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Abstract

Learning node representations is a fundamental problem in graph machine learning.
While existing embedding methods effectively preserve local similarity measures,
they often fail to capture global functions like graph distances. Inspired by Bour-
gain’s seminal work on Hilbert space embeddings of metric spaces [1985], we
study the performance of local distance-preserving node embeddings. Known as
landmark-based algorithms, these embeddings approximate pairwise distances by
computing shortest paths from a small subset of reference nodes called landmarks.
Our main theoretical contribution shows that random graphs, such as Erdős–Rényi
random graphs, require lower dimensions in landmark-based embeddings com-
pared to worst-case graphs. Empirically, we demonstrate that the GNN-based
approximations for the distances to landmarks generalize well to larger real-world
networks, offering a scalable and transferable alternative for graph representation
learning.

1 Introduction

1.1 Motivations

Learning representations for network data has long been central to graph machine learning with
a key objective to learn low-dimensional node embeddings that map structurally similar nodes to
nearby points. These embeddings facilitate the application of machine learning methods to graph
data, enabling a wide range of downstream tasks such as node classification, link prediction, and
community detection [Hamilton et al., 2017b, Grover and Leskovec, 2016].

Traditional methods such as DeepWalk [Perozzi et al., 2014] and Node2Vec [Grover and Leskovec,
2016] use random walks to preserve local graph structures like node neighborhoods, while extensions
such as GraRep [Cao et al., 2015] and PRONE [Zhang et al., 2021] capture higher-order relationships
via k-hop transition factorizations. Spectral methods like Laplacian Eigenmaps [Belkin and Niyogi,
2003] preserve global geometry by embedding graphs into low-dimensional spaces that approximate
their underlying manifold. Cauchy embeddings [Tang et al., 2019] further improve spectral methods
by increasing their sensitivity to edge weight differences. While effective at capturing local graph
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structure, these methods often fail to preserve global topology and functionals such as shortest
path distances, especially in large, complex graphs [Goyal and Ferrara, 2018, Tsitsulin et al., 2018,
Brunner, 2021].

In this work, we focus on the problem of learning node embeddings that preserve both local similarities
and global graph distances. Motivated by Bourgain’s seminal results on metric embeddings [1985],
we analyze a landmark-based algorithm that approximates graph distances via shortest paths from a
small set of landmarks. Our study analyzes its performance on random graphs—particularly Erdős–
Rényi (ER) graphs—compared to worst-case instances. Of particular interest is the dimension of the
embedding space.

1.2 Our Contributions

Theoretical Contributions. Our theoretical contribution is a detailed analysis of the dimensionality
requirements for landmark-based embeddings on random graphs, in a more generalized setting than
that analyzed for worst-case graphs. This is the primary contribution of our work.

We show that, with high probability (w.h.p.), random graphs require lower embedding dimensions:
Ω
(
n

1
2c−1+ςθ log n

)
with θ ∈ [ c−1

2c−1 ,
2(c−1)
2c−1 ) for a 1

2c−1 -factor lower bound, and Ω(n3−2c+ς) for a

(2c − 1)-factor upper bound for any ς > 0, as compared to worst-case graphs with Ω(n1/c log n)
for the same lower and upper bounds [Bourgain, 1985, Matoušek, 1996, Sarma et al., 2010], where
c > 1. The proof leverages branching process approximations from the random graph literature [van
der Hofstad, 2017, 2024].

Methodological Contributions. Building upon this theory, we propose a GNN-augmented variant
that predicts landmark distances from graph structure. This reduces explicit shortest-path computa-
tions as GNNs can learn to approximate landmark distances in a supervised manner.

GNNs are well-suited for this task due to their alignment with dynamic programming which underpins
shortest path algorithms [Xu et al., 2019b, Dudzik and Veličković, 2022]. Empirical results on ER
graphs and real-world benchmarks show that GNN-based embeddings provide better global-distance
lower bounds than exact landmark embeddings. Notably, GNNs trained on small ER graphs generalize
effectively to larger ER graphs and real-world networks, highlighting the value of studying embedding
methods in the context of random graphs.

1.3 Related Works

A rich body of theoretical works has focused on the minimum dimension kε required to embed worst-
case graphs into Rk while preserving all pairwise distances up to a factor of (1±ε). In a seminal work,
Bourgain [1985] showed kε = Ω((log n)2/(log log n)2), providing a negative answer to Johnson
and Lindenstrauss’s Problem 3 [1984]. This was later strengthened to kε = Ω((log n)2) [Linial et al.,
1995], and further to kε = Ω(nc/(1+ε)) for some universal c > 0 [Matoušek, 1996]. The latter was
also proven recently by Naor [2016] and Naor [2021] using expanders, showing that low-distortion
embeddings of graphs with strong expansion properties require polynomial dimensionality.

From an algorithmic perspective, finding embeddings with minimum distortion is NP-hard; see
Sidiropoulos et al. [2019] for a survey of approximation algorithms and hardness results. Practical
methods often rely on landmark-based algorithms [Goldberg and Harrelson, 2005, Sarma et al., 2010,
Potamias et al., 2009, Tretyakov et al., 2011, Akiba et al., 2013, Rizi et al., 2018, Qi et al., 2020],
which preselect a subset of landmark nodes and compute distances to them via local message passing
(see Sommer [2014] for a review). The resulting landmark distances can be viewed as an embedding
useful for approximating graph distances. Yet these methods inherit worst-case limitations of local
message passing, often requiring prohibitively large dimensions for general graphs [Sarma et al.,
2012, Loukas, 2020].

Notation. We let G = (V,E) denote an undirected, unweighted graph, where V is the set of nodes
and E is the set of edges, with |V | = n and |E| = m, where |X| denotes the cardinality of any
discrete set X . We consider only one graph at a time and use C(i) to denote the i-th largest connected
component of the graph. We write u1 ↔ u2 to mean that there exists a path between u1 and u2 (i.e.,
u1 and u2 are in the same connected component). We often use the Bachmann–Landau asymptotic
notation o(1), O(1), ω(1),Ω(1),Θ(1), etc. to describe the asymptotic behavior of functions. Given
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a sequence of probability measures (Pn)n≥1, a sequence of events (En)n≥1 is said to hold with
high probability (w.h.p.) if limn→∞ Pn(En) = 1. For a sequence of random variables (Xn)n≥1,
Xn

P−→ c means that Xn converges to c in probability. We write statements such as Xn = f(n)o(1)

w.h.p. to abbreviate that logXn/ log f(n)
P−→ 0. Also, we write Xn = O(1) w.h.p. to mean that

P(Xn ≥ K)→ 0 for a sufficiently large K.

2 The Shortest Path Problem and Landmark-Based Embeddings

Given a graph G = (V,E) and nodes u1, u2 ∈ V , the shortest distance problem is to find the
minimum number of edges connecting u1 and u2, i.e., the shortest path distance d(u1, u2). The
classical solution to this fundamental graph problem is Dijkstra’s algorithm, with running time O(n2)
for a single pair and O(n3) for all pairs using naive data structures, reducible to O(m log n) and
O(m+ n log n) with heaps and Fibonacci heaps [Schrijver, 2012]. More refined variants for single
source include S-Dial (O(m + nlmax), lmax is the maximum arc length), S-Heap (O(m log n) or
O(n log n) in sparse graphs), and Fredman–Willard’s implementation (O(m+ n log n/ log log n))
[Gallo and Pallottino, 1988, Fredman and Willard, 1990]. For all pairs, Floyd–Warshall and pri-
mal sequential algorithms run in O(n3) [Gallo and Pallottino, 1988], while hidden-path achieves
O(mn+ n2 log n) [Karger et al., 1993]. Despite these advances, exact computation remains costly
on large graphs.

