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Abstract

With the widespread real-world deployment of001
large language models (LLMs), ensuring their002
behavior complies with safety standards has be-003
come crucial. Jailbreak attacks exploit vulnera-004
bilities in LLMs to induce undesirable behav-005
ior, posing a significant threat to LLM safety.006
Previous defenses often fail to achieve both ef-007
fectiveness and efficiency simultaneously. De-008
fenses from a representation perspective offer009
new insights, but existing interventions cannot010
dynamically adjust representations based on the011
harmfulness of the queries. To address this limi-012
tation, we propose SafeIntervention (SafeInt),013
a novel defense method that shields LLMs from014
jailbreak attacks through safety-aware represen-015
tation intervention. Built on our analysis of the016
representations of jailbreak samples, the core017
idea of SafeInt is to relocate jailbreak-related018
representations into the rejection region. This019
is achieved by intervening in the representation020
distributions of jailbreak samples to align them021
with those of unsafe samples. We conduct com-022
prehensive experiments covering six jailbreak023
attacks, two jailbreak datasets, and two utility024
benchmarks. Experimental results demonstrate025
that SafeInt outperforms all baselines in de-026
fending LLMs against jailbreak attacks while027
largely maintaining utility. Additionally, we028
evaluate SafeInt against adaptive attacks and029
verify its effectiveness in mitigating real-time030
attacks. WARNING: This paper may contain031
content that is offensive and harmful.032

1 Introduction033

Large Language Models (LLMs) (OpenAI et al.,034

2024; Touvron et al., 2023; Grattafiori et al., 2024)035

have demonstrated remarkable performance across036

various domains (Zhang et al., 2023; Liu et al.,037

2023; Wang et al., 2024). With their widespread ap-038

plication in real-world scenarios, LLMs face safety039

challenges (Ferrara, 2023; Ji et al., 2023). Although040

efforts (Wang et al., 2023a; Rafailov et al., 2024;041

Zhou et al., 2023) have been made to align LLMs’042

behaviors with human values through carefully de- 043

signed training strategies, recent studies (Zou et al., 044

2023b; Li et al., 2024b; Mehrotra et al., 2024; Liu 045

et al., 2024b) reveal that LLMs can still produce un- 046

desirable behaviors when subjected to well-crafted 047

jailbreak attacks, such as the biased generation or 048

potentially harmful responses. 049

Various defense methods have been proposed 050

to address the growing threat of jailbreak attacks. 051

Prompt-based defenses use instructions (Phute 052

et al., 2024; Xie et al., 2023; Zhang et al., 2024b) 053

or context (Zhou et al., 2024a; Wei et al., 2024) 054

to prevent LLMs from generating harmful content. 055

However, prompt-based methods rely on manually 056

crafted secure prompts and possibly lead to exces- 057

sive self-censorship (Varshney et al., 2024), reduc- 058

ing the helpfulness of LLMs for benign queries. 059

Detection-based defenses compute the perplex- 060

ity of inputs (Alon and Kamfonas, 2023) or per- 061

turb them (Cao et al., 2024) to identify jailbreak 062

prompts. Decoding-based defenses (Xu et al., 063

2024; Liu et al., 2024a) reconstruct a safer out- 064

put probability distribution through contrastive de- 065

coding. However, these methods often lack effec- 066

tiveness or require additional inference overhead. 067

We aim to defend LLMs against jailbreak attacks 068

from a representation perspective, which provides 069

a more controllable and efficient approach. Previ- 070

ous studies (Zou et al., 2023a; Rimsky et al., 2024) 071

have shown the effectiveness of intervening rep- 072

resentations to steer LLMs’ behaviors, but such 073

interventions cannot dynamically adjust represen- 074

tations based on whether a query is harmful. This 075

limitation makes it challenging to leverage repre- 076

sentations for mitigating jailbreak attacks. 077

In this paper, we analyze the representations of 078

jailbreak samples on four LLMs. Our analysis 079

uses a classifier as a proxy to investigate whether 080

jailbreak representations are distinguishable and 081

whether the representation distributions of differ- 082

ent jailbreak methods are consistent. We derive 083
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two observations. First, in both intermediate and084

