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ABSTRACT

Text-based games are long puzzles or quests, characterized by a sequence of sparse
and potentially deceptive rewards. They provide an ideal platform to develop agents
that perceive and act upon the world using a combinatorially sized natural language
state-action space. Standard Reinforcement Learning agents are poorly equipped to
effectively explore such spaces and often struggle to overcome bottlenecks—states
that agents are unable to pass through simply because they do not see the right
action sequence enough times to be sufficiently reinforced. We introduce Q*BERT ,
an agent that learns to build a knowledge graph of the world by answering questions,
which leads to greater sample efficiency. To overcome bottlenecks, we further
introduce MC!Q*BERT an agent that uses an knowledge-graph-based intrinsic
motivation to detect bottlenecks and a novel exploration strategy to efficiently learn
a chain of policy modules to overcome them. We present an ablation study and
results demonstrating how our method outperforms the current state-of-the-art on
nine text games, including the popular game, Zork, where, for the first time, a
learning agent gets past the bottleneck where the player is eaten by a Grue.

1 INTRODUCTION

Text-adventure games such as Zork1 (Anderson et al., 1979) (Fig. 1) are simulations featuring
language-based state and action spaces. Prior game playing works have focused on a few chal-
lenges that are inherent to this medium: (1) Partial observability the agent must reason about the
world solely through incomplete textual descriptions (Narasimhan et al., 2015; Côté et al., 2018;
Ammanabrolu & Riedl, 2019b). (2) Commonsense reasoning to enable the agent to more intelligently
interact with objects in its surroundings (Fulda et al., 2017; Yin & May, 2019; Adolphs & Hofmann,
2019; Ammanabrolu & Riedl, 2019a). (3) A combinatorial state-action space wherein most games
have action spaces exceeding a billion possible actions per step; for example the game Zork1 has
1.64× 1014 possible actions at every step (Hausknecht et al., 2020; Ammanabrolu & Hausknecht,
2020). Despite these challenges, modern text-adventure agents such as KG-A2C (Ammanabrolu
& Hausknecht, 2020), TDQN (Hausknecht et al., 2020), and DRRN (He et al., 2016) have relied
on surprisingly simple exploration strategies such as ε-greedy or sampling from the distribution of
possible actions.

Most text-adventure games have relatively linear plots in which players must solve a sequence of
puzzles to advance the story and gain score. To solve these puzzles, players have freedom to a explore
both new areas and previously unlocked areas of the game, collect clues, and acquire tools needed
to solve the next puzzle and unlock the next portion of the game. From a Reinforcement Learning
perspective, these puzzles can be viewed as bottlenecks that act as partitions between different regions
of the state space. We contend that existing Reinforcement Learning agents that are unaware of such
latent structure and are thus poorly equipped for solving these types of problems.

In this paper we introduce two new agents: Q*BERT and MC!Q*BERT, both designed with this latent
structure in mind. The first agent, Q*BERT, improves on existing text-game agents that use knowledge
graph-based state representations by framing knowledge graph construction during exploration as a
question-answering task. To train Q*BERT’s knowledge graph extractor, we introduce the Jericho-QA
dataset for question-answering in text-games. We show that it leads to improved knowledge graph
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accuracy and sample efficiency compared to prior methods for constructing knowledge graphs in
text-games (Ammanabrolu & Riedl, 2019b).

Observation: West of House You are standing in an open
field west of a white house, with a boarded front door. There
is a small mailbox here.

Action: Open mailbox

Observation: Opening the small mailbox reveals a leaflet.

Action: Read leaflet

Observation: (Taken) "WELCOME TO ZORK! ZORK is a
game of adventure, danger, and low cunning. In it you will
explore some of the most amazing territory ever seen by mor-
tals. No computer should be without one!"

Action: Go north

Observation: North of House You are facing the north side
of a white house. There is no door here, and all the windows
are boarded up. To the north a narrow path winds through the
trees.

Figure 1: Excerpt from Zork1.