While computing exact shortest path distances is expensive, we can afford to compute local paths.
Sarma et al.’s offline sketch algorithm [2010] leverages this principle in its local step to construct
landmark embeddings (see Local Step in Algorithm 1). To mitigate the time and memory constraints
associated with calculating shortest paths, lower and upper bounds have been used as reliable metrics
for approximating shortest paths in many approaches [Bourgain, 1985, Matoušek, 1996, Sarma et al.,
2010, Gubichev et al., 2010, Sommer, 2014, Akiba et al., 2014, Meng et al., 2015, Jiang et al., 2021,
Awasthi et al., 2022]. As in the current setting, the resulting local embeddings can be stored in
memory and later retrieved to quickly estimate d(u1, u2) via the bounds d(u1, u2) and d̄(u1, u2) with
a single lookup from u1 and u2 (see Global Step in Algorithm 1).

Algorithm 1: Landmark Algorithm Adapted From Sarma et al. [2010]
Input: Connected graph G = (V,E) with |V | = n. Positive integer R. Set cardinalities

|S0| = 1, |S1|, |S2|, ..., |Sr| for some positive integer r.
Output: Shortest path lower bound d(u, v) and upper bound d̄(u, v) for all u, v ∈ V .
for i = 1, 2, . . . , R /* LOCAL STEP */
do

for j = 0, 1, . . . , r do
Sj ← {s1, . . . , s|Sj | ∼ Uniform(V )}
for u = 1, . . . , n do

[xu]j = mins∈Sj d(s, u)
[σu]j = argmins∈Sj

d(s, u)

end
end

end
for u = 1, . . . , n /* GLOBAL STEP */
do

for v = 1, . . . , n do
d(u, v) = ∥xu − xv∥∞ /* Lower Bound */
d̄(u, v) = min{[xu]i + [xv]j : (i, j) s.t. [σu1

T − 1σT
v ]ij = 0} /* Upper Bound */

end
end

To show that d(u1, u2) is a lower bound on d(u1, u2), without loss of generality, as-
sume d(u1, u2) = d(u1, S)− d(u2, S) for some landmark set S with d(u2, S) = d(u2, v1)
and d(u1, S) = d(u1, v2) ≤ d(u1, v1). It then follows from triangle inequality that
d(u1, u2) ≤ d(u1, v1)− d(u2, v1) ≤ d(u1, u2).
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The proof for d(u1, u2) ≤ d̄(u1, u2) also follows directly from the formulation of d̄(u1, u2) in
Algorithm 1 and triangle inequality: d̄(u1, u2) = d(u1, v) + d(u2, v) ≥ d(u1, u2) for some landmark
node v. By sampling at least one landmark set of size 1, we ensure that u1 and u2 share a closest
landmark node from such landmark sets, preventing d̄(u1, u2) from being undefined.

Since d(u1, u2) depends on the distance to the landmark sets but not on which landmark node is
the closest, it is sufficient for the landmark embeddings to store only the closest distances from
each node to the landmark sets. The trade-off for such memory reduction is that d(u1, u2) can be
approximated only with D = R× (r + 1) dimensions, while d̄(u1, u2), which utilizes the common
closest landmarks, has an approximation dimension that varies between 1 and D ×D, depending on
how the landmark sets are sampled.

3 Lower and Upper Bound Distortions for Shortest Distance Approximations

The lower and upper bound metrics on the landmark embeddings, as described in Section 2, are only
useful if we can derive guarantees on their approximation ability. For the lower bound, these have
been proven by Matoušek [1996] based on Bourgain’s classical embedding theorem [1985], which
characterizes the distortion incurred by optimal embeddings of metric spaces into RD. For the upper
bound, similar guarantees have been derived in Sarma et al. [2010].
Theorem 3.1 (Lower Bound Distortion Adapted From Bourgain [1985] and Matoušek [1996]).
Let G be a graph with n ≥ 3 nodes and u1, u2 be two nodes in G. Let c > 1. There exist node
embeddings x∗

u1
,x∗

u2
∈ RD with D = Ω(n1/c log n) for which d(u1, u2) as in Algorithm 1 satisfies

d(u1, u2)

2c− 1
≤ d(u1, u2) ≤ d(u1, u2). (1)

Theorem 3.2 (Upper Bound Distortion Adapted From Sarma et al. [2010]). Let G be a graph with
n ≥ 3 nodes and u1, u2 be two nodes in G. Let c > 1. There exist node embeddings x∗

u1
,x∗

u2
∈ RD

with D = Ω(n1/c log n) for which d̄(u1, u2) as in Algorithm 1 satisfies

d(u1, u2) ≤ d̄(u1, u2) ≤ (2c− 1)d(u1, u2). (2)

In order for (1) and (2) to hold, the embeddings x∗
u need to be optimal. However, there is no guarantee

that this can be achieved using the landmark embeddings. One way to ensure good embeddings is to
control how the landmarks are sampled. Sarma et al. [2010] proposed sampling landmark sets Si of
sizes 2i for i = 0, 1, . . . , r.

For the lower bound, smaller landmark sets are beneficial since, for σ1+σ2 < 1 with 0 < σ1 < σ2, we
must find at least one landmark set containing a landmark node in the σ1d(u1, u2)-hop neighborhood
centered at u1 and none in the σ2d(u1, u2)-hop neighborhood centered at u2. For the upper bound,
this strategy ensures that a landmark falls in the intersection of the ⌈d(u1,u2)

2 ⌉-hop neighborhoods of
nodes u1 and u2 w.h.p. Hence, having a range of landmark set cardinalities helps.

It can be shown that if |Si| is exponential in i, R = Ω(n1/c), and r = ⌊log n⌋—yielding a total
embedding size of Θ(n1/c log n)—then the resulting shortest path distance approximations satisfy
Theorems 3.1 and 3.2 for all pairs of nodes w.h.p. for any graph. In Section 4, we show that both the
distortions and the embedding dimensions can be improved for random graphs.

4 Lower and Upper Bound Distortions on Sparse Erdős–Rényi

In this section, we show our main results on the performance of d(u1, u2) and d̄(u1, u2) outputted
by Algorithm 1 as shortest path approximations in sparse ER graphs, where each edge appears
independently with a fixed probability. We write G ∼ ERn(λ/n) to denote this distribution over the
space of all graphs on n nodes with probability λ/n, λ ∈ [0, n]. Based on a classical result in random
graph theory [van der Hofstad, 2017, Theorems 4.4, 4.8 and Corollary 4.13], we consider λ > 1 since
otherwise the giant component dies out in probability, making most pairs of nodes not connected.

4.1 Main Results on Distortions

On ER graphs, we derive the following distortion bound as a (1± ε)-approximation of d(u1, u2):
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Theorem 4.1 (Lower Bound Distortion on Random Graphs). Let G ∼ ERn(λ/n) with λ > 1.
Let u1, u2 be chosen independently and uniformly at random with replacement from G. Fix
ε ∈ (0, 1), an integer M > 1, θ ∈ (0, ε), and r = ⌊ θ

logM log n⌋. With embedding dimen-

sion D = Ω
(
Mn1− ε

2−min{ ε
2 ,θ}+ς θ

logM log n
)

resulting from R = Ω
(
Mn1− ε

2−min{ ε
2 ,θ}+ς

)
runs of the local step with set cardinalities |S0| = M0, |S1| = M1, . . . , |Sr| = Mr and
any arbitrarily small ς > 0, d(u1, u2) provides a (1 − ε)-approximation of d(u1, u2) (i.e.
d(u1, u2) ≥ d(u1, u2) ≥ (1− ε)d(u1, u2)) w.h.p.

