
Published as a conference paper at ICLR 2025

LLM PROGRAM OPTIMIZATION VIA RETRIEVAL AUG-
MENTED SEARCH

Sagnik Anupam, Alexander Shypula, Osbert Bastani
University of Pennsylvania
{sanupam, shypula, obastani}@seas.upenn.edu

ABSTRACT

With the advent of large language models (LLMs), there has been a great deal
of interest in applying them to solve difficult programming tasks. Recent work
has demonstrated their potential at program optimization, a key challenge in pro-
gramming languages research. We propose a blackbox adaptation method called
Retrieval Augmented Search (RAS) that performs beam search over candidate
optimizations; at each step, it retrieves in-context examples from a given train-
ing dataset of slow-fast program pairs to guide the LLM. Critically, we find that
performing contextual retrieval based on an LLM-generated natural language de-
scription significantly outperforms retrieval based on the source code. In addition,
we propose a method called AEGIS for improving interpretability by decomposing
training examples into “atomic edits” that are significantly more incremental in
nature. We show that RAS performs 1.8× better than prior state-of-the-art black-
box adaptation strategies, and that AEGIS performs 1.37× better while performing
significantly smaller edits.

1 INTRODUCTION

Given the success of large language models (LLMs) in writing code, there has been significant
recent interest in applying them to solve programming tasks. A particularly interesting task is
program optimization, a long-standing problem in the programming languages literature that has
recently gained increased urgency due to the end of Moore’s law. Recent work has shown that
LLMs have difficulty with this task out-of-the-box (Shypula et al., 2024)—intuitively, data on
program performance is simply not widely available in traditional training datasets, making adaptation
necessary.

To address this problem, they propose the “Performance Improving Edits (PIE)” benchmark, and
then use it to test a number of carefully designed adaptation strategies to identify effective algorithms
for improving performance, including blackbox (i.e. prompting-based) adaptation strategies such as
instruction prompting Mishra et al. (2022), in-context learning Brown et al. (2020), chain-of-thought
prompting Wei et al. (2022), and retrieval augmented generation Lewis et al. (2020). They find
dynamic code retrieval to be the most effective; this approach retrieves a handful of slow-fast program
pair examples from the training set at test time that are most relevant to the current instance (measured
using code embedding similarity). These pairs are then used as in-context examples to prompt the
LLM. Intuitively, this approach is the only one that makes effective use of the training set, which
contributes to its success.

This existing approach is “end-to-end” in the sense that it takes an input program and asks an LLM
to directly output an optimized version of that program. However, this strategy differs significantly
from how modern compilers work. Rather than making edits inspired by a handful of end-to-end
examples, they systematically modify the program through a series of compiler passes, each of which
is designed to perform a specific kind of optimization. These optimizations are inspired by existing
examples, but in a way that generalizes them so they apply to new programs. Thus, a natural question
is whether breaking end-to-end optimization into more incremental steps can improve performance.

Inspired by modern compiler design, we propose two novel retrieval-based adaptation strategies. First,
we propose retrieval augmented search (RAS), which combines two insights to improve dynamic
retrieval. First, rather than retrieve based on the code itself, it uses contextual retrieval, where it

1

Published as a conference paper at ICLR 2025

retrieves examples from the training set based on an LLM-generated natural language description
of the program, abstracting the core algorithms and data structures used by the program from how
they are implemented on a superficial level. Second, rather than retrieve a fixed set of programs,
we perform beam search by iteratively performing the retrieve-optimize-evaluate loop. These two
techniques result in a state-of-the-art blackbox technique for adapting LLMs to program optimization.

However, this technique still produces large changes that can be hard to interpret. To further address
this issue, we propose Atomic Edit GuIded Search (AEGIS), which leverages a preprocessing step to
distill generalizable insights from the training data. In particular, we prompt the LLM to decompose a
single slow-fast program pair in the training set into a sequence of atomic edits, which are incremental
modifications associated with a natural language description of the edit, and then explain why the
edit might improve performance. The description is intended to be generalizable, abstracting away
specifics of the training example from which they are derived. After generating a dataset of atomic
edits and examples associated with each edit, when given a new program, we use RAS to first search
over incremental edits to this program. Each edit to this program is achieved by retrieving the most
relevant atomic edit in our database and then prompting the LLM to apply this atomic edit to the new
program. We then perform beam search over sequences of incremental edits to select the resulting
program that achieves the greatest performance gain while preserving correctness.

We evaluate our approach using the PIE benchmark Shypula et al. (2024) for C++ program opti-
mization. We show that RAS significantly outperforms dynamic retrieval, a state-of-the-art blackbox
adaptation strategy, achieving an 8.01× average speedup compared to 4.42× for dynamic retrieval.
Furthermore, AEGIS achieves a 6.08× average speedup, while reducing the average edit size (mea-
sured by string edit distance) by 17% when compared to RAS and by 30% when restricting to the
first edit in the search process (which is the most substantial one). Hence, RAS performs 1.8× better
than dynamic retrieval, while AEGIS performs 1.37× better. These results demonstrate that RAS and
AEGIS are promising strategies for blackbox adaptation of LLMs to code optimization.

2 RELATED WORK

Code Optimization. Code optimization has long been a problem of interest for researchers in
software engineering and compilers. However, these approaches typically operate at a lower level of
abstraction and are incapable of producing high-level optimizations such as changing the algorithms
and data structures used. As a consequence, there has been recent interest in leveraging LLMs to
augment existing, symbolic techniques. One approach has been to identify code optimizations that
are missed by compilers by using LLMs to mutate different programs and use a differential testing
method to analyze changes in binary size Italiano & Cummins (2024). Another approach that directly
uses LLMs to perform program optimization is the Search-Based LLM (SBLLM) Gao et al. (2024),
which proposes an evolutionary search framework to iteratively optimize Python and C++ programs.
Separately, they use the BM25 technique to retrieve code snippets displaying useful optimizations,
and then ask an LLM to improve their best-performing programs based on these snippets. However,
in their framework, retrieval and search are not integrated, and they do not use contextual retrieval.
Furthermore, they only report speedups of 1.55× on the PIE benchmark (using GPT-4), so even
the existing dynamic retrieval approach studied in PIE substantially outperforms their approach.
Finally, Qiu et al. (2025) studies the capabilities of LLMs for Python program optimization, finding
significant gaps compared to human experts. We focus on optimizing C++ code since we can measure
performance in a reproducible way using a system simulator, as proposed in PIE Shypula et al. (2024).

Code retrieval. Retrieval augmented generation is broadly known to improve code generation Wang
et al. (2024). The specific idea of dynamically retrieving relevant in-context examples from a larger
training set was first proposed in Poesia et al. (2022) and was later shown to be highly effective for
program optimization Shypula et al. (2024). Recently, MapCoder Islam et al. (2024) has shown that
retrieving “previously seen” programming examples can improve code generation on the HumanEval
benchmark.

While contextual retrieval has recently been popularized for LLMs Anthropic (2024), the idea of
annotating code to improve code search has long been studied extensively in software engineering.
Older techniques such as Portfolio McMillan et al. (2011) rely on information retrieval methods
such as PageRank. More recent work has proposed neural techniques such as CODEnn Gu et al.
(2018), which trained a deep neural network to generate embeddings of code snippets and their

2

Published as a conference paper at ICLR 2025

Algorithm 1 Retrieval Augmented Search (RAS)

input: p0,Πtrain, Fopt, Fcontext, R, ϕ
for i ∈ [1, ...,m] do

Πi ← top-k{((p, p′), dϕ(pi−1, p)) | (p, p′) ∈ Πtrain}
pji ∼ Fopt(π

j
i , pi−1) (∀j ∈ [k]) ▷ Πi = {πj

i }kj=1

pi ← argmaxj∈[k]R(p
j
i)

end for
return pm

natural language descriptions; these embeddings could then be matched with embeddings of natural
language user queries. The idea of automatically generating the natural descriptions for code snippets
artificially was proposed in CoaCor Yao et al. (2019), which trains a bidirectional LSTM to generate
natural language descriptions optimized for use by a retrieval model.

