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Abstract

The vulnerability of neural network classifiers to adversarial attacks is a major obstacle to
their deployment in safety-critical applications. Regularization of network parameters during
training can be used to improve adversarial robustness and generalization performance.
Usually, the network is regularized end-to-end, with parameters at all layers affected by
regularization. However, in settings where learning representations is key, such as self-
supervised learning (SSL), layers after the feature representation will be discarded when
performing inference. For these models, regularizing up to the feature space is more suitable.
To this end, we propose a new spectral regularizer for representation learning that encourages
black-box adversarial robustness in downstream classification tasks.

Keywords: Representation learning, adversarial attacks

1. Introduction

Neural networks are vulnerable to adversarial attacks (Biggio et al., 2013; Szegedy et al.,
2013). Even without access to the model parameters and only access to inputs and outputs,
attackers can still fool the network (Liu et al., 2018; Li et al., 2022; Kurakin et al., 2018).
Identifying effective training algorithms that guard against these black-box attacks has
therefore garnered widespread attention (Athalye et al., 2018; Madry et al., 2018; Athalye
et al., 2018; Gao et al., 2019; Xie et al., 2017; Liu et al., 2018; Cohen et al., 2019). However,
recent years have seen growing popularity of representation learning paradigms to which
many previous adversarial defenses are not immediately applicable. For instance, in transfer
learning and self-supervised learning, the final linear readout layer of a network is retrained
when performing downstream inference tasks. Only layers up to the feature representations
are kept from the pretraining stage (Zbontar et al., 2021; Chen et al., 2020b; Radford et al.,
2021; Hernandez et al., 2021). As standard adversarial training methods for classification
networks typically require access to the last layer linear heads (Hein and Andriushchenko,
2017; Yoshida and Miyato, 2017), they cannot be directly applied in representation learning
settings.

In this paper, we seek an adversarial training methodology that can be applied to
these representation-focused training paradigms, in which the representation is pre-trained
without knowledge of downstream tasks. In Section 2, we derive a theoretical guarantee on
black-box adversarial robustness based on feature representations. This bound inspires our
proposed regularizer Equation (3), which penalizes the top singular value of each hidden
layer’s weights (i.e. excluding the last layer’s linear head). In Section 3, we empirically
demonstrate the effectiveness of this regularizer. Our results provide evidence that having
robust representations is crucial to adversarial robustness.
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2. Spectral Regularization for Adversarial Robustness

2.1. Preliminaries

We first briefly introduce the notion of black-box adversarial robustness; a detailed overview
of related works is given in Appendix A. Consider the problem of assorting n-dimensional
data into K given classes. For a classification network F (x; Θ) : Rn × R|Θ| → RK with
trainable parameters Θ, the class prediction is given by ŷ = argmaxk∈[K] Fk(x; Θ), which is
correct if it agrees with the true class label y. In the following discussions we drop the Θ
notation when there is no ambiguity. Here we assume the output logits are distinct.

We say δx ∈ Rn is an adversarial perturbation to a correctly-classified sample x if
it swaps the predicted class label, i.e., there is a class index k ̸= y such that Fk(x+ δx) >
Fy(x + δx). Then, the adversarial distance ∆x is defined as the minimal size of an
adversarial perturbation for the datum x: ∆x = min{δx∈Rn:argmaxk∈[K] Fk(x+δx) ̸=y} ∥δx∥2. In
this paper we focus on l2 norm but the analysis can be generalized to other norms as well.
A network is adversarially robust to input perturbation with respect to sample x if ∆x is
large, and is globally adversarial robust if ∆x is large for all correctly classified x.

2.2. A lower bound on adversarial distance

We now present our central lemma, which is an extension of the main result of Hein and
Andriushchenko (2017). The objective of our analysis is to isolate the influence of the
readout weights, as we focus on settings where the representation is learned in a pretraining
phase and the readouts are trained separately to perform downstream tasks.

Lemma 1 Suppose a neural network classifier F : Rn → RK is continuously differentiable
and can be decomposed into a feature map Φ(x) : Rn → Rd, where d is the feature dimension,
and a linear decision head f(z) : Rd → RK : F = SoftMax◦f ◦Φ, with f(z) = W (L)z the last

layer linear transformation without bias, and W
(L)
c the c-th row of W (L), treated as a row

vector. Suppose x ∈ Rn is a sample input belonging to class c and δx ∈ Rn an adversarial
perturbation to x that results in an incorrect prediction of class k. Fixing a perturbation
radius ‘budget’ R > 0 such that ∥δx∥2 ⩽ R, we have

∆x ⩾ θx∥Φ(x)∥2 ·
1

maxy∈B2(x,R) ∥∇Φ(y)∥2
(1)

where θx =
(W

(L)
c −W

(L)
k )Φ(x)

∥W (L)
c −W

(L)
k ∥2∥Φ(x)∥2

is the cosine of the angle between the feature representation

of x and the last layer “confidence weights” W
(L)
c −W

(L)
k for class c relative to class k. Here,

∇Φ(·) is the Jacobian of the feature map with respect to the input.

