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Abstract

In some problem spaces the high cost of obtaining ground truth labels necessitates1

use of lower quality reference datasets. It is difficult to benchmark model changes2

using these datasets, as evaluation results may be misleading or biased. We propose3

a supplement to using reference labels which we call an approximate ground truth4

refinement (AGTR). Using an AGTR we prove that bounds on the precision and5

recall of a clustering algorithm or multiclass classifier can be computed without6

reference labels. We introduce a litmus test that uses an AGTR to identify inaccurate7

evaluation results produced from reference datasets of dubious quality. Creating an8

AGTR requires domain knowledge, and malware family classification is a task with9

robust domain knowledge approaches that support the construction of an AGTR.10

We demonstrate our AGTR evaluation framework by applying it to a popular11

malware labeling tool to diagnose over-fitting in prior testing and evaluate changes12

that could not be meaningfully quantified in their impact under previous data.13

1 Introduction14

The capabilities of a new clustering algorithm or classifier must be assessed both during and after15

development. Various metrics are used to evaluate these capabilities so that an end user can make16

an informed choice about which model is most suitable for their needs or fine-tune the parameters17

of a chosen approach. A reference dataset is required for computing these metrics. Each data point18

in a reference dataset has a reference label, which is the correct label that a classifier is expected to19

predict. When evaluating a clustering algorithm, we refer to a dataset grouped by reference label as a20

reference clustering. Not all reference datasets are equally fit for performing evaluation. As we will21

later discuss in Appendix C, reference datasets can be too small, lack diversity, or have an imbalanced22

class distribution. In some fields, it is not feasible to obtain ground truth reference labels for a large23

dataset, so small reference datasets or datasets with lower quality reference labels are used in their24

stead. Using reference datasets that have these deficiencies may produce inaccurate or misleading25

evaluation results [1]. However, when a field has no satisfactory reference datasets, how can one trust26

evaluation results? This problem makes it difficult to determine which (if any) model is most suitable27

for a task, or if progress is being made while developing a model.28

Our work provides an improvement to these undesirable circumstances by introducing a provable29

framework for quantifying performance in the absence of reference labels. Our approach can be30

used to check for over-fitting in benchmark design, sanity-check labeling procedures, and compare31

the performance of intrinsically similar models. We will finish this introduction with the specific32

terminology and definitions that our framework will operate in. These are used in § 2 to develop an33

approximate ground truth refinement (AGTR). The AGTR of a dataset is a (incomplete) sub-graph of34

the ground truth reference labels where links in the AGTR indicate a positive relationship, but the35

absence of a link does not imply the absence of a relationship. In subsection 2.4 we will describe the36

general utility of AGTRs across any application, and in § 3 we will refine the discussion to malware37
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specific applications and needs. In § 4 we will evaluate the seminal AVClass tool and the impact of38

various changes, which could not be previously elucidated due to a lack of precise labels. In doing so39

we will demonstrate evidence that the original benchmark may have over-fit to noisy reference labels,40

and quantify the impact of design choices that could not previously be quantified meaningfully with41

public data. We will conclude and discuss limitations in § 5.42

1.1 Metric Terminology43

Before we can discuss the AGTR evaluation framework we must first introduce the terminology44

used in this paper. Let M be a dataset consisting of m unique data points. Let C = {Ci}1ic and45

D = {Dj}1jd each partition M , where C is the predicted clustering of the dataset and D is the46

reference clustering. Let f : {1...c} 7! {1...d} and g : {1...d} 7! {1...c} be functions mapping the47

predicted labels to the reference labels and vice versa. The label translation functions f and g are48

defined differently for clustering and classification problems. When evaluating clustering algorithms,49

no labels exist which can map between clusters in C and D. Instead, f and g are defined as f(i) =50

argmax
j

|Ci \Dj | and g(j) = argmax
i

|Ci \Dj | [2].51

These function definitions map each predicted cluster to the reference cluster for which there is52

maximal overlap and vice versa. When evaluating a classifier, the set of labels used by the classifier53

is typically equivalent to the set of labels used by the reference dataset. In these cases, c = d, and f54

and g are defined as the identity function [2]: 8i, 1  i  c, f(i) = i and g(i) = i. When the labels55

used by the classifier do not map directly those used in the reference dataset, either a custom mapping56