later layers of LLMs, the representations of jail-085

break samples can be distinguished from those of086

safe or unsafe samples. Second, the consistency087

of the representation distributions across different088

jailbreak methods is observed in all LLMs, and it089

is generally more pronounced in the intermediate090

layers.091

Building on these observations, we propose092

SafeIntervention (SafeInt), a novel defense093

method that shields LLMs from jailbreak attacks094

via safety-aware representation intervention. The095

representations of unsafe samples inherently char-096

acterize the rejection region of the LLM. However,097

jailbreak samples often produce representations098

that deviate from those of unsafe samples, caus-099

ing the model to fail to trigger its built-in rejection100

behavior. The core idea of SafeInt is to relocate101

jailbreak-related representations into the rejection102

region, thereby activating the model’s native re-103

fusal mechanisms. To achieve this, we first project104

the representations at an intermediate layer into a105

linear subspace, followed by a parameterized in-106

tervention. For jailbreak-related representations,107

we align their distribution with that of unsafe sam-108

ples across the subsequent layers. For jailbreak-109

irrelevant representations, we perform representa-110

tion reconstruction to preserve their original se-111

mantics. After training, SafeInt can adaptively in-112

tervene in jailbreak-related representations while113

seamlessly integrating into the LLM inference pro-114

cess.115

We conduct a comprehensive evaluation of116

SafeInt, covering six jailbreak attacks, two jail-117

break datasets, and two utility benchmarks. Ex-118

perimental results show that SafeInt consistently119

outperforms all baselines in defending against jail-120

break attacks. In most cases, SafeInt also maintains121

the best utility. Additionally, we evaluate SafeInt122

against adaptive attacks and verify the effectiveness123

of SafeInt in defending against real-time attacks.124

In summary, our main contributions are as follows:125

• We observe that the representations of jail-126

break samples are distinguishable and that the127

representation distributions of different jail-128

break methods exhibit consistency.129

• We propose SafeInt, a novel defense method130

that can adaptively identify and intervene131

in jailbreak-related representations to shield132

LLMs from jailbreak attacks.133

• Extensive experiments show that SafeInt sig-134

nificantly outperforms all baselines in defend-135

ing against jailbreak attacks while largely 136

maintaining utility. 137

2 Preliminaries 138

2.1 Representation Intervention 139

Representation intervention is an effective means 140

of steering LLM behavior. For a given decoder- 141

only transformer model with L layers, we denote 142

the internal representation (or residual stream acti- 143

vation) of the last token at layer l as h(l) ∈ Rd. A 144

typical form of representation intervention is: 145

h̃(l) = h(l) ± ϵ · v. (1) 146

Here, h̃(l) is the intervened representation, ϵ ∈ R 147

represents the intervention strength, and v ∈ Rd 148

denotes the intervention direction. 149

2.2 Analysis of Jailbreak Sample 150

Representations 151

Recent works have investigated the representation 152

distributions of unsafe and safe samples within 153

LLMs, utilizing their distributional characteristics 154

to enhance safety or facilitate jailbreaks. In this 155

paper, we analyze the representation distributions 156

of three types of samples after introducing jail- 157

break samples. We construct three training datasets: 158

Djailbreak, which consists of jailbreak instructions 159

generated only using GCG (Zou et al., 2023b) on 160

AdvBench (Zou et al., 2023b); Dunsafe, which in- 161

cludes harmful instructions extracted from Mali- 162

ciousInstruct (Huang et al., 2023) and TDC2023 163

(Mazeika et al., 2023); and Dsafe, which contains 164

harmless instructions sampled from Alpaca (Taori 165

et al., 2023).1 More details of the datasets are pro- 166

vided in Appendix A.1. We conduct our analysis 167

on four LLMs: Qwen-7B-Chat (Bai et al., 2023), 168

Llama-2-7B-Chat (Touvron et al., 2023), Llama-3- 169

8B-Instruct (Grattafiori et al., 2024), and Vicuna- 170

7B-v1.5 (Chiang et al., 2023). In each layer of the 171

LLM, we train a logistic regression classifier to fit 172

the representations of the three types of samples 173

and report the test accuracy. 174

Q1: Are the representations of jailbreak, unsafe, 175

and safe samples distinguishable? 176

In Figure 1, we present the classification accuracy 177

on a test set containing only GCG jailbreak sam- 178

ples. Using the classifier as a proxy for observation, 179

a higher classification accuracy indicates that the 180

representations of the three types of samples are 181

1For convenience, we abbreviate these datasets as Dj, Du,
and Ds in the following.
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Figure 1: Test accuracy of classifiers at different layers
of LLMs, with the test set containing only GCG jail-
break samples.

Figure 2: Test accuracy of classifiers on a test set con-
taining jailbreak samples from GCG, AutoDAN, and
DeepInception.

more distinguishable. For all LLMs, the test accu-182

racy remains above 95% starting from the 10th or183

11th layer. This indicates that the representations of184

the three types of samples become distinguishable185

from the intermediate layers of LLMs onward.186

Q2: Are the representation distributions of187

samples generated by different jailbreak methods188

consistent?189

We reconstruct a test set where jailbreak samples190

are composed of three methods: GCG, AutoDAN191

(Liu et al., 2024b), and DeepInception (Li et al.,192

2024b). We employ the previously trained classi-193

fiers for testing and show the results in Figure 2.194

Since the classifiers are trained solely on GCG jail-195

break samples, a high test accuracy reveals that196

the representations generated by different jailbreak197

methods exhibit a unified pattern from the classi-198

fier’s perspective, indicating consistency.199

We observe this consistency across different200

LLMs. For Qwen, Llama2, and Llama3, the ac-201

curacy remains above 90% in most layers. For202

Vicuna, the accuracy exceeding 90% is primarily203

observed in the intermediate layers. Although the 204

trend of consistency across layers varies among 205

different LLMs, it is generally more pronounced in 206

the intermediate layers. 207

Key Insights and Motivation Aligned LLMs 208

can reject unsafe samples, and the representa- 209

tions of these samples inherently characterize the 210

model’s rejection region. Since the representations 211

of jailbreak samples differ from those of unsafe 212

samples, they need to be relocated into the rejec- 213

tion region. Based on the distinguishability and 214

distributional consistency of jailbreak representa- 215

tions, we aim to intervene in their representations to 216

align their distribution with that of unsafe samples. 217

3 Method 218

In this section, we describe how SafeInt enhances 219

the safety of LLMs. Figure 3 illustrates the diagram 220

of SafeInt. 221

3.1 Representation Relocation 222

We achieve representation relocation by a targeted 223

intervention that maps jailbreak-related represen- 224

tations into the rejection region defined by unsafe 225

samples. According to the linear interpretability 226

hypothesis commonly used in existing methods 227

(Zhang et al., 2024a; Li et al., 2024a), deep model 228

embeddings can be linearly transformed to corre- 229

spond to specific human concepts. Thus, we aim to 230

apply a parameterized intervention within a repre- 231

sentation space that corresponds to safety-relevant 232

concepts, minimizing impacts on other capabili- 233

ties. Inspired by LoReFT (Wu et al., 2024), we 234

project the representations into a linear subspace 235

defined by a low-rank projection matrix. Assum- 236

ing the intervention is applied at layer I, it can be 237

parameterized as follows: 238

h̃(I) = h(I) +U⊤
(
fθ(h

(I))−Uh(I)
)
. (2) 239

The matrix U ∈ Rr×d has orthonormal rows, 240

where r denotes the rank of the subspace. The 241

function fθ is a linear relocation mapping defined 242

as fθ : Rd → Rr. 243

Then, we define the objectives for learning the 244

intervention. Broadly, our objectives are twofold: 245

a safety objective and a utility objective. The 246

safety objective guarantees the intervention to help 247

the LLM reject jailbreak and harmful instructions. 248

The utility objective ensures that the intervention 249

does not degrade the response quality for harmless 250

instructions. 251
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Figure 3: The schematic of SafeInt. We apply the intervention (illustrated by the blue shield) at a specific layer
and perform alignment in the subsequent layers. The distribution of jailbreak sample representations is adjusted to
align with that of unsafe samples while minimizing shifts in the representations of safe and unsafe samples. With
the original representation distribution, the LLM is successfully jailbroken and generates harmful content. After
alignment, the LLM safely rejects the jailbreak instruction.