However, improved knowledge graph accuracy
is not enough to overcome bottlenecks; it does
not improve asymptotic performance. To this
end, MC!Q*BERT (Modular policy Chaining!
Q*BERT) extends Q*BERT by combining two
innovations: (1) an intrinsic motivation based
on expansion of its knowledge graph both as a
way to encourage exploration as well as a means
for the agent to self-detect when it is stuck; and
(2) by additionally introducing a structured ex-
ploration algorithm that, when stuck on a bot-
tleneck, will backtrack through the sequence
of states leading to the current bottleneck, in
search of alternative solutions. As MC!Q*BERT
overcomes bottlenecks, it constructs a modu-
lar policy that chains together the solutions to
multiple bottlenecks. Like Go Explore (Ecoffet
et al., 2019), MC!Q*BERT relies on the deter-
minism present in many text-games to reliably
revisit previous states. However, we show that
MC!Q*BERT’s ability to detect bottlenecks via the knowledge graph state representation enable it to
outperform such alternate exploration strategies on nine different games.

Our contributions are as follows: 1) We develop an improved knowledge-graph extraction procedure
based on question answering and introduce the open-source Jericho-QA training dataset. 2) We show
that intrinsic motivation reward based on knowledge graph expansion is capable of reliably identifying
bottleneck states. 3) Finally, we show that structured exploration in the form of backtracking can
be used to overcome these bottleneck states and reach state-of-the-art levels of performance on the
Jericho benchmark (Hausknecht et al., 2020).

2 UNDERSTANDING BOTTLENECK STATES

Overcoming bottlenecks is not as simple as selecting the correct action from the bottleneck state.
Most bottlenecks have long-range dependencies that must first be satisfied: Zork1 for instance
features a bottleneck in which the agent must pass through the unlit Cellar where a monster known
as a Grue lurks, ready to eat unsuspecting players who enter without a light source. To pass this
bottleneck the player must have previously acquired and lit the latern. Other bottlenecks don’t rely on
inventory items and instead require the player to have satisfied an external condition such as visiting
the reservoir control to drain water from a submerged room before being able to visit it. In both
cases, the actions that fulfill dependencies of the bottleneck, e.g. acquiring the lantern or draining
the room, are not rewarded by the game. Thus agents must correctly satisfy all latent dependencies,
most of which are unrewarded, then take the right action from the correct location to overcome
such bottlenecks. Consequently, most existing agents—regardless of whether they use a reduced
action space (Zahavy et al., 2018; Yin & May, 2019) or the full space (Hausknecht et al., 2020;
Ammanabrolu & Hausknecht, 2020)—have failed to consistently clear these bottlenecks.

To better understand how to design algorithms that pass these bottlenecks, we first need to gain
a sense for what they are. We observe that quests in text games can be modeled in the form of a
dependency graph. These dependency graphs are directed acyclic graphs (DAGs) where the vertices
indicate either rewards that can be collected or dependencies that must be met to progress and are
generally unknown to a player a priori. In text-adventure games the dependencies are of two types:
items that must be collected for future use, and locations that must be visited. An example of such a
graph for the game of Zork1 can found in Fig. 2. More formally, bottleneck states are vertices in the
dependency graph that, when the graph is laid out topographically, are (a) the only state on a level, and
(b) there is another state at a higher level with non-zero reward. Bottlenecks can be mathematically
expressed as follows: let D = 〈V,E〉 be the directed acyclic dependency graph for a particular game
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Loc: West of House
Inv: None

Loc: Kitchen
Inv: None

get painting
navigate

Loc: Up a Tree
Inv: Golden Egg

+5
Loc: Forest Path

Inv: None

Loc: Behind House
Inv: None

open window
Go in

get lamp
get sword
navigate

navigate

navigate

Key
Positive Rewards
Bottlenecks

Loc: Troll Room
Inv: Lamp, Sword

Loc: Gallery
Inv: Lamp, Sword,

Painting

+4

Loc: Cellar
Inv: Lamp, Sword

+25

+10

Figure 2: Portion of the Zork1 quest structure visualized as a directed acyclic graph. Each node
represents a state; clouds represent areas of high branching factor with labels indicating some of the
actions that must be performed to progress

where each vertex is tuple v = 〈sl, si, r(s)〉 containing information on some state s such that sl
are location dependencies, si are inventory dependencies, and r(s) is the reward associated with
the state. There is a directed edge e ∈ E between any two vertices such that the originating state
meets the requirements sl and si of the terminating vertex. D can be topologically sorted into levels
L = {l1, ..., ln} where each level represents a set of game states that are not dependant on each other.
We formulate the set of all bottleneck states in the game:

B = {b : (|li| = 1, b ∈ li, V ) ∧ (∃s ∈ lj s.t. (j > i ∧ r(s) 6= 0))} (1)

This reads as the set of all states that that belong to a level with only one vertex and that there exists
some state with a non-zero reward that depends on it. Intuitively, regardless of the path taken to get
to a bottleneck state, any agent must pass it in order to continue collecting future rewards. Behind
House is an example of a bottleneck state as seen in Fig. 2. The branching factor before and after this
state is high but it is the only state through which one can enter the Kitchen through the window.