3 RETRIEVAL AUGMENTED SEARCH

In this section, we describe our retrieval augmented search (RAS) algorithm for program optimization
(overview in Figure 1 and pseudocode in Algorithm 1).

3.1 PROBLEM FORMULATION

In the program optimization problem, the goal is to take a program p ∈ P as input, and output an
optimized program p′ ∈ P that is semantically equivalent to p. Typically, we are additionally given a
set of test cases {(xi, yi)}ki=1 to check correctness; then, denoting the output of program p on input
x as p(x), we are searching for programs p such that p(xi) = yi for all i ∈ {1, ..., k}. While test
cases do not guarantee semantic equivalence, they are widely used in machine learning for checking
program equivalence (Chen et al., 2021; Li et al., 2022).

We focus on reducing running time, which we denote R(p) ∈ R. Since we want the fastest correct
program, we let R(p) = −∞ if p does not pass one of the given test cases. In practice, measuring
a speedup can be difficult due to the stochastic nature of program execution. Recent work has
proposed benchmarks that seek to mitigate this issue. The approach used by the PIE benchmark is
to measure performance using a system simulator (specifically, gem5 Binkert et al. (2011)), which
provides deterministic emulation of hardware, enabling fully reproducible results. Finally, we also
set R(p) = −∞ if evaluating p in gem5 times out.

To aid in adaptation, we assume we are given a training set of slow-fast program pairs Π =
{(p, p′)}nj=1, where p is an unoptimized program and p′ is a hand-optimized program. For instance,
the PIE benchmark constructs such a dataset based on sequences of submissions from individual
participants in competitive programming challenges Shypula et al. (2024). Given a sequence of
submissions p1, ..., pk, they include pairs (pi, pi′) where i < i′ and where pi′ is at least 10% faster
than pi according to gem5, i.e., R(pi′) ≥ 1.1 · R(pi). They also provide a subset of high-quality
training pairs that achieve a more substantial speedup by selecting a subset of the pairs (pi′ , pi) with
the highest speedups R(pi′)

R(pi)
.

Finally, we are interested in blackbox adaptation techniques, which do not adjust the weights of the
LLM; instead, they focus on prompting the LLM to improve performance. These prompts can be
dynamic (e.g., include dynamically retrieved training examples), multi-turn (e.g., iteratively refine an
example based on feedback), or incorporate search (e.g., incrementally apply a sequence of prompts.

3.2 GENERAL FRAMEWORK

We describe the general Retrieval-Augmented Search (RAS) framework for program optimization.
In particular, RAS assumes that it is given a training set Πtrain = {(p, p′)}nj=1 of slow-fast program
pairs, and a new program p0 ∈ P to be optimized. In addition, it assumes it is given a retrieval
strategy, which can be expressed as a distance function d : P ×P → R≥0 between pairs of programs.

3

Published as a conference paper at ICLR 2025

𝛙

Fcontext

Description Embedding VectorTraining Dataset
(p, p', Fcontext(p), 𝛙(Fcontext(p))

Test Set Program (pi-1)
#include <bits/stdc++.h>
using namespace std;
long long n;
long long k;
vector<long long> vec;
long long meme[100007];

long long solve(long long index){
 if(index==n-1){
 return 0;
 }
 if(meme[index]!=-1){
 return meme[index];
 }
 long long ret = 10000000000000000;
 long long sol = 10000000000000000;
 for(long long i = 1 ;i<=k ; i++){
 if(index+i<n){
 ret = abs (vec[index]-

 vec[index+i]) + solve(index+i);
 }
 sol = min(sol,ret);
 }
 return meme[index] = sol;
}

int main(){
 cin>>n;
 cin>>k;
 memset(meme,-1,sizeof(meme));
 long long num;
 for(long long i = 0 ; i<n ; i++){
 cin>>num;
 vec.push_back(num);
 }
 cout<<solve(0)<<endl;
 return 0;
}

LLM-Generated Description

The algorithm uses dynamic
programming with memoization to
find the minimum cost of jumping
from the first to the
last element, where the cost is
the absolute difference
between elements, and we can
jump up to 'k' elements ahead.

FAISS (Top-K Similar Training Set Pairs)

Generation 1 Prompt
You are an expert programmer who needs to optimize a given program, called the source program. You are
given one pair of fast and slow programs as an example, which are presented as a pair where \"slower
version\" refers to the slow code and \"optimized version\" refers to the faster, more optimal version
of the same program. The last program with the label \"slower version\" is the source program whose
optimized version you need to generate. Rewrite the source program in a way that incorporates all of the
optimizations in the example, and return a JSON-formatted string where the rewritten code is stored with
the key \"optimized_code\". Do not output anything other than C++ code.
slower version:
{First Retrieved Program p1}

optimized version of the same code:
{Corresponding Faster Program p1'}

slower version:
{pi-1}

optimized version of the same code:

Generation k Prompt
You are an expert programmer who needs to optimize a given program, called the source program. You are given one
pair of fast and slow programs as an example, which are presented as a pair where \"slower version\" refers to
the slow code and \"optimized version\" refers to the faster, more optimal version of the same program. The last
program with the label \"slower version\" is the source program whose optimized version you need to generate.
Rewrite the source program in a way that incorporates all of the optimizations in the example, and return a JSON-
formatted string where the rewritten code is stored with the key \"optimized_code\". Do not output anything other
than C++ code.
slower version:
{First Retrieved Program pk}

optimized version of the same code:
{Corresponding Faster Program pk'}

slower version:
{pi-1}

optimized version of the same code:

LLM Prompt
You are an expert programmer who has been
provided with a program solving a programming
problem, called the source program. You need to
identify the algorithm being used to solve the
problem, and your goal is to generate a JSON
object with the key \"algorithm\" which has the
value as one sentence describing the algorithm
used in the code snippet.

Source Program:
{pi-1}

Fastest Generated Program (pi)
#include <cstdio>
#include <algorithm>
#include <climits>
using std::min;
#define MAXN 100007
long long vec[MAXN];
long long meme[MAXN];

int main() {
 long long n, k;
 scanf("%lld %lld", &n, &k);
 for (long long i = 0; i < n; ++i) {
 scanf("%lld", &vec[i]);
 }
 meme[n-1] = 0;
 for (long long i = n - 2; i >= 0; --i) {
 long long sol = LLONG_MAX;
 for (long long j = 1; j <= k && i + j < n; ++j)

{
 long long ret = abs(vec[i] - vec[i + j])

 + meme[i + j];
 sol = min(sol, ret);
 }
 meme[i] = sol;
 }
 printf("%lld\n", meme[0]);
 return 0;
}

Fopt

Figure 1: RAS Framework: For a given slow program pi−1, we use Fcontext to generate a program
description and Ψ to generate its corresponding description embedding vector. We retrieve similar
training set programs using FAISS and pass them to Fopt. The fastest program generated by Fopt is pi.

Typically, the strategy is defined by an embedding model ϕ : P → Rd, in which case we can define
the distance based on the L2 distance between the embedding vectors of two programs:

dϕ(p, q) = ∥ϕ(p)− ϕ(q)∥
Our framework also assumes blackbox access to an LLM Fopt, which takes as input an in-context
example of a slow-fast program pair π ∈ P2, along with a new program p. Then, we can sample
optimized versions p′ ∼ Fopt(π, p) of p from Fopt. In our implementation, Fopt is provided with a
system prompt instructing it to try and optimize p.