Theorem 4.2 (Upper Bound Distortion on Random Graphs). Let G,λ, u1, u2 be as in Theorem
4.1. Fix ε ∈ (0, 1), an integer M > 1, θ ∈

(
0, 1−ε

2

)
, and r = ⌊ θ

logM log n⌋. With embedding

dimension D = Ω
(
n1−ε+ς

)
resulting from R = Ω

(
logM
θ lognn

1−ε+ς
)

runs of the local step with set

cardinalities |S0| = M0, |S1| = M1, . . . , |Sr| = Mr and any arbitrarily small ς > 0, d̄(u1, u2)
provides a (1+ ε)-approximation of d(u1, u2) (i.e. d(u1, u2) ≤ d̄(u1, u2) ≤ (1+ ε)d(u1, u2)) w.h.p.

While Bourgain [1985], Matoušek [1996], and Sarma et al. [2010] showed that, in the worst case,
Algorithm 1 with M = 2 requires embedding dimension Ω(n1/c log n) for a 1

2c−1 -factor lower
bound and a (2c− 1)-factor upper bound (c > 1), our results offer a more efficient alternative for ER
graphs by loosening the dimensionality restrictions, specifically Ω

(
n

1
2c−1+ςθ log n

)
with θ ∈ [ ε2 , ε)

for the same lower bound and Ω(n3−2c+ς) for the same upper bound for any ς > 0. Furthermore,
our results pertain to a more general setting where M can be any integer greater than 1 and θ, which
regulates the amount of sampling, can be ε-small for the lower bound distortion and

(
1−ε
2

)
-small for

the upper bound distortion.

4.2 Idea of Proofs and Supporting Results

The proofs of Theorems 4.1 and 4.2 rely on local neighborhood expansions in ER graphs
G ∼ ERn(λ/n), which can be accessed via the Poisson branching process with mean offspring
λ. With Nk(u) denoting the set of nodes with graph distance at most k from u and ∂Nk(u) denoting
the set of nodes at distance exactly k from u, the results on local neighborhood expansions are stated
as follows:

Lemma 4.3. Let G,λ, u1, u2 be as in Theorems 4.1 and 4.2. Let κ0 ∈ (0, 1
2 ), L = κ0 logλ n,

and ε ∈ (0, κ0). Let An denote the event that n−ελL ≤ |∂NL(u1)|, |∂NL(u2)| ≤ nελL and Bn

denote the event that u1 and u2 are in the same connected component. Then P(An \Bn)→ 0 and
P(Bn \An)→ 0 as n→∞.

Proof. See Appendix A.1.

Lemma 4.4. Let G,λ, u1, u2, k0, L be as in Lemma 4.3. Let ε ∈ (0, κ0) and κ ∈ (0, 1− κ0). Let
Abm,bM be the event that |∂NL(ui)| ∈ [bm, bM ] for i ∈ {1, 2} and En,k be the good event that
|∂NL+k(ui)| ∈ [bmλk, bMλk] for i ∈ {1, 2}, where bm = n−ελL and bM = nελL. Then, there
exists δ > 0 such that P(∩kl=0En,l | Abm,bM ) ≥ 1− 3kn−δ for any k ≤ κ logλ n for all sufficiently
large n.

Proof. See Appendix A.2

Proposition 4.5. Let G,λ, u1, u2, κ0, κ, L be as in Lemma 4.4 and ε > 0. Conditionally on u1, u2

being in the same connected component, |∂Nk1
(u1) ∩ ∂Nk2

(u2)| ∈
[
n−ελk1+k2

2n , nελk1+k2

n

]
w.h.p.

for any k1, k2 such that L < k1, k2 ≤ (κ0 + κ) logλ n and k1 + k2 > (1 + ζ) logλ n for any small
ζ > 0.

Proof. See Appendix A.3

By Lemmas 4.3 and 4.4, ∂Nk(u1) grows as λk for any fixed u. By Proposition 4.5,
|∂Nk(u1) ∩ ∂Nk(u2)| grows as λ2k

n for any fixed u1, u2. These growth rates imply that, w.h.p.,
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the local step selects a landmark set that intersects Nk1(u1) but not the disjoint Nk2(u2), with
k2 − k1 ≥ (1− ε)d(u1, u2), yielding

d(u1, u2) ≥ (1− ε) d(u1, u2) w.h.p.
For the upper bound distortion, we show that w.h.p. there is a landmark set intersecting
Nk(u1) ∩Nk(u2) but not

(
Nk(u1) ∪ Nk(u2)

)
\
(
Nk(u1) ∩ Nk(u2)

)
, where k ≤ 1+ε

2 d(u1, u2).
This ensures

d(u1, u2) ≤ (1 + ε) d(u1, u2) w.h.p.
The complete proof of Theorems 4.1 and 4.2 are provided in Appendices A.4 and A.5.

5 GNN-Based Landmark Embeddings and Experimental Results

Although Algorithm 1 outperforms traditional methods, its landmark distance calculations rely on one
run of Breadth-First Search (BFS) for each landmark set, which is costly for large graphs (O(n+m)
per pair, O(n(n + m)) for all pairs [Cormen et al., 2009]). We propose replacing BFS with a
GNN to approximate shortest-path distances between nodes and landmarks, which comes with three
advantages: (i) embeddings are computed automatically once the GNN is trained, (ii) inference is
cheaper than exact distance calculations, and (iii) the GNN’s transferability [Ruiz et al., 2020, 2023]
enables generalization to larger graphs from the same graphon model.

Figure 1: Error rates of BFS-based and GNN-based lower bounds on (a) test ER graphs generated
from the same ERn(λ/n) as the training graphs, (b) test ER graphs generated by ERn′(λ/n′) with
larger graph size n′, (c) real-world networks with 3,892 to 28,281 nodes, (d) Brightkite social
network with 56,739 nodes, and (e) ER-AVGDEG10-100K-L2 labeled network with 99,997 nodes.
(f) Duration of generating all landmark distances by NetworkX’s highly optimized BFS compared
with our widest and deepest GNNs—GCN, GraphSage, GAT, and GIN models were examined and
are represented by solid lines of the same color for the same number of local step R. See Appendices
B and C for further details and discussions on the experiments and benchmark networks.

GNNs are well-suited for this task as they align with dynamic programming strategies that are used
in shortest-path algorithms [Xu et al., 2019b, Dudzik and Veličković, 2022]. As shown in Figure
1(a), the GNN achieves a substantial improvement over the vanilla lower bounds in approximating
shortest path distances across all tested R, aided by better-learned embeddings and the near-certain
connectivity of large graphs in this regime. Figures 1(b-e) further demonstrate the transferability
of GNNs to larger ER graphs and real-world benchmark datasets. Particularly, the GNN-based
embeddings achieve comparable or better performance than BFS-based embeddings, with MSE
steadily improving as training graph size increases, even when learned on synthesized graphs up to
128 times smaller than the target graph. The GNN-based embeddings not only provide better distance
approximations but also scale more efficiently in time and space than their BFS-based counterparts, as
illustrated in Figure 1(f), making them a promising tool for large-scale graph representation learning
in practical applications.
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6 Conclusion

Our analysis, focused on average-case random graphs, provides a simplified framework for developing
theoretical tools and insights into landmark-based embedding algorithms. Particularly, Algorithm
1 achieves (1± ε)-factor approximations of shortest-path distances on random graphs w.h.p. even
with reduced embedding dimensionality, complementing Bourgain’s worst-case results [1985]. By
integrating GNNs into the embedding construction, we further improve its generalizability and
transferability while reducing time and space complexity, as demonstrated by experiments on ER
graphs and benchmark datasets. These signal the potential of machine learning-based landmark
algorithms as a solution to graph representation learning for large, complex network data.

