with Diff-Pruning (Fang et al., 2023). The
sparsity refers to the pruning ratio of all the linear layers within MHA and FFN for each MMDiT
block. For calibration, we utilize text prompts from the GCC3M dataset (Sharma et al., 2018). To
ensure a fair comparison, all methods and baselines utilize identical configurations (computational
resources provided in Appendix B).

6
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Table 1: Quantitative comparison of unstructured pruning methods on text-to-image diffusion mod-
els. The best result per metric is highlighted in bold.

(a) SD v2.1-base and SD 3-medium

Base Model Sparsity (%) Method FID ↓ CLIP ↑ ImageReward ↑

SD v2.1-base

Dense Model 31.25 0.3142 0.3627

40

Magnitude 27.86 0.3111 0.1864
DSnoT 31.63 0.3099 -0.0422
Wanda 27.96 0.3122 0.1367
OBS-Diff 28.19 0.3131 0.2061

50

Magnitude 49.38 0.2959 -0.5580
DSnoT 69.05 0.2829 -1.1395
Wanda 41.84 0.2988 -0.4704
OBS-Diff 27.41 0.3102 -0.0356

SD 3-medium

Dense Model 36.14 0.3162 0.9029

50

Magnitude 221.24 0.1864 -2.2719
DSnoT 63.37 0.2908 -0.5941
Wanda 43.98 0.3000 -0.1076
OBS-Diff 27.20 0.3167 0.6468

60

Magnitude 349.53 0.1864 -2.2807
DSnoT 211.58 0.2222 -2.2271
Wanda 170.33 0.2352 -2.0641
OBS-Diff 28.49 0.3099 0.1213

(b) SD 3.5-large and Flux 1.dev

Base Model Sparsity (%) Method FID ↓ CLIP ↑ ImageReward ↑

SD 3.5-large

Dense Model 31.59 0.3156 0.7549

50

Magnitude 35.21 0.3052 0.1465
DSnoT 32.82 0.3113 0.2323
Wanda 27.49 0.3123 0.4215
OBS-Diff 29.61 0.3142 0.6146

60

Magnitude 156.21 0.2302 -2.0296
DSnoT 81.99 0.2706 -1.3198
Wanda 48.80 0.2859 -0.6402
OBS-Diff 29.15 0.3119 0.3984

Flux 1.dev

Dense Model 39.16 0.3110 0.9661

60

Magnitude 42.06 0.2974 -0.1945
DSnoT 41.55 0.3095 0.7111
Wanda 37.65 0.3086 0.7576
OBS-Diff 39.40 0.3075 0.7777

70

Magnitude 251.58 0.2104 -2.2271
DSnoT 44.35 0.2970 -0.3459
Wanda 49.68 0.2957 -0.1046
OBS-Diff 39.79 0.2986 0.3697

The Wanda (Sun et al., 2024) and DSnoT (Zhang et al., 2024c) baselines are originally designed for
unstructured and semi-structured pruning of LLMs. Their direct application to diffusion models is
non-trivial due to the iterative nature of the diffusion model. Specifically, we extended their pruning
logic by incorporating the concept of module packages, enabling them to perform unstructured and
semi-structured pruning targeted at the key components of the diffusion architecture. Critically,
to ensure an equitable comparison with our Hessian-based method, the adapted DSnoT baseline is
configured to use its Hessian-based importance score calculation mode.

Evaluation Metrics. We evaluate the performance of the text-to-image models on a subset of 5K
prompts from the MS-COCO 2014 validation set (Lin et al., 2014). The evaluation is based on three
metrics: Fréchet Inception Distance (FID) (Heusel et al., 2017), CLIP Score (ViT-B/16) (Hessel
et al., 2021), and ImageReward (Xu et al., 2023). For the DDPM on CIFAR-10, we report the FID
score. We measure efficiency gains in terms of wall-clock time reduction and the decrease in FLOPs.

5.2 RESULTS OF UNSTRUCTURED PRUNING

Table 2: Performance of semi-structured (2:4 spar-
sity pattern) pruning on the Stable Diffusion 3.5-Large
model. Pruning is applied to the 3rd through 25th
MMDiT blocks. The best result is shown in bold.