3.2 Representation Alignment252

We use the classifier as a proxy to assess whether253

the distributions of jailbreak samples and unsafe254

samples are consistent in the representation space.255

From the perspective of the classifier, the align-256

ment is achieved when the classification results257

for jailbreak and unsafe sample representations are258

consistent. Specifically, for jailbreak samples, we259

intervene on their representations to maximize the260

probability of being classified as unsafe. For un-261

safe sample representations, they should still be262

classified as unsafe with a high probability.263

We denote the sets of original representations264

of Dj, Du, and Ds as Hj, Hu, and Hs, respectively.265

The sets of intervened representations are denoted266

as H̃j, H̃u, and H̃s. Let La be the set of layers to267

be aligned, with min(La) > I. After applying the268

intervention at the layer I, the updated represen-269

tation is propagated to the subsequent layers. At270

layer l ∈ La, we extract the latest representation271

h̃(l) and compute the following:272

L(l)
cls =− 1

|H̃(l)
j |

∑
h̃
(l)
j ∈H̃(l)

j

logPu(h̃
(l)
j )273

− 1

|H̃(l)
u |

∑
h̃
(l)
u ∈H̃(l)

u

logPu(h̃
(l)
u ), (3)274

where Pu represents the probability that classifier275

P classifies a representation as unsafe.276

Contrastive Learning Although we align the 277

representations of jailbreak samples with unsafe 278

samples by a classifier, the limited training data 279

may prevent the classifier’s decision boundary from 280

accurately capturing the discriminative boundary 281

within the LLM. To enhance the alignment, we 282

use contrastive learning as a complementary task. 283

For a given representation q, contrastive learning 284

maximizes the similarity between q and the set of 285

positive samples K+ while minimizing the similar- 286

ity between q and the set of negative samples K−, 287

with the objective formulated as follows: 288

CT(q,K+,K−) = 289

− log
exp(sim(q,k+)/τ)∑

k∈(K+,K−) exp(sim(q,k)/τ)
, (4) 290

where k+ ∈ K+, sim(·, ·) represents cosine simi- 291

larity, and the temperature is set to τ = 0.1. 292

Specifically, the intervened representations of 293

jailbreak samples should be as close as possible to 294

those of unsafe samples while being pushed away 295

from their original representations and those of 296

safe samples. Accordingly, for h̃(l)
j ∈ H̃

(l)
j , the 297

contrastive loss is calculated as: 298

L(l)
ct = CT(h̃(l)

j , H
(l)
u , (H

(l)
j ∪H

(l)
s )). (5) 299

3.3 Representation Reconstruction 300

To prevent excessive intervention from distorting 301

the LLM’s internal representations, we introduce a 302
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reconstruction loss to constrain jailbreak-irrelevant303

representations from changing. Specifically, we304

encourage the representations of safe and unsafe305

samples after intervention to remain close to their306

original states. This ensures that the intervention307

primarily affects jailbreak-related representations308

without causing unnecessary shifts in the model’s309

overall representation structure. The loss is formu-310

lated as follows:311

Lrecon = MSE(Hs, H̃s) + MSE(Hu, H̃u), (6)312

where MSE refers to the mean squared error loss.313

Considering both the alignment and reconstruc-314

tion objectives, our final loss is calculated as fol-315

lows:316

Ltotal = α
∑
l∈La

(L(l)
cls + L(l)