or the function definitions for mapping clusters are used.57

1.2 Computing Precision, Recall, and Accuracy58
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Figure 1: Four partitions of a hypothetical dataset. The
predicted clusters ("C") would ideally be evaluated using
ground truth ("D"). A GTR ("R") informs a subset of the
data point relationships in D (e.g., 5 and 7 (R4) must belong
to the same reference cluster, but without D it is unknown
whether the members of R4 and R5 share a reference cluster).
An AGTR ("R̂") is a GTR with ✏ errors. R̂2 incorrectly
groups data point 2 with 3 and 4, so it has ✏ = 1 errors. If
data point 2 is removed from R̂2, R̂ becomes a GTR.

In this paper we discuss three metrics59

used for evaluating clustering algo-60

rithms and multiclass classifiers: pre-61

cision, recall, and accuracy. Histori-62

cally, precision and recall have been63

used for evaluating the performance64

of information retrieval systems [3].65

Bayer et al. [4] introduced alternate66

definitions of precision and recall as67

cluster validity indexes. Li et al. [2]68

broadened these definitions to allow69

for evaluation of multiclass classifiers.70

Additionally, Li et al. show that the71

accuracy of a classifier can be com-72

puted as a special case of precision73

and recall. We now discuss the preci-74

sion, recall, and accuracy metrics and75

how they are computed.76

Definition 1. Precision(C,D) = 1
m

cP
i=1

|Ci \Df(i)|77

Definition 2. Recall(C,D) = 1
m

dP
j=1

|Cg(j) \Dj |78

When used as a cluster validity index, Precision measures how well a clustering separates data points79

belonging to different reference clusters. Precision penalizes the presence of impure clusters, i.e.,80

clusters containing data points belonging to separate reference clusters [2]. A high precision (near81

one) indicates that few clusters are impure while a low precision (near zero) indicates that many82

clusters are impure. Precision tends to become inflated as the number of predicted clusters increases.83

The precision of a clustering is one if every data point is assigned to its own cluster because no cluster84

is impure [4]. In Figure 1, Precision(C, D) = 0.75.85
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Recall measures how well a clustering groups data points belonging to the same reference cluster.86

Recall penalizes instances in which data points belonging to the same reference cluster do not appear87

in the same predicted cluster [2]. Contrary to precision, recall may become inflated as the number of88

predicted clusters decreases. The recall of a clustering is one if all data points are grouped in a single89

cluster because no data points with the same reference label belong to different predicted clusters [4].90

In Figure 1, Recall(C, D) = 0.5.91

Definition 3. If f and g are the identity function, Accuracy(C, D) = Precision(C, D) = Recall(C, D)92

Accuracy measures how frequently the predicted label matches the reference label. By Definition 393

accuracy, precision, and recall are all equivalent when f and g are the identity functions [2]. Accuracy94

cannot be computed if there is not a one-to-one mapping between the predicted clusters and the95

reference clusters, such as in Figure 1.96

2 Approximate Ground Truth Refinements97

In this section we introduce the concept of a ground truth refinement (GTR) and show that a GTR98

can be used to find provable bounds on precision, recall, and accuracy. In practice, when constructing99

a GTR from a dataset we assume that a small number of errors occur. We call an imperfect GTR an100

approximate ground truth refinement (AGTR). We show that bounds on these evaluation metrics can101

still be proven using an AGTR if errors in the AGTR construction process are properly accounted for.102

Finally, we propose a framework that uses an AGTR to evaluate clustering algorithms and multiclass103

classifiers when satisfactory reference data is unavailable. All proofs are located in Appendix D.104

2.1 Set Partition Refinements105

A key element of this work is the concept of a set partition refinement. Suppose two partitions R and106

S of the same set M . R is a refinement of S if each set within R is a subset of some set in S [5].107

Definition 4. If 8Rk 2 R, 9Sj 2 S s.t. Rk ✓ Sj then R is a set partition refinement of S.108

Set partition refinements can also be considered from an alternate perspective. If R is a refinement of109

