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Abstract
Pre-trained language models (PLMs) have001
gained increasing popularity due to their com-002
pelling prediction performance in diverse nat-003
ural language processing (NLP) tasks. When004
formulating a PLM-based prediction pipeline005
for NLP tasks, it is also crucial for the pipeline006
to minimize the calibration error, especially in007
safety-critical applications. That is, the pipeline008
should reliably indicate when we can trust its009
predictions. In particular, there are various con-010
siderations behind the pipeline: (1) the choice011
and (2) the size of PLM, (3) the choice of uncer-012
tainty quantifier, (4) the choice of fine-tuning013
loss, and many more. Although prior work has014
looked into some of these considerations, they015
usually draw conclusions based on a limited016
scope of empirical studies. There still lacks017
a holistic analysis on how to compose a well-018
calibrated PLM-based prediction pipeline. To019
fill this void, we compare a wide range of pop-020
ular options for each consideration based on021
three prevalent NLP classification tasks and the022
setting of domain shift. In response, we rec-023
ommend the following: (1) use ELECTRA for024
PLM encoding, (2) use larger PLMs if possible,025
(3) use Temp Scaling as the uncertainty quanti-026
fier, and (4) use Focal Loss for fine-tuning.027

1 Introduction028

PLMs (Qiu et al., 2020; Min et al., 2021) have029

achieved state-of-the-art performance on a broad030

spectrum of NLP benchmarks (Rajpurkar et al.,031

2016, 2018; Wang et al., 2019a,b) and are increas-032

ingly popular in various downstream applications033

such as question answering (Yoon et al., 2019; Garg034

et al., 2020), text classification (Arslan et al., 2021;035

Limsopatham, 2021), and relation extraction (Zhou036

et al., 2021; Xiao et al., 2022). Consequently, it037

is paramount for PLMs to faithfully communicate038

when to (or not to) rely on their predictions for039

decision-making, especially in high-stakes scenar-040

ios. In these cases, we need PLMs to quantify their041

uncertainty accurately and calibrate well (Abdar042

et al., 2021), meaning that their predictive con- 043

fidence should be a valid estimate of how likely 044

they are to make a correct prediction. Consider 045

an example of medical question answering (Yoon 046

et al., 2019; Zhang et al., 2021) where a PLM is 047

asked to assist doctors when diagnosing diseases. 048

If the PLM is 90% sure that a patient is healthy, 049

the predicted outcome should occur 90% of the 050

time in practice. Otherwise, it may adversely affect 051

doctors’ judgment and lead to catastrophic conse- 052

quences. Hence, since PLMs have become the de 053

facto paradigm for many NLP tasks, it is necessary 054

to assess their calibration quality. 055

When constructing a well-calibrated PLM-based 056

prediction pipeline for NLP tasks, various consid- 057

erations are involved. To name a few: 058

1. Due to the use of diverse pre-training datasets 059

and strategies, different PLMs may behave 060

differently regarding calibration. 061

2. The model size of PLMs may also affect their 062

capability in calibration. 063

3. Leveraging uncertainty quantifiers (e.g., Temp 064

Scaling (Guo et al., 2017) and MC Dropout 065

(Gal and Ghahramani, 2016)) alongside PLMs 066

in the pipeline may reduce calibration error. 067

4. Some losses (e.g., Focal Loss (Mukhoti et al., 068

2020) and Label Smoothing (Müller et al., 069

2019)) may fine-tune PLMs to calibrate better. 070

Although some of these considerations have been 071

studied before, the ideal choice for each consid- 072

eration remains obscure. On the one hand, Desai 073

and Durrett (2020) report unconventional calibra- 074

tion behavior for PLMs, which casts doubts on the 075

prior beliefs drawn on traditional neural networks 076

by Guo et al. (2017). On the other hand, exist- 077

ing work (Desai and Durrett, 2020; Dan and Roth, 078

2021) on PLMs’ empirical calibration performance 079

often looks at a single consideration and concludes 080

by comparing only one or two types of PLMs. 081

Therefore, in this paper, we present a compre- 082

hensive analysis of the four pivotal considerations 083
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introduced above via large-scale empirical evalua-084