ct ) + βLrecon. (7)317

Through the two hyperparameters α and β, we318

achieve a balance between effective alignment and319

model stability.320

4 Experiments321

4.1 Experimental Setup322

Models and Datasets We primarily evaluate323

SafeInt on two open-source LLMs: Llama2-7b-324

chat and Vicuna-7b-v1.5. Additionally, we assess325

its scalability by applying it to a heterogeneous326

LLM, with results reported in Appendix B.1. For327

evaluation, we randomly sample 50 instructions328

from AdvBench (Zou et al., 2023b) as the test set,329

ensuring no overlap with the training set Dj. More-330

over, to demonstrate that SafeInt is data-agnostic,331

we construct an out-of-distribution test set consist-332

ing of 50 instructions randomly sampled from Jail-333

breakBench (Chao et al., 2024a). Following Xu334

et al. (2024), we use MT-Bench (Zheng et al., 2023)335

and Just-Eval (Lin et al., 2023) to evaluate the util-336

ity of intervened LLMs.337

Jailbreak Attacks Multiple representative jail-338

break attacks are employed in our evaluation.339

These include optimization-based attacks: GCG340

and AutoDAN, LLM-generated attacks: PAIR341

(Chao et al., 2024b) and TAP (Mehrotra et al.,342

2024), and scenario-based attacks: DeepInception.343

We also consider multilingual mismatch generaliza-344

tion attacks (MG) (Yong et al., 2024), where each345

instruction in the test set is translated into one of346

six non-English languages to perform the attacks.347

Baselines We compare SafeInt with six state-348

of-the-art defense approaches: PPL (Alon and349

Kamfonas, 2023), Paraphrase (Jain et al., 2023), 350

Self-Examination (Phute et al., 2024), ICD (Wei 351

et al., 2024), Self-Reminder (Xie et al., 2023), and 352

SafeDecoding (Xu et al., 2024). In addition, we 353

include comparisons with two other baselines that 354

leverage representations for defense, with results 355

presented in Appendix B.2. 356

Evaluation Metrics We use two types of Attack 357

Success Rate (ASR) to evaluate defense effective- 358

ness: ASR-keyword, which matches predefined 359

refusal keywords, and ASR-GPT, which leverages 360

GPT-4o-mini to assess whether the LLM generates 361

harmful content relevant to the malicious instruc- 362

tion. Lower ASR values indicate better defense 363

performance. For MT-Bench and Just-Eval, we 364

adopt GPT-based scoring, where Just-Eval evalu- 365

ates five aspects: helpfulness, clarity, factuality, 366

depth, and engagement. 367

Implementation Details Previous classification 368

results indicate that in the intermediate layers, the 369

representations of various jailbreak samples are rel- 370

atively consistent and highly distinguishable. To 371

avoid time-consuming searches, we directly select 372

layer I = 12 as the intervention layer. Since Vi- 373

cuna lacks harmless alignment, it exhibits weaker 374

safety. Accordingly, we set the second half of the 375

layers as the alignment layers. In contrast, for mod- 376

els like Llama2 that have undergone safety align- 377

ment, aligning only the final layer is sufficient. Ad- 378

ditional settings and discussions are provided in 379

Appendix A.4 to A.6. 380

4.2 Main Results 381

Table 1 presents the ASR results of SafeInt and 382

various baselines on AdvBench. For both Vicuna 383

and Llama2, SafeInt achieves the best performance, 384

reducing ASR to the lowest level among all de- 385

fense methods under different attacks. Although 386

our training process only utilizes jailbreak samples 387

constructed with GCG, SafeInt effectively defends 388

against other attack strategies, such as PAIR and 389

TAP, which generate adversarial prompts using the 390

LLM. This highlights the generalization capability 391

of our defense, validating our previous observation. 392

Moreover, even against MG attacks, SafeInt signif- 393

icantly lowers ASR, showing that it can generalize 394

to different languages. 395

Table 2 reports results on another out-of- 396

distribution test set, JailbreakBench. SafeInt con- 397

tinues to outperform all baselines across different 398

models and attack strategies. This demonstrates its 399
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Model Defense
Benchmark ↓ Jailbreak Attacks ↓

AdvBench GCG AutoDAN DeepInception PAIR TAP MG

Vicuna

No Defense 8% (4%) 90% (92%) 82% (88%) 64% (100%) 54% (60%) 84% (80%) 30% (66%)
PPL 8% (4%) 26% (30%) 72% (68%) 64% (100%) 52% (58%) 84% (82%) 28% (62%)
Paraphrase 6% (6%) 18% (20%) 34% (52%) 38% (96%) 36% (38%) 42% (52%) 10% (32%)
Self-Examination 2% (0%) 12% (16%) 18% (22%) 34% (74%) 8% (14%) 34% (30%) 6% (34%)
ICD 0% (0%) 14% (14%) 40% (36%) 64% (96%) 24% (34%) 44% (44%) 6% (34%)
Self-Reminder 0% (0%) 4% (6%) 8% (6%) 46% (100%) 26% (32%) 38% (40%) 16% (50%)
SafeDecoding 0% (0%) 2% (2%) 10% (4%) 0% (0%) 4% (6%) 12% (12%) 12% (40%)
SafeInt (Ours) 0% (0%) 0% (0%) 2% (2%) 0% (0%) 2% (6%) 8% (10%) 4% (8%)

Llama2

No Defense 0% (0%) 30% (32%) 34% (44%) 0% (0%) 2% (10%) 10% (10%) 0% (6%)
PPL 0% (0%) 0% (2%) 2% (8%) 0% (0%) 2% (8%) 10% (10%) 0% (4%)
Paraphrase 0% (10%) 0% (22%) 6% (26%) 0% (0%) 2% (30%) 2% (30%) 0% (16%)
Self-Examination 0% (0%) 0% (4%) 2% (6%) 0% (0%) 2% (4%) 2% (4%) 0% (0%)
ICD 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%)
Self-Reminder 0% (0%) 0% (2%) 0% (0%) 0% (0%) 2% (4%) 0% (2%) 0% (6%)
SafeDecoding 0% (0%) 0% (2%) 0% (4%) 0% (0%) 0% (6%) 0% (0%) 0% (0%)
SafeInt (Ours) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (4%) 0% (0%) 0% (0%)

Table 1: ASR-GPT (outer) and ASR-keyword (in parentheses) for different defense methods on AdvBench. The
best results are in bold. SafeInt outperforms all baselines across various attacks.

Model Defense
Benchmark ↓ Jailbreak Attacks ↓

JailbreakBench GCG AutoDAN DeepInception PAIR TAP MG

Vicuna

No Defense 6% (10%) 74% (96%) 76% (98%) 54% (100%) 42% (46%) 66% (68%) 30% (76%)
PPL 6% (10%) 20% (30%) 48% (62%) 46% (100%) 38% (48%) 66% (68%) 26% (66%)
Paraphrase 6% (20%) 18% (40%) 22% (60%) 28% (98%) 16% (36%) 32% (42%) 10% (40%)
Self-Examination 0% (4%) 8% (28%) 26% (48%) 28% (74%) 10% (14%) 28% (30%) 8% (50%)
ICD 0% (0%) 8% (14%) 42% (42%) 54% (94%) 16% (28%) 32% (42%) 22% (52%)
Self-Reminder 0% (2%) 4% (4%) 4% (6%) 36% (100%) 14% (20%) 26% (30%) 30% (62%)
SafeDecoding 0% (0%) 0% (0%) 18% (18%) 0% (0%) 10% (14%) 10% (12%) 14% (36%)
SafeInt (Ours) 0% (0%) 0% (0%) 4% (6%) 0% (0%) 2% (12%) 4% (12%) 8% (24%)