S, then S can be constructed by iteratively merging sets within R. Specifically, each set Sj 2 S is110

equivalent to the union of some unique set of sets within R.111

Property 1. 8Sj 2 S, 9!Qj = {Qj`}1`qj s.t. Sj =
qjS
`=1

Qj` and 8Qj` 2 Qj , Qj` 2 R112

In Section 2.2, we use Definition 4 and Property 1 to prove properties of ground truth refinements,113

which are a type of set partition refinement.114

2.2 Ground Truth Refinements115

A ground truth refinement (GTR) of a dataset is a clustering where all data points in a cluster are116

members of the same ground truth reference cluster. Importantly, the opposite is not necessarily true,117

as data points in the same reference cluster can belong to different clusters in the GTR.118

Definition 5. If D is a ground truth reference clustering and R is a refinement of D, then R is a119

ground truth refinement.120

Recall that for a dataset M , C = {Ci}1ic is the predicted clustering and D = {Dj}1jd is the121

reference clustering. Let D have ground truth confidence and let R = {Rk}1kr be a GTR of122

D. Since R partitions M , it is possible to compute the precision and recall of C with respect to R123

rather than D. An important trait of a GTR is that it does not require reference labels. Since R is124

unlabeled, we map each predicted cluster in C to the cluster in the R for which there is maximal125

overlap and vice versa. Let the functions for mapping between the predicted clusters and the GTR126

f
0 : {1...c} 7! {1...r} and g

0 : {1...r} 7! {1...c} be defined as f
0(i) = argmax

k
|Ci \ Rk| and127

g
0(k) = argmax

i
|Ci \Rk|.128

Using Definition 4 we prove that the precision of a clustering algorithm or multiclass classifier129

computed using the ground truth reference clustering is bounded below by its precision computed130
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using a GTR. Similarly, using Property 1 we prove that recall computed using a GTR is always131

an upper bound on recall computed using the ground truth reference clustering. Because accuracy,132

precision, and recall are all equivalent in a special case, we prove that recall computed using a GTR133

is also always an upper bound on the accuracy of a classifier. These bounds provide the foundation134

for evaluating clustering algorithms and multiclass classifiers using an AGTR.135

Theorem 1. Precision(C, R)  Precision(C, D) Theorem 2. Recall(C, R) � Recall(C, D)136

Corollary 2.1. Recall(C, R) � Accuracy(C, D)137

2.3 Approximate Ground Truth Refinements138

Unfortunately, it is impossible to confirm whether or not a clustering is a GTR without knowing the139

ground truth reference clustering. Because we intend for GTRs to be used when satisfactory reference140

datasets are not available, this is problematic. When attempting to construct a GTR, we assume that the141

resulting clustering is very similar to a GTR but has a small number of data points ✏ which violate the142

properties of a refinement. We call such a clustering an approximate ground truth refinement (AGTR).143

Definition 6. If R is a ground truth refinement and R̂ can be made equivalent to R by correcting the144

cluster membership of ✏ data points, then R̂ is an approximate ground truth refinement.145

Suppose an AGTR R̂ with ✏ erroneous data points. Even without knowing which data points must be146

corrected to transform R̂ into a GTR, we can again derive bounds on Precision(C, D) (abbreviated as147

“Prec” when needed) as well as upper bounds on Recall(C, D) and Accuracy(C, D) using R̂ and ✏.148

To do this, we first show that the precision and recall change in predictable ways when a reference149

clustering is modified. Let S be an arbitrary partition of a dataset M and let Ŝ be identical to S150

but with a single data point belonging to a different cluster. When the precision and recall of C are151

measured with respect to S and Ŝ, the metrics share the following relationship:152

Theorem 3. |Prec(C, S) � Prec(C, Ŝ)|  1
m Theorem 4. |Recall(C, S) � Recall(C, Ŝ)|  1

m
153

Theorems 3 and 4 show that precision and recall can vary by up to ± 1
m when the cluster membership154

of a single data point in the reference clustering is changed. Therefore, if ✏ cluster labels in R̂ are erro-155

neous, the difference between Precision(C, R) and Precision(C, R̂) as well as between Recall(C, R)156

and Recall(C, R̂) is at most ± ✏
m157

Corollary 3.1. |Prec(C, R) � Prec(C, R̂)| ✏
m Corollary 4.1. |Recall(C, R) � Recall(C, R̂)|  ✏

m
158

Unfortunately, these relationships require knowledge of the exact value of ✏, which is impossible to159

determine without knowing the ground truth reference clustering. Again, because the purpose of an160