Proof See Appendix B.1 for the proof of this lemma, extended to general lp norms.

In this lower bound, the key term of interest from a feature representation perspective is
the norm of the feature map’s gradient ∥∇Φ(·)∥2 in the denominator. As it depends on the
readout weights, the angle θx cannot be controlled during the pretraining phase when features
are learned. Thus, the bound suggests that we should penalize maxy∈B2(x,R) ∥∇Φ(y)∥2 during
representation learning. This contrasts with previous works on supervised learning that
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penalize the input-output Jacobian ∇F (Hein and Andriushchenko, 2017; Yoshida and
Miyato, 2017; Hoffman et al., 2019). However, to make regularization computationally
efficient, we must make several relaxations of this objective. First, we consider the norm of
the gradient at x only, since searching over the ball is computationally expensive and not
easily parallelizable. As the 2-norm of a matrix is its maximum singular value, we have

∥∇Φ(x)∥22 = λmax(∇Φ(x)∇Φ(x)T ) = λmax(∇Φ(x)T∇Φ(x)) =: λmax(g), (2)

where we have defined g := ∇Φ(x)T∇Φ(x). Here, λmax(·) denotes the maximum eigenvalue
of a matrix. We recognize g as the pullback of the Euclidean metric on feature space back
to input space, as studied by Zavatone-Veth et al. (2023). A robust classification network
thus must have small λmax(g).

In principle, λmax(g) is differentiable so long as the spectral gap is nonzero, and so
can be näıvely added as a regularizer. However, computing the resulting updates using
automatic differentiation suffers from high runtime and memory consumption (Zavatone-Veth
et al., 2023). To alleviate such costs, we perform a series of relaxations. Assuming that
the activation function has derivatives (almost everywhere) bounded by 1, we can bound
λmax(g) by the product of the largest singular values squared of the hidden layer weights
W (l), σ2

max(W
(l)), where l ∈ [L− 1] for L the the total number of layers. This trick was used

before by Yoshida and Miyato (2017). The resulting regularizer, which we henceforth refer
to as rep-spectral because it is a spectral regularizer on representations, is

L(rep-spectral)(Θ) = γ
2

∑L−1
l=1 σ2

max(W
(l)), . (3)

where γ ⩾ 0 is the regularization strength. We present the full derivation of this regularizer in
Appendix B.2. We discuss further approximations that can be made to reduce computational
cost in Appendix D, and describe how to extend this regularizer to convolutional networks in
Appendix C. One could instead take logarithms to directly regularize the product of singular
values, but this would incur additional computational costs and result in a data-dependent
scaling factors in gradient computation that could be heuristically absorbed in γ. The
difference with Yoshida and Miyato (2017) is that we drop the penalization of the last layer.
We refer to their proposed regularizer as ll-spectral to emphasize that it penalizes the
top singular value of the readout weights, i.e., it adds the l = L term to (3).

3. Experiments

We now evaluate our proposed rep-spectral regularizer based on the accuracy of classifica-
tion and the adversarial distance of selected samples at the end of training. We focus on
transfer learning in the main text, and provide a few supervised examples in Appendix F.
To evaluate black-box adversarial robustness, we use the Tangent Attack (TA) method (Ma
et al., 2021). We provide a more detailed discussion of the TA method in Appendix E, and
document training and evaluation details in Appendix F.

As an example transfer learning task, we pretrain ResNet50 on ImageNet-1K (Deng
et al., 2009) and finetune on CIFAR-10 (see Appendix F.3 for details). In the finetuning
stage, the readout layer is trained from scratch, while only miniscule adjustments are made
to the hidden layers. For comparison in this setting, we consider finetuning using the
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Figure 1: Mean ∆x in transfer learning across different combinations of training schemes.
The left half are finetuning from unregularized model, and the right half are finetuning
from rep-spectral regularized model. In finetuning stage, adding additional regularization
typically hurts adversarial robustness performance.

ll-spectral regularizer of Yoshida and Miyato (2017) or using batch spectral shrinkage
(BSS) (Chen et al., 2019). We compute the mean adversarial distances for 500 randomly
test samples and report the mean over 10 random seeds in Figure 1 and corresponding test
accuracy in Figure 7. Although all model reaches 96% test accuracy consistently, they have
dramatically different robustness level. We found adding rep-spectral regularization at
the pretraining stage produces substantial gains in adversarial robustness, while adding
adversarial regularization in the finetuning stage typically hurts adversarial robustness. The
best robustness is obtained by adding our proposed regularizer during pretraining and then
fine-tuning without regularization (compare the dark purple bar with the dark orange bar
in Figure 1). A similar pattern holds in finetuning on other datasets; see Appendix F.3
and Figure 8 for more details. Therefore, our proposed method yields a substantial gain in
robustness in a transfer learning setting.