Limitations and Future Work. While our results improve upon existing landmark-based algorithms,
several limitations remain. Our theoretical analysis focuses on ER graphs, a simplified model;
extending it to more complex graphs (e.g., inhomogeneous random graphs, configuration models,
planar graphs) is a key direction for future work. The approach also relies on GNNs generalizing
from smaller to larger graphs; further studies are needed to assess robustness across diverse graph
properties. Finally, additional improvements in memory and inference efficiency may be possible
with advanced GNN architectures or alternative models.

References
Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries on large

networks by pruned landmark labeling. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 349–360, 2013.

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Dynamic and historical shortest-path distance
queries on large evolving networks by pruned landmark labeling. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14, page 237–248, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450327442. doi: 10.1145/2566486.
2568007. URL https://doi.org/10.1145/2566486.2568007.

Krishna B. Athreya and Peter E. Ney. Branching Processes. Springer, Berlin, Heidelberg, 1972.

Pranjal Awasthi, Abhimanyu Das, and Sreenivas Gollapudi. Beyond GNNs: An efficient architecture
for graph problems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 6019–6027, 2022.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Charles Bordenave. Lecture notes on random graphs and probabilistic combinatorial optimization.
Available at https://www.math.univ-toulouse.fr/ bordenave/coursRG.pdf, 2016.

J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal
of Mathematics, 52(1):46–52, 1985. doi: 10.1007/BF02776078. URL https://doi.org/10.
1007/BF02776078.

Dustin Brunner. Distance Preserving Graph Embedding. PhD thesis, BS thesis, ETH Zürich, Zurich,
2021.[Online]. Available: https://pub. tik . . . , 2021.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management (CIKM), pages 891–900. ACM, 2015.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009.

Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.
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P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks.
In Int. Conf. Learning Representations 2018, pages 1–12, Vancouver, BC, 30 Apr.-3 May 2018.
Assoc. Comput. Linguistics.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In 7th Int.
Conf. Learning Representations, pages 1–17, New Orleans, LA, 6-9 May 2019a. Assoc. Comput.
Linguistics.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019b.

Wen Zhang, Yuxuan Zhang, Yansong Feng, Zheng Wang, and Jin Zhang. Prone: A scalable graph
embedding method with local proximity preservation. IEEE Transactions on Knowledge and Data
Engineering, 33(6):2500–2513, 2021.

10

https://api.semanticscholar.org/CorpusID:17378629
https://api.semanticscholar.org/CorpusID:17378629
https://doi.org/10.1137/11085178X
https://doi.org/10.1137/17M1113527
https://doi.org/10.1145/2530531
https://doi.org/10.1214/aop/1176995894
https://doi.org/10.1214/aop/1176995894


A Proofs

A.1 Proof of Lemma 4.3

If An occurs but Bn does not, then |C(2)| ≥ nκ0−ε, which occurs with probability tending to
zero since |C(2)| = O(log n) w.h.p. On the other hand, if Bn occurs and An does not, then
|∂NL(u1)| /∈ [nκ0−ε, nκ0+ε] or |∂NL(u2)| /∈ [nκ0−ε, nκ0+ε].

To bound the probabilities of these events, consider a branching process with progeny distribution
Poisson(λ), and let Xl be the number of children at generation l. We first claim that, for any fixed
node u in G,

lim
n→∞

P(|∂NL(u)| = XL) = 1 (3)

for any κ0 ∈ (0, 1
2 ) and L = κ0 logλ n. Indeed, this is a consequence of Lemma 3.13 from Bordenave

[2016].

Next, classical theory of branching processes shows that, on the event of survival, the growth rate of
a branching process is exponential. More precisely, Theorem 5.5 (iii) from Tanny [1977], together
with Theorem 2 from Athreya and Ney [1972], yields

lim
L→∞

P
(
L(1− ε) ≤ logλ XL ≤ L(1 + ε), XL > 0

)
= 1.

Since κ0 − ε < κ0(1− ε) and κ0 + ε > κ0(1 + ε),
lim

L→∞
P
(
nκ0−ε ≤ XL ≤ nκ0+ε, XL > 0

)
= 1. (4)

Combining (3) and (4), it follows that
P(Bn \An) ≤ P(|∂NL(u1)| /∈ [nκ0−ε, nκ0+ε]) + P(|∂NL(u2)| /∈ [nκ0−ε, nκ0+ε])→ 0.

A.2 Proof of Lemma 4.4

The proof is adapted from Section 2.6.4 in van der Hofstad [2024]. Since we need an exponential
bound on the probability and L grows with n, the proof does not follow from van der Hofstad [2024].

Note that for any fixed node u and any k ≥ 1, |∂Nk(u)| ≤
∑

x/∈Nk−1(u)

∑
y∈∂Nk−1(u)

Ixy,
where Ixy is the indicator random variable for the edge {x, y} being present. Therefore,
E(|∂Nk(u)|) ≤ λE(|∂Nk−1(u)|). Proceeding inductively, we have E(|∂Nk(u)|) ≤ λk and con-
sequently,

E(|Nk(u)|) ≤
λk+1 − 1

λ− 1
= O(λk). (5)

Then with Markov’s inequality, there exists δ > 0 for any γ ∈ (κ0 + κ, 1) such that

P(|Nk(ui)| ≥ nγ) ≤ O(λk)

nγ
≤ O (nκ0+κ)

nγ
≤ n−δ

for i = 1, 2 and k ≤ (κ0+κ) logλ n with sufficiently large n. Then for each fixed k ≤ (κ0+κ) logλ n,

P(|Nk(ui)| ≤ nγ : i = 1, 2) ≥ 1−
∑
i=1,2

P(|Nk(ui)| ≥ nγ) ≥ 1− 2n−δ. (6)

Let δn = n−β with 0 < β < κ0−ε′

2 . Also define
Ēn,k = {|∂NL+k(ui)| ∈ [b′m(1− δn)

k(1− nγ−1)kλk, b′M (1 + δn)
kλk] : i = 1, 2}

with b′m = n−ε′λL and b′M = nε′λL for some 0 < ε′ < min{ε, 1 − κ0 − κ}. Conditionally on
Abm,bM ,

E(|∂NL+k(ui)| | NL+k−1(ui)) = E

 ∑
x/∈NL+k−1(ui)

1{∃y∈∂NL+k−1(ui):Ixy=1} | NL+k−1(ui)


= (n− |NL+k−1(ui)|)P(∃y ∈ ∂NL+k−1(ui) : Ixy = 1 | NL+k−1(ui); x /∈ NL+k−1(ui))

= (n− |NL+k−1(ui)|)

(
1−

(
1− λ

n

)|∂NL+k−1(ui)|
)
.
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Since λ
n ∈ [0, 1],

1−|∂NL+k−1(ui)|
λ

n
≤
(
1− λ

n

)|∂NL+k−1(ui)|

≤ 1−|∂NL+k−1(ui)|
λ

n
+
|∂NL+k−1(ui)|2

2

(
λ

n

)2

.

Conditionally on Ēn,k−1,

|∂NL+k−1(ui)|
λ

n
≤ nε′(1 + δn)

k−1λ
L+k

n
≤ nε′−1(1 + δn)

k−1nκ0+κ → 0 as n→∞.

Since
(
|∂NL+k−1(ui)|λn

)2
vanishes faster than |∂NL+k−1(ui)|λn , we have w.h.p. that(
1− λ

n

)|∂NL+k−1(ui)|

= 1− |∂NL+k−1(ui)|
λ

n

and so
E(|∂NL+k(ui)| | NL+k−1(ui)) = (n− |NL+k−1(ui)|)|∂NL+k−1(ui)|

λ

n
.