tions. To ensure that our analysis is applicable to085

various NLP tasks and resilient to domain shift, we086

set up three NLP tasks (i.e., Sentiment Analysis,087

Natural Language Inference, and Commonsense088

Reasoning) and prepare both in-domain and out-089

of-domain testing sets for each task. In addition090

to the explicit metrics of prediction and calibra-091

tion error, we also utilize two evaluation tasks to092

examine calibration qualities implicitly. Selective093

prediction lowers prediction error by avoiding un-094

certain testing points, and out-of-domain detection095

checks if a pipeline is less confident on unseen do-096

mains. By comparing four to five options for each097

consideration, we recommend the following:098

1. Use ELECTRA (Clark et al., 2020) as the099

PLM to encode input text sequences.100

2. Use the larger version of a PLM if possible.101

3. Use Temp Scaling (Guo et al., 2017) for post102

hoc uncertainty recalibration.103

4. Use Focal Loss (Mukhoti et al., 2020) during104

the fine-tuning stage.105

Compared to prior work, our extensive empirical106

evaluations also reveal the following novel obser-107

vations that are unique to PLM-based pipelines:108

• The calibration quality of PLMs is relatively109

consistent across tasks and domains, except110

XLNet (Yang et al., 2019) being the most vul-111

nerable to domain shift.112

• In contrast to other NLP tasks, larger PLMs113

are better calibrated in-domain in Common-114

sense Reasoning.115

• Uncertainty quantifiers (e.g., Temp Scaling)116

are generally more effective in improving cal-117

ibration out-of-domain.118

• Ensemble (Lakshminarayanan et al., 2017) is119

less effective in PLM-based pipelines.120

To encourage future work towards better uncer-121

tainty quantification in NLP, we release our code122

and large-scale evaluation benchmarks containing123

120 PLM-based pipelines based on four metrics124

(prediction and calibration error, selective predic-125

tion, and out-of-domain detection). These pipelines126

consist of distinct choices concerning the four con-127

siderations and are tested on all three NLP tasks128

under both in- and out-of-domain settings.1129

2 Background130

2.1 Problem Formulation131

Datasets. In this work, we focus on utilizing PLMs132

for NLP classification tasks. More specifically,133

1See the associated software and data submissions.