AGTR is to be used when an adequate reference clustering is unavailable, this presents a problem.161

The solution is to select some value ✏̂ with the belief that ✏̂ � ✏. We show that if this belief is true the162

bounds on precision, recall, and accuracy are valid.163

Theorem 5. If ê � e then Precision(C, R̂) � ✏̂
m  Precision(C, D)164

Theorem 6. If ê � e then Recall(C, R̂) + ✏̂
m � Recall(C, D)165

Corollary 6.1. If ê � e then Recall(C, R̂) + ✏̂
m � Accuracy(C, D)166

They allow the bounds on the precision, recall, and accuracy of a clustering algorithm or a multiclass167

classifier to be computed without reference labels.168

2.4 Estimating Errors in an AGTR169

We emphasize that the evaluation metric bounds from Theorem 5, Theorem 6, and Corollary 6.1170

only hold if errors during AGTR construction are accounted for properly, i.e. ✏̂ � ✏. Selecting a171

satisfactory value of ✏̂ for an AGTR is a matter of epistemic uncertainty and is an issue for future work.172

Determining the approximate error rate of a process used to construct an AGTR will likely require173

some guesswork, as a quality reference dataset is presumably unavailable. Domain experts should174

model their uncertainty about the AGTR construction method’s error rate and choose a value of ✏̂ that175

they believe exceeds the number of errors with very high confidence. In subsection 3.1 we provide an176

example of how to evaluate the error rate of an AGTR in order to select a judicious value of ✏̂.177
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2.5 Properties of an Ideal AGTR178

Although we have proven that it is possible to compute bounds on precision, recall, and accuracy179

using an AGTR, we have not yet proposed any techniques for constructing an AGTR from a dataset.180

Constructing an AGTR requires applying domain knowledge from a problem space to group data181

points with a high likelihood of sharing a reference label. Because of the domain knowledge182

requirement, no single technique can be used for general AGTR construction. Instead, a method for183

constructing an AGTR is specific to one kind of classification or clustering problem.184

Some AGTR construction techniques will produce more useful evaluation metric bounds than others.185

Suppose a GTR R constructed by simply assigning every data point to its own singleton cluster. We186

know that this method will always form a GTR with no errors because each singleton cluster must be187

the subset of some cluster in the ground truth reference clustering. However, when we use this GTR188

to compute the precision and recall of the predicted clustering, we obtain Precision(C, R) = c
m and189

Recall(C, R) = 1, where c is the number of predicted clusters. This GTR will never be useful for190

evaluation because these metric bounds are uninformative.191

We have found that the similarity in composition between an AGTR and the reference clustering192

strongly influences the tightness or looseness of evaluation metric bounds. Given a ground truth193

reference clustering D and an AGTR R̂, let � be the minimum number of data points in R̂ whose194

cluster membership must be changed in order to transform it into D. Using Theorem 3 and Theorem 4195

we show that the difference between a metric bound (prior to accounting for ✏̂) and the true value of196

that metric is no greater than �
m .197

Corollary 3.2. |Prec(C, D) � Prec(C, R̂)|  �
m Corollary 4.2. |Recall(C, D) � Recall(C, R̂)|  �

m
198

Because evaluation metric bounds can deviate by up to �
m from the true metric values, AGTRs that199

have smaller values of �
m , i.e., ones that are as similar to the ground truth reference clustering as200

possible, are preferred. This allows us to identify the following three overall properties that should be201

considered in designing an AGTR in order for it to produce meaningful evaluation results:202

Low false positive rate. An AGTR construction technique should group data points from different203

ground truth reference clusters as infrequently as possible. An increased rate of these false positives204

must be accounted for with a larger value of ✏̂ to ensure that ✏̂ � ✏. This is undesirable, since a larger205

value of ✏̂ results in looser evaluation metric bounds.206

Acceptable false negative rate. A method for constructing an AGTR should be effective at grouping207

together data points with the same ground truth reference label. An AGTR with too many ungrouped208

data points will have a large value of �, resulting in loose bounds.209

Scalable. Datasets used for constructing an AGTR should be large enough to adequately represent210

the problem space. A technique for constructing an AGTR must have acceptable performance when211

applied to a large number of data points.212

3 Evaluating Malware Classifiers Using an AGTR213

A malware family is a collection of malicious files that are derived from a common source code. De-214

veloping malware family classifiers is a substantial research area in the field of malware analysis [6].215