3 RELATED WORK AND BACKGROUND

We use the definition of text-adventure game as Partially-Observable Markov Decision Process (Côté
et al., 2018; Hausknecht et al., 2020). A game can be represented as a 7-tuple of 〈S, T,A,Ω, O,R, γ〉
representing the set of environment states, mostly deterministic conditional transition probabilities
between states, the vocabulary or words used to compose text commands, observations returned by
the game, observation conditional probabilities, reward function, and the discount factor respectively.
LSTM-DQN (Narasimhan et al., 2015) and Action Elimination DQN (Zahavy et al., 2018) operate on
a reduced action space of the order of 102 actions per step by considering either verb-noun pairs or
by using a walkthrough of the game respectively. The agents learn how to produce Q-value estimates
that maximize long term expected reward. The DRRN algorithm for choice-based games (He et al.,
2016; Zelinka, 2018) estimates Q-values for a particular action from a particular state. Fulda et al.
(2017) use word embeddings to model affordances for items in these games.

Exploration strategies: Jain et al. (2019) extend consistent Q-learning (Bellemare et al., 2016) to
text-games, focusing on taking into account historical context. In terms of exploration strategies,
Yuan et al. (2018) detail how counting the number of unique states visited improves generalization in
unseen games. Yuan et al. (2019) introduce the concept of interactive question-answering in the form
of QAit—modeling QA tasks in TextWorld (Côté et al., 2018), a simplified text-game testbed.

Knowledge Graphs: Ammanabrolu & Riedl (2019b) introduce KG-DQN, using knowledge graphs
as state representation for text-game agents; Ammanabrolu & Riedl (2019a); Murugesan et al. (2020)
explore transfer of commonsense knowledge in text-games with knowledge graphs. Ammanabrolu
& Hausknecht (2020) showcase the KG-A2C, for the first time tackling the fully combinatorial
action space and presenting state-of-the-art results on many man-made text games. In a similar
vein, Adhikari et al. (2020) present the Graph-Aided Transformer Agent (GATA) which learns to
construct a knowledge graph during game play and improves zero-shot generalization on procedurally
generated TextWorld (Côté et al., 2018) games.
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Behind	House
You	 are	 behind	 the	white	 house.	A	path	 leads	 into
the	 forest	 to	 the	 east.	 In	 one	 corner	 of	 the	 house
there	is	a	small	window	which	is	slightly	ajar.
You	are	carrying:
A	jewel-encrusted	egg
Attributes:	talkable,	openable,	animate,	treasure	...
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Figure 3: One-step knowledge graph extraction in the Jericho-QA format, and overall Q*BERT
architecture at time step t. At each step the ALBERT-QA model extracts a relevant highlighted entity
set Vt by answering questions based on the observation, which is used to update the knowledge graph.

4 Q*BERT

Q*BERT is a reinforcement learning agent that uses a knowledge-graph to represent its understanding
of the world state. A knowledge graph (Fig. 3) is a set of relations 〈s, r, o〉 such that s is a subject, r is
a relation, and o is an object. Instead of using relation extraction rules as in KG-A2C (Ammanabrolu
& Hausknecht, 2020), Q*BERT uses a variant of the BERT (Devlin et al., 2018) natural language
transformer to answer questions and populate the knowledge graph from the answers.

Knowledge Graph State Representation We treat the problem of constructing the knowledge
graph as a question-answering task. Our method first extracts a set of graph vertices V by asking a
question-answering system relevant questions and then linking them together using a set of relationsR
to form a knowledge graph representing information the agent has learned about the world. Examples
of questions include: “What is my current location?”, “What objects are around me?”, and ”What am
I carrying?” to respectively extract information regarding the agent’s current location, surrounding
objects, inventory objects. Further, we predict attributes for each object by asking the question “What
attributes does x object have?”. An example of the knowledge graph that can be extracted from
description text and the overall Q*BERT architecture are shown in Figure 3.