consider such a task where the training set Dtrain = 134

{(xi, yi)}Ntrain
i=1 consists of pairs of a text sequence 135

xi ∈ Xin and an associated label yi ∈ Y . Similarly, 136

the validation set Dval and the in-domain testing 137

set Din come from the same domain Xin and share 138

the same label space Y . We also prepare an out- 139

of-domain testing set Dout, which differs from the 140

others by coming from a distinct domain Xout. 141

PLM-based Pipeline. We apply a PLM M to 142

encode an input text sequence xi and feed the en- 143

coding vector to a classifier F , which outputs a 144

predictive distribution ui over the label space Y 145

via the softmax operation. Here, parameters in M 146

and F are fine-tuned by minimizing a loss function 147

ℓ on Dtrain. It is optional to modify the distribu- 148

tion ui post hoc by an uncertainty quantifier Q to 149

reduce calibration error. We define the predicted 150

label as ŷi = argmaxj∈{1,...,|Y|} uij with the cor- 151

responding confidence ĉi = uiŷi . 152

Calibration. One crucial goal of uncertainty 153

quantification is to improve calibration. That is, the 154

predicted confidence should match the empirical 155

likelihood: P (yi = ŷi | ĉi) = ĉi. We follow 156

Guo et al. (2017) by using the expected calibration 157

error (ECE) to assess the calibration performance. 158

The calculation of ECE is described in Section 3.1. 159

To reduce ECE, our main experimental evaluation 160

lies in examining four considerations involved in 161

a PLM-based pipeline: (1) the choice of PLM M 162

(Section 3), (2) the size of PLM M (Section 4), (3) 163

the choice of uncertainty quantifier Q (Section 5), 164

and (4) the choice of loss function ℓ (Section 6). 165

2.2 Related Work 166

Uncertainty quantification has drawn long-lasting 167

attention from various domains, such as weather 168

forecasting (Brier et al., 1950; Raftery et al., 2005), 169

medical practice (Yang and Thompson, 2010; Jiang 170

et al., 2012), and machine translation (Ott et al., 171

2018; Zhou et al., 2020; Wei et al., 2020). Re- 172

searchers have approached this question from both 173

Bayesian (Kendall and Gal, 2017; Depeweg et al., 174

2018) and frequentist perspectives (Alaa and Van 175

Der Schaar, 2020a,b). They have also proposed 176

different techniques to improve uncertainty cali- 177

bration for classification (Kong et al., 2020; Krish- 178

nan and Tickoo, 2020) and regression (Kuleshov 179

et al., 2018; Cui et al., 2020; Chung et al., 2021) 180

tasks. Recent work has investigated the connection 181

between uncertainty and other properties as well, 182

including model interpretability (Bhatt et al., 2021; 183

Antoran et al., 2021) and out-of-domain generaliza- 184
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tion (Wald et al., 2021; Qin et al., 2021).185

PLMs (Qiu et al., 2020; Min et al., 2021) have186

achieved state-of-the-art prediction performance187

on diverse NLP benchmarks (Rajpurkar et al.,188

2016, 2018; Wang et al., 2019a,b) and demon-189

strated many desired properties like stronger out-190

of-domain robustness (Hendrycks et al., 2020) and191

better uncertainty calibration (Desai and Durrett,192

2020). They typically leverage a Transformer archi-193

tecture (Vaswani et al., 2017) and are pre-trained194

by self-supervised learning (Jaiswal et al., 2021).195

Although Guo et al. (2017) report that larger196

models tend to calibrate worse, PLMs have been197

shown to produce well-calibrated uncertainty in198

practice (Desai and Durrett, 2020), albeit for giant199

model sizes. Their unusual calibration behavior200

puts the observations drawn on traditional neural201

networks (Ovadia et al., 2019; Mukhoti et al., 2020)202

or pre-trained vision models (Minderer et al., 2021)203

in doubt. Prior work (Desai and Durrett, 2020; Dan204

and Roth, 2021) on the calibration of PLMs often205

explores only one or two types of PLMs and ig-206

nores uncertainty quantifiers and fine-tuning losses207

beyond Temp Scaling and Cross Entropy, respec-208

tively. As a result, there lacks a holistic analysis209

that explores the full set of these considerations in a210

PLM-based pipeline. Therefore, our paper aspires211

to fill this void via extensive empirical studies.212

3 Which Pre-trained Language Model?213

3.1 Experiment Setup214

To evaluate the calibration performance of PLMs,215

we consider a series of NLP classification tasks:216

1. Sentiment Analysis identifies the binary sen-217

timent of a text sequence. We treat the IMDb218

movie review dataset (Maas et al., 2011) as in-219

domain and the Yelp restaurant review dataset220

(Zhang et al., 2015) as out-of-domain.221

2. Natural Language Inference predicts the re-222

lationship between a hypothesis and a premise.223

We regard the Multi-Genre Natural Language224

Inference (MNLI) dataset (Williams et al.,225

2018) covering a range of genres of spoken226

and written text as in-domain and the Stanford227

Natural Language Inference (SNLI) dataset228

(Bowman et al., 2015) derived from image229

captions only as out-of-domain.230

3. Commonsense Reasoning determines the231

most reasonable continuation of a sentence232

among four candidates. We view the Situa-233

tions With Adversarial Generations (SWAG)234

dataset (Zellers et al., 2018) as in-domain and235

Sentiment Natural Language Commonsense
Analysis Inference Reasoning

Xin IMDb MNLI SWAG
Xout Yelp SNLI HellaSWAG
|Y| 2 3 4
|Dtrain| 25,000 392,702 73,546
|Dval| 12,500 4,907 10,003
|Din| 12,500 4,908 10,003
|Dout| 19,000 4,923 5,021

Table 1: In- and out-of-domain datasets, label space
size, and each data split size of the three NLP tasks.