Now, RAS performs a variation of beam search to optimize p0, where at each step, it additionally
retrieves in-context examples from the training set Πtrain. In particular, at the ith iteration of beam
search (starting from i = 1), let pi−1 be the current program. Then, we retrieve the top k programs
from Πtrain to form the in-context dataset:

Πi = top-k{((p, p′), d(pi−1, p)) | (p, p′) ∈ Πtrain}.
Here, top-k selects the k new slow-fast pairs (p, p′) with the smallest distances d(pi−1, p), using
FAISS Douze et al. (2024) for vector search. For any retrieved example πj

i , we call πj
i a new pair

if Fopt did not use πj
i to sample an earlier best-performing program popt ∈ {p1, . . . , pi−1}. Note

that retrieval is performed based on the slow program p; intuitively, we want a slow program that is
similar to pi−1 so we can apply similar optimizations to pi−1 as the ones encoded by the pair (p, p′).
Now, for each retrieved example πj

i ∈ Πi, we sample an optimized version of pi−1 using πj
i :

pji ∼ Fopt(π
j
i , pi−1).

4

Published as a conference paper at ICLR 2025

Finally, we choose pi to be the fastest program that correctly passes all test cases:

pi = argmax
j∈[k]

R(pji),

where [k] = {1, ..., k}. If no program passes all of the test cases (i.e., R(pji) = −∞ for all j ∈ [k]),
or if all programs time out, then we set pi = pi−1. We continue this process for m steps, producing
a sequence of programs p1, ..., pm. Finally, we return pm. If there is no program at step m that
passes all of the test cases and does not time out, we return the source program p0. Note that
the hyperparameters of our algorithm are the number of in-context examples k and the number of
iterations m; we describe the choices we use in our experiments in Section 5.

3.3 CONTEXTUAL RETRIEVAL

Our instantiation of RAS uses contextual retrieval to identify relevant in-context examples. We
compute ϕ(p) by first using an LLM Fcontext to generate a natural language description (i.e., the
“context” in contextual retrieval) of p (denoted s = Fcontext(p)), and then applying an embedding
model ψ to obtain a vector ψ(s) ∈ Rd, i.e.,

ϕ(p) = ψ(Fcontext(p)).

For training examples (p, p′) ∈ Πtrain, we can precompute the embeddings, so the LLM Fcontext only
needs to be run once for each one. To construct Fcontext, we use a blackbox LLM that is instructed
to describe features such as the algorithms and data structures used by the program; this prompt is
shown in Figure 1, alongside an example of a pair (p, s) of program p and its description s.

Finally, we also compare to an ablation that directly embeds the given program—i.e., ϕ(p) = ψ(p)
for some embedding model ψ; we call this approach code retrieval. This is the approach taken in
prior work on program optimization Shypula et al. (2024).

4 ATOMIC EDIT GUIDED SEARCH

Next, we describe our approach called Atomic Edit GuIded Search (AEGIS) designed to improve the
interpretability of our framework (overview in Figure 2 and pseudocode in Algorithm 2). AEGIS
is inspired by modern compilers, which are designed to perform a sequence of passes, which
incrementally transform the program to improve performance. Breaking down optimizations into
smaller steps has the potential to improve interpretability since the changes from one step to the
next may be easier for the programmer to understand. We propose to generate atomic edits, which
are pairs of programs (p, p′) that are semantically equivalent and roughly differ by a single code
optimization.

To realize this goal, AEGIS replaces the original training dataset Πtrain with a dataset of atomic edits
Πatomic, and then uses RAS in conjunction with Πatomic. By retrieving atomic edits, we can guide
the underlying LLM Fopt to perform incremental optimizations rather than large changes. AEGIS
constructs Πatomic by using an LLM Fdecomp to decompose each pair (p, p′) ∈ Πtrain into atomic edits;
then, it aggregates together all of the atomic edits it discovers into the new training set Πatomic of
atomic edits.

Specifically, we instruct Fdecomp to describe the differences between the each slow-fast program pair
(p, p′) ∈ Πtrain as a list; then, the output of Fdecomp is a list of natural language edits [s1, . . . , sr] ∼
Fdecomp(p, p

′), where each si is a natural language description of an edit in (p, p′). Next, we apply
each edit in sequence to the slow program p to obtain a sequence of programs. We do so by initializing
p0 = p, and then prompting an LLM Fedit to apply natural language edit si to pi−1 to obtain the next
program pi ∼ Fedit(pi−1, si) in the sequence; here, Fedit is instructed to apply the edit to the given
program. Assuming the natural language edits accurately describe how p′ is obtained from p, then
the final program pr in this sequence should resemble the original optimization p′ of p; in particular,
pr should also be an optimized version of p.

We construct our atomic edit dataset using pairs from the resulting sequence. In particular, for each
tuple (si, pi−1, pi), we ask an LLM Fgen to generalize si so that it can applied to a wider variety of
programs; the resulting description ei ∼ Fgen(si, pi) is what we refer to as an atomic edit. Then, our

5

Published as a conference paper at ICLR 2025

Fgen

Fedit

Fedit

Fdecomp

LLM Decomposition Prompt
You are an expert programmer who needs to
decompose a sequence of edits to a program
that have been made to optimize the
program's performance. You are provided
with the source program (the initial state)
and the target program (the final state).
Describe the changes made to the source
program as a sequence of edits in the
format of a JSON file where each key marks
the step in the sequence. For example,
{"1": <description of the first edit in the
sequence>, "2": <description of the second
edit in the sequence>, ... "N":
<description of the final edit in the
sequence>}. Make sure to describe each edit
alongside why it may improve performance.
Source Program: {p}

Training Set Program Pair (p, p')
p (slower program):
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
 int n;
 int a[5000];
 int tmp;
 int ans;
 while(1){
 cin >> n;
 if(!n)break;
 for(int i=0;i<n;i++){
 cin >> a[i];
 }
 ans = a[0];
 for(int i=0;i<n;i++){
 for(int j=i;j<n;j++){

if(i==j)tmp = a[i];
else tmp += a[j];
ans = max(tmp,ans);

 }
 }
 cout << ans << endl;
 }
}

p' (faster program):
#include<cstdio>
#include<algorithm>
using namespace std;

int main(){
 int n,tmp,ans;
 int a[5000];
 while(scanf("%d",&n) && n){
 for(int i=0;i<n;i++)scanf("%d",&a[i]);
 ans = a[0];
 for(int i=0;i<n;i++)
 for(int j=i;j<n;j++){

if(i==j)tmp = a[i];
else tmp += a[j];
ans = max(tmp,ans);

 }
 printf("%d\n",ans);
 }
}

Natural Language Edits
s1: The header file <iostream> is replaced
with <cstdio>. The input and output
functions changed from 'cin', 'cout' to
'scanf', 'printf', respectively. This change
is made because 'scanf' and 'printf' in C
are generally faster than C++ 'cin' and
'cout', especially in competitive
programming scenarios where input and output
operations could be a bottleneck.

s2:

s3:

s4:

Example Pair Generation Prompt
You are an expert programmer who needs to
optimize a given program. You are given the
description of the optimization to be
performed as well as the source code of the
program. Rewrite the source code in a way
that incorporates the optimization and
improves its performance, and return a
JSON-formatted string where the rewritten
code is stored with the key
"optimized_code". Do not output anything
other than C++ code.
Source Program: {p}
Optimization: {s1}

Program p1

Example Pair Generation Prompt
You are an expert programmer
Source Program: {p1}

Optimization: {s2}

Fedit
Program p2

Example Pair Generation Prompt
You are an expert programmer
Source Program: {p2}

Optimization: {s3}

Program p3

Example Pair Generation Prompt
You are an expert programmer
Source Program: {p3}

Optimization: {s4}

Fedit
Program p4

Edit Generalization Prompt
You are an expert programmer. You are
provided with the description of a program
optimization, which, when applied to the
given program, results in an improvement in
program performance. Rewrite the program
optimization so that it can be applied more
generally to any program. Return a JSON-
formatted string where the rewritten
optimization is stored with the key
"rewritten_optimization". Do not output
anything other than JSON.
Program Optimization: {s1}