However, current reference datasets are inadequate for accurately evaluating malware family classi-216

fiers and can cause biased or inaccurate evaluation results [1]. A major factor contributing to this217

issue is that obtaining ground truth family labels for malware is extremely time consuming. Although218

accurately determining the family of a malware sample is difficult, methods for automatically group-219

ing similar malware samples together with low rates of error have been developed. Therefore, we220

believe that the process of evaluating malware clustering algorithms and malware family classifiers221

can greatly benefit from the AGTR evaluation framework. In this section we discuss the methods that222

are used to obtain malware reference labels, the datasets that have historically been used for classifier223

evaluation, and the issues that cause uncertainty in evaluation results when such approaches are used.224

We propose a method for constructing an AGTR from a dataset of malware samples and apply the225

AGTR evaluation framework with the approaches described in Appendix B to a popular malware226

classifier. We hope that this section provides a template for utilizing the AGTR evaluation framework227

in other clustering and classification problem spaces.228
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3.1 Constructing a Malware Dataset AGTR229

In this section we discuss a method for constructing an AGTR from a dataset of malware samples.230

Because our method is automatic and scalable, the resulting AGTR can be orders of magnitude larger231

than a ground truth malware reference dataset and can include modern malware samples. Our method232

for constructing an AGTR from a malware dataset is based on peHash, a metadata hash for files in233

the Portable Executable (PE) format. Files in the PE format are executable files that can run on the234

Windows operating system, such as .exe, .dll, and .sys files. peHash was designed for identifying235

polymorphic malware samples within the same family as well as nearly identical malware samples.236

The hash digest is computed using metadata from the PE file header, PE optional header, and each237

PE section header [7]. Two malware samples with identical values for all of the chosen metadata238

features have identical peHash digests. Due to the number of metadata features used in the hash and239

the large range of possible values that these features can have, the odds that two unrelated malware240

samples share a peHash digest is minuscule.241

Our proposed method for constructing an AGTR from a Windows malware dataset requires computing242

the peHash digest of each malware sample. Then, all malware samples that share a peHash digest are243

assigned to the same cluster. If the peHash of a malware sample cannot be computed, such as due to244

malformed PE headers, it is assigned to a singleton cluster. Using a hash table to tabulate clusters245

allows an AGTR to be built very efficiently, requiring only O(m) memory usage and O(m) run time246

complexity, where m is the number of malware samples in the dataset.247

Wicherski [7] evaluated the false positive rate of peHash using 184,538 malware samples from the248

mwcollect Alliance dataset and 90,105 malware samples in a dataset provided by Arbor Networks.249

All malware samples were labeled using the ClamAV antivirus engine [8]. The peHash of each250

malware sample in both datasets was calculated, resulting in 10,937 clusters for the mwcollect251

Alliance dataset and 21,343 clusters for the Arbor Networks dataset. Of these clusters, 282 and 322252

had conflicting antivirus labels respectively. However, manual analysis showed that none of the253

clusters with conflicting antivirus labels contained unrelated malware samples. The evaluation method254

Wicherski used does not rule out the possibility of false positives. However, it is evident that the false255

positive rate of peHash is extremely low. Based on Wicherski’s evaluation and our own additional256

assessment, we suggest choosing an ✏̂ of approximately one percent the total dataset size when using a257

peHash AGTR. We believe that this value should far exceed the true number of errors ✏ in the AGTR.258

A major consideration in the selection of peHash as our proposed AGTR construction method is259

its prevalent industry use. peHash is widely regarded to have an extremely low false positive rate.260

Furthermore, due to the adversarial nature of the malware ecosystem, Wicherski [7] has already261

analyzed peHash’s vulnerabilities, and its widespread usage in industry means practitioners are aware262

of the real-world occurrence of attacks against it. These factors allow us to be very confident in our263

assessment of peHash’s error rate. It was for these reasons that we elected to use peHash rather than264

design a custom AGTR construction technique. Developing new methods for constructing AGTRs is265

a target of future work that may yield tighter evaluation metric bounds.266

4 Applying the AGTR Evaluation Framework to AVClass267

At this point we have established the AGTR evaluation framework, discussed how malware classifier268

evaluation can benefit from it, and introduced a method for constructing an AGTR from a dataset269

of Windows malware using peHash. We will now apply the AGTR evaluation framework to the270

malware labeling tool AVclass [9]. When provided an antivirus scan report for a malware sample,271