Hugging Face Model Pre-training Pre-training
Name Size Corpus Size Task

bert-base-cased 109M 16G Masked LM, NSP
xlnet-base-cased 110M 161G Permuted LM

electra-base-discriminator 110M 161G Replacement Detection
roberta-base 125M 161G Dynamic Masked LM
deberta-base 140M 85G Dynamic Masked LM

bert-large-cased 335M 16G Masked LM, NSP
xlnet-large-cased 340M 161G Permuted LM

electra-large-discriminator 335M 161G Replacement Detection
roberta-large 335M 161G Dynamic Masked LM
deberta-large 350M 85G Dynamic Masked LM

Table 2: Model size, pre-training corpus size, and pre-
training task of the five PLMs, separated into the base
(upper) and the large (lower) versions.

its adversarial variant (HellaSWAG) (Zellers 236

et al., 2019) as out-of-domain. 237

For each task, we construct Dtrain, Dval, and Din 238

from the corresponding in-domain dataset, and Dout 239

from the corresponding out-of-domain dataset. The 240

original validation set of each dataset is split in half 241

randomly to form a held-out non-blind testing set 242

(i.e., Din or Dout). Table 1 describes the task details. 243

To understand which PLM delivers the lowest 244

calibration error, we examine five popular options: 245

1. BERT (Devlin et al., 2019) utilizes a bidi- 246

rectional Transformer architecture pre-trained 247

by masked language modeling (LM) and next 248

sentence prediction (NSP). 249

2. XLNet (Yang et al., 2019) proposes a two- 250

stream self-attention mechanism and a pre- 251

training objective of permuted LM. 252

3. ELECTRA (Clark et al., 2020) pre-trains a 253

discriminative model to detect tokens replaced 254

by a generative model. 255

4. RoBERTa (Liu et al., 2019) builds on BERT 256

by pre-training based on dynamic masked LM 257

only and tuning key hyperparameters. 258

5. DeBERTa (He et al., 2020) further improves 259

RoBERTa via a disentangled attention mecha- 260

nism and an enhanced mask decoder. 261

We use the base version of each PLM, which has 262

a similar model size and is initialized from the 263
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(d) In-Domain Calibration vs Out-Of-Domain Calibration

Figure 1: Calibration and (selective) prediction performance of five PLMs in three NLP tasks under two domain
settings. The calibration quality of the five PLMs is relatively consistent across tasks and domains, while XLNet is
the least robust to domain shift. ELECTRA stands out due to its lowest scores in ECE, prediction error, and RPP.