Llama2

No Defense 0% (0%) 24% (34%) 30% (42%) 2% (2%) 0% (6%) 6% (6%) 0% (4%)
PPL 0% (0%) 2% (2%) 6% (6%) 2% (2%) 0% (4%) 6% (6%) 0% (2%)
Paraphrase 0% (6%) 0% (28%) 0% (22%) 2% (2%) 0% (24%) 4% (28%) 0% (10%)
Self-Examination 0% (0%) 2% (2%) 6% (6%) 0% (0%) 0% (4%) 2% (2%) 0% (2%)
ICD 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%)
Self-Reminder 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (10%)
SafeDecoding 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (2%) 0% (6%) 0% (0%)
SafeInt (Ours) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (6%) 0% (0%) 0% (0%)

Table 2: ASR-GPT (outer) and ASR-keyword (in parentheses) on JailbreakBench. The best results are in bold.
SafeInt consistently achieves the best performance.

robustness to unseen data.400

While delivering strong defense performance,401

SafeInt largely preserves the utility of LLMs. As402

shown in Table 3, SafeInt achieves almost identi-403

cal scores to the non-defended model in Llama2,404

whereas ICD and Self-Examination severely de-405

grade utility. For Vicuna, SafeInt results in only a406

2% decrease in MT-Bench and a 1% decrease in407

Just-Eval compared to the non-defended model. In408

contrast, SafeDecoding leads to 7% drops in both409

benchmarks. See Appendix C.2 for representative410

examples.411

Since our intervention essentially involves an412

incremental computation, it can be integrated di-413

rectly into the forward propagation of the model.414

Thus, SafeInt can be seamlessly embedded into 415

the inference process of LLMs. Unlike SafeDe- 416

coding, which requires an additional expert model 417

for contrastive decoding, SafeInt introduces virtu- 418

ally no extra computational overhead. A detailed 419

efficiency analysis is provided in Appendix B.3. 420

4.3 Adaptive Attack 421

We also consider a scenario where the attacker 422

knows SafeInt and has access to the LLM deployed 423

with it. This means the attacker can dynamically 424

adjust their attack strategies based on the latest de- 425

fended LLM to bypass the defense mechanisms 426

more effectively. Table 4 presents the experimental 427

results in this scenario, showing that SafeInt main- 428
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Model Defense MT-Bench ↑ Just-Eval ↑
Helpfulness Clear Factual Deep Engaging Average

Vicuna

No Defense 5.21 4.44 4.66 4.38 3.60 3.49 4.11
Self-Examination 5.03 4.40 4.65 4.34 3.56 3.47 4.08
ICD 4.86 4.34 4.61 4.34 3.40 3.32 4.00
SafeDecoding 4.84 3.92 4.45 4.19 3.24 3.25 3.81
SafeInt (Ours) 5.09 4.40 4.64 4.35 3.49 3.41 4.06

Llama2

No Defense 5.80 4.65 4.78 4.50 4.19 3.90 4.40
Self-Examination 1.61 3.21 3.67 3.47 2.92 2.68 3.19
ICD 2.91 3.44 4.08 3.96 3.25 3.24 3.59
SafeDecoding 5.68 4.53 4.73 4.42 4.05 3.83 4.31
SafeInt (Ours) 5.82 4.62 4.76 4.47 4.13 3.89 4.37

Table 3: Utility evaluation scores of SafeInt and baselines. The highest and second-highest scores obtained by
defense methods are in bold and underlined, respectively. SafeInt maintains the best utility in most cases.

Jailbreak Attacks AdvBench JailbreakBench

Adaptive-GCG 0% (0%) 0% (6%)
Adaptive-AutoDAN 0% (0%) 6% (8%)

Table 4: Experimental results of defending against adap-
tive attacks on Vicuna, with evaluation metrics ASR-
GPT and ASR-keyword (in parentheses). ’Adaptive-
GCG’ and ’Adaptive-AutoDAN’ refer to GCG and Au-
toDAN attacks that are optimized in real-time based on
the LLM deployed with SafeInt.

tains strong defensive performance. After SafeInt429

is deployed, even if GCG and AutoDAN optimize430

their adversarial prompts in real time, it is difficult431

to generate threatening attacks.432

5 Analyses433

5.1 Ablation Studies434

We conduct ablation studies on the introduced con-435

trastive loss and reconstruction loss to verify their436

effectiveness. As shown in Table 5, removing con-437

trastive loss increases ASR, indicating its crucial438

role in enhancing defense performance. Incorpo-439

rating contrastive loss leads to a decrease in MT-440

Bench scores, which may be attributed to its im-441

pact on the overall representation structure when442

pulling together or pushing apart local represen-443

tations. When the reconstruction loss is omitted,444

representations are more susceptible to excessive445

intervention, resulting in both defense failure and a446

significant decline in response quality.447

5.2 Hyperparameter Analysis448

Intervention Layer Choice To understand how449

the choice of the intervention layer impacts our450

defense effectiveness, we conduct an analysis. Fig-451

Methods
Jailbreak Attacks ↓

MT-Bench ↑
GCG AutoDAN PAIR

No Defense 90% 82% 54% 5.21
SafeInt 0% 2% 2% 5.09

w/o Lct 2% 8% 6% 5.22
w/o Lrecon 2% 12% 8% 4.09

Table 5: Ablation results of our method on AdvBench
and MT-Bench, using ASR-GPT as the metric for Jail-
break Attacks. ’w/o Lct’ and ’w/o Lrecon’ denote the
removal of contrastive loss and reconstruction loss, re-
spectively.