Base Model Method FID ↓ CLIP ↑ ImageReward ↑

SD 3.5-Large

Dense Model 31.59 0.3156 0.7549

Magnitude 45.39 0.2945 -0.4705
DSnoT 32.40 0.3069 0.0307
Wanda 32.08 0.3036 -0.1363
OBS-Diff 32.13 0.3129 0.4493

The results in Table 1 show the superiority
of our OBS-Diff in terms of CLIP score
and ImageReward. An interesting phe-
nomenon is observed with the FID metric
– the pruned model can occasionally out-
perform the original dense model. E.g., at
40% sparsity on SD v2.1-base, the Magni-
tude method beats the dense model in FID,
while our results suggest Magnitude does
not produce visually better results. It is
thereby conceived that FID may not be a
very reliable metric here to evaluate dif-
ferent pruning methods.

Regarding the CLIP score, OBS-Diff is the best-performing method in the vast majority of test
cases, exhibiting only a slight decrease compared to the dense models. Most notably, OBS-Diff
consistently leads in the ImageReward metric across all benchmarks, indicating superior alignment
with human aesthetic preferences.

The superiority of our approach becomes most pronounced at high sparsity levels. For example,
at 60% sparsity on SD 3.5-Large or 70% on Flux 1.dev, the performance of all baseline methods
collapses, resulting in metrics that are significantly worse than ours. This quantitative degradation
corresponds to a qualitative failure; as illustrated in Figure 1, the images generated by baseline meth-
ods at high sparsity are often totally destroyed and suffer from severe artifacts, whereas OBS-Diff
continues to produce high-quality and coherent results. Beyond its performance in generation qual-
ity, OBS-Diff is also highly efficient. For instance, the entire pruning process for the 2B-parameter
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Table 3: Performance of structured pruning on the SDXL (U-Net) model across various sparsity
levels. Comparison includes the L1-norm baseline, EcoDiff, and our proposed OBS-Diff. The
TFLOPs metric represents the theoretical computational cost for a single forward pass of the entire
UNet. For each sparsity group, the best result per metric is highlighted in bold.

Model Sparsity Method #Params TFLOPs ↓ FID ↓ CLIP Score ↑ ImageReward ↑

SDXL

Dense Model 2.57 B 5.98 29.21 0.3213 0.7635

15%
L1-norm

2.24 B 5.33 (↓10.87%)
71.78 0.3035 -0.0006

EcoDiff 34.18 0.3100 -0.1870
OBS-Diff (Ours) 29.08 0.3215 0.6877

20%
L1-norm

2.13 B 5.12 (↓14.38%)
133.07 0.2825 -0.7897

EcoDiff 42.98 0.2993 -0.6172
OBS-Diff (Ours) 29.19 0.3212 0.6461

30%
L1-norm

1.91 B 4.70 (↓21.40%)
170.68 0.2711 -1.1694

EcoDiff 101.96 0.2465 -1.9161
OBS-Diff (Ours) 29.75 0.3204 0.4909

Table 4: Performance of structured pruning on the Stable Diffusion 3.5-Large model across various
sparsity levels. The first and last transformer blocks were excluded from the pruning process. The
TFLOPs metric represents the theoretical computational cost for a single forward pass of the entire
transformer. For each sparsity group, the best result per metric is highlighted in bold.

Base Model Sparsity (%) Method #Params TFLOPs ↓ FID ↓ CLIP ↑ ImageReward ↑

SD 3.5-Large

Dense Model 8.06 B 11.26 31.59 0.3156 0.7549

15%
L1-norm

7.28 B 9.63 (↓14.5%)
158.89 0.2376 -2.0502

EcoDiff 230.97 0.2086 -2.2594
OBS-Diff 32.64 0.3157 0.6446

20%
L1-norm

7.02 B 9.09 (↓19.3%)
189.50 0.2124 -2.2385

EcoDiff 293.89 0.2050 -2.2724
OBS-Diff 32.46 0.3149 0.5475

25%
L1-norm

6.76 B 8.55 (↓24.1%)
228.82 0.2040 -2.2651

EcoDiff 308.96 0.2037 -2.2686
OBS-Diff 33.73 0.3128 0.3741

30%
L1-norm

6.54 B 8.10 (↓28.1%)
327.48 0.2093 -2.2663

EcoDiff 346.38 0.2024 -2.2746
OBS-Diff 34.51 0.3107 0.2221

SD 3-medium model completes in under 15 minutes on a single NVIDIA RTX 4090, highlighting
its excellent cost-effectiveness. Detailed analyses of pruning time and the impact of sparsity on
ImageReward are provided in Appendix C.1.