Source Program: {p}

You are an expert programmer. You are provided with ...
Program Optimization: {s2}

Source Program: {p1}

You are an expert programmer. You are provided with ...
Program Optimization: {s3}

Source Program: {p2}

You are an expert programmer. You are provided with ...
Program Optimization: {s4}

Source Program: {p3}

Atomic Edits
e1: To optimize input and output operations
for performance in any C++ program,
substitute the C++ standard I/O header
<iostream> with C's <cstdio>. Replace
instances of 'cin' with 'scanf' and 'cout'
with 'printf'. 'scanf' and 'printf'
generally perform faster than 'cin' and
'cout' due to less synchronization overhead
with C++ streams. This adjustment is
particularly beneficial in scenarios such as
competitive programming, where input and
output can be performance bottlenecks.
Ensure data types handled by 'scanf' and
'printf' match the types expected by the
program.

e2:

e3:

e4:

Atomic Edits Dataset

(e1,p,p1)

(e2,p1,p2)

(e3,p2,p3)

(e4,p3,p4)

Figure 2: AEGIS Framework: For a given training set program pair (p, p′), we identify the natural
language edits using Fdecomp, and then generate intermediate programs implementing each edit by
using Fedit. Finally, the natural language edits are generalized by Fgen to construct atomic edits.

Algorithm 2 Atomic Edit-Guided Search (AEGIS)

input: Πtrain, Fdecomp, Fedit, Fgen, Fopt, Fcontext, R
Πatomic ← ∅
for (p, p′) ∈ Πtrain do

[s1, . . . sr] ∼ Fdecomp(p, p
′)

for i ∈ [1, ..., n] do
pi ∼ Fedit(si, pi−1)
ei ∼ Fgen(si, pi)
Πatomic ← Πatomic ∪ {(ei, (pi−1, pi))}

end for
end for
return Πatomic

dataset of atomic edits is

Πatomic =
⋃

(p,p′)∈Πtrain

{(ei, (pi−1, pi))}.

6

Published as a conference paper at ICLR 2025

Finally, we can use RAS with Πatomic, with a slight modification to account for some of the extra
information. Specifically, we modify the LLM Fopt for program optimization to include both the
atomic edit—i.e., given an atomic edit (e, π) and a program p, we sample an optimized version

p′ ∼ Fopt(e, π, p).

Intuitively, e provides instructions on how p should be optimized, and π shows one example of how e
can be applied.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmark. Our experiments are based on the PIE benchmark Shypula et al. (2024), a dataset of
slow-fast C++ program pairs constructed from submissions by human programmers to CodeNet
Puri et al. (2021). Since competitive programmers iteratively refine their code submissions for
better performance, the authors of PIE construct this dataset by first identifying a sequence of
programs submitted by the same programmer to solve a single problem. They filter out any incorrect
submissions, and then construct slow-fast pairs by executing the C++ submissions on the gem5
simulator Binkert et al. (2011) to measure the running time of the code, discarding any pairs whose
difference in performance improvement is less than 10%. We use 4080 high-quality pairs from
the PIE dataset as our training set Πtrain, and 973 test set pairs as a held-out test set Πtest. These
high-quality pairs are constructed by taking up to 4 pairs in the PIE benchmark’s training set with the
highest speedup for each competitive programming problem. Importantly, the train-test split in PIE is
based on the competitive programming problem being solved, so the training and test set programs
are semantically different.

Baselines. We compare our approach to dynamic retrieval, the highest performing blackbox adapta-
tion strategy studied in PIE Shypula et al. (2024). This approach also dynamically retrieves in-context
examples from Πtrain. There are two key differences between our approach and theirs. First, they
use retrieval based on the embedding of the code itself rather than contextual retrieval (i.e., code
retrieval). Second, they do not perform sequential search; instead, given a program p, they retrieve k
in-context examples Π ⊆ Πtrain to provide to the LLM F ′

opt, and then take multiple samples

p1, ..., ph ∼ F ′
opt(Π, p).

They return the fastest correct program among the h choices.

In addition, we also compare to a “no contextual” ablation of our approach that uses PIE’s strategy
for retrieval but with search; in particular, it performs code retrieval instead of contextual retrieval.
One iteration proceeds as with dynamic retrieval, but we perform multiple iterations. In particular,
let p0 be the initial program; on the ith iteration (starting from i = 1), we sample k in-context
examples Π ⊆ Πtrain using code retrieval, draw samples p1i , ..., p

h
i ∼ F ′

opt(Πi, pi−1), and then let
pi = argmaxj∈[h]R(p

j
i); as in RAS, we let pji = pji−1 if R(pji) = −∞ for all j ∈ [h].

We also consider a “instruct only” approach studied in PIE that performs neither retrieval (i.e., it does
not use Πtrain) nor search; instead, we simply instruct the LLM F ′′

opt to optimize the given program
p to obtain an optimized version p′ = F ′′

opt(p), i.e., F ′′
opt is an unadapted LLM. The prompt used in

the “instruct only” setting is described in Appendix A, and the remaining prompts are described in
Appendix B.

Finally, we include the “human” speedup—for an initial program p, it is the speedup achieved by the
fastest correct program p′ written by the human participant who wrote p.

Hyperparameters. In our approaches (RAS and AEGIS with contextual retrieval), we use k = 8
retrievals and m = 4 beam search steps and take h = 1 sample per generated prompt. For our
baselines, we normalize computation according to the number of calls to the LLM Fopt, F ′

opt, or F ′′
opt.

In this calculation, note that for F ′
opt, the number of retrievals k = |Π| does not affect the number

of calls F ′
opt(Π, p), since all examples are included in a single call. Then, for our dynamic retrieval

baseline, we retrieve k = 4 examples (the same as used in PIE) and take h = 32 samples. For our “no
contextual” ablation, we retrieve k = 4 examples, take h = 8 samples per iteration, and use m = 4

7

Published as a conference paper at ICLR 2025

Approach Mean Best
Speedup

% Optimized

RAS 8.01 0.9640
No Contextual 5.80 0.8520
Dynamic Retrieval 4.43 0.8191
Instruct Only 2.31 0.5447
Human 3.63 0.9887

Table 1: Results comparing RAS to base-
lines.

Approach Mean Best
Speedup

% Optimized

AEGIS 6.08 0.9065
No Contextual 3.85 0.7554
Instruct Only 2.31 0.5447

Human 3.63 0.9887

Table 2: Results comparing AEGIS to base-
lines.

iterations (the same as our approach). For our “instruct only” ablation, we take h = 32 samples and
use m = 1 iterations. We note that this is different from the standard pass@k metric used to evaluate
LLM code performance in previous work (such as Chen et al. (2021), where k refers to the number
of samples taken from the LLM, which we denote as h in our case. We use k to denote the number of
retrieved examples used in the prompt, as done in Shypula et al. (2024).

Compute. All experiments were performed using the gpt-4o-2024-08-06 model from
OpenAI serving as Fopt, F ′

opt, F ′′
opt, Fdecomp, Fedit, Fgen, and Fcontext. We use OpenAI’s

text-embedding-3-large as the embedding model ψ. We run the gem5 simulator on a
server with 2× Intel(R) Xeon(R) Gold 6342 CPUs (96 cores total).