4. Discussion

In this paper, we have shown that a simple regularization method encourages adversarial
robustness during representation learning. This study opens the door for analyzing adversarial
robustness on a per-layer basis. In deep networks, it is widely believed that early and later
layers assume different roles in the learning tasks. Early layers may be responsible for
low-level feature extraction, while later layers adapt to high-level and task-specific features
(Cammarata et al., 2020; Feather et al., 2023; Zavatone-Veth et al., 2023). As analyzed in
work by Dyballa et al. (2024) on the generalization performance of neural networks from a
per-layer perspective, an interesting extension of our work would be to conduct ablation
studies by turning on and off spectral regularizations for certain layers, not necessarily
contiguous ones. This could allow one to identify the crucial layers contributing to model
adversarial robustness.
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Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III 13,
pages 387–402. Springer, 2013.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial at-
tacks: Reliable attacks against black-box machine learning models. arXiv preprint
arXiv:1712.04248, 2017.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig Schubert,
Chelsea Voss, Ben Egan, and Swee Kiat Lim. Thread: Circuits. Distill, 2020. doi:
10.23915/distill.00024. https://distill.pub/2020/circuits.

Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-
efficient decision-based attack. In 2020 ieee symposium on security and privacy (sp), pages
1277–1294. IEEE, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Hal Daum III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 1597–1607. PMLR, 13–18 Jul 2020b.
URL https://proceedings.mlr.press/v119/chen20j.html.

Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic
forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning.
Advances in Neural Information Processing Systems, 32, 2019.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via
randomized smoothing. In international conference on machine learning, pages 1310–1320.
PMLR, 2019.

5

https://proceedings.mlr.press/v119/chen20j.html


Extended Abstract Track
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

Elvis Dohmatob. Classifier-independent lower-bounds for adversarial robustness. arXiv
preprint arXiv:2006.09989, 2020.

Luciano Dyballa, Evan Gerritz, and Steven W Zucker. A separability-based approach to
quantifying generalization: which layer is best? arXiv preprint arXiv:2405.01524, 2024.

Jenelle Feather, Guillaume Leclerc, Aleksander Madry, and Josh H. McDermott. Model
metamers reveal divergent invariances between biological and artificial neural networks.
Nature Neuroscience, 26(11):2017–2034, Nov 2023. ISSN 1546-1726. doi: 10.1038/
s41593-023-01442-0. URL https://doi.org/10.1038/s41593-023-01442-0.

Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D Lee. Conver-
gence of adversarial training in overparametrized neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Charles R. Harris, K. Jarrod Millman, Stfan J van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernndez del Ro, Mark Wiebe, Pearu Peterson, Pierre Grard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature, 585:357362, 2020. doi:
10.1038/s41586-020-2649-2.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a
classifier against adversarial manipulation. Advances in neural information processing
systems, 30, 2017.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for
transfer. arXiv, 2021.

Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with jacobian regulariza-
tion. arXiv, 2019.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset
for fine-grained image categorization. In First Workshop on Fine-Grained Visual Cat-
egorization, IEEE Conference on Computer Vision and Pattern Recognition, Colorado
Springs, CO, June 2011.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/cifar.html.

6

https://doi.org/10.1038/s41593-023-01442-0
https://www.cs.toronto.edu/~kriz/cifar.html


Extended Abstract Track
Spectral regularization of features

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC,
2018.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT
Labs [Online], 2, 2010. URL http://yann.lecun.com/exdb/mnist.

Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and Bo Li. Qeba: Query-efficient
boundary-based blackbox attack. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1221–1230, 2020.

Yao Li, Minhao Cheng, Cho-Jui Hsieh, and Thomas CM Lee. A review of adversarial attack
and defense for classification methods. The American Statistician, 76(4):329–345, 2022.

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima
exist and sgd can reach them. Advances in Neural Information Processing Systems, 33:
8543–8552, 2020.

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn: Improved adversarial
defense through robust bayesian neural network. In International Conference on Learning
Representations, 2018.

Yujia Liu, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. A geometry-inspired
decision-based attack. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4890–4898, 2019.

Chen Ma, Xiangyu Guo, Li Chen, Jun-Hai Yong, and Yisen Wang. Finding optimal tangent
points for reducing distortions of hard-label attacks. Advances in Neural Information
Processing Systems, 34:19288–19300, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018.

Wes McKinney et al. Data structures for statistical computing in python. In Proceedings of
the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image
Processing, Dec 2008.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
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Appendix A. Related Works

This section provides a brief overview of the adversarial robustness literature, with a focus on
black-box defenses. Two major approaches to improve black-box adversarial robustness have
been proposed: training with adversarial examples and regularization (Li et al., 2022; Bai
et al., 2021). To train with adversarial samples, in each update to the network parameters,
the training set is augmented with adversarial examples. Since we have access to input
gradients during model training, one can use white-box attacks to find these examples
(Goodfellow et al., 2014; Kurakin et al., 2018; Madry et al., 2018; Athalye et al., 2018; Gao
et al., 2019; Xie et al., 2017; Liu et al., 2018; Cohen et al., 2019). By forcing the model to
become robust to these perturbations during training, it becomes less susceptible to future
adversarial attacks.