ure 4(a) displays the ASR-keyword when the in- 452

tervention layer is set between layers 10 and 20. 453

We observe that intervening in the intermediate lay- 454

ers generally yields better results than intervening 455

in the later layers, which may suggest that these 456

intermediate layers play a more crucial role in jail- 457

break mechanisms. Notably, when the intervention 458

is applied at layer 13, ASR reaches its lowest point. 459

This finding aligns with our observation in Figure 2, 460

where Vicuna exhibits the highest jailbreak repre- 461

sentation consistency at layer 13. 462

Alignment Layer Range We fix the endpoint 463

of the alignment layer range at the final layer and 464

modify the starting point to control its span. In 465

Figure 4(b), we illustrate the results when setting 466

the starting point between layers 15 and 25. We ob- 467

serve that as the starting point shifts to later layers, 468

the defense effectiveness weakens. This may be 469

attributed to the reduced number of aligned layers 470

being insufficient to correct the attack. Overall, 471

while adjusting the alignment layer range impacts 472

defense performance, the effect is not drastic, indi- 473

cating that our method exhibits a certain degree of 474
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(a) Intervention Layer I

(b) Alignment Layer Range La

Figure 4: Analysis of the intervention layer and align-
ment layer range.

robustness to this hyperparameter.475

6 Related Work476

Jailbreak Attacks Jailbreak attacks aim to by-477

pass alignment or safeguards, forcing LLMs to478

generate inappropriate content. Early jailbreak at-479

tacks (Wei et al., 2023; Yong et al., 2024; Yuan480

et al., 2024) rely on manually crafted adversarial481

prompts, which primarily exploit objective com-482

petition and mismatched generalization to achieve483

jailbreaks. Subsequent optimization-based attacks484

(Zou et al., 2023b; Liu et al., 2024b; Paulus et al.,485

2024) introduce automated adversarial prompt opti-486

mization by leveraging the internal states of LLMs,487

significantly improving both the success rate and488

efficiency of jailbreaks. Recent jailbreak attacks489

(Chao et al., 2024b; Mehrotra et al., 2024; Ding490

et al., 2024) iteratively rewrite and refine adversar-491

ial prompts using one or multiple LLMs, further492

exposing security vulnerabilities in LLMs.493

Jailbreak Defenses To address the challenges494

posed by jailbreak attacks, numerous defense meth-495

ods have been proposed (Robey et al., 2024; Kumar496

et al., 2025). Detection-based approaches identify497

adversarial prompts by computing perplexity (Alon498

and Kamfonas, 2023) or randomly deleting parts499

of the input (Cao et al., 2024). Some methods500

prompt the LLM to perform self-checking through501

instructions (Phute et al., 2024; Xie et al., 2023;502

Zhang et al., 2024b) or context (Zhou et al., 2024a). 503

Decoding-based defenses (Xu et al., 2024; Liu 504

et al., 2024a) focus on analyzing decoding proba- 505

bilities under different conditions and formulating 506

decoding strategies to ensure safer outputs. Addi- 507

tionally, certain approaches (Zhao et al., 2024) edit 508

specific model parameters to make LLMs forget 509

harmful knowledge. A more controllable and effi- 510

cient class of defenses (Li et al., 2025; Shen et al., 511

2025) involves manipulating representations to mit- 512

igate jailbreak attacks without modifying model 513

parameters or adding decoding overhead. 514

Representation Engineering for Safety Many 515

studies have employed representation engineering 516

techniques (Zou et al., 2023a) to investigate or en- 517

hance the safety of LLMs. Zhou et al. (2024b) and 518

Arditi et al. (2024) analyze the mechanisms of jail- 519

break and refusal from a representation perspective, 520

respectively. Li et al. (2025) improve the robust- 521

ness of LLMs by strengthening the safety patterns 522

they recognize. Zheng et al. (2024) introduce a 523

learnable safety prompt that aims to increase the 524

separation between harmful and harmless query 525

representations along the refusal direction. Shen 526

et al. (2025) add a difference vector to query rep- 527

resentations to guide the LLM toward rejecting 528

malicious instructions, while Gao et al. (2024) mit- 529

igate jailbreak attacks by constraining activations 530

within a safe boundary. A major drawback of these 531

two approaches is that their interventions cannot be 532

automatically optimized. This means that when the 533

intervention is applied to all query representations, 534

the choice of intervention strength becomes highly 535

sensitive. In contrast, our method adopts a param- 536

eterized intervention, which adaptively identifies 537

and adjusts jailbreak-related representations regard- 538

less of manually tuning the intervention strength. 539

7 Conclusion 540

This paper first analyzes the representations of jail- 541

break samples on four LLMs and makes key ob- 542

servations. Building on these observations, we 543

propose SafeIntervention (SafeInt), a novel method 544

that defends LLMs against jailbreak attacks via 545

representation intervention. SafeInt can adaptively 546

identify and intervene in jailbreak-related represen- 547

tations while seamlessly integrating into the LLM 548

inference process. Comprehensive experimental 549

results show that our proposed SafeInt outperforms 550

all baselines in defending against jailbreak attacks. 551

In most cases, SafeInt also achieves the best utility. 552

8



Limitations553

We discuss the limitations of our work. We make554

a preliminary observation that SafeInt can transfer555

to different but homologous LLMs. We speculate556

that these homologous LLMs may share similar557

jailbreak representation structures. However, we558

have not conducted an in-depth exploration of the559

transferability of SafeInt.560
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A Detailed Experimental Settings875