5.3 RESULTS ON SEMI-STRUCTURED PRUNING

The results for 2:4 semi-structured pruning are presented in Table 2. Although Wanda obtains
a slightly better FID of 32.08 compared to our 32.13, OBS-Diff shows substantial advantages in
semantic-level metrics. Notably, it surpasses the strongest baseline by a large margin in both CLIP
score (0.3129) and ImageReward (0.4493). This highlights our method’s effectiveness in maintain-
ing high-level semantic consistency and visual fidelity under hardware-friendly sparsity constraints.

5.4 RESULTS ON STRUCTURED PRUNING

The results are presented in Table 4 and Table 3. The baseline L1-norm pruning suffers from catas-
trophic performance degradation even at a modest 15% sparsity, with its FID score deteriorating
from 31.59 to 158.89 on SD 3.5-Large. In stark contrast, our method, OBS-Diff, demonstrates
remarkable resilience. At the same 15% sparsity, OBS-Diff maintains an FID of 32.64, nearly iden-
tical to the dense model’s performance. This robustness persists up to 30% sparsity, where OBS-Diff
sustains a strong FID of 34.51 while the baseline model fails completely (FID of 327.48). These
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Table 6: Ablation study of timestep weighting
strategies, conducted on the SD3-Medium model
at 50% unstructured sparsity. (For reference, the
ImageReward of uniform strategy is 0.6355.)

Weight strategy ImageReward ↑

Linear increase 0.6174
Linear decrease 0.6384
Log increase 0.6244
Log decrease 0.6438

Table 7: Ablation study on the impact of the
number of module packages on resource usage
and performance, conducted on SD3-Medium
model at 30% unstructured sparsity.

Pkgs. Mem. (GB)↓ Time (s)↓ ImageReward↑

1 30.67 572.20 0.8569
4 24.05 896.52 0.8442

10 22.75 1539.37 0.8429
20 22.08 2594.95 0.8564

findings highlight OBS-Diff’s superior ability to preserve critical model structures under aggressive
structured pruning.

To benchmark our method against established techniques, we incorporate the comparison with
EcoDiff (Zhang et al., 2024b), a state-of-the-art structured pruning framework for text-to-image
diffusion models, directly into the main experiments. As shown in Table 3 and Table 4, while
EcoDiff generally outperforms the naive L1-norm baseline on SDXL, it still exhibits significant per-
formance degradation compared to our method on both tables, especially at higher sparsity levels.
For instance, on the U-Net based SDXL model (Table 3), EcoDiff yields an FID of 101.96 at 30%
sparsity, whereas OBS-Diff achieves a substantially better FID of 29.75. This confirms that OBS-
Diff generalizes effectively across diverse architectures, outperforming baselines on both MMDiT
(SD 3.5) and U-Net (SDXL) backbones.

Finally, we compare OBS-Diff with Diff-Pruning (Fang et al., 2023), a well-recognized method
that leverages gradient information for structured pruning on small class-conditional DDPMs. The
detailed results for this specific comparison are deferred to the Appendix C.3, where our method
outperforms Diff-Pruning consistently.

5.5 WALL-CLOCK TIME COMPARISON

Table 5: Wall-clock inference time (ms) and
speedup for a single MMDiT block under various
sparsity schemes.

Sparsity Type Time (ms) Speedup

Dense 14.36 /

Semi-structured (2:4) 11.71 1.23×
Structured (15%) 13.96 1.03×
Structured (20%) 11.95 1.20×
Structured (25%) 11.17 1.29×
Structured (30%) 10.99 1.31×

To quantify the practical efficiency gains, we
measure the wall-clock time for a single for-
ward pass through an MMDiT block of the
SD3.5-Large model, on a single NVIDIA 4090
GPU with batch size 4, resolution 1024×1024.

Table 5 shows that both methods effectively re-
duce inference latency. The 2:4 semi-structured
approach achieves a 1.23× speedup, while
our structured pruning method attains 1.31×
speedup at 30% sparsity. These results vali-
date the tangible practical acceleration benefits
of applying these pruning techniques.