However, training with adversarial examples is computationally expensive, and it does not
guarantee that the final classifier will be adversarially robust because of its strong dependence
on the training dataset (Hein and Andriushchenko, 2017). A less data-dependent and more
computation friendly method is to design regularizers that encourage robustness. By adding
specially designed regularization terms, the model can escape bad, non-robust local minima
during optimization (Liu et al., 2020). For linear regression, logistic regression, and decision
trees with known uncertainty set structure, an exact equivalence between robustness and
regularization has been established (Bertsimas and Dunn, 2019; Bertsimas and Hertog,
2022). In more advanced applications, one can derive regularizers that promote raising lower
bounds on the adversarial distance (Hein and Andriushchenko, 2017; Bhagoji et al., 2019;
Dohmatob, 2020). Our analysis attempts to generalize this adversarial robustness notion
further for newer classification architectures.

In either case, searching for an adversarial sample with minimal adversarial distance
in a black-box fashion is highly nontrivial. This makes black-box robustness evaluation
rather difficult in practice, meaning that it is hard to evaluate defenses conclusively. Many
query-based heuristic methods have been proposed (Brendel et al., 2017; Chen et al., 2020a;
Li et al., 2020; Liu et al., 2019; Yan et al., 2020; Ma et al., 2021; Reza et al., 2023), which
rely on iterative search for the closest point on the decision boundary of a trained model to
a given sample. In our analysis we employ one such method, the tangent attack (TA) (Ma
et al., 2021), to evaluate model adversarial robustness.

Appendix B. Proofs and Discussions

B.1. Proof of Theorem 1

We first restate the lemma using dual norm formulation.

Restatment of Theorem 1 Suppose a neural network classifier F : Rn → RK is
continuously differentiable and can be decomposed as

F = SoftMax ◦ f ◦ Φ. (4)

Suppose x ∈ Rn is a sample input belonging to class c and δ ∈ Rn an adversarial perturbation
to x with error class predicted as k. Further, given 1

p +
1
q = 1, assume ∥δ∥p ⩽ R for some
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radius R > 0, we have

∥δx∥p ⩾

(
W

(L)
c −W

(L)
k

)
Φ(x) + b

(L)
c − b

(L)
k

∥W (L)
c −W

(L)
k ∥q

· 1

max
y∈Bp(x,R)

∥∇Φ(y)∥q
(5)

where f(z) = W (L)z + b(L) is the last layer linear transformation, W
(L)
c is the c-th row of

W (L) treated as a row vector, and ∇Φ(.) is the Jacobian of the feature map w.r.t. input.
Proof This lemma directly extends the main theorem of Hein and Andriushchenko (2017),
where a general classifier was considered instead.

Define h = f ◦ Φ. First, F (x) and h(x) have the same ordering of its coordinates, since
SoftMax is a strictly monotonic transformation. More explicitly,

Fc(x+ δ) ⩽ Fk(x+ δ) ⇐⇒ hc(x+ δ) ⩽ hk(x+ δ) (6)

second, by Taylor expansion to the first order in integral form, we have

hk(x+ δ) = hk(x) +

∫ 1

0
⟨∇hk(x+ tδ), δ⟩ dt, ∀k ∈ [K] (7)

where ∇hk(.) is the gradient taken w.r.t. to the input, not the parameter of the neural
network. Applying Equation (7) to Equation (6) on both sides, we have

hc(x)− hk(x) ⩽
∫ 1

0
⟨∇hk(x+ tδ)−∇hc(x+ tδ), δ⟩ dt (8)

⩽ ∥δ∥p
∫ 1

0
∥∇hk(x+ tδ)−∇hc(x+ tδ)∥q dt (Hlder with

1

p
+

1

q
= 1) (9)

⩽ ∥δ∥p · max
y∈Bp(x,R)

∥∇hk(y)−∇hc(y)∥q (R the norm of δ) (10)

⩽ ∥δ∥p · max
y∈Bp(x,R)

∥∇Φ(y)∥q∥∇fk(Φ(y))−∇fc(Φ(y))∥q (Chain Rule) (11)

here we use ∥.∥q to denote the vector-induced matrix norm when the input is a matrix.
Using Equation (11), rearranging terms, we get

∥δ∥p ⩾
hc(x)− hk(x)

max
y∈Bp(x,R)

∥∇Φ(y)∥q∥∇fk(...)−∇fc(...)∥q
(12)

note that we explicitly drop the dependence of ∇f on its input since f is assumed linear.
Parametrizing f(.) by W (L), b(L) and use the fact that h = f ◦Φ, we get Equation (5). Lastly,
taking p = q = 2 and assuming centered data, we get Equation (1).