AVClass attempts to aggregate the many antivirus signatures in the report into a single family label.272

AVClass is open source, simple to use, and does not require the malware sample to obtain a label,273

making it a popular choice as a malware classifier since its release in 2016. We provide new evidence274

of overfitting in the original AVClass evaluation results due to the use of poor reference data. We275

also demonstrate the ability to compare modified versions of classifiers using an AGTR by making276

minor modifications to AVClass and assessing their benefits or drawbacks. Evaluating such nuanced277

modifications was not previously tenable due to the lack of large reference datasets. The ability278

to compare the impact of model adjustments immediately that are otherwise hard to detect is of279

significant value in this domain, as production changes usually require months to obtain customer280

feedback or through “phantom” deployments (i.e., a new model is deployed alongside a previous281

model, but the new results are recorded for evaluation and comparison).282
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4.1 Testing AVClass Results Using an AGTR283

Sebastian et al. [9] evaluated AVClass using five malware reference datasets. Because security284

vendors frequently refer to malware families by different names, the family names used by AVClass285

do not match those used by the reference datasets. Therefore, although AVClass is a classifier,286

Sebastian et al. could not compute its accuracy and chose to use precision and recall instead.287

Table 1: AVClass Evaluation
Dataset Precision Recall

Drebin 0.954 0.884
Malicia 0.949 0.680
Malsign 0.904 0.907
MalGenome* 0.879 0.933
Malheur 0.904 0.983

Precision and recall scores for the default version of AV-288

Class are shown in Table 1. The row entitled MalGenome*289

is a modified version of the MalGenome dataset where290

labels for six variants of the DroidKungFu family are cor-291

rected. We call attention to the high variation in evaluation292

results - the precision of AVClass ranges from 0.879 to293

0.954 and its recall ranges from 0.680 to 0.983. It is clear294

that due to these inconsistencies the evaluation results for295

AVClass are already suspect. To confirm this, we test the296

evaluation results of AVClass using the method described in subsection B.1.297

To construct an AGTR we use a portion of the VirusShare dataset [10]. The full VirusShare corpus298

contains 38,700,816 unlabeled malware samples dated between June 2012 and the time of writing.299

The VirusShare dataset is broken into chunks, and new chunks are added to the dataset regularly.300

We were provided with antivirus scan reports for chunks 0-7, which consists of 1,048,567 malware301

samples [11]. These scans were collected between December 2015 and May 2016 by querying the302

VirusTotal API [12]. We ran AVClass under default settings to obtain predicted family labels from303

each scan report. We produced a predicted clustering C by assigning all malware samples with the304

same AVClass label to the same cluster. Malware samples for which no label could be determined305

were assigned to singleton clusters. Next, we created a peHash AGTR R̂ from VirusShare chunks306

0-7. Following our recommendation in subsection 3.1, we choose ê = 10,000 for the AGTR, which307

allows for an error rate of up to approximately one percent during the AGTR construction process.308

Using this peHash AGTR we obtained the results that Precision(C, R̂) � ✏̂
m = 0.229 and Recall(C,309

R̂) + ✏̂
m = 0.895. As a result of our analysis, we find that AVClass has an accuracy no greater than310

0.895. The precision lower bound of 0.229 seems to be very loose considering that the smallest311

precision in Table 1 is 0.879. We attribute this to the moderate false negative rate of peHash; an312

AGTR construction technique that is better able to group data points should yield a tighter bound.313

The similarity between the recall upper bound and the reported recall results shows that although314

Figure 2: Precision and recall bounds of AVClass
with respect to shuffle percentage. The x-axis of
each figure shows the percentage of data points
whose cluster membership has been shuffled. The
y-axis of each figure shows the value of the metric
bound. As the shuffle percentage increases, our
bounds adjust monotonically and at a near linear
rate, slowing only after 80% corruption.