5.6 ABLATION STUDY

We perform an ablation study to analyze the impact of three key components: (1) the timestep-
aware Hessian construction, (2) the number of module packages, and (3) the number of prompts in
the calibration dataset. For this study, all variants are evaluated using the ImageReward metric on
1,000 prompts from the MS-COCO 2014 validation set.

Timestep-Aware Hessian Matrix Establishment. To incorporate temporal information from the
diffusion process, we introduce timestep-aware weighting during the Hessian matrix construction.
This method assigns a distinct weight to the hooked activations at each timestep. Empirical results
demonstrate that assigning greater importance to earlier inference steps yields superior performance.
As shown in Table 6, a logarithmic decrease strategy significantly outperforms other weight distri-
bution methods.

9
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Figure 3: Effect of the num-
ber of prompts in calibration
dataset on the ImageReward.

Module-Package. The concept of module packages partitions the
model’s layers for layer-wise compression. This approach intro-
duces a critical trade-off between computational resources and time.
Processing the model in more packages reduces peak GPU memory,
as the Hessian matrix for each pruning step is smaller. However, it
proportionally increases the total runtime because the entire cali-
bration dataset must be forwarded for each package. As shown in
our ablation study (Table 7), while the resource trade-off is evident,
the number of packages does not show a clear, predictable rela-
tionship with the final pruned model’s performance. Consequently,
practitioners can select a configuration that best fits their hardware
constraints without sacrificing final model quality.

The Number of the Prompts in the Calibration Dataset. The size of the calibration dataset
is a critical hyperparameter that directly influences the quality of the approximated Hessian ma-
trix. To find an optimal size, we evaluated post-pruning performance against the number of text
prompts in the calibration dataset, as shown in Figure 3. The pruned model’s ImageReward score
improves sharply up to 100 prompts and then plateaus, indicating a point of diminishing returns
where additional data offers no significant benefit to the Hessian approximation. Therefore, to bal-
ance performance gains with computational efficiency, we selected 100 prompts for our calibration
dataset in all main experiments.

6 CONCLUSION

This work introduces OBS-Diff, a novel one-shot, training-free pruning framework tailored for
large-scale text-to-image diffusion models. By revitalizing the classic Optimal Brain Surgeon
method, we address the unique challenges of iterative denoising through our proposed timestep-
aware Hessian construction, which prioritizes critical early-stage generation steps. To overcome
prohibitive calibration costs, we devise a group-wise sequential pruning strategy that effectively bal-
ances memory overhead and computational efficiency. The versatility of our framework extends
across unstructured, semi-structured, and structured pruning, demonstrating its broad applicability.
Extensive empirical results show that OBS-Diff establishes a new state-of-the-art in training-free dif-
fusion model pruning, consistently outperforming existing methods by maintaining high generative
quality, especially at high sparsity regimes.
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A DECLARATION OF LLM USAGE

The use of Large Language Models (LLMs) in this work served two purposes: (1) to aid and polish
the paper writing, and (2) to generate some of the text prompts used by the diffusion model to create
figures that are shown in the paper.

B IMPLEMENTATION DETAILS

This section provides further details on the experimental setup, including common configurations,
baseline adaptations, and the computational hardware used for our evaluations.

Common Configurations. To ensure a controlled and fair comparison, all experiments, unless
otherwise specified, adhere to a common set of configurations. For all text-to-image generation
tasks, we set the output resolution to 512 × 512 pixels to facilitate rapid experimentation across
the diverse and large-scale models. For our method and baselines such as Wanda (Sun et al., 2024)
and DSnoT (Zhang et al., 2024c), we consistently group model parameters into 4 module packages.
Furthermore, a logarithmic decreasing timestep weighting scheme (log decrease) was uniformly
applied across all diffusion models and pruning methods to schedule the pruning process over the
diffusion timesteps.