For question-answering, we use the pre-trained language model, ALBERT (Lan et al., 2020), a
variant of BERT that is fine-tuned for question answering on the SQuAD 2.0 (Rajpurkar et al., 2018)
question-answering dataset. We further fine-tune the ALBERT model on a dataset specific to the
text-game domain. This dataset, dubbed Jericho-QA, was created by making question answering
pairs about text-games in the Jericho (Hausknecht et al., 2020)1 framework as follows: For each
game in Jericho, we use an oracle—an agent capable of playing the game perfectly using information
normally off-limits such as the true game state—and a random exploration agent to gather ground
truth state information about locations, objects, and attributes. From this ground truth, we construct
pairs of questions in the form that Q*BERT will ask as it encounters environment description text,
and the corresponding answers. These question-answer pairs are used to fine-tune the Q/A model
and the ground truth data are discarded. No data from games we test Q*BERT on are used during
ALBERT fine-tuning. Additional details can be found in Appendix A.1.

In a text-game the observation is a textual description of the environment. For every observation
received, Q*BERT produces a fixed set of questions. The questions and the observation text are sent
to the question-answering system. Predicted answers are converted into 〈s, r, o〉 triples and added to
the knowledge graph. The complete knowledge graph is the input into Q*BERT’s neural architecture
(described below), which makes a prediction of the next action to take.

1https://github.com/microsoft/jericho
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Q*BERT Training At every step an observation consisting of several components is received:
ot = (otdesc , otgame

, otinv
, at−1) corresponding to the room description, game feedback, inventory,

and previous action, and total score Rt. The room description otdesc is a textual description of the
agent’s location, obtained by executing the command “look”. The game feedback otgame

is the
simulators response to the agent’s previous action and consists of narrative and flavor text. The
inventory otinv

and previous action at−1 components inform the agent about the contents of its
inventory and the last action taken respectively.

Each of these components is processed using a GRU based encoder utilizing the hidden state from
the previous step and combined to have a single observation embedding ot. At each step, we update
our knowledge graph Gt using ot as described in earlier in Section 4 and it is then embedded into a
single vector gt. This encoding is based on the R-GCN and is calculated as:

gt = f

Wgσ

∑
r∈R

∑
j∈Ni

r

1

ci,r
Wr

(l)hj
(l) + W0

(l)hi
(l)

 + bg

 (2)

WhereR is the set of relations, Nir is the 1-step neighborhood of a vertex i with respect to relation
r, Wr

(l) and hj
(l) are the learnable convolutional filter weights with respect to relation r and hidden

state of a vertex j in the last layer l of the R-GCN respectively, ci,r is a normalization constant, and
Wg and bg the weights and biases of the output linear layer. The full architecture can be found
in Fig. 3. The state representation consists only of the textual observations and knowledge graph.
Another key use of the knowledge graph, introduced as part of KG-A2C, is the graph mask, which
restricts the possible set of entities that can be predicted to fill into the action templates at every step
to those found in the agent’s knowledge graph. The rest of the training methodology is unchanged
from Ammanabrolu & Hausknecht (2020), more details can be found in Appendix A.1.

5 STRUCTURED EXPLORATION

This section describes MC!Q*BERT an exploration method built on Q*BERT that detects overcomes
bottlenecks by backtracking and policy chaining. This method of chaining policies and backtracking
can be thought of in terms of options (Sutton et al., 1999; Stolle & Precup, 2002), where the agent
decomposes the task of solving the text game into the sub-tasks, each of which has it’s own policy. In
our case, each sub-task delivers the agent to a bottleneck state.

5.1 BOTTLENECK DETECTION USING INTRINSIC MOTIVATION

Inspired by McGovern & Barto (2001), we present an intuitive way of detecting bottleneck states
such as those in Fig. 2—or sub-tasks—in terms of whether or not the agent’s ability to collect reward
stagnates. If the agent does not collect a new reward for a number of environment interactions—
defined in terms of a patience parameter—then it is possible that it is stuck due to a bottleneck state.
An issue with this method, however, is that the placement of rewards does not always correspond
to an agent being stuck. Complicating matters, rewards are sparse and often delayed; the agent not
collecting a reward for a while might simply indicate that further exploration is required instead of
truly being stuck.