our peHash AGTR could be improved, the315

bounds are non-trivial. Designing improved316

methods for constructing AGTRs from malware317

datasets is an issue for future work. The Malsign,318

MalGenome, and Malheur datasets in Table 1319

all have recall values exceeding the upper bound320

found using the peHash AGTR; the values for321

MalGenome and Malheur significantly so. Be-322

cause VirusShare chunks 0-7, containing over323

a million malware samples from thousands of324

families, is significantly larger and more diverse325

than the Malsign, MalGenome, and Malheur326

datasets, we believe that evaluation results pro-327

duced using those datasets are overfit to the la-328

beling difficulties we discussed in Appendix C.329

4.2 Comparing330

Modified Versions of AVClass331

In this section we show that a peHash AGTR332

can be used to determine whether modifications333

to AVClass make a positive or negative impact334

on performance. In order to compare clustering335

algorithms or classifiers using an AGTR, they336
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must meet the two conditions listed in subsection B.2. Because we are comparing AVClass to slightly337

modified versions of itself, the classifiers are similar enough that the first condition is met. For the338

second step, we must determine if changes in classifier performance are strongly correlated with the339

evaluation metric bounds. To perform this check we use the same predicted clustering C and AGTR340

R̂ from subsection 4.1. Next, we incrementally shuffle C and compute the precision and recall bounds341

each time that an additional one percent of the data points have been shuffled. Figure 2 shows how342

the bounds change as the data points are shuffled. It is evident that both bounds worsen predictably343

and monotonically as the data points are shuffled. Precison and Recall bounds have a correlation of344

-0.956 and -0.940 respectively with the ratio of labels shuffled, each with a p-value  10�47. Since a345

higher shuffle percentage indicates a worse clustering, there is likely a strong connection between the346

bounds and the true metric values. Because these two conditions have been met, we conclude that347

it is valid to compare modified versions of AVClass using the AGTR evaluation framework. Next,348

we compare modified versions of AVClass to the original tool. The purpose of this exercise is to349

demonstrate that an AGTR can be used to quantify the relative benefits and trade-offs of each of these350

changes to AVClass in the absence of reference data.351

4.2.1 Comparing Alias Resolution Methods in AVClass352

It is common for different antivirus engines to refer to the same family of malware by different353

names. We call two names for the same malware family aliases of each other. One of the steps354

that AVClass performs while aggregating antivirus signatures is resolution of family aliases [9]. If355

aliases are not resolved properly, AVClass could produce erroneous labels. By default, AVClass356

uses a manually generated list of known aliases. AVClass also has a setting for generating a family357

alias map based on families that have a high co-occurrence percentage within a corpus of antivirus358

scan results. Generation of the family alias map is controlled by the parameters nalias, which is the359

minimum number of malware samples two tokens must appear in together, and Talias, which is the360

minimum co-occurrence percentage.361

To investigate how alias replacement affects label quality, we provide AVClass with three different362

family alias maps and use it to label VirusShare chunks 0-7. The first map is the one packaged within363

AVClass that is used by default. We generate the second map using the recommended parameter364

values nalias = 20 and Talias = 0.94, which were chosen empirically by Sebastian et al [9]. The365

third map was generated using the stricter parameter values nalias = 100 and Talias = 0.98 listed in366

the AVClass documentation.367

Table 2: Alias Resolution Bounds
Alias Preparation Manual Recommended Strict

Precision LB 0.229 0.230 0.233
Recall UB 0.895 0.897 0.894

Table 2 shows the precision lower bound ("Pre-368

cision LB") and recall upper bound ("Recall369

UB") for AVClass using the three family alias370

mappings. Generating a map using the recom-371

mended parameters yields both higher precision372

and recall bounds than the default one. Gener-373

ating a family alias map using the stricter parameters results in the highest precision bound but the374

lowest recall bound. All bounds are very similar, so none of the family alias maps appear to be375

significantly better than the others.376

4.2.2 Adding a Threshold to AVClass’ Plurality Voting377

Table 3: Plurality Threshold Bounds
Threshold Precision LB Recall UB

0 0.229 0.895
1 0.276 0.881
2 0.332 0.860
3 0.442 0.829
4 0.511 0.803
5 0.565 0.780