Metrics. Running gem5 on all test cases to evaluate a single program can be prohibitively compu-
tationally expensive due to the large overhead of running gem5. Instead, we measure running time
averaged across a subset of 5 randomly selected test cases; these 5 test cases are fixed ahead-of-time.
To validate this strategy, we check the correlation between running times on the full test suite vs. our
5 random test cases across all programs in the PIE test set; we find a strong correlation (Pearson’s
r = 0.89, p < 0.001; Spearman’s ρ = 0.86, p < 0.001), suggesting that 5 test cases suffices to
obtain an accurate estimate of running time.

We report results on the held-out test set Πtest ⊆ P of 973 unoptimized programs provided by the
PIE benchmark. Our main metric is “mean best speedup”, which is the speedup

Speedup(p, p′) = max

{
RunningTime(p′)
RunningTime(p)

, 1

}
of the final program p′ compared to the original program p, averaged across all test programs p ∈ Πtest,
where The minimum speedup is set to 1 since we can always return p. We also report “% optimized”,
which is the number of test programs p for which the optimized program p′ is at least 1.1× as fast as
p. While this metric is not the main goal of our system, it helps capture the diversity of programs that
can be optimized using a given approach.

5.2 RESULTS

We show results for RAS in Table 1 and for AEGIS in Table 2. First, note that RAS significantly
improves performance compared to all baselines, when using both the original PIE training set as well
as our atomic edit training set. Dynamic retrieval was by far the best blackbox adaptation approach
studied in the original PIE paper, yet our approach is able to almost double its performance in terms
of mean best speedup. Our ablation demonstrates that both search and contextual retrieval are roughly
equally important, since ablating contextual retrieval about halves the performance improvement
compared to dynamic retrieval.

While AEGIS diminishes performance, it still achieves a significant improvement. Indeed, it out-
performs all ablations (both ablations of AEGIS and those of RAS); the only approach it does not
outperform is the full RAS approach.

Metrics across beam search iterations. Next, in Figure 3, we study the effect of using search
techniques by reporting our various metrics across iterations of beam search. We focus on our results
for our approach compared to our “No Contextual” ablation (since “Dynamic Retrieval” and “Instruct
Only” do not perform search).

Figure 3 (a) shows results for “Mean Best Speedup”. As can be seen, while the first step of beam
search provides the greatest benefit, it continues to provide benefit for all approaches, especially when
using contextual retrieval. Since we request the LLM Fcontext to describe the algorithm used for the

8

Published as a conference paper at ICLR 2025

Method Mean Edit Distance

AEGIS 213.05
RAS 257.77

AEGIS (No Contextual) 203.24
RAS (No Contextual) 221.49

Table 3: Comparisons of Edit Distances over Steps between AEGIS and RAS.

0 1 2 3
Number of Beam Search Steps

1

2

3

4

5

6

7

8

M
ea

n
Be

st
 S

pe
ed

up

Mean Best Speedup Over Beam Search Steps

RAS (Contextual Retrieval)
RAS (No Contextual)
AEGIS (Contextual Retrieval)
AEGIS (No Contextual)

0 1 2 3
Number of Beam Search Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 O

pt
im

ize
d

% Optimized Over Beam Search Steps

RAS (Contextual Retrieval)
RAS (No Contextual)
AEGIS (Contextual Retrieval)
AEGIS (No Contextual)

1 2 3 4
Step

100

150

200

250

300

350

400

450

500

M
ea

n
Ed

it
Di

st
an

ce

Mean Edit Distance During Beam-Search for Aegis and RAS
RAS (Contextual Retrieval)
RAS (No Contextual)
Aegis (Contextual Retrieval)
Aegis (No Contextual)

(a) Mean Best Speedup (b) % Optimized (c) Mean Edit Distance

Figure 3: Mean Best Speedup, %Optimized and Mean Edit Distance across beam search steps.

current best-performing program pi at each iteration i of the beam search, we hypothesize that Fcontext
can update its description to include algorithmic updates made in the previous iteration, thus enabling
it to retrieve more relevant examples. We also see greater continuing improvements for AEGIS, likely
because atomic edits constrain optimization to change the program more slowly. Additional iterations
may help further close the gap between AEGIS and RAS. We provide an example of how AEGIS and
RAS both optimize the same program in Appendix C.

Next, Figure 3 (b) shows results for “% Optimized”. These results converge substantially more
quickly, likely because the first iteration is already enough to get above 1.1× speedup for most
programs. Nevertheless, we continue to see gains for our AEGIS approach, again suggesting that
continuing search may close the performance gap.

Interpretability. A key motivation for AEGIS is that it should provide greater interpretability by
making smaller edits. To study this objective, we consider two metrics. Our main metric is the
character-level edit distance of pairs of programs (pi, pi+1) encountered as part of the search process,
with lower edit distances indicating more incremental changes; we consider the edit distance averaged
across all pairs of programs and across all programs in the test set.

We summarize results for AEGIS and RAS in Table 3, including results for the “no context” ablations
of each approach. As can be seen, AEGIS significantly reduces mean edit distance in both cases.
Furthermore, in Figure 3, we show how the mean edit distance changes across steps. As can be
seen, AEGIS significantly reduces mean edit distance in the first step, from about 500 to 350. These
results suggest that RAS is performing significant optimizations in the first step, and the subsequent
steps have smaller edit distance simply because the optimizations are more incremental. Even a
single uninterpretable step can make the entire sequence less interpretable, so these results further
emphasize the effectiveness of our approach.

6 CONCLUSION

We have proposed RAS and AEGIS, two methods for LLM-guided program optimization that
incorporate beam search and retrieval to iteratively optimize a given program. We achieve significant
speedups in the blackbox setting (i.e., without any fine-tuning), outperforming existing LLM-based
program optimization techniques. AEGIS also aims to improve interpretability by decomposing
training examples into “atomic edits” that represent incremental optimizations rather than large
changes. We believe that our approach provides a compelling strategy for adapting LLMs to code
optimization in the blackbox setting, and may be effective in other code generation tasks as well.

Limitations. A key limitation of both our approaches is that they are more computationally expensive
to execute due to our use of beam search. AEGIS also requires additional training-time compute since
it uses LLM-generated code to construct its atomic dataset. Nevertheless, we believe our methods
pave a promising path towards effective application of LLMs to code optimization in practice.

9

Published as a conference paper at ICLR 2025

REFERENCES

Anthropic. Contextual retrieval. https://web.archive.org/web/20250121234912/
https://www.anthropic.com/news/contextual-retrieval, 2024. Accessed:
2025-01-23.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J., Hower,
D. R., Krishna, T., Sardashti, S., et al. The gem5 simulator. ACM SIGARCH computer architecture
news, 39(2):1–7, 2011.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877–1901, 2020.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P.-E., Lomeli, M., Hosseini, L.,
and Jégou, H. The faiss library. arXiv preprint arXiv:2401.08281, 2024.

Gao, S., Gao, C., Gu, W., and Lyu, M. Search-based llms for code optimization. In 2025 IEEE/ACM
47th International Conference on Software Engineering (ICSE), pp. 254–266. IEEE Computer
Society, 2024.

Gu, X., Zhang, H., and Kim, S. Deep code search. In Proceedings of the 40th International
Conference on Software Engineering, pp. 933–944, 2018.

Islam, M. A., Ali, M. E., and Parvez, M. R. MapCoder: Multi-agent code generation for competitive
problem solving. In Ku, L.-W., Martins, A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
4912–4944, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.269. URL https://aclanthology.org/2024.acl-long.
269/.

Italiano, D. and Cummins, C. Finding missed code size optimizations in compilers using llms. arXiv
preprint arXiv:2501.00655, 2024.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih,
W.-t., Rocktäschel, T., et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Dal Lago, A., et al. Competition-level code generation with alphacode. Science, 378
(6624):1092–1097, 2022.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and Fu, C. Portfolio: finding relevant
functions and their usage. In Proceedings of the 33rd International Conference on Software
Engineering, pp. 111–120, 2011.