To alleviate these issues, we define an intrinsic motivation for the agent that leverages the knowledge
graph being built during exploration. The motivation is for the agent to learn more information
regarding the world and expand the size of its knowledge graph. This provides us with a better
indication of whether an agent is stuck or not—a stuck agent does not visit any new states, learns no
new information about the world, and therefore does not expand its knowledge graph—leading to
more effective bottleneck detection overall. To prevent the agent from discovering reward loops based
on knowledge graph changes, we formally define this reward in terms of new information learned.

rIMt
= ∆(KGglobal −KGt) where KGglobal =

t−1⋃
i=1

KGi (3)

Here KGglobal is the set of all edges that the agent has ever had in its knowledge graph and the
subtraction operator is a set difference. When the agent adds new edges to the graph perhaps as a
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the result of finding a new room KGglobal changes and a positive reward is generated—this does not
happen when that room is rediscovered in subsequent episodes. This is then scaled by the game score
so the intrinsic motivation does not drown out the actual quest rewards, the overall reward the agent
receives at time step t looks like this:

rt = rgt + αrIMt

rgt + ε

rmax
(4)

where ε is a small smoothing factor, α is a scaling factor, rgt is the game reward, rmax is the maximum
score possible for that game, and rt is the reward received by the agent on time step t.

5.2 MODULAR POLICY CHAINING Algorithm 1 Structured Exploration

{πchain, πb, π} ← φ . Chained, backtrack, current policy
{Sb,S} ← φ . Backtrack, current state buffers
s0, rinit ← ENV.RESET()
Jmax ← rinit, p← 0
for timestep t in 0...M do . Train for M Steps

st+1, rt, π ← Q*BERTUPDATE(st, π)
S ← S + st+1 . Append current state to state buffer
p← p+ 1 . Lose patience
if J (π) ≤ Jmax then

if p ≥ patience then . Stuck at a bottleneck
st, rmax, π ← BACKTRACK(πb,Sb)
. Bottleneck passed; Add π to the chained policy

πchain ← πchain + π
if J (π) > Jmax then . New highscore found
Jmax ← J (π);πb ← π;Sb ← S; p← 0

return πchain . Chained policy that reaches max score

function Q*BERTUPDATE(st, π) . One-step update
st+1, rgt ← ENV.STEP(st, π) . Section 4
rt ← CALCULATEREWARD(st+1, rgt) . Eq. 4
π ← A2C.UPDATE(π, rt) . Appendix A.1
return st+1, rt, π

function BACKTRACK(πb, Sb) . Try to overcome bottleneck
for b in REVERSE(Sb) do . States leading to highscore

s0 ← b;π ← φ
for timestep t in 0...N do . Train for N steps

st+1, rt, π ← Q*BERTUPDATE(st, π)
if J (π) > J (πb) then return st, rt, π

Terminate . Can’t find better score; Give up.

A primary reason that agents fail to
pass bottlenecks is not satisfying all
the required dependencies. To solve
this problem, we introduce a method
of policy chaining, where the agent
utilizes the determinism of the simula-
tor to backtrack to previously visited
states in order to fulfill dependencies
required to overcome a bottleneck.

Specifically, Algorithm 1 optimizes
the policy π as usual, but also keeps
track of a buffer S of the distinct states
and knowledge graphs that led up to
each state (we use state st to collo-
quially refer to the combination of an
observation ot and knowledge graph
KGt). Similarly, a bottleneck buffer
Sb and policy πb reflect the sequence
of states and policy with the maxi-
mal return Jmax—consisting of the
cumulative intrinsic as well as game
rewards. A bottleneck is identified
when the agents fails to improve upon
Jmax after patience number of steps,
i.e. no improvement in raw game
score or knowledge-graph-based in-
trinsic motivation reward. The agent
then backtracks by searching back-
wards through the state sequence Sb, restarting from each of the previous states—and training
for N steps in search of a more optimal policy to overcome the bottleneck. When such a policy is
found, it is appended to modular policy chain πchain. Conversely, if no such policy is found, then we
have failed to pass the current bottleneck and the training terminates.