For the next modification, we add a plurality threshold to378

AVClass. By default, AVClass determines the label of a379

malware sample by selecting the plurality family proposed380

by the antivirus engines in a scan report [9]. Rather than381

using simple plurality voting to determine the label, we382

modify AVClass to require that the number of votes for the383

plurality family exceeds the number of votes for any other384

family by a given threshold. For example, if the plurality385

threshold is two, the plurality family must recieve at least386

two more votes than any other family. If no family meets387

this condition, AVClass outputs no label for that sample. We use the modified version of AVClass to388

label VirusShare chunks 0-7 with plurality thresholds between 0 and 5.389
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Table 3 displays the precision and recall bounds of AVClass using different plurality thresholds. Note390

that a plurality threshold of zero is equivalent to the default version of AVClass. As the plurality391

threshold is raised, the precision lower bound significantly increases, indicating that higher thresholds392

reduce the number of false positives. However, raising the plurality threshold creates a trade-off, as it393

causes the recall (and hence accuracy) upper bounds to decrease to a lesser degree. This is largely394

due to the growing number of unlabeled malware samples contributing to the false negative rate.395

Thresholds above three may be useful for classifiers that require a very high precision. A threshold of396

one or two may offer a higher precision than the default version of AVClass without sacrificing a397

significant amount of recall. Since different applications of malware classification may require either398

a low false positive rate or a low false negative rate our findings indicate how designers of malware399

classifiers can adopt a suitable voting strategy.400

4.2.3 Removing Heuristic Antivirus Signatures in AVClass Voting401

When normalizing an antivirus signature, AVClass treats each token within the signature indepen-402

dently. However, we believe that incorporating contextual information from each token could improve403

AVClass’ labeling decisions. A simple example of this is using context from tokens that indicate404

that the antivirus signature is a “heuristic”. We believe that heuristic signatures are more likely to405

include inaccurate family information. To test this, we have identified eight tokens that indicate that406

an antivirus signature is a heuristic. We modify AVClass to exclude any AV’s result if it contained407

any token in the set {gen, heur , eldorado, behaveslike, generic, heuristic, variant , lookslike}.408

Table 4: Heuristic Removal Bounds
Default Heur Removal

Precision LB 0.229 0.250
Recall UB 0.895 0.889

Table 4 shows the evaluation metric bounds for the de-409

fault version of AVClass ("Default") and the modified410

version of AVClass where heuristic (abbreviated “Heur”)411

antivirus signatures are not counted towards the plurality412

vote ("Heur Removal"). Simply ignoring common heuris-413

tic antivirus signatures substantially raises the precision414

bound of AVClass from 0.229 to 0.250. This comes at the cost of a minor increase in false nega-415

tives, as indicated by the slight drop in the recall bound. This confirms our suspicions that heuristic416

antivirus signatures often contain inaccurate family information. A more sophisticated method for417

handling heuristic signatures could offer even further improvements to AVClass.418

5 Discussion and Conclusion419

We now discuss limitations of this work and areas of future research. The foremost limitation of420

the AGTR evaluation framework is that constructing an AGTR requires domain knowledge of a421

problem space; there is no general strategy for constructing one. Evaluating the error rate of an422

AGTR construction technique is another challenging and open-ended problem. Finally, comparing423

models using an AGTR can only be done in limited cases.424

We believe that this work has a multitude of avenues for future research. There are certainly many425

fields that could benefit from the AGTR evaluation framework, especially those where obtaining426

reference labels is difficult or time-consuming but grouping similar data points can be done easily.427

Our method currently relies on existing tools, which is valuable due to the epistemic uncertainty428

involved in estimating error rate ✏̂. Developing new AGTRs that explicitly inform the value or range429

of ✏̂ is of interest. Similarly, developing the remaining bounds on precision and recall, and on other430

metrics, are open problems.431

We have established a method for computing bounds on precision, recall, and accuracy without a432

reference dataset, which becomes all the more important as datasets become too large to manually433

validate. In addition, we have designed a litmus test that uses AGTRs to identify biased evaluation434

results produced by low-quality reference datasets. We show that AGTRs can be used to evaluate the435

impact of changes made to a model. We identify malware family classification as a field where the436

AGTR validation framework provides value, provide an implementation for constructing an AGTR437

using peHash, and apply the AGTR evaluation framework to the AVClass malware labeler. There is438

no shortage of other problem spaces with inadequate reference datasets, and we believe that this work439

can be used to improve the evaluation process for them as well.440
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