A.1 Dataset Details876

A.1.1 Training Data877

To construct D(train)
jailbreak, we use GCG to generate878

jailbreak instructions from 128 randomly sampled879

instructions from AdvBench (Zou et al., 2023b).880

To construct D(train)
unsafe , we sample 128 harmful in-881

structions from MaliciousInstruct (Huang et al.,882

2023) and TDC2023 (Mazeika et al., 2023).883

To construct D(train)
safe , we sample 128 harmless in-884

structions from Alpaca (Taori et al., 2023).885

A.1.2 Test Data in Q1886

To construct D(test)
jailbreak, we first resample 150 in-887

structions from AdvBench. We then use GCG to888

generate jailbreak instructions from these 150 in-889

structions.890

To construct D(test)
unsafe, we sample 150 harmful in-891

structions from Do Not Answer (Wang et al.,892

2023b), MaliciousInstruct, and TDC2023.2893

To construct D(test)
safe , we sample 150 harmless in-894

structions from Alpaca.895

Note that D(test)
jailbreak, D(test)

unsafe, and D(test)
safe do not over-896

lap with D(train)
jailbreak, D(train)

unsafe , and D(train)
safe .897

A.1.3 Test Data in Q2898

To construct D(OOD)
jailbreak, we first sample 50 instruc-899

tions from AdvBench. We then use three jail-900

break methods—GCG, AutoDAN, and DeepIncep-901

tion—to generate jailbreak instructions from these902

50 samples, resulting in a total of 150 jailbreak903

instructions.904

For unsafe and safe samples, we continue to use905

D(test)
unsafe and D(test)

safe .906

Note that D(OOD)
jailbreak does not overlap with D(test)

jailbreak907

or D(train)
jailbreak.908

A.2 Attack Setup909

For GCG, AutoDAN, DeepInception, PAIR, and910

TAP, we follow the settings from their original pa-911

pers. For multilingual mismatch generalization912

attacks, we translate each instruction in the test set913

into one of six non-English languages—Chinese,914

2Due to the insufficient data volume of the original two
datasets, we introduce Do Not Answer.

Italian, Vietnamese, Arabic, Korean, or Thai—to 915

carry out the attacks. 916

A.3 Details of ASR-keyword 917

Table 6 lists the refusal keywords used to evaluate 918

ASR-keyword. We adopt the settings from Xu 919

et al. (2024) and further refine them by adding "I 920

am not programmed to" and "As a responsible". 921

Additionally, we exclude "I’m an" and "I’m just" 922

to prevent false positives. 923

I’m sorry
I am sorry
I apologize
As an AI

As a responsible
As a language model

As an assistant
I cannot
I can’t

I am unable to
I’m unable to
I’m just an AI

I do not
It is not</s>

It is not appropriate
I am not allowed to

I am not programmed to
I am an AI language model

Table 6: Refusal Keywords

A.4 Additional Settings 924

The rank of the subspace is set to 4. We set α to 925

0.001, and β to either 0.01 or 0.1 to balance the 926

scales of different loss terms. It takes just a few 927

minutes to complete the training of SafeInt in both 928

LLMs. 929

A.5 Discussions of Key Hyperparameters 930

SafeInt introduces two key hyperparameters. We 931

provide detailed discussions on their settings as fol- 932

lows: 933

Intervention Layer The choice of intervention 934

layer can be directly set to a specific intermediate 935

layer. For example, in our experiments, we set the 936

intervention layer to 12 for both models without 937

performing any search, and we still achieve suffi- 938

ciently strong defense performance. To achieve the 939

best results, one could search for the optimal inter- 940

vention layer, but the search space is small—only 941
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Methods
Jailbreak Attacks ↓

MT-Bench ↑
GCG AutoDAN DeepInception MG

No Defense 86% 88% 72% 40% 5.50
SafeInt (Ours) 0% 4% 0% 2% 5.43

Table 7: Results of jailbreak attack evaluation and utility assessment on OLMoE. After applying SafeInt, the attack
success rates of various jailbreak methods are significantly reduced, while the model’s utility is largely preserved.