B.2. Derivation of Feature Regularization

In this section we derive the regularization presented in Equation (3). Consider an explicit
parameterization of F (.; Θ) as a neural network with only linear layers parametrized by
Θ = {W (1), b(1), ...,W (L), b(L)} and non-linear activation function ϕ(.) and denote zl as

11
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the l-th layer preactivation value and D(l) a diagonal matrix with diagonals given by
diag(D(l)) = ϕ′(z(l)), then

∇Φ(x) = D(L−1)W (L−1)D(L−2)W (L−2) . . . D(1)W (1) (13)

therefore

λmax(g) = λmax(D
(L−1)W (L−1) . . . D(1)W (1)(W (1))T (D(1))T . . . (W (L−1))T (D(L−1))T ) (14)

⩽
L−1∏
l=1

λmax(W
(l)(W (l))T ) · λmax(D

(l)(D(l))T ) (15)

where the last line uses the cyclic property in computing the eigenvalues recursively. Note
that for common activation function the derivatives are upper-bounded by 1, and so the
maximum eigenvalue λmax(D

(l)(D(l))T ) is upper bounded by 1. We have

λmax(g) ⩽
L−1∏
l=1

λmax(W
(l)(W (l))T ) =

L−1∏
l=1

σ2
max(W

(l)) (16)

where σmax is the largest singular value. This motivates Equation (3) by replacing the
product by a sum for easier back propagation.

Appendix C. Linearization of a Multi-channel Convolution Layer

This section provides a brief description of the linearization of multi-channel convolution
layer and subsequently getting the maximum eigenvalue of this linear operation. More
details and proofs can be found in (Sedghi et al., 2018; Senderovich et al., 2022).

C.1. Construction of the linear map K̃

A periodic 2D convolution operation can be considered a linear transformation on the
vectorized input, and the weights are constructed from the filters. Consider X ∈ Rcin×n×n

an input image to a convolution layer with cin numbers of input channels and height/width
given by n. A multichannel filter K ∈ Rcout×cin×k×k with stride s with cout number of output
channels and kernel size k can be rewritten into a matrix K̃ ∈ Rcoutn2

out×cinn
2
such that

Vec(Conv2D(X)) = K̃ Vec(X) (17)

where Vec(.) is a row-major reshaping of X (i.e. the default behavior of calling .flatten()

in NumPy and PyTorch), and nout the output height/width given by nout = ⌊n−1
s + 1⌋.

The transformation K̃ consists of n2 × n2 blocks of doubly circulant matrix, and each
of the doubly circulant matrix contains data that come from appropriately slicing the
zero-padded filter K that matches with the same shape of the 2D input image. It could
be validated that the singular values of K̃ is the union of all singular values of 2D FFT-
transformed blocks of the appropriate slicing, so that to compute the top singular value of
K̃, one does not need to construct K̃ itself but instead should record the top singular values
of FFT-transformed slices and take the max of all these maximum singular values, which
saves substantial computational resources.

In Code Block 1 we present PyTorch code that is modified from theorem 2 of Senderovich
et al. (2022) for computing the square of top singular value of K̃.
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import torch

from torch.nn.functional import pad

# function body

def get_multi_channel_top_eigval_with_stride(

kernel: torch.Tensor , h: int , w: int , stride: int

) -> torch.Tensor:

"""

compute top eigen value of a convolution layer

* code tested only for even n and stride = 1 or 2.

:param kernel: the conv2d kernel , with shape (c_out , c_in , k, k)

:param h: the image height

:param w: the image width

:param stride: the stride of convolution

:return the top singular value for conv layer

"""

# pad zeros to the kernel to make the same shape as input

c_out , c_in , k_h , k_w = kernel.shape

pad_height = h - k_h

pad_width = w - k_w

kernel_pad = pad(kernel , (0, pad_height , 0, pad_width), mode="constant",

value=0)

str_shape_height , str_shape_width = h // stride , w // stride

# downsample the kernel

transforms = torch.zeros(

(c_out , c_in , stride **2, str_shape_height , str_shape_width)

).to(kernel.device)

for i in range(stride):

for j in range(stride):

transforms[:, :, i * stride + j, :, :] = kernel_pad[

:, :, i::stride , j::stride

]

# batch fft2

transforms = torch.fft.fft2(transforms)

transforms = transforms.reshape(c_out , -1, str_shape_height ,

str_shape_width)

P = transforms.permute(2, 3, 0, 1)

# compute singular value squared

eigvals = torch.linalg.eigvalsh(

torch.einsum("...ij ,...kj ->...ik", torch.conj(P), P)

if P.shape[3] > P.shape[2]

else torch.einsum("...ji ,...jk ->...ik", torch.conj(P), P)

)

# keep top eigenvalue only

top_eig = eigvals.max()

return top_eig

Code Block 1: Python code for computing the top singular value of the operator form of a
convolutional layer
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Algorithm 1 Power Iteration for Top Singular Value Squared