Computational Resources. The training of the DDPM on the CIFAR-10 dataset was conducted
on NVIDIA A100 GPUs. For the large text-to-image models, all pruning methods are training-free.
The pruning and evaluation for Stable Diffusion v2.1-base, Stable Diffusion 3-Medium, and Stable
Diffusion 3.5-Large were performed on a single NVIDIA RTX 4090 GPU, each equipped with
48GB of VRAM. Due to its substantial memory footprint, all experiments involving the FLUX.1-
dev model, including its pruning and evaluation, was conducted on a single NVIDIA A100 GPU
with 80GB of VRAM.

C MORE EXPERIMENTAL RESULTS

C.1 MORE ANALYSIS FOR UNSTRUCTUREDLY PRUNED SD3-MEDIUM

As illustrated in Figure 4, our proposed OBS-Diff method consistently outperforms all baseline
approaches in terms of the ImageReward metric across all evaluated sparsity levels. The superiority
of our method is particularly pronounced at higher sparsity ratios. For instance, at 60% sparsity,
the performance of competing methods collapses, yielding negative ImageReward scores. In stark
contrast, OBS-Diff maintains a positive score, demonstrating its exceptional robustness in high-
compression scenarios.

In terms of computational efficiency, Table 8 indicates that OBS-Diff has the longest pruning time on
a single NVIDIA RTX 4090. However, the additional overhead is marginal, requiring only slightly
more time than DSnoT (14.95 vs. 14.25 minutes). Considering the substantial gains in genera-
tion quality and model robustness, we conclude that OBS-Diff offers a superior trade-off between
performance and computational cost, establishing it as a highly cost-effective pruning solution.
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Table 8: Pruning time of different unstruc-
tured pruning methods on SD3-Medium (2B)
at 50% sparsity.

Method Time (min)
Magnitude ≈ 0
Wanda 7.32
DSnoT 14.25
OBS-Diff 14.95 30 35 40 45 50 55 60
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Figure 4: ImageReward vs. sparsity for var-
ious unstructured pruning methods on SD3-
Medium.

C.2 STRUCTURED PRUNING FOR SD3-MEDIUM

We evaluate our structured pruning method, OBS-diff, on the Stable Diffusion 3-medium model
and compare it against the widely-used L1-norm magnitude pruning baseline. As summarized in
Table 9, the baseline method suffers from severe performance degradation as sparsity increases. In
contrast, our approach maintains performance remarkably close to the original dense model across
all tested sparsity levels, demonstrating its effectiveness and robustness.

Table 9: Performance comparison of structured pruning methods at 10%, 15%, 20%, and 25%
sparsity on the Stable Diffusion 3-medium model (2B). The first and last transformer blocks were
excluded from the pruning process. The TFLOPs metric represents the theoretical computational
cost for a single forward pass of the entire transformer. For each sparsity group, the best result per
metric is highlighted in bold.

Base Model Sparsity (%) Method #Params TFLOPs ↓ FID ↓ CLIP ↑ ImageReward ↑

SD 3-medium

Dense Model 2.03 B 2.84 36.14 0.3162 0.9029

10% L1 − norm 1.91 B 2.59 (↓8.8%) 267.32 0.2035 -2.2611
Ours (OBS-diff) 35.65 0.3166 0.8118

15% L1 − norm 1.83 B 2.43 (↓14.4%) 326.92 0.1942 -2.2768
Ours (OBS-diff) 34.33 0.3168 0.6717

20% L1 − norm 1.78 B 2.31 (↓18.7%) 348.77 0.1926 -2.2768
Ours (OBS-diff) 33.15 0.3163 0.4997

25% L1 − norm 1.72 B 2.19 (↓22.9%) 365.24 0.1906 -2.2786
Ours (OBS-diff) 32.96 0.3143 0.2782

C.3 COMPARISON WITH DIFF-PRUNING ON DDPM

To evaluate the generalizability of our method beyond large-scale text-to-image models, we adapt
it to the task of structured pruning for a Denoising Diffusion Probabilistic Model (DDPM) on the
CIFAR-10 dataset. Our adaptation leverages the column masks identified by Diff-Pruning, which
are then integrated with our OBS weight update mechanism as detailed in Eq. (6).

As presented in Table 10, our method surpasses the current state-of-the-art baseline, Diff-Pruning,
by achieving a superior FID score under an identical fine-tuning budget (100K steps). This result
demonstrates not only the versatility of our approach but also suggests that the model pruned by
OBS-Diff serves as a more effective checkpoint for subsequent fine-tuning.