Mishra, S., Khashabi, D., Baral, C., Choi, Y., and Hajishirzi, H. Reframing instructional prompts
to gptk’s language. In Findings of the Association for Computational Linguistics: ACL 2022, pp.
589–612, 2022.

Poesia, G., Polozov, A., Le, V., Tiwari, A., Soares, G., Meek, C., and Gulwani, S. Synchromesh:
Reliable code generation from pre-trained language models. In The Tenth International Conference
on Learning Representations, 2022.

Puri, R., Kung, D., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V., Dolby, J., Chen, J.,
Choudhury, M., Decker, L., Thost, V., Buratti, L., Pujar, S., Ramji, S., Finkler, U., Malaika, S., and
Reiss, F. Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks, 2021.

Qiu, R., Zeng, W. W., Tong, H., Ezick, J., and Lott, C. How efficient is llm-generated code? a
rigorous & high-standard benchmark. The Thirteenth International Conference on Learning
Representations, 2025.

10

https://web.archive.org/web/20250121234912/https://www.anthropic.com/news/contextual-retrieval
https://web.archive.org/web/20250121234912/https://www.anthropic.com/news/contextual-retrieval
https://aclanthology.org/2024.acl-long.269/
https://aclanthology.org/2024.acl-long.269/

Published as a conference paper at ICLR 2025

Shypula, A., Madaan, A., Zeng, Y., Alon, U., Gardner, J. R., Yang, Y., Hashemi, M., Neubig, G.,
Ranganathan, P., Bastani, O., and Yazdanbakhsh, A. Learning performance-improving code
edits. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=ix7rLVHXyY.

Wang, Z. Z., Asai, A., Yu, X. V., Xu, F. F., Xie, Y., Neubig, G., and Fried, D. Coderag-bench: Can
retrieval augment code generation? arXiv preprint arXiv:2406.14497, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-
thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022.

Yao, Z., Peddamail, J. R., and Sun, H. Coacor: Code annotation for code retrieval with reinforcement
learning. In The world wide web conference, pp. 2203–2214, 2019.

11

https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=ix7rLVHXyY

Published as a conference paper at ICLR 2025

A COMPARING INSTRUCTION PROMPTING AND EXPERT PROGRAMMER
SYSTEM ROLES

In our “Instruct Only” baseline, we experiment with two prompts: an instruction-prompting approach
(as described in the results of the original PIE benchmark Shypula et al. (2024)), and an “expert
programmer” system role. We provide the exact prompts for our approaches here and whenever
we refer to programs or retrieved natural language optimizations, we enclose them in braces. Our
prompts are as follows:

A.1 INSTRUCTION PROMPTING (IP)

Given the program below, improve its performance:

Program: {Program to be optimized}

Optimized Version:

A.2 EXPERT PROGRAMMER SYSTEM ROLE (EPSR)

System Role: You are an expert programmer who needs to optimize a given program. You are given
the source code of the program. Rewrite the source code in a way that optimizes performance such
that the program executes faster, and return a JSON-formatted string where the rewritten code is
stored with the key “optimized code”. Do not output anything other than C++ code.
User Role: Source Code: {Program to be optimized}

A.3 PROMPT RESULT COMPARISON

We evaluate the two prompts on our dataset of 973 programs by taking k = 32 samples for m = 1
iteration of search. Our results are presented in Table 4.

Approach Mean Best Speedup % Optimized

EPSR 2.31 0.5447
IP 2.16 0.5632

Table 4: Results comparing differences in metrics due to prompts in Instruct Only setting

Since we observe a slight increase in Mean Best Speedup in the setting with an expert-level system
role, we use it in all our other prompts for to maximize efficacy. The “Instruct Only” setting results
we report in Tables 1 & 2 use this expert-programmer system role prompt, which is used by F ′′

opt.
.

B PROMPTS FOR EXPERIMENTAL RESULTS

B.1 RAS

B.1.1 PROGRAM DESCRIPTION GENERATION

This prompt is used by Fcontext.
System Role: You are an expert programmer who has been provided with a program solving a
programming problem, called the source program. You need to identify the algorithm being used to
solve the problem, and your goal is to generate a JSON object with the key “algorithm” which has
the value as one sentence describing the algorithm used in the code snippet.
User Role: Source Program:
{Program to be optimized}

12

Published as a conference paper at ICLR 2025

B.1.2 GENERATING PROGRAMS WITH CONTEXTUAL RETRIEVAL

This prompt is used by Fopt.
System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given one pair of fast and slow programs as an example, which are presented
as a pair where “slower version” refers to the slow code and “optimized version” refers to the faster,
more optimal version of the same program. The last program with the label “slower version” is the
source program whose optimized version you need to generate. Rewrite the source program in a way
that incorporates all of the optimizations in the example, and return a JSON-formatted string where
the rewritten code is stored with the key “optimized code”. Do not output anything other than C++
code.
User Role:
slower version:
{Retrieved Slow Program}
optimized version of the same code:
{Retrieved Faster Program}

slower version:
{Program to be optimized}
optimized version of the same code: \n

13

Published as a conference paper at ICLR 2025

B.1.3 GENERATING PROGRAMS WITH DYNAMIC CODE RETRIEVAL

This is the prompt used in both the “No Contextual” and ”Dynamic Retrieval” settings for RAS, as
well as the ”No Contextual” setting for AEGIS. It is passed to the model F ′

opt.

System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given several pairs of fast and slow programs, called examples, which are
presented as pairs where “slower version” refers to the slow code and “optimized version” refers
to the faster, more optimal version of the same program. The very last program with the label
“slower version” is the source program whose optimized version you need to generate. Rewrite the
source program in a way that incorporates all of the optimizations in the examples, and return a
JSON-formatted string where the rewritten code is stored with the key “optimized code”. Do not
output anything other than C++ code.
User Role:
slower version:
{Retrieved Slow Program 1}
optimized version of the same code:
{Retrieved Faster Program 1}

slower version:
{Retrieved Slow Program 2}
optimized version of the same code:
{Retrieved Faster Program 2}

slower version:
{Retrieved Slow Program 3}
optimized version of the same code:
{Retrieved Faster Program 3}

slower version:
{Retrieved Slow Program 4}
optimized version of the same code:
{Retrieved Faster Program 4}

slower version:
{Program to be optimized}
optimized version of the same code: \n

14

Published as a conference paper at ICLR 2025

B.2 AEGIS

B.2.1 GENERATING NATURAL LANGUAGE EDITS

This prompt is used by Fdecomp.
System Role: You are an expert programmer who needs to decompose a sequence of edits to a
program that have been made to optimize the program’s performance. You are provided with the
source program (the initial state) and the target program (the final state). Describe the changes made
to the source program as a sequence of edits in the format of a JSON file where each key marks
the step in the sequence. For example, “1”: <description of the first edit in the sequence>, “2”:
<description of the second edit in the sequence>, ... “N”: <description of the final edit in the
sequence>. Make sure to describe each edit alongside why it may improve performance.
User Role:
Source Program: {Slow Program from Training Set Program Pair}
Target Program: {Faster Program from Training Set Program Pair}

B.2.2 GENERATING PROGRAM SEQUENCE FROM NATURAL LANGUAGE EDITS

This prompt is used by Fedit.
System Role: You are an expert programmer who needs to optimize a given program. You are given
the description of the optimization to be performed as well as the source code of the program. Rewrite
the source code in a way that incorporates the optimization and improves its performance, and return
a JSON-formatted string where the rewritten code is stored with the key “optimized code”. Do not
output anything other than C++ code.
User Role:
Source Program: {Previous Program in Sequence}
Optimization: {Optimization to be applied to generate next program in the sequence}