corresponding Hugging Face (Wolf et al., 2020)264

pre-trained checkpoint. Table 2 details these PLMs.265

After receiving the encoding vector of the classi-266

fication token [CLS] for an input text sequence267

from the PLM, we pass it through a classifier to268

obtain a predictive distribution. Regarding the clas-269

sifier configuration, we follow the default practice270

in Hugging Face by utilizing a two-layer neural271

network with tanh non-linear activation.272

The learning rate for each model-dataset combi-273

nation is tuned based on the validation set among274

{5e−6, 1e−5, 2e−5, 5e−5}. We leverage AdamW275

(Loshchilov and Hutter, 2018) to minimize the276

cross-entropy loss on Dtrain for five epochs with277

early stopping and a linearly decaying scheduler278

(Goyal et al., 2017) whose warm-up ratio = 10%.279

Batch size is 16, and the model gradients are280

clipped to a maximum norm of 1. We perform281

our experiments on a Tesla A6000 GPU and report282

the mean and one standard error by conducting six 283

trials with different seeds. 284

To explicitly evaluate calibration performance by 285

ECE, we first stratify N predictions into K bins of 286

equal width based on the sorted confidence values. 287

Then ECE is a weighted average of the absolute 288

difference between the accuracy and confidence of 289

each bin: ECE =
∑K

k=1
|Bk|
N |acc(Bk)−conf(Bk)|, 290

where acc(Bk) and conf(Bk) are the average ac- 291

curacy and confidence of predictions in bin Bk, 292

respectively. We set K = 10 in our experiments. 293

To implicitly assess calibration quality based 294

on selective prediction, we deploy the metric of re- 295

versed pair proportion (RPP). More specifically, for 296

a dataset of size N , RPP = 1
N2

∑N
i=1

∑N
j=1 1[ĉi < 297

ĉj , yi = ŷi, yj ̸= ŷj ]. It measures the proportion of 298

prediction pairs with a reversed confidence-error re- 299

lationship. A lower RPP indicates that the pipeline 300

is more confident on correct predictions. 301
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(e) Out-Of-Domain Calibration vs Out-Of-Domain Prediction

Figure 2: Calibration and prediction performance of large and base PLMs in three NLP tasks under two domain
settings. Larger PLMs calibrate better than their respective base versions when evaluated out-of-domain, while
calibrating slightly worse in-domain with one exception in Commonsense Reasoning. If the computational budget
permits, larger PLMs constitute more powerful pipelines given their lower out-of-domain ECE along with lower
prediction error. We also observe a positive correlation between calibration and prediction error out-of-domain.

3.2 Empirical Findings302

As shown in Figure 1(a), the calibration per-303

formance of all five PLMs deteriorates from in-304

domain to out-of-domain. This phenomenon co-305

incides with the finding made by Ovadia et al.306

(2019) on traditional neural networks. In addi-307

tion, the ranking among the five PLMs based308

on ECE is generally consistent, which implies309

that their calibration quality is transferable across310

tasks and domains. More specifically, for all three311

tasks under the in-domain setting, XLNet, ELEC- 312

TRA, RoBERTa, and DeBERTa outperform BERT 313

in terms of lower ECE, suggesting that a larger 314

pre-training corpus may improve the calibration 315

quality (see Table 2). When moving to the out-of- 316

domain setting, XLNet sees the largest increase 317

in ECE, which makes it an outlier in Figure 1(d). 318

This observation may indicate that the pre-training 319

task of permuted LM is vulnerable to domain shift. 320

ELECTRA stands out among the five exam- 321
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ined PLMs in encoding input text sequences.322