Conditionally on ∩k−1
l=0 Ēn,l and Abm,bM , from (6) we have with probability at least 1− 2n−δ that

E(|∂NL+k(ui)| | NL+k−1(ui)) ∈
[
b′m(1− δn)

k−1(1− nγ−1)kλk, b′M (1 + δn)
k−1λk

]
since 1− nγ−1 ≤ 1− |NL+k−1(ui)|

n ≤ 1 for i = 1, 2 with sufficiently large n. Denote this event Rk.
The fact that P(A) ≤ P(A | B) + P(Bc) implies

P(Ēcn,k | ∩k−1
l=0 Ēn,l, Abm,bM ) ≤ P(Ēcn,k | Rk,∩k−1

l=0 Ēn,l, Abm,bM ) + 2n−δ.

Using union bound and Chernoff-Hoeffding bound [Dubhashi and Panconesi, 2009, Theorem 1.1],

P(Ēcn,k | Rk,∩k−1
l=0 Ēn,l, Abm,bM )

≤
∑
i=1,2

P(||∂NL+k(ui)| − E(|∂NL+k(ui)|)| ≥ δnE(|∂NL+k(ui)|) | Rk,∩k−1
l=0 Ēn,l, Abm,bM )

≤
∑
i=1,2

2 exp

(
−δ2n

3
n−ε′(1− δn)

k−1(1− nγ−1)kλL+k

)

≤ 4 exp

(
−n−2β

3
n−ε′(1− δn)

k−1(1− nγ−1)knκ0

)
.

Since (1 − δn)
k−1, (1 − nγ−1)k → 1 as n → ∞ and 2β < κ0 − ε′,

4 exp
(
−n−2β

3 n−ε′(1− δn)
k−1(1− nγ−1)knκ0

)
vanishes faster than 2n−δ . Then with sufficiently

large n, P(Ēn,k | ∩k−1
l=0 Ēn,l, Abm,bM ) ≥ 1− 3n−δ . Proceed inductively,

P(∩kl=0Ēn,l | Abm,bM ) = P(Ēn,k | ∩k−1
l=0 Ēn,l, Abm,bM ) . . .P(Ēn,1 | Ēn,0, Abm,bM )P(Ēn,0 | Abm,bM )

≥ (1− 3n−δ) . . . (1− 3n−δ)P(Ēn,0 | Abm,bM ) = (1− 3n−δ)kP(Ēn,0 | Abm,bM ).

Since b′m(1− δn)
k(1− nγ−1)k ≥ bm and b′M (1 + δn)

k ≤ bM , Ēn,0 ⊆ Abm,bM and Ēn,k ⊆ En,k for
all k ≥ 0. Hence, P(Ēn,0 | Abm,bM ) = 1 and so

P(∩kl=0En,l | Abm,bM ) ≥ P(∩kl=0Ēn,l | Abm,bM ) ≥ (1− 3n−δ)k ≥ 1− 3kn−δ.

A.3 Proof of Proposition 4.5

Recall all the notation from Lemma 4.4 and its proof. Then for any k1, k2 such that
L < k1, k2 ≤ k = (κ0 + κ) logλ n,

E(|∂Nk1(u1) ∩ ∂Nk2(u2)| | Nk1(u1), Nk2−1(u2))

= E

 ∑
x∈∂Nk1

(u1)\Nk2−1(u2)

1{∃y∈∂Nk2−1(u2):Ixy=1} | Nk1
(u1), Nk2−1(u2)


=

|∂Nk1(u1)| −
∑

j≤k2−1

|∂Nk1(u1) ∩ ∂Nj(u2)|

(1− (1− λ

n

)|∂Nk2−1(u2)|
)
.
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Since λ
n ∈ [0, 1],

1− |∂Nk2−1(u2)|
λ

n
≤
(
1− λ

n

)|∂Nk2−1(u2)|

≤ 1− |∂Nk2−1(u2)|
λ

n
+
|∂Nk2−1(u2)|2

2

(
λ

n

)2

.

Conditionally on u1, u2 being in the same connected component, Lemmas 4.3 and 4.4 imply that
with probability at least 1− 3n−δ(⌊k⌋ − ⌊L⌋) ≥ 1− 3n−δ(κ logλ n+1) for some δ > 0, ∩k−L

l=0 En,l
occurs. Then with ε′ ∈ (0,min{ε, 1− κ0 − κ}) (ε′ to be chosen later),

|∂Nk2−1(u2)|
λ

n
≤ n

ε′
2
λk2

n
≤ n

ε′
2 −1nκ0+κ → 0 as n→∞.

Since |∂Nk2−1(u2)|λn vanishes and
(
|∂Nk2−1(u2)|λn

)2
vanishes faster, we have w.h.p. that(

1− λ
n

)|∂Nk2−1(u2)|
= 1− |∂Nk2−1(u2)|λn , and so

E
(
|∂Nk1(u1) ∩ ∂Nk2(u2)|

∣∣Nk1(u1), Nk2−1(u2)
)

=

|∂Nk1
(u1)| −

∑
j≤k2−1

|∂Nk1
(u1) ∩ ∂Nj(u2)|

 |∂Nk2−1(u2)|
λ

n
. (7)

Conditionally on ∩k−L
l=0 En,l,

E
(
|∂Nk1

(u1) ∩ ∂Nk2
(u2)|

∣∣Nk1
(u1), Nk2−1(u2)

)
≤ n

ε′
2 λk1n

ε′
2
λk2

n
(8)

≤ nε′λk1
nκ0+κ

n
≤ λk1

n−γ

7(⌊k⌋ − ⌊L⌋)

for all L < k2 ≤ k with 0 < γ < min{κ0, 1− κ0 − κ} and sufficiently large n. Here we choose ε′

small enough so that ε′

2 < γ, k1

logλ n −
ε′

2 > κ0, and k1 + k2 > (1 + ε′) logλ n.

Let A be the event that there exists L < j ≤ k2 such that |∂Nk1
(u1) ∩ ∂Nj(u2)| ≥ λk1 n−γ

⌊k⌋−⌊L⌋ .

Let B be the event that E(|∂Nk1
(u1) ∩ ∂Nj(u2)| | Nk1

(u1), Nk2−1(u2)) ≤ λk1 n−γ

7(⌊k⌋−⌊L⌋) for all
L < j ≤ k2. The fact that P(A) ≤ P(A | B) + P(Bc) implies

P(A | Nk1(u1), Nk2−1(u2)) ≤ P(A | B,Nk1(u1), Nk2−1(u2)) + 3n−δ(κ logλ n+ 1).

By Theorem 2.8 and Corollary 2.4 from Janson et al. [2000] with union bound,

P(A | B,Nk1(u1), Nk2−1(u2)) ≤ (⌊k⌋ − ⌊L⌋) exp
(
−λk1

n−γ

⌊k⌋ − ⌊L⌋

)
< (κ logλ n+ 1) exp

(
− nκ0−γ

⌊k⌋ − ⌊L⌋

)
= (κ logλ n+ 1) exp

(
−nγ′

)
for some γ′ = κ0 − γ > 0. It follows that

P

(
Ac | Nk1

(u1), Nk2−1(u2)

)
≥ 1− (κ logλ n+ 1) exp

(
−nγ′

)
− 3n−δ(κ logλ n+ 1)

≥ 1− 4n−δ(κ logλ n+ 1) (9)

for sufficiently large n since (κ logλ n+ 1) exp
(
−nγ′

)
vanishes faster than 3n−δ(κ logλ n+ 1).

Let γ′′ ∈
(
κ0,

k1

logλ n −
ε′

2

)
. Markov’s inequality and Lemma 5 imply that there exists δ′ > 0 such

that

P(|NL(u2)| ≥ nγ′′
) ≤ O(λL)

nγ′′ ≤
O (nκ0)

nγ′′ ≤ n−δ′ (10)
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for sufficiently large n.