Require: M ∈ Cm×n, N ∈ N ▷ N number of iterations
Ensure: λ = σ1(M)2

v = v0 ▷ Randomly Generated or from previous training iterates
v ← v

∥v∥2 ▷ Normalize
i← 0
while i < N do

u←Mv
u← u

∥u∥2
v ←M∗u ▷ Conjugate Transpose
v ← v

∥v∥2
i← i+ 1

end while
p = Mv ▷ Mv1 = σ1u1
λ = ∥p∥22

C.2. Speeding Up Top Eigenvalue Computation: Power Iteration Across
Parameter Updates

Since here we are only interested in the maximal eigenvalue, we could use batched power
iteration (algorithm described in Appendix D) to jointly compute the top eigenvalues only
for 2D FFT-transformed blocks. Both 2D FFT transformation and batch eigenvalue update
are GPU friendly. Furthermore, since between consecutive parameter updates, the change in
filter map is likely small, iterations in the power method can be amortized across parameter
updates. We empirically find that the outcome of conducting a batch power iteration update
to the top eigenvalues every 20 parameter updates have little difference in performance
compared to computing the exact eigenvalue before each parameter update.

The amortization across parameter update or across epochs trick has been noticed
previously in Yoshida and Miyato (2017), but was only applied to fully-connected layers.

C.3. Implication of the Dependence on Input Dimension

Although a 2D convolution operator applies to images with arbitrary size and channels,
the top singular value of the linearized map depends on the size and channels. To impose
spectral regularization to convolution layers, it is thus recommended to use the size and
channels of the test images for regularization. The impact of regularizing on one set of
images and testing on another with different shapes and channels remains to be explored.

Appendix D. Power Iteration to Compute the Top Singular Value of a
Linear Map

Power iteration is an iterative algorithm to compute the eigenspectrum of a diagonalizable
matrix. We can extend the algorithm to compute the largest singular value of a complex-
valued matrix. The algorithm is described in Algorithm 1. In practice, N = 1 is enough,
since the parameter moves slowly as we train the cross entropy classification loss.
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Appendix E. Finding Adversarial Distances by Tangent Attack Ma et al.
(2021)

The Tangent Attack algorithm proposed by Ma et al. Ma et al. (2021) provides a good
heuristic for finding adversarial distances in the black-box setting. Here, we briefly sketch
how this algoritm operates; we refer the reader to Ma et al. (2021) for details.

Given a correctly classified sample x, we initialize the algorithm by adding a fixed number
of Gaussian perturbations with predetermined standard deviations that adapts to the input
dimension. Among all perturbed samples, we keep ones that were classified differently by
the neural network classifier and select the one with the minimum l2 distance to the original
sample x. We then run a binary search along the line segment from x to that sample to
locate a point that is on the decision boundary. We call this point x0 as our initial guess to
the adversarial sample to x.

Next we iteratively shrink the distance between xt, t ∈ {0, 1, ..., T} and x, where T is a
predefined maximum number of updates to the adversarial guesses so that at the end of
the algorithm xT is considered the adversarial sample to x and the adversarial distance
δx = ∥xT −x∥2. The update is done by performing the following three key steps in sequence:
at each t ∈ {0, 1, ..., T − 1}

1. estimate a normal direction to the decision boundary, pointing to the adversarial
region: we take local perturbation to xt. Based on the prediction on these perturbations,
averaging the vectors that give adversarial prediction gives us an estimate to the normal
direction;

2. find the tangent point in the 2D plane generated by x, xt, and the normal direction.
construct a hemisphere in the direction of the normal vector with a predefined small
radius, find the tangent plane to the hemisphere that passes through x and locate the
tangent point k. This step is done by analytic geometry and a closed form update can
be analytically derived.

3. conduct a binary search along the line segment from x to k, get a sample on the
decision boundary and assign that to xt+1. In this way, xt+1 is a valid adversarial
sample with a different prediction from x but is closer to x than xt.

In our experiments, we use T = 40 throughout. Other hyperparameters such as the
radius of hemisphere and the number of local perturbations for normal direction estimation
follows identically from the hemisphere implementation in Ma et al. (2021).

Appendix F. Experiment Details

Experiments reported in the main text required less than 240 GPU-hours.
Our code base is adapted from various publicly available ones, including TangentAttack

1 with an Apache V2 license for evaluating the adversarial distances, FixRes (Touvron
et al., 2019) 2 with a CC BY-NC 4.0 license for multi-GPU training Resnet50, SimCLR 3

1. https://github.com/machanic/TangentAttack
2. https://github.com/facebookresearch/FixRes
3. https://github.com/sthalles/SimCLR

15

https://github.com/machanic/TangentAttack
https://github.com/facebookresearch/FixRes
https://github.com/sthalles/SimCLR


Extended Abstract Track

Figure 2: Average ∆x found by TA across 10 different seeds for models trained on XOR with
(right) and without (left) weight decay, and with the inclusion of our proposed rep-spectral

regularizer, the ll-spectral regularizer that includes all layers, or no additional spectral
regularizer. Error bars show ±1 standard deviation over seeds.

with an MIT license for SimCLR model data loading and evaluation, BarlowTwins 4 with
an MIT license for BarlowTwins data loading and evaluation, practical svd conv 5 with
a BSD-3-Clause license for efficient computations of top singular value of 2D convolution
layers, and lastly nn curvature 6 with an MIT license for volume element computations.