B.2.3 GENERATING ATOMIC EDITS FROM NATURAL LANGUAGE EDITS

This prompt is used by Fgen.
System Role: You are an expert programmer. You are provided with the description of a program
optimization, which, when applied to the given program, results in an improvement in program
performance. Rewrite the program optimization so that it can be applied more generally to any
program. Return a JSON-formatted string where the rewritten optimization is stored with the key
“rewritten optimization”. Do not output anything other than JSON.
User Role:
Program Optimization: {Natural Language Edit}
Program: {Program in program sequence that the edit was applied to}

B.2.4 GENERATING PROGRAMS WITH CONTEXTUAL RETRIEVAL

This prompt is used by the modified Fopt when generating programs with AEGIS.
System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given the description of an optimization that is to be performed on the
given program, as well as an example showing how to apply the optimization on an example program
(called the example source) to get a target program (called the example target). Rewrite the source
code in a way that incorporates all of the optimizations, and return a JSON-formatted string where the
rewritten code is stored with the key “optimized code”. Do not output anything other than C++ code.
User Role: Source Program:
{Program to be optimized}
Optimization:
{Atomic edit retrieved via contextual retrieval}

Example Source:
{Slower program in retrieved example pair}
Example Target:
{Faster program in retrieved example pair}

15

Published as a conference paper at ICLR 2025

AEGIS Step 1

#include <cstdio>
using namespace std;

int main()
{
 long long int n, m, i, r, s = 0,
b, c, j;
 scanf("%lld", &n);
 long long int a[n + 10];
 long long int ar[100001] = {0};

 for (i = 0; i < n; i++) {
 scanf("%lld", &a[i]);
 s += a[i];
 ar[a[i]]++;
 }

 scanf("%lld", &m);
 for (i = 0; i < m; i++) {
 scanf("%lld %lld", &b, &c);
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 printf("%lld\n", s);
 }

 return 0;
}

AEGIS Step 2

#include <cstdio>

int main()
{
 long long int n, m, i, r, s = 0,
b, c, j
 std::scanf("%lld", &n);
 long long int a[n + 10];
 long long int ar[100001] = {0};
 for (i = 0; i < n; i++) {
 std::scanf("%lld", &a[i]);
 s += a[i];
 ar[a[i]]++;
 }
 std::scanf("%lld", &m);
 for (i = 0; i < m; i++) {
 std::scanf("%lld %lld", &b,
&c);
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 std::printf("%lld\n", s);
 }
 return 0;
}

AEGIS Step 3

#include <cstdio>

int main()
{
 long long int n, m, i, s = 0, b,
c;
 std::scanf("%lld", &n);
 long long int a[n + 10];
 long long int ar[100001] = {0};
 for (i = 0; i < n; i++) {
 std::scanf("%lld", &a[i]);
 s += a[i];
 ar[a[i]]++;
 }
 std::scanf("%lld", &m);
 for (i = 0; i < m; i++) {
 std::scanf("%lld %lld", &b,
&c);
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 std::printf("%lld\n", s);
 }
 return 0;
}

AEGIS Step 4

#include <cstdio>
#include <algorithm>
#define fast
ios_base::sync_with_stdio(false);cin.tie(0);
#define int long long
#define mod 1000000007
const int N = 100001;
int cnt[N];

int32_t main() {
 int n, m, s = 0;
 std::scanf("%lld", &n);
 for (int i = 0; i < n; ++i) {
 int x;
 std::scanf("%lld", &x);
 s += x;
 cnt[x]++;
 }
 std::scanf("%lld", &m);
 for (int i = 0; i < m; ++i) {
 int b, c;
 std::scanf("%lld %lld", &b, &c);
 if (b != c && cnt[b] > 0) {
 s += (c - b) * cnt[b];
 cnt[c] += cnt[b];
 cnt[b] = 0;
 }
 std::printf("%lld\n", s);
 }
 return 0;
}

RAS Step 1

#include <cstdio>
#include <algorithm>
using namespace std;
long long ar[100001] = {0};

inline long long read() {
 long long s = 0;
 char c = getchar();
 while (c < '0' || c > '9') c =
getchar();
 while (c >= '0' && c <= '9') s =
(s * 10) + c - '0', c = getchar();
 return s;
}

int main() {
 long long n = read();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read();
 s += a;
 ar[a]++;
 }
 long long m = read();
 while (m--) {
 int b = read();
 int c = read();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 printf("%lld\n", s);
 }
 return 0;
}

RAS Step 2

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

long long ar[100001] = {0};
char input_buffer[8000000], *input_ptr
= input_buffer;

inline long long read() {
 long long s = 0;
 char c = *input_ptr++;
 while (c < '0' || c > '9') c =
*input_ptr++;
 while (c >= '0' && c <= '9') s =
(s * 10) + c - '0', c = *input_ptr++;
 return s;
}

void buffered_print(long long x) {
 char out_buffer[20];
 char *out_ptr = out_buffer;
 if (x == 0) {
 putchar('0');
 } else {
 while (x > 0) {
 *out_ptr++ = '0' + (x %
10);
 x /= 10;
 }
 while (out_ptr != out_buffer)
{
 putchar(*--out_ptr);
 }
 }
 putchar('\n');
}

int main() {
 fread(input_buffer, 1, 8000000,
stdin);
 long long n = read();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read();
 s += a;
 ar[a]++;
 }
 long long m = read();
 while (m--) {
 int b = read();
 int c = read();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 buffered_print(s);
 }
 return 0;
}

RAS Step 3
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

long long ar[100001] = {0};
char input_buffer[8000000], *input_ptr
= input_buffer;

inline long long read() {
 long long s = 0;
 char c = *input_ptr++;
 while (c < '0' || c > '9') c =
*input_ptr++;
 while (c >= '0' && c <= '9') s =
(s * 10) + c - '0', c = *input_ptr++;
 return s;
}

void buffered_print(long long x) {
 static char out_buffer[20];
 static char *out_ptr = out_buffer;
 if (x == 0) {
 putchar('0');
 } else {
 while (x > 0) {
 *out_ptr++ = '0' + (x %
10);
 x /= 10;
 }
 while (out_ptr != out_buffer)
{
 putchar(*--out_ptr);
 }
 }
 putchar('\n');
}

int main() {
 fread(input_buffer, 1, 8000000,
stdin);
 long long n = read();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read();
 s += a;
 ar[a]++;
 }

 long long m = read();
 while (m--) {
 int b = read();
 int c = read();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 buffered_print(s);
 }
 return 0;
}

RAS Step 4

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

long long ar[100001] = {0};
char input_buffer[8000000], *input_ptr =
input_buffer;

inline long long read_int() {
 long long s = 0;
 char c = *input_ptr++;
 while (c < '0' || c > '9') c =
*input_ptr++;
 while (c >= '0' && c <= '9') s = (s *
10) + c - '0', c = *input_ptr++;
 return s;
}

void write_long(long long x) {
 static char out_buffer[20];
 static char *out_ptr = out_buffer;
 if (x == 0) {
 putchar('0');
 } else {
 while (x > 0) {
 *out_ptr++ = '0' + (x % 10);
 x /= 10;
 }
 while (out_ptr != out_buffer) {
 putchar(*--out_ptr);
 }
 }
 putchar('\n');
}

int main() {
 fread(input_buffer, 1,
sizeof(input_buffer) - 1, stdin);
 long long n = read_int();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read_int();
 s += a;
 ar[a]++;
 }

 long long m = read_int();
 while (m--) {
 int b = read_int();
 int c = read_int();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 write_long(s);
 }
 return 0;
}

Test Set Program

#include<bits/stdc++.h>
using namespace std;

int main()
{
 long long int n,m,i,r,s=0,b,c,j;
 scanf("%lld",&n);
 long long int a[n+10];
 long long int ar[100001]={0};

 for(i=0;i<n;i++){
 cin>>a[i];
 s+=a[i];
 ar[a[i]]++;
 }

 cin>>m;
 long long int f[m+10];

 for(i=0;i<m;i++){
 cin>>b>>c;
 s+=(c-b)*ar[b];
 ar[c]+=ar[b];
 ar[b]=0;
 cout<<s<<endl;
 }
}