Combining (7), (8), (9), (10) with Lemmas 4.3, 4.4, we have w.h.p. that

E
(
|∂Nk1

(u1) ∩ ∂Nk2
(u2)|

∣∣Nk1
(u1), Nk2−1(u2)

)
≥

|∂Nk1(u1)| −
∑

L<j≤k2−1

|∂Nk1(u1) ∩ ∂Nj(u2)| − |NL(u2)|

 |∂Nk2−1(u2)|
λ

n

≥
(
n− ε′

2 λk1 − (⌊k2⌋ − 1− ⌊L⌋)λk1
n−γ

⌊k⌋ − ⌊L⌋
− nγ′′

)
n− ε′

2 λk2

n
>

n−ε′λk1+k2

2n

and

E
(
|∂Nk1

(u1) ∩ ∂Nk2
(u2)|

∣∣Nk1
(u1), Nk2−1(u2)

)
≤ nε′ λ

k1+k2

n
,

where the last "≥" holds since λk1n−γ and nγ′′
grow strictly slower than n− ε′

2 λk1 as ε′

2 < γ and

γ′′ < k1

logλ n −
ε′

2 . Therefore, E(|∂Nk1
(u1)∩ ∂Nk2

(u2)|) ∈
[
n−ε′λk1+k2

2n , nε′λk1+k2

n

]
and we denote

this event S.

Let R denote the event that |∂Nk1
(u1) ∩ ∂Nk2

(u2)| /∈
[
(1−ε)n−ε′λk1+k2

2n , (1+ε)nε′λk1+k2

n

]
. Using

Chernoff-Hoeffding bound [Dubhashi and Panconesi, 2009, Theorem 1.1],

P(R) ≤ P(R | S) + P(Sc) ≤ 2 exp

(
−ε2

3

n−ε′λk1+k2

2n

)
+ P(Sc).

Since k1 + k2 > (1 + ε′) logλ n and S occurs w.h.p., P (Rc) converges to 1. Then w.h.p.,

|∂Nk1
(u1)∩∂Nk2

(u2)| ∈

[
(1− ε)n−ε′λk1+k2

2n
,
(1 + ε)nε′λk1+k2

n

]
⊆
[
n−ελk1+k2

2n
,
nελk1+k2

n

]
.

A.4 Proof of Theorem 4.1

Let k1 = ε′d(u1, u2) and k2 = (1 − ε + ε′)d(u1, u2), where
ε′ = min

{
ε
2 , ε− θ

}
− ε′′ ∈

(
0,min

{
ε
2 , ε− θ

})
(ε′′ ∈

(
0,min

{
ε
2 , ε− θ

})
to be chosen

later). Since ε′ < ε
2 , k1 + k2 < d(u1, u2), and so Nk1

(u1) ∩Nk2
(u2) = ∅. Conditionally on u1, u2

being in the same connected component, Theorem 2.36 from van der Hofstad [2024] implies that
d(u1, u2)/ logλ n

P−→ 1. In other words, (1− ϵ) logλ n ≤ d(u1, u2) ≤ (1 + ϵ) logλ n w.h.p. for any
fixed ϵ > 0. With ϵ small enough so that ε′(1 + ϵ) < 1, k1 ≤ ε′(1 + ϵ) logλ n < logλ n w.h.p.,
allowing us to apply Lemmas 4.3 and 4.4 on |∂Nk1

(u1)|.
Let Sij be the landmark set of size M i sampled in the j-th round and Zij denote the event that
Sij ∩Nk1

(u1) ̸= ∅ but Sij ∩ Nk2
(u2) = ∅. If Zij happens for some i ≤ r and j ≤ R, then

d(u1, Sij) ≤ k1 and d(u2, Sij) ≥ k2, and consequently, d(u1, u2) ≥ k2 − k1 = (1− ε)d(u1, u2).
Thus, denoting Z = ∪i≤r,j≤RZij , it suffices to prove that P(Z | u1 ↔ u2)

P−→ 1. Since
P(u1 ↔ u2 but u1, u2 /∈ C(1)) = 1

n2

∑
i≥2 |C(i)|2 ≤

|C(2)|
n

P−→ 0, it suffices to show that P(Z |
u1, u2 ∈ C(1))

P−→ 1 (or equivalently P(Zc | u1, u2 ∈ C(1))
P−→ 0). The fact that P(Ac ∩ B) =

P(B)− P(A ∩B) implies, for each (i, j), that

P(Zij | u1, u2 ∈ C(1)) = P(Sij ∩Nk1
(u1) ̸= ∅, Sij ∩Nk2

(u2) = ∅ | u1, u2 ∈ C(1))

=

(
1− |Nk2(u2)|

n

)Mi

−
(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)Mi

.
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By independence of Zij’s,

P(Zc | u1, u2 ∈ C(1))

=

( r∏
i=0

(
1−

(
1− |Nk2

(u2)|
n

)Mi

+

(
1− |Nk1

(u1)|+ |Nk2
(u2)|

n

)Mi))R

≤ exp

(
−R

r∑
i=0

((
1− |Nk2(u2)|

n

)Mi

−
(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)Mi))

= exp

(
−R

r∑
i=0

|Nk1(u1)|
n

Mi−1∑
j=0

(
1− |Nk2(u2)|

n

)Mi−1−j(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)j)

≤ exp

(
−R
|Nk1(u1)|

n

r∑
i=0

M i

(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)Mi−1)

< exp

(
−R
|∂Nk1

(u1)|
n

Mr

(
1− |Nk1

(u1)|+ |Nk2
(u2)|

n

)Mr)
where the first "≤" uses 1− x ≤ exp(−x) and "<" uses

∑r
i=0 M

i = Mr+1−1
M−1 > Mr+1−Mr

M−1 = Mr.

Recall that (1− ϵ) logλ n ≤ d(u1, u2) ≤ (1 + ϵ) logλ n w.h.p. for any fixed ϵ > 0. Choosing ϵ small
enough so that (1−ε+ε′)(1+ϵ) < 1−θ, we have that k2 ≤ (1−ε+ε′)(1+ϵ) logλ n < (1− θ) logλ n
w.h.p., and so there exists γ ∈ (0, 1− θ) such that k1 < k2 < γ logλ n. By Markov’s inequality and
(5), there exists δ > 0 such that P(|Nki

(ui)| ≥ nγ) ≤ O(λki )
nγ ≤ n−δ for i = 1, 2 with sufficiently

large n. Therefore,

P(|Nki
(ui)| ≤ nγ : i = 1, 2) ≥ 1−

∑
i=1,2

P(|Nki
(ui)| ≥ nγ) ≥ 1− 2n−δ,

and so |Nki(ui)| ≤ nγ for i = 1, 2 w.h.p.

By Lemmas 4.3 and 4.4, |∂Nk1
(u1)| ≥ n−ε′′′λk1 ≥ n−ε′′′nε′(1−ϵ) w.h.p. for any ε′′′ > 0, and so

P(Zc | u1, u2 ∈ C(1))

< exp

(
−R

n−ε′′′n(min{ ε
2 ,ε−θ}−ε′′)(1−ϵ)

n
M

θ
log M logn−1

(
1− 2nγ

n

)M
θ

log M
log n)

= exp

(
−R

n−ε′′′nmin{ ε
2 ,ε−θ}−ϵmin{ ε

2 ,ε−θ}−ε′′+ε′′ϵ

nM
nθ

(
1− 2nγ

n

)nθ)
.