Not only does it achieve the (comparably) lowest323

ECE in all three tasks under both in- and out-of-324

domain settings, it also delivers the lowest predic-325

tion error in Figure 1(b) and the lowest RPP for326

selective prediction in Figure 1(c). We hypothesize327

its success to the unique pre-training paradigm of328

replaced token detection, which preserves the to-329

ken distribution by avoiding the artificial [MASK]330

tokens in masked LM and enhances the computa-331

tional efficiency by learning from all input tokens.332

4 What Model Size?333

4.1 Experiment Setup334

To investigate how the size of PLMs affects the335

calibration performance, we compare the large ver-336

sions of the five PLMs mentioned in Section 3.1337

against their respective base versions. We keep the338

rest of the setup the same as in Section 3.1.339

4.2 Empirical Findings340

Figures 2(a) and (b) demonstrate that larger PLMs341

tend to produce a slightly higher ECE compared342

to their respective base versions when evaluated343

in-domain, while calibrating better out-of-domain.344

This observation based on five PLMs verifies the345

conclusion made by Dan and Roth (2021) solely346

based on BERT. However, there is a notable ex-347

ception that larger PLMs are significantly better348

calibrated in-domain in Commonsense Reason-349

ing than their respective base versions, which350

implies that larger PLMs are more aware of their351

uncertainties during the reasoning process.352

Larger PLMs constitute more powerful PLM-353

based pipelines, if computational budget per-354

mits. Although sometimes they suffer slightly in355

in-domain calibration compared to their smaller356

counterparts, larger PLMs achieve a lower ECE357

out-of-domain. They also deliver lower in- and358

out-of-domain prediction errors in Figures 2(c) and359

(d), respectively. In addition, we observe a positive360

correlation between calibration and prediction er-361

rors under the out-of-domain setting in Figure 2(e),362

suggesting that pipelines calibrating well out-of-363

domain are more accurate under domain shift as364

well. This reflects the finding in Wald et al. (2021)365

that multi-domain calibration leads to better out-of-366

domain prediction performance.367

5 Which Uncertainty Quantifier?368

5.1 Experiment Setup369

As discussed in Section 2.1, we can further adjust370

the vanilla predictive distribution post hoc via an371

uncertainty quantifier. Therefore, we study four 372

uncertainty quantifiers based on the setup in Sec- 373

tion 3.1 to inspect which improve the calibration 374

performance in our problem formulation: 375

1. Temp Scaling (Guo et al., 2017) learns a 376

scalar parameter Ttemp based on Dval and “soft- 377

ens” the vanilla logit output with Ttemp to ob- 378

tain a new predictive distribution. 379

2. MC Dropout (Gal and Ghahramani, 2016) 380

approximates the expectation of a posterior 381

predictive distribution by averaging Tmc for- 382

ward passes with dropout turned on. 383

3. Ensemble (Lakshminarayanan et al., 2017) 384

averages the predictive distributions of Ten 385

independently trained models. 386

4. LL SVI (Last-Layer Stochastic Variational 387

Inference) (Blundell et al., 2015) implements 388

variational layers with reparameterized Monte 389

Carlo estimators based on the Bayesian-Torch 390

package (Krishnan et al., 2022). It approxi- 391

mates the expectation of a posterior predictive 392

distribution by averaging Tsvi forward passes 393

through the Bayesian classification layers. 394

Here, we follow Lakshminarayanan et al. (2017) by 395

setting Ten = 5. We use Tmc = 10 and Tsvi = 50 396

due to computational constraints during inference. 397

The dropout rate in MC Dropout is the same as the 398

default dropout rate of each PLM. 399

5.2 Empirical Findings 400

In Figure 3, we plot the change in calibration and 401

prediction performance due to the use of uncer- 402

tainty quantifiers compared to the vanilla results 403

in Section 4.1. The improvement in calibra- 404

tion is more significant out-of-domain. More 405

specifically, the degree to which these quantifiers 406

decrease ECE follows the descending order of 407

Temp Scaling, MC Dropout, Ensemble, and LL 408

SVI. In fact, LL SVI even hurts the calibration in 409

terms of an increase in ECE, suggesting that varia- 410

tional classifiers with reparameterized Monte Carlo 411

estimators cannot capture uncertainties well when 412

used only at the fine-tuning stage. Unlike Ovadia 413

et al. (2019), we find Ensemble less effective in 414

PLM-based pipelines, possibly because individual 415

learners in Ensemble are initialized from the same 416

pre-trained model checkpoint and, consequently, 417

the strong correlation among them limits the power 418

of Ensemble (Liu and Yao, 1999). 419

Meanwhile, Temp Scaling preserves prediction 420

results, and Ensemble lowers prediction error, as ex- 421

pected. Although MC Dropout and LL SVI reduce 422
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Figure 3: Change in calibration and prediction performance due to the use of four uncertainty quantifiers. The
effectiveness of these quantifiers in reducing ECE follows the descending order of Temp Scaling, MC Dropout,
Ensemble, and LL SVI. The drop in ECE is more significant out-of-domain. Temp Scaling is the most compelling
fine-tuning loss due to its largest reduction in ECE, preservation of prediction results, and little computational cost.

the prediction error out-of-domain in Common-423

sense Reasoning by producing sharper predictive424

distributions, they usually end up being overconfi-425

dent, which leads to the rise in ECE in Figure 3(a