6 EVALUATION

We first evaluate the quality of the knowledge graph construction in a supervised setting. Next we
perform an end-to-end evaluation in which knowledge graph construction is used by Q*BERT. We
further measure the utility of the knowledge graph-based intrinsic motivation in bottleneck detection
and conduct an empirical comparison between MC!Q*BERT and other exploration strategies.

6.1 GRAPH EXTRACTION EVALUATION

Table 1 (columns 2-5) shows the QA performance, and consequently the accuracy of the knowledge
graphs built during exploration, on the Jericho-QA dataset using the rules-based approach of KG-A2C
and the trained Albert-QA model in Q*BERT. Exact match (EM) is the percentage of times the model
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Expt. QA Graph accuracy Game reward Intrinsic
Agent KG-A2C Q*BERT KG-A2C Q*BERT MC!Q* MC!Q* GO!Q*
Metric EM F1 EM F1 Eps. Max Eps. Max Max Max Max

zork1 6.08 8.42 43.93 48.31 34 35 34.1 35 32 41.6 31
library 10.33 26.74 49.78 52.76 14.3 19 10.0 18 19 19 18
detective 7.51 10.23 60.28 63.21 207.9 214 246.1 274 320 330 304
balances 32.53 36.09 85.81 86.18 10 10 10 10 10 10 10
pentari 16.48 23.36 65.02 69.54 50.7 56 51.2 56 56 58 40
ztuu 14.40 21.74 49.44 49.82 6 9 5 5 5 11.8 5
ludicorp 14.47 18.48 57.58 60.95 17.8 19 18 19 19 22.8 20.6
deephome 3.34 3.86 9.31 9.84 1 1 1 1 8 6 1
temple 7.42 9.44 48.98 49.17 7.6 8 7.9 8 8 8 8

Table 1: QA results (EM and F1) on Jericho-QA test set and averaged asymptotic scores on games by
different methods across 5 independent runs. For KG-A2C and Q*BERT, we present scores averaged
across the final 100 episodes as well as max scores. Methods using exploration strategies show only
max scores because Episode Average Score (Eps.) conflates forward progress and backtracking.
Agents are allowed 106 steps for each parallel A2C agent with a batch size of 16.
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Figure 4: Select ablation results on Zork1 conducted across 5 independent runs per experiment. We
see where the agents using structured exploration pass each bottleneck seen in Fig. 2. Q*BERT
without IM is unable to detect nor surpass bottlenecks beyond the Cellar.

was able to predict the exact answer string, while F1 measures token overlap between prediction and
ground truth. We observe a direct correlation between the quality of the extracted graph and an agent’s
performance on the games—Q*BERT in general possessing knowledge graphs of much higher quality
than KG-A2C. On games where Q*BERT performed comparatively better than KG-A2C in terms of
asymptotic scores (columns 7 and 9), e.g. detective, the QA model had relatively high EM and F1,
and vice versa as seen with ztuu. In general Q*BERT reaches comparable asymptotic performance
to KG-A2C on 7 out of 9 games. However, as illustrated on zork1 in Figure 4a, Q*BERT reaches
asymptotic performance faster than KG-A2C, indicating that the QA model improves learning; this
trend is consistent on other games as shown in additional plots in Appendix B. Both agents rely on
the graph to constrain the action space and provide a richer input state representation. Q*BERT uses
a QA model fine-tuned on regularities of a text-game producing more relevant knowledge graphs
than those extracted by OpenIE (Angeli et al., 2015) in KG-A2C for this purpose.