Since γ < 1 − θ,
(
1 − 2nγ

n

)nθ

≥ 1 − 2nγ+θ

n → 1 as n → ∞. Since ε′′, ε′′′, ϵ can

be chosen small enough so that −ε′′′ − ϵmin
{

ε
2 , ε− θ

}
− ε′′ + ε′′ϵ < ς for any ς > 0,

R = Ω
(
Mn1−θ−min{ ε

2 ,ε−θ}+ς
)

is sufficient for the final bound to tend to 0. Since θ ∈ (0, ε), R

can be further simplified to Ω
(
Mn1− ε

2−min{ ε
2 ,θ}+ς

)
.

A.5 Proof of Theorem 4.2

Let k = ε′d(u1, u2) with ε′ = 1+ε
2 −ε

′′ ∈
(
0, 1+ε

2

)
(ε′′ ∈

(
0, 1+ε

2

)
to be chosen later). Conditionally

on u1, u2 being in the same connected component, Theorem 2.36 from van der Hofstad [2024] implies
that d(u1, u2)/ logλ n

P−→ 1. In other words, (1− ϵ) logλ n ≤ d(u1, u2) ≤ (1 + ϵ) logλ n w.h.p. for
any fixed ϵ > 0. With ε′′, ϵ small enough so that ε′(1 + ϵ) < 1 and 2

(
1+ε
2 − ε′′

)
(1 − ϵ) > 1,

k ≤ ε′(1 + ϵ) logλ n < logλ n and k + k ≥ 2ε′(1 − ϵ) logλ n > logλ n w.h.p. This allows us to
apply Lemmas 4.3 and 4.4 and Proposition 4.5.

Let Sij be the landmark set of size M i sampled in the j-th round and Zij be the
event that Sij contains at least one landmark node in Nk(u1) ∩ Nk(u2) and none in
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(Nk(u1) ∪Nk(u2)) \ (Nk(u1) ∩Nk(u2)). If Zij happens for some i ≤ r and j ≤ R, the
landmarks in the intersection will be the common landmarks for calculating d̄(u1, u2), and so
d̄(u1, u2) ≤ 2k ≤ (1 + ε)d(u1, u2). Thus, denoting Z = ∪i≤r,j≤RZij , it suffices to prove that
P(Z | u1 ↔ u2)

P−→ 1. Since P(u1 ↔ u2 but u1, u2 /∈ C(1)) = 1
n2

∑
i≥2 |C(i)|2 ≤

|C(2)|
n

P−→ 0, it suf-
fices to show that P(Z | u1, u2 ∈ C(1))

P−→ 1 (or equivalently P(Zc | u1, u2 ∈ C(1))
P−→ 0). Note that

for each (i,j),

P(Zij | u1, u2 ∈ C(1))

=
|Nk(u1) ∩Nk(u2)|

n

(
|Nk(u1) ∩Nk(u2)|

n
+ 1− |Nk(u1) ∪Nk(u2)|

n

)Mi−1

.

By independence of Zij’s,

P(Zc | u1, u2 ∈ C(1))

=

(
r∏

i=0

(
1− |Nk(u1) ∩Nk(u2)|

n

(
|Nk(u1) ∩Nk(u2)|

n
+ 1− |Nk(u1) ∪Nk(u2)|

n

)Mi−1
))R

≤ exp

(
−R

r∑
i=0

|∂Nk(u1) ∩ ∂Nk(u2)|
n

(
|∂Nk(u1) ∩ ∂Nk(u2)|

n
+ 1− |Nk(u1)|+ |Nk(u2)|

n

)Mi−1
)
.

Choosing L ∈ (0,min{k, γ logλ n}) for some γ ∈ (0, 1− θ), we obtain from Markov’s inequality
and Lemma 5 that P(|NL(ui)| ≥ nγ) ≤ O(λL)

nγ ≤ n−δ for i = 1, 2 with some δ > 0 and sufficiently
large n. Therefore,

P(|NL(ui)| ≤ nγ : i = 1, 2) ≥ 1−
∑
i=1,2

P(|NL(ui)| ≥ nγ) ≥ 1− 2n−δ,

and so |NL(ui)| ≤ nγ for i = 1, 2 w.h.p. Then by Lemmas 4.3 and 4.4,

|Nk(ui)| = |NL(ui)|+
k∑

l=L+1

|∂Nl(ui)| ≤ nγ +

k∑
l=L+1

nε′′′λl < nγ + (logλ n)n
ε′′′λk

for i = 1, 2 w.h.p. with 0 < ε′′′ < 1− κ0 − κ. Combining these with Proposition 4.5, we have w.h.p.
that

P(Zc | u1, u2 ∈ C(1))

≤ exp

−Rn−ε′′′λ2k

2n2

r∑
i=0

(
n−ε′′′λ2k

2n2
+ 1− 2nγ

n
− 2(logλ n)n

ε′′′λk

n

)Mi−1
 .

Since γ < 1 and 0 < λk ≤ nκ0+κ < n1−ε′′′ < n, 2nγ

n + 2(logλ n)nε′′′λk

n − n−ε′′′λ2k

2n2 ∈ (0, 1) when
n is large, and so

P(Zc | u1, u2 ∈ C(1))

≤ exp

(
−Rn−ε′′′λ2k

2n2

r∑
i=0

(
1−

(
2nγ

n
+

2(logλ n)n
ε′′′λk

n
− n−ε′′′λ2k

2n2

)
(M i − 1)

))

< exp

(
−Rn−ε′′′λ2k

2n2

(
r −

(
2nγ

n
+

2(logλ n)n
ε′′′λk

n
− n−ε′′′λ2k

2n2

)
nθM

M − 1

))

since
∑r

i=0(M
i − 1) <

∑r
i=0 M

i = Mr+1−1
M−1 ≤ nθM

M−1 . Since γ < 1 − θ, 0 < 2nγ+θ

n → 0 as
n → ∞. Since we can choose ε′′, ε′′′, ϵ small enough so that ε′′′ +

(
1+ε
2 − ε′′

)
(1 + ϵ) < 1 − θ,

we then obtain 0 < n−ε′′′ λ2k

n2 nθ < nε′′′ λk

n nθ ≤ n
ε′′′+( 1+ε

2
−ε′′)(1+ϵ)+θ

n < 1 for sufficiently large n.
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Then w.h.p.,

P(Zc | u1, u2 ∈ C(1)) < exp

(
−Rn−ε′′′n2( 1+ε

2 −ε′′)(1−ϵ)

2n2

(
θ

logM
log n− 1− (1 + 1− 0)

))

< exp

(
−Rn−ε′′′n1+ε+2(ε′′ϵ−ε′′−ϵ 1+ε

2 )

2n2

θ

2 logM
log n

)
.

Since ε′′, ε′′′, ϵ can be chosen small enough so that −ε′′′ + 2
(
ε′′ϵ− ε′′ − ϵ 1+ε

2

)
< ς for any ς > 0,

R = Ω
(

logM
θ lognn

1−ε+ς
)

is sufficient for the final bound to tend to 0.

B Experimental Setup

In our experiments, we train GNNs to approximate the landmark distances in sparse, undirected,
unweighted random graphs. We consider four standard GNN architectures (GCN [Kipf and Welling,
2017], GraphSAGE [Hamilton et al., 2017a], GAT [Veličković et al., 2018], and GIN [Xu et al.,
2019a]) with sum aggregation, dropout, and ReLU activations. For each architecture, we test nine
models with ⌊

√
n⌋ nodes in the first and last layers and hidden layers varying in depth and width:

• Depth-6: 128-64-32-16, 64-32-16-8, 32-16-8-4

• Depth-5: 128-64-32, 64-32-16, 32-16-8

• Depth-4: 128-64, 64-32, 32-16

The training data for the GNNs are graphs generated by ERn(λ/n) with 1 < λ≪ n, which ensures
sparsity and the existence of a giant component w.h.p. In particular, we consider λ ∈ {3, 4, 5, 6}
and n ∈ {25, 50, 100, 200, 400, 800, 1600, 3200}. Each graph is treated as a batch of nodes with
a 200-50-50 train-validation-test split to generate random input signals X ∈ Rn×r, where each
column one-hot encodes a landmark node. The outputs Y ∈ Rn×r have the same dimensions as the
inputs and represent shortest path distances between nodes u and landmarks s, i.e., [Y]us = d(u, s).
Training runs for 1000 epochs with early stopping (100 epochs), MSE loss, Adam optimizer (lr=0.01,
weight decay=0.0001), and a cyclic-cosine learning rate schedule (0.001–0.1 for 10 cycles, with
default cosine annealing for up to 20 iterations).