the intermediate layers (e.g., 11-14) need to be ex-942

plored, and the computational cost is minimal.943

Alignment Layer Range The setting of this hy-944

perparameter is straightforward and does not re-945

quire searching. Overall, the more layers are946

aligned, the stronger the intervention on the jail-947

break representations. Therefore, the alignment948

layer range can be determined based on the safety949

alignment level of the model. As demonstrated in950

our experiments, weakly aligned models (i.e., those951

not trained with safety-oriented RLHF), such as Vi-952

cuna, can align the second half of the layers (e.g.,953

layers 15–31). In contrast, strongly aligned mod-954

els (i.e., those trained with safety-oriented RLHF),955

such as Llama 2/3 and Qwen, only require align-956

ment of the final layer.957

In summary, the settings of these two hyperpa-958

rameters are simple and straightforward, making959

it easy to apply SafeInt to other models. In con-960

trast, previous methods require manual adjustment961

of intervention strength, which is tedious and time-962

consuming. For example, Jailbreak Antidote (Shen963

et al., 2025) first determines the search range for in-964

tervention strength by testing the model’s response965

from coherent to incoherent boundaries. Once the966

range is determined, 20 values are sampled from967

the range for testing. Furthermore, this process968

of determining the range and sampling must be969

repeated for each model, significantly limiting scal-970

ability.971

A.6 Further Explanation for Choosing972

Intermediate Layers for Intervention973

Because SafeInt is trained using only GCG, it gen-974

eralizes better to other jailbreak methods when the975

consistency among different attacks is higher. Ad-976

ditionally, when jailbreak representations are more977

distinguishable, our intervention is less likely to978

affect representations unrelated to jailbreak behav-979

ior. As shown in Figure 1 and Figure 2, we observe980

that intermediate layers tend to exhibit both higher981

consistency across jailbreak methods and better982

discriminability of jailbreak representations. This983

explains why interventions at intermediate layers 984

are more effective. 985

Furthermore, Zhou et al. (2024b) has explained 986

the central role of intermediate layers in jailbreak 987

mechanisms, while Skean et al. (2024) and Alain 988

and Bengio (2018) have shown that intermediate- 989

layer representations are generally more transfer- 990

able and better generalized compared to those in 991

other layers. These findings are consistent with and 992

reinforce our observations and results. 993

B More Results 994

B.1 Applicability to Heterogeneous LLMs 995

To demonstrate the architectural scalability of 996

SafeInt, we conduct experiments on an LLM with 997

a Mixture-of-Experts (MoE) architecture. Due to 998

resource constraints, we select a relatively small 999

MoE model: OLMoE-1B-7B-0924-Instruct (Muen- 1000

nighoff et al., 2025). The model consists of 16 1001

layers, and we directly apply the intervention to 1002

layer 6 without performing any search. Addition- 1003

ally, we set the second half of the layers as the 1004

aligned layers. 1005

Table 7 presents the defense effectiveness and 1006

utility of the model before and after applying 1007

SafeInt. The results demonstrate that our method 1008

remains highly effective on MoE-based LLMs, fur- 1009

ther validating its generalizability. Moreover, it has 1010

minimal impact on the model’s utility. 1011

B.2 Comparisons with representation-based 1012

baselines 1013

We expand our comparisons by incorporating two 1014

representation-based defense methods: RepE (Zou 1015

et al., 2023a) and Jailbreak Antidote (Shen et al., 1016

2025). The experimental results are shown in Ta- 1017

ble 8. 1018

Since both baseline methods require manual ad- 1019

justment of the intervention strength, and the same 1020

level of intervention is applied to every query, these 1021

methods struggle to balance defense performance 1022

and utility. In contrast, SafeInt dynamically ad- 1023

justs the representation based on the harmfulness 1024
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Methods
Jailbreak Attacks ↓

MT-Bench ↑
GCG AutoDAN DeepInception PAIR TAP MG

RepE 4% 22% 38% 6% 14% 26% 4.88
Jailbreak Antidote 2% 10% 0% 4% 12% 10% 4.96
SafeInt (Ours) 0% 2% 0% 2% 8% 4% 5.09

Table 8: Comparisons of SafeInt with two representation-based defenses across various jailbreak attacks and utility.
SafeInt outperforms both baselines in terms of defense effectiveness and utility.

of the query. It applies stronger interventions to1025

jailbreak representations and weaker interventions1026

to unrelated representations. Therefore, SafeInt1027

significantly outperforms the baseline methods in1028

both defense performance and utility.1029

B.3 Efficiency Analysis1030

We analyze the efficiency of different defense meth-1031

ods by computing the Average Token Generation1032

Time Ratio (ATGR), which quantifies the inference1033

overhead introduced by each method. This metric1034

accounts for variations in the number of response1035

tokens caused by different defenses, and is defined1036

as follows:1037

ATGR =
Avg. token gen. time w/ defense
Avg. token gen. time w/o defense

.1038

A lower ATGR indicates that the inference time1039

with defense is closer to that without defense, im-1040

plying that the method introduces less inference1041

overhead.1042

To compare the overall performance of differ-1043

ent defense methods in terms of both effectiveness1044

and efficiency, we present their ATGR and aver-1045

age ASR in Figure 5. A lower average ASR indi-1046

cates stronger robustness against jailbreak attacks.1047

Therefore, methods that lie closer to the bottom-left1048

corner of the plot achieve better balance between1049

effectiveness and efficiency. Our method, SafeInt,1050

outperforms all baselines in overall performance,1051

offering both strong defense effectiveness and low1052

inference overhead.1053

C Visualization and Demonstration1054

C.1 Visualization1055

To illustrate how SafeInt functions, we visualize1056

the representations of unsafe samples, safe samples,1057

and jailbreak samples across different layers of Vi-1058

cuna, before and after applying SafeInt. Figure 8a1059

shows the representations under the No Defense1060

setting. We observe that the representations of the1061

three types of samples remain clearly distinguish-1062

able from the intermediate layers all the way to the1063

Figure 5: ATGR and the average ASR of different de-
fense methods are reported. A lower ATGR indicates
smaller inference overhead, while a lower average ASR
reflects stronger defense effectiveness. Overall, methods
closer to the bottom-left corner of the plot exhibit bet-
ter effectiveness and efficiency simultaneously. SafeInt
achieves the best overall performance, offering both
strong robustness and low overhead.

final layer. Figure 8b presents the representations 1064

after applying SafeInt, which introduces an inter- 1065

vention at layer 12. As a result, beyond this layer, 1066

the representations of jailbreak samples gradually 1067

align with those of unsafe samples. By comparing 1068

Figure 8a and Figure 8b, we visualize how SafeInt 1069

relocates jailbreak representations into the rejec- 1070

tion region. This relocation enables the LLM to 1071

recognize and reject jailbreak samples, thereby en- 1072

hancing its overall safety. 1073
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C.2 Example Demonstrations1074

We present the representative examples to highlight1075

the effectiveness and utility of SafeInt.1076

C.2.1 AutoDAN Attack1077

The following illustrates the responses of SafeInt1078

and SafeDecoding when confronted with the Auto-1079

DAN attack. Harmful instructions are highlighted1080

in red. SafeInt successfully identifies the adversar-1081

ial prompt and safely rejects it, whereas SafeDe-1082

coding is bypassed and generates harmful content.1083

Figure 6: Example of AutoDAN attack

C.2.2 MT-Bench 1084

The following shows the responses of SafeInt 1085

and SafeDecoding to a logical question from MT- 1086

Bench. SafeDecoding exhibits excessive defensive- 1087

ness by refusing to answer the question, whereas 1088

SafeInt provides a well-reasoned response. 1089

Figure 7: Example of MT-Bench
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(a) No defense

(b) Applying SafeInt

Figure 8: PCA visualizations of unsafe samples, safe samples, and jailbreak samples at different layers of Vicuna,
before and after applying SafeInt. The intervention is applied at layer 12. Comparing Figure 8a and Figure 8b,
we observe that in the No Defense setting, the three types of samples remain distinguishable beyond layer 12.
In contrast, after applying SafeInt, the representations of jailbreak samples gradually align with those of unsafe
samples, demonstrating the process by which SafeInt relocates jailbreak representations into the rejection region.
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