Our Python code also uses some common publicly available packages, including NumPy

(Harris et al., 2020) with a BSD license, Matplotlib (Hunter, 2007) with a BSD license,
Pandas (McKinney et al., 2010) under a BSD license, scikit-learn (Pedregosa et al., 2011)
with a BSD license, PyTorch (Paszke et al., 2019) under a modified BSD license, tqdm with
an MIT license, and toml with an MIT license.

Data used in the project include MNIST LeCun et al. (2010), CIFAR-10 Krizhevsky
(2009), ImageNet-1K Deng et al. (2009), Stanford Dog (Khosla et al., 2011), Oxford Flowers
(Nilsback and Zisserman, 2008), and MIT indoor (Quattoni and Torralba, 2009).

F.1. Shallow MLPs trained on a toy dataset

To gain intuition for how our regularizer shapes representations, we first apply it to a
single-hidden-layer MLP trained on a toy 2D XOR task. Though this task is of course
unrealistic, it is potentially useful because we can directly visualize the input space. Given 4
data points at [±1,±1] ∈ R2, we use a network with 8 hidden units and GELU nonlinearity.
To train shallow network for clean and noisy XOR with 8 hidden units, we train for 15000
epochs using full batch GD with 1.0 learning rate, 0.9 momentum, zero or 1e-4 weight decay,
the same regularization strength (γ = 0.0001), and a regularization burnin period of 10500
epochs (70% unregularized training + 30% regularized training), all models could classify
all 4 points correctly but demonstrate vastly different decision landscapes.

4. https://github.com/facebookresearch/barlowtwins/tree/main
5. https://github.com/WhiteTeaDragon/practical svd conv
6. https://github.com/Pehlevan-Group/nn curvature
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Figure 3: Effect of spectral regularization on the representations of MLPs trained on the toy
XOR task. (a). Direct visualization of the decision boundaries of models trained using no
regularization (left), ll-spectral regularization (middle), and our proposed rep-spectral

regularization (right). The four training points are shown, colored according to their class.
(b). Visualization of the volume element, which measures the sensitivity of the representation
to small variations in the input, for models trained with each of these three methods.

Though our regularizer is motivated by the independent-pretraining, we find that even
in this fully-supervised setting we obtain improved adversarial robustness, even compared to
training using the ll-spectral regularizer that penalizes the last layer (Figure 2).

How does this robustness arise? As the input space for the XOR task is two-dimensional,
we can directly visualize it. Examining the decision boundaries in Figure 3, we see that our
rep-spectral regularizer results in increased classification margin, while the ll-spectral
regularizer does not substantially affect the decision boundary. This difference reflects the
fact that ll-spectral mostly just penalizes the readout layer norm and fails to control
the feature layer norm (Figure 4). To gain a more detailed understanding of how the
representations differ, we visualize the volume element corresponding to the metric induced
by the feature map, i.e.,

√
det g (Zavatone-Veth et al., 2023). In Figure 3, we see that the

rep-spectral regularizer noticeably increases the areas of small volume element (and thus
low representational sensitivity) near the class centers relative to the unregularized and
ll-spectral models.

For shallow network, there are only two connection layers. The difference between Yoshida
and Miyato (2017)’s ll-spectral regularization and our rep-spectral regularization is
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Figure 4: ll-spectral regularization and rep-spectral regularization weight norm change
over training on the clean XOR data shown in Figure 3. At epoch 10500 we turn on the
adversarial regularization, before which there is only crossentropy loss.

heuristically most pronounced in this case, since here rep-spectral is regularizing only half
of the layers that ll-spectral is regularizing.

In clean XOR training, by plotting the matrix 2-norm of the connection weights in
each layer through respective regularization, we found a striking contrast between the
two. By imposing the same regularization strength for rep-spectral and ll-spectral,
rep-spectral is able to control effectively the weight norm of the feature layer with an
expansion of weight norm in the last layer; ll-spectral regularization is the exact opposite
that it fails to control the weight norm in the feature layer. This is shown in the Figure 4.

F.2. Shallow MLPs trained on MNIST images

We next apply our regularizer to single-hidden-layer MLPs trained to classify MNIST images
LeCun et al. (2010), with flattened input of 784 dimensions and 2000 hidden units. To train
shallow network with 784 hidden units on MNIST dataset, we train for 200 epochs using SGD
with batch size 1024, learning rate 0.1, momentum 0.9, weight decay 1e-4, γ = 0.001, and a
regularization burn-in period of 160 epochs (80% unregularized training + 20% regularized
training). The update of the eigendirections are done through one power iteration every
parameter update. We sample 1000 testing images and apply the TA algorithm to detect
the minimum l2 perturbation.