All experiments use PyTorch Geometric [Fey and Lenssen, 2019] on a Lambda Vector 1 ma-
chine (AMD Ryzen Threadripper PRO 5955WX CPU, 16 cores, 128 GB RAM, 2× NVIDIA
RTX 4090 GPUs, no parallel training). Code is available at https://github.com/ruiz-lab/
shortest-path.

C More Experimental Results

We provide additional results with more detailed explanations offering deeper insights into GNNs
and their use for generating landmark embeddings in shortest path approximations. The experiments
are divided into three categories: learning the predictive power of GNNs, comparing the performance
of the GNN-augmented approach with the vanilla landmark-based algorithm, and evaluating the
transferability of both methods to larger random graphs and real-world benchmarks.

C.1 Experiment 1: Learning the GNNs

In the first experiment, we evaluate the ability of trained GNNs to compute end-to-end shortest paths.
We consider n = 50 and set the GNN depth to be larger than ⌈logλ n⌉. Figure 2 plots the actual
shortest path distances versus those predicted by our selected GNN architectures. Predictions for
distances beyond the GNN depth saturate, indicating that GNNs cannot capture longer distances even
with depth exceeding the expected path length. As expected, GNNs are not suitable for computing
end-to-end shortest path distances, especially on sparser graphs with λ ∈ {3, 4}, which tend to exhibit
longer paths.
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Figure 2: End-to-end shortest path distance predictions from ⌊
√
n⌋-64-32-16-⌊

√
n⌋ GNNs trained

on graphs generated by ERn(λ/n). The evaluation data consists of graphs from the same model.

C.2 Experiment 2: Comparing BFS-Based and GNN-Based Landmark Embeddings

Figure 3: Error rates of BFS-based and GNN-based lower bounds on graphs generated by ERn(λ/n),
with the GNNs trained on graphs from the same model.

In this experiment, we compare the lower bounds (LBs) resulting from BFS-based and GNN-
based landmark embeddings against the actual shortest path distances. Only LBs are compared
to ensure a fair evaluation, as computing the upper bounds (UBs) requires storing additional
information—namely, the indices of the closest landmarks from the landmark sets to each node.
Moreover, unlike in LB computations, the saturation effect inherent in GNNs cannot be mitigated

18



in UB computations, making the UB an unreliable metric for shortest path approximation when
calculated upon GNN-based landmark distances.

To construct the landmark embeddings, we sample r+1 landmark sets S0, S1, . . . , Sr of cardinalities
20, 21, . . . , 2r with r = ⌊log n⌋ for R repetitions. In Figure 3(a-d), GNN-based lower bounds
underperform the vanilla lower bounds for smaller λ ∈ {3, 4}, but yield substantial improvements for
larger λ ∈ {5, 6} across all three tested values of R. Although both λ values are in the supercritical
regime (λ > 1), several factors explain this difference. As shown in Figure 2, the GNN learns poorer
landmark embeddings for λ ∈ {3, 4}, even on small 50-node graphs. Additionally, for large n, graphs
are almost surely connected when λ ∈ {5, 6} but not when λ ∈ {3, 4}. Finally, Figure 3(e) illustrates
that GNN-based embeddings can be generated faster than BFS-based embeddings, particularly on
large graphs as exact local embedding computations via BFS scale poorly with graph size.

C.3 Experiment 3: Transferability

In our last experiment, we investigate whether GNNs trained on small graphs can be transferred to
compute landmark embeddings on larger networks for downstream shortest path approximation via
LBs. This is motivated by Ruiz et al. [2020] and Ruiz et al. [2023], which show that GNNs are
transferable as their outputs converge on convergent graph sequences. This, in turn, allows models
trained on smaller graphs to generalize to similar larger graphs.

Here, we focus on λ ∈ {5, 6} and train a sequence of eight GNNs on ER graphs ranging from n = 25
to n = 3200 nodes. These GNNs are then used to generate local node embeddings on graphs from
the ER model with the same λ and n′ = 12800 nodes. Figure 4(a,d) shows the MSE for each instance
as the training graph size increases, with flat dashed lines indicating the MSE of BFS-based LBs on
the n′-node graph. We observe a steady decrease in MSE as n grows, with GNN-based embeddings
matching BFS-based performance when trained on graphs of n = 100, which is 128 times smaller
than the target graph.

Figure 4: Error rates of BFS-based and GNN-based lower bounds on (a,d) test ER graphs generated by
ERn′(λ/n′), (b,e) Arxiv COND-MAT collaboration network with 21,364 nodes, and (c,f) GEMSEC
company network with 14,113 nodes, with the GNNs trained on graphs from ERn(λ/n).

When examining the transferability of the same set of GNNs on sixteen real-world networks listed in
Table 1, we again observe that MSE improves with training graph size and that GNN-based lower
bounds outperform BFS-based lower bounds, even though the landmark embeddings are learned
on much smaller graphs (see Figures 4 and 5). This can be explained as random graphs can model
real-world networks in certain scenarios, and networks with similar sparsity likely exhibit similar
local structures which local message-passing in GNNs can learn with sufficient training.
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Figure 5: Additional transferability results on real networks, with the GNNs trained on graphs from
ERn(λ/n). Legend is the same as in Figure 4.

Table 1: Details on the largest connected component of selected benchmark networks.

# Name Category # of Nodes # of Edges
1 Arxiv COND-MAT [Leskovec et al., 2007] Collaboration Network 21,364 91,315
2 Arxiv GR-QC [Leskovec et al., 2007] Collaboration Network 4,158 13,425
3 Arxiv HEP-PH [Leskovec et al., 2007] Collaboration Network 11,204 117,634
4 Arxiv HEP-TH [Leskovec et al., 2007] Collaboration Network 8,638 24,817
5 Oregon Autonomous System 1 [Leskovec et al., 2005] Autonomous System 11,174 23,409
6 Oregon Autonomous System 2 [Leskovec et al., 2005] Autonomous System 11,461 32,730
7 GEMSEC Athletes [Rozemberczki et al., 2019b] Social Network 13,866 86,858
8 GEMSEC Public Figures [Rozemberczki et al., 2019b] Social Network 11,565 67,114
9 GEMSEC Politicians [Rozemberczki et al., 2019b] Social Network 5,908 41,729

10 GEMSEC Companies [Rozemberczki et al., 2019b] Social Network 14,113 52,310
11 GEMSEC TV Shows [Rozemberczki et al., 2019b] Social Network 3,892 17,262
12 Twitch-EN [Rozemberczki et al., 2019a] Social Network 7,126 35,324
13 Deezer Europe [Rozemberczki and Sarkar, 2020] Social Network 28,281 92,752
14 LastFM Asia [Rozemberczki and Sarkar, 2020] Social Network 7,624 27,806
15 Brightkite [Rossi and Ahmed, 2015] Social Network 56,739 212,945
16 ER-AVGDEG10-100K-L2 [Rossi and Ahmed, 2015] Labeled Network 99,997 499,359
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