6.2 INTRINSIC MOTIVATION AND EXPLORATION STRATEGY EVALUATION

We evaluate intrinsic motivation through policy chaining, dubbed MC!Q*BERT (Modularly Chained
Q*BERT) by first testing policy chaining with only game reward and then with both game reward and
intrinsic motivation. We provide a qualitative analysis of the bottlenecks detected with both methods
with respect to those found in Fig. 2 on Zork1. Because MC!Q*BERT exploits structural domain
assumptions that Q*BERT and KG-A2C cannot, we create a strong alternative baseline that looks at
whether modular chaining improves over a related exploration strategy used in Go-Explore (Ecoffet
et al., 2019). GO!Q*BERT is a baseline that makes the same underlying assumptions regarding the
simulator as MC!Q*BERT but operates differently by tracking sub-optimal and under-explored states
in order to allow the agent to explore upon more optimal states that may be a result of sparse rewards.
This baseline trains Q*BERT in parallel to generate actions from the full action space used for
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exploration. Further details are found in Appendix A.3. When MC!Q*BERT only uses game reward
it matches Q*BERT on 5 out of 9 games and outperforms on 3 out of 9 games. When MC!Q*BERT
uses intrinsic motivation plus game reward, it strictly outperforms KG-A2C and Q*BERT on 6 out of
9 games and matches it on the rest. MC!Q*BERT outperforms GO!Q*BERT on 7 games and matches
on 2, indicating that the modular chaining exploration strategy exploits the intrinsic motivation of
knowledge graph learning better than the closest alternative exploration strategy.

7 ANALYSIS

Table 1 shows that across all the games MC!Q*BERT matches or outperforms the current state-of-
the-art when compared across the metric of the max score consistently received across runs. There
are two main trends: First, MC!Q*BERT strongly benefits from the inclusion of intrinsic motivation
rewards. Qualitatively, we illustrate this with Zork1, the canonical commercial text-adventure game
that no RL agent has ever beaten. An analysis of bottlenecks detected by each agent in this game
reveals differences in the overall accuracy of the bottleneck detection between MC!Q*BERT with
and without intrinsic motivation. With intrinsic motivation, across 5 independent runs, MC!Q*BERT
had an average true positive bottleneck state detection rate of 63%, false positive of 37%, with 50%
coverage; and without it has a true positive rate of 58%, false positive of 42%, with coverage of
25%—assuming that the states such as in Fig. 2 represent the ground truth for bottlenecks. Coverage
here refers to the number of unique bottlenecks states found during exploration compared to the total
number of such states in the ground truth. This indicates that overall quality of bottleneck detection
significantly improves given intrinsic motivation—enabling MC!Q*BERT to backtrack and surpass
them. Figure 4b shows when each of these agents detect and subsequently overcome the bottlenecks
outlined in Figure 2.

When intrinsic motivation is not used, the agent discovers that it can get to the Kitchen with a score
of +10 and then Cellar with a score of +25 immediately after. It forgets how to get the Egg with
a smaller score of +5 and never makes it past the Grue in the Cellar. Intrinsic motivation avoids
this in two ways: (1) it makes it less focused on a locally high-reward trajectory—making it less
greedy and helping it chain together rewards for the Egg and Cellar, and (2) provides rewards for
fulfilling dependencies that would otherwise not be rewarded by the game—this is seen by the fact
that it learns that picking up the lamp is the right way to surpass the Cellar bottleneck and reach the
Painting. A similar behavior is observed with GO!Q*BERT: the agent settles prematurely on a locally
high-reward trajectory and thus never has incentive to find more globally optimal trajectories by
fulfilling the underlying dependency graph. Here, the likely cause is due to GO!Q*BERT’s inability
to backtrack and rethink discovered locally-maximal reward trajectories.

The second trend is that using both the improvements to graph construction in addition to intrinsic
motivation and structured exploration consistently yields higher max scores across a majority of the
games when compared to the rest of the methods. Having just the improvements to graph building
or structured exploration by themselves is not enough. Thus we infer that the full MC!Q*BERT
agent is fundamentally exploring this combinatorially-sized space more effectively by virtue of being
able to more consistently detect and clear bottlenecks. The improvement over systems using default
exploration such as KG-A2C or Q*BERT by itself indicates that structured exploration is necessary
when dealing with sparse and ill-placed reward functions.

8 CONCLUSIONS

Modern deep reinforcement learning agents using default exploration strategies such as ε-greedy
are ill-equipped to deal with the latent structure of dependencies and bottlenecks found in many
text-based games. To help address this challenge, we introduced two new agents: Q*BERT, an agent
that constructs a knowledge graph of the world by asking questions about it, and MC!Q*BERT, which
uses intrinsic motivation to grow the graph and detect bottlenecks arising from delayed rewards. A
key insight from ablation studies is that the graph-based intrinsic motivation is crucial for bottleneck
detection, preventing the agent from falling into locally optimal high reward trajectories due to
ill-placed rewards. Policy chaining used in tandem with intrinsic motivation results in agents that
explore further in the game by clearing bottlenecks more consistently.
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