Test Set Program

#include<bits/stdc++.h>
using namespace std;
int main()
{
 long long int n,m,i,r,s=0,b,c,j;
 scanf("%lld",&n);
 long long int a[n+10];
 long long int ar[100001]={0};

 for(i=0;i<n;i++){
 cin>>a[i];
 s+=a[i];
 ar[a[i]]++;
 }

 cin>>m;
 long long int f[m+10];

 for(i=0;i<m;i++){
 cin>>b>>c;
 s+=(c-b)*ar[b];
 ar[c]+=ar[b];
 ar[b]=0;
 cout<<s<<endl;
 }
}

Figure 4: We show a randomly selected example optimization trajectory where RAS and AEGIS
implement similar optimizations to achieve similar speedups. The final speedup of RAS is 10.06×,
compared to 9.58× for AEGIS. We have highlighted lines that have changed from the previous step
in orange, while lines that change in the next step have been highlighted in red. For reference, the
human speedup on this example is 1.8×. Here RAS implements an optimization to replace cin and
cout alongside an optimization to ensure that variables are not needlessly updated when b = c in
Step 1. AEGIS implements a cin and cout replacement in Step 1 and refines it until Step 3, and
then implements the b!=c check in Step 4.

C COMPARISON BETWEEN RAS AND AEGIS

In Figures 4 and 5, we show an example of the optimization trajectory taken by each RAS and
AEGIS. As can be seen, RAS concentrates a large number of edits in the first step. In contrast, the
edits performed by AEGIS are spread out more evenly across different steps.

16

Published as a conference paper at ICLR 2025

AEGIS Step 1

#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 100005;
int f[N], a[N];

int main()
{
 int n, k;
 scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 scanf("%d", &a[i]);
 f[1] = 0;
 for (int i = 2; i <= n; i++) {
 for (int j = 1; j <= k; j++) {
 if (i - j >= 1)
 f[i] = min(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n]);
 return 0;
}

AEGIS Step 2

#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 100005;
int f[N], a[N];

int main()
{
 int n, k;
 scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 scanf("%d", &a[i]);
 f[1] = 0;
 for (int i = 2; i <= n; i++) {
 for (int j = 1; j <= k; j++) {
 if (i - j >= 1)
 f[i] = min(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n]);
 return 0;
}

AEGIS Step 3
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
int f[N], a[N];

inline void updateMinimum(int &target,
int source) {
 target = min(target, source);
}

int main()
{
 int n, k;
 scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 scanf("%d", &a[i]);
 f[1] = 0;
 // Optimized loop to only iterate
over relevant parts
 for (int i = 2; i <= n; i++) {
 for (int j = min(i - 1, k); j
>= 1; j--) {
 updateMinimum(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n]);
 return 0;
}

AEGIS Step 4
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
int f[N], a[N];

inline void updateMinimum(int &target,
int source) {
 target = min(target, source);
}

int main()
{
 int n, k;
 std::scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 std::scanf("%d", &a[i]);
 f[1] = 0;
 // Optimized loop to only iterate
over relevant parts
 for (int i = 2; i <= n; i++) {
 for (int j = min(i - 1, k); j
>= 1; j--) {
 updateMinimum(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 std::printf("%d\n", f[n]);
 return 0;
}

RAS Step 1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define INF 0x3f3f3f3f

int min(int a, int b) {
 return a < b ? a : b;
}

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int a[n];
 int f[n];
 memset(f, 0x3f, sizeof(f));
 for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; i++) {
 for (int j = 1; j <= k; j++) {
 if (i - j >= 0) f[i] =
min(f[i], f[i - j] + abs(a[i] - a[i -
j]));
 }
 }
 printf("%d\n", f[n - 1]);
 return 0;
}

RAS Step 2

#include <stdio.h>
#include <stdlib.h>
#define INF 0x3f3f3f3f

int min(int a, int b) {
 return a < b ? a : b;
}

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int *a = (int *)malloc(n *
sizeof(int));
 int *f = (int *)malloc(n *
sizeof(int));
 for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; i++) {
 int min_cost = INF;
 for (int j = 1; j <= k && i -
j >= 0; j++) {
 min_cost = min(min_cost,
f[i - j] + abs(a[i] - a[i - j]));
 }
 f[i] = min_cost;
 }
 printf("%d\n", f[n - 1]);
 free(a);
 free(f);
 return 0;
}

RAS Step 3

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
int min(int a, int b) {
 return a < b ? a : b;
}

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int *a = (int *)malloc(n *
sizeof(int));
 int *f = (int *)malloc(n *
sizeof(int));
 for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; i++) {
 int min_cost = INT_MAX;
 for (int j = 1; j <= k && i -
j >= 0; j++) {
 min_cost = min(min_cost,
f[i - j] + abs(a[i] - a[i - j]));
 }
 f[i] = min_cost;
 }
 printf("%d\n", f[n - 1]);
 free(a);
 free(f);
 return 0;
}

RAS Step 4

#include <cstdio>
#include <cstdlib>
#include <limits.h>
#include <algorithm>

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int *a = (int *)malloc(n *
sizeof(int));
 int *f = (int *)malloc(n *
sizeof(int));
 for (int i = 0; i < n; ++i)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; ++i) {
 f[i] = INT_MAX;
 for (int j = 1; j <= k && i -
j >= 0; ++j) {
 f[i] = std::min(f[i], f[i
- j] + std::abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n - 1]);
 free(a);
 free(f);
 return 0;
}

Test Set Program

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=100005;
int f[N],a[N];

int main()
{

int n,k;
scanf("%d%d",&n,&k);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;i++)

 scanf("%d",&a[i]);
f[1]=0;
for(int i=2;i<=n;i++){

for(int j=1;j<=k;j++){
if(i-j>=1)

 f[i]=min(f[i],f[i-
j]+abs(a[i]-a[i-j]));

}
}
printf("%d\n",f[n]);

}

Test Set Program

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=100005;
int f[N],a[N];

int main()
{

int n,k;
scanf("%d%d",&n,&k);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;i++)

scanf("%d",&a[i]);
f[1]=0;
for(int i=2;i<=n;i++){

for(int j=1;j<=k;j++){
if(i-j>=1)

f[i]=min(f[i],f[i-j]+abs(a[i]-a[i-
j]));

}
}
printf("%d\n",f[n]);

}

Figure 5: We show a randomly selected example optimization trajectory where RAS significantly
outperforms AEGIS. Here, we demonstrate the improvements made at each step of RAS vs. AEGIS.
The final speedup of RAS on this example is 7.34×, compared to 2.35× for AEGIS. We have
highlighted lines that have changed from the previous step in orange, while lines that change in the
next step have been highlighted in red. For reference, the human speedup on this example is 1.37×.

17

	Introduction
	Related Work
	Retrieval Augmented Search
	Problem Formulation
	General Framework
	Contextual Retrieval

	Atomic Edit Guided Search
	Experiments
	Experimental Setup
	Results

	Conclusion
	Comparing Instruction Prompting and Expert Programmer System Roles
	Instruction Prompting (IP)
	Expert Programmer System Role (EPSR)
	Prompt Result Comparison

	Prompts for Experimental Results
	RAS
	Program Description Generation
	Generating Programs With Contextual Retrieval
	Generating Programs With Dynamic Code Retrieval

	Aegis
	Generating Natural Language Edits
	Generating Program Sequence from Natural Language Edits
	Generating Atomic Edits from Natural Language Edits
	Generating Programs With Contextual Retrieval

	Comparison Between RAS and Aegis