D ROBUSTNESS AND GENERALIZATION ANALYSIS

To demonstrate that our calibration (using only 100 prompts) does not overfit, we evaluated the
fixed pruned model (SD3-Medium, 50% Unstructured) under inference conditions significantly
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Table 10: Performance of pruned DDPMs on CIFAR-10 (32 × 32). All pruned models are fine-
tuned for 100K steps. Evaluations are conducted on samples generated via 100 DDIM steps. The
best FID score is highlighted in bold.

Method #Params ↓ MACs ↓ FID ↓ Train Steps ↓
Pretrained 35.7M 6.1G 4.50 800K

Random Pruning 13.95M 2.1G 7.85 100K
Magnitude Pruning 13.95M 2.1G 7.91 100K
Diff-Pruning 13.95M 2.1G 7.72 100K

OBS-Diff 13.95M 2.1G 7.55 100K

different from the calibration settings (CFG 7.0, Steps 25, Euler). For fast evaluation, we evaluated
all tasks on the MSCOCO 2014 validation 1K subset using the ImageReward metric.

D.1 ROBUSTNESS TO CFG SCALES

We evaluated the pruned model across varying Classifier-Free Guidance (CFG) scales. As shown
in Table 11, the pruned model achieves higher performance at CFG 9.0 (0.7044) than at the cal-
ibration setting of CFG 7.0 (0.6425). This indicates that our pruning strategy effectively preserves
the model’s semantic generation capabilities and generalizes exceptionally well to higher guidance
scales, which are critical for high-quality text-to-image synthesis.

Table 11: Robustness of the pruned SD3-Medium (50% Unstructured) across different CFG scales.
The model was calibrated at CFG 7.0.

CFG Dense (ImageReward) Pruned (ImageReward) Performance
5.0 0.8319 0.5297 -
7.0 (Calibrated) 0.8510 0.6425 Baseline
9.0 0.8275 0.7044 Improved

D.2 ROBUSTNESS TO SAMPLING STEPS

To address the concern regarding step counts, we evaluated the pruned model (calibrated at 25 steps)
across 15, 25, and 50 inference steps. The results are summarized in Table 12. Although calibrated
at 25 steps, the pruned model effectively leverages additional compute at 50 steps to generate higher-
quality images. This confirms the pruning preserves the integrity of the underlying ODE trajectory.

Table 12: Robustness across varying inference sampling steps. The model was calibrated at 25 steps.

Steps Dense (ImageReward) Pruned (ImageReward) Trend
15 0.6988 0.4883 Fast Preview
25 (Calibrated) 0.8510 0.6425 Baseline
50 0.9391 0.7153 Improved Quality

D.3 ROBUSTNESS ACROSS SAMPLERS

We evaluated generalization across different solvers on both SD3-Medium (MMDiT) and SD v2.1
(U-Net).

• SD3-Medium: Calibrated on Euler (1st-order), the model generalizes zero-shot to Heun
(2nd-order), showing significant quality gains.

• SD v2.1: We applied 40% unstructured pruning (calibrated on PNDM). As shown in Ta-
ble 13, the relative performance ranking of the samplers is preserved between the Dense
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and Pruned models (e.g., DPM++ remains the highest performing), indicating the pruning
is solver-agnostic.

Table 13: Generalization across different samplers for SD3-Medium and SD v2.1.

Model Sampler ImageReward (Dense) ImageReward (Pruned)

SD3-Medium Euler (Calibrated) 0.8510 0.6425
Heun (2nd Order) 0.9200 0.7249

SD v2.1

PNDM (Calibrated) 0.3432 0.1782
DPM++ 0.3889 0.2246
EDM 0.3442 0.1534
DDIM 0.3439 0.1579

D.4 GENERALIZATION TO OUT-OF-DISTRIBUTION (OOD) PROMPTS

We address the concern regarding calibration data in two ways:

1. Experimental Design: All main results in the paper already use GCC3M for calibration
and MS-COCO for evaluation, representing a standard OOD setting.

2. New Validation Experiment: To rigorously test this, we calibrated two separate mod-
els—one using MS-COCO 2014 Train (In-Distribution) and one using GCC3M (Out-
of-Distribution)—and evaluated both on the MS-COCO 2014 validation 5K subset.