In the fully supervised setting, though regularization slightly decreases test accuracy,
we observe that excluding the last layer produces a smaller loss of accuracy and a larger
increase in adversarial distance compared to regularizing all layers (Figure 5).

To test whether our regularizer leads to more robust representations, we discard the
linear head and perform classification using multilogistic regression on the fixed feature
representations. We use multilogisitic regression with a l2 regularization parameter 1 (i.e.
the default setting when applying sklearn.linear model.LogisticRegression) trained
on the feature representations of the same train samples. Surprisingly, in this setting our
regularizer does not hurt test accuracy compared to the unregularized model (Figure 6).
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(a) (b)

Figure 5: Spectral regularization during supervised training of a single-hidden-layer MLP
on MNIST images improves robustness. For each regularization method, we show text
accuracy (left) and adversarial distance averaged across 1000 samples (right) across 10
random seeds. Gray dots indicate the results for individual seeds, while boxplots show the
mean and quartiles.

(a) (b)

Figure 6: Re-training a readout from the hidden representation of an MLP pretrained
on MNIST. For each regularization method, we show text accuracy (left) and adversarial
distance averaged across 1000 samples (right) across 10 random seeds. Gray dots indicate
the results for individual seeds, while boxplots show the mean and quartiles.

Moreover, the resulting model is more adversarially robust than when supervised pretraining
of the representation is performed without regularization or with ll-spectral regularization
(Figure 6). This suggests that, on a simple image classification task, our method achieves its
stated goal: to enable representation learning that gives good adversarial robustness when
an unregularized readout is trained to perform downstream tasks.
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Figure 7: Test accuracy in transfer learning across multiple combinations of training schemes.
The left half are finetuning from unregularized model, and the right half are finetuning
from rep-spectral regularized model. All models reach an accuracy level of 96%, but have
different adversarial robustness level shown in Figure 1.

F.3. Transfer Learning

In unregularized pretraining, we train ResNet50 for 120 epochs using SGD with learning
rate 0.02, momentum 0.9, weight decay 1e-4, linear scheduling 30 epochs with decay 0.1. We
distribute batchsize of 512 images across 4 GPUs for training. For regularized pretraining,
starting at epoch 80 (67% unregularized training + 33% regularized training), we turn on
rep-spectral regularization with γ = 0.001, with power update of top eigenvectors every
160 parameter updates to alleviate computation costs.

We test these two models’ performance at finetune time, in which we train on CIFAR10
scale to 224 by 224 images with the same dimensionality with ImagNet for 50 epochs using
SGD with 0.01 learning rate on linear head and 0.002 learning rate for the backbone, each
with a ConsineAnneling scheduling with max parameter 200 epochs for both backbone
and linear head. We visualize the test accuracy for each model of each random seed in
Figure 7. On average, finetuned model starting with regularized weights have 0.2% drop in
test accuracy than the ones staring with unregularized weights.

To see if our regularization method is effective beyond the CIFAR10 dataset, we also
tested performance on more commonly used transfer learning target dataset: Stanford Dog
(Khosla et al., 2011) contains images of 120 different kinds of dogs; Oxford Flowers (Nilsback
and Zisserman, 2008) contains images of 102 different types of flowers; MIT Indoor (Quattoni
and Torralba, 2009) contains indoor scenes of 67 different categories. Three dataset have
the same input dimensionality with ImageNet1k. Similar as in finetuning on CIFAR10, we
the model pretrained on ImageNet either with or without our regularizations, and in the
finetunning stage we perform normal CrossEntropy optimization. As different target dataset
have different inherent complexity, we finetune on the three models using different set of
hyperparameters. To finetune on Stanford dog, we train for 50 epochs using SGD with a
learning rate 0.005 for last layer and 0.001 for the feature layers; to finetune on Oxford
Flowers we train for 1000 epochs using SGD with a learning rate 0.005 for last layer and
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0.001 for the feature layer; and to finetune on MIT Indoor, we train for 100 epochs using
SGD with a learning rate 0.01 and 0.002 for the feature layers. All dataset are trained
with a btachsize of 64. With either pretrained weights with or without regularization, we
repeat each training for 5 times and report the end test accuracy and adversarial distances
in Figure 8. Although finetuned models starting from regularized weights have 2% drop in
test accuracy compared to the finetuned models starting with unregularized weights, we
have roughly 10% increase in mean adversarial distances across different dataset, suggesting
that our feature map trained is not uniquely robust to finetuning on one particular dataset.
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(a) (b)

(c) (d)

(e) (f )

Figure 8: Test accuracy and mean adversarial distances from pretraining on ImageNet and
finetuning on Stanford Dog (top row), Oxford Flowers (middle row), MIT Indoor (bottom
row). The grey dots indicate the value from each of the 5 random seeds. Sacrificing at most
2% of test accuracy, we obtain at least 10% gain in the adversarial distances on average.
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