As shown in Table 14, the performance is nearly identical. The model calibrated on OOD data
(GCC3M) performs on par with (and even slightly better in FID than) the ID model. This definitively
proves that OBS-Diff captures generalizable features and does not overfit to the calibration prompts.

Table 14: Comparison of models calibrated on In-Distribution (MS-COCO) vs. Out-of-Distribution
(GCC3M) datasets, evaluated on MS-COCO validation set.

Calibration Dataset Evaluation FID ↓ CLIP Score ↑ ImageReward ↑
MS-COCO 2014 Train In-Distribution (ID) 27.93 0.3169 0.6547
GCC3M Train Out-of-Distribution (OOD) 27.20 0.3167 0.6468

E ADDITIONAL QUALITATIVE RESULTS
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Dense 20% 30% 40% 50%

Prompt: A peaceful forset path covered in autumn leaves and soft light, oil painting style, 8k

Negative Prompt: low quality, bad quality, blur, ugly, worst quality

M
agnitude

DSnoT
W

anda
Ours (OBS-Diff)

Figure 5: More Qualitative comparison of unstructured pruning methods on the SD3-Medium
model. We evaluate Magnitude, DSnoT, Wanda, and our method (OBS-Diff) at various sparsity
levels (20%, 30%, 40%, and 50%) using the same prompt and negative prompt. All images are
generated at a resolution of 512× 512.

Dense 20% 30% 40% 50%

Prompt: photo of a delicious hamburger with fries and a coke on a wooden table, professional food photography, bokeh

Negative Prompt: low quality, bad quality, blur, ugly, worst quality

M
agnitude

DSnoT
W

anda
Ours (OBS-Diff)

Figure 6: More Qualitative comparison of unstructured pruning methods on the SD3-Medium
model. We evaluate Magnitude, DSnoT, Wanda, and our method (OBS-Diff) at various sparsity
levels (20%, 30%, 40%, and 50%) using the same prompt and negative prompt. All images are
generated at a resolution of 512× 512.
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Dense 20% 30% 40% 50%

Prompt: Astronaut in a jungle, cold color palette, muted colors, detailed, 8k

Negative Prompt: low quality, bad quality, blur, ugly, worst quality

M
agnitude

DSnoT
W

anda
Ours (OBS-Diff)

Figure 7: More Qualitative comparison of unstructured pruning methods on the SD3-Medium
model. We evaluate Magnitude, DSnoT, Wanda, and our method (OBS-Diff) at various sparsity
levels (20%, 30%, 40%, and 50%) using the same prompt and negative prompt. All images are
generated at a resolution of 512× 512.

Dense Magnitude DSnoT Wanda Ours (OBS-Diff)

A steampunk 
detective on a 
London street

A cyberpunk 
street samurai

An astronaut 
planting a 

flag on Mars, 
cinematic

A fox in the 
snow, 

photograph

Figure 8: Qualitative comparison of unstructured pruning methods on Flux 1.dev at 70% sparsity.
Results from Magnitude, DSnoT, Wanda, and our proposed OBS-Diff are shown.
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Dense 15% 20% 25% 30%

L1-norm
Ours (OBS-Diff)

Prompt: A translucent, glowing jellyfish in the deep dark ocean

Figure 9: Qualitative comparison of structured pruning methods on the SD3.5-Large model at vari-
ous sparsity levels (15%, 20%, 25%, and 30%). Results from the L1-norm baseline and our proposed
OBS-Diff are shown.

Dense 15% 20% 25% 30%

L1-norm
Ours (OBS-Diff)

Prompt: A vibrant hummingbird hovering next to a hibiscus flower, macro photo

Figure 10: Qualitative comparison of structured pruning methods on the SD3.5-Large model at
various sparsity levels (15%, 20%, 25%, and 30%). Results from the L1-norm baseline and our
proposed OBS-Diff are shown.

Dense 15% 20% 25% 30%

L1-norm
Ours (OBS-Diff)

Prompt: A lighthouse on a rocky coast during a storm

Figure 11: Qualitative comparison of structured pruning methods on the SD3.5-Large model at
various sparsity levels (15%, 20%, 25%, and 30%). Results from the L1-norm baseline and our
proposed OBS-Diff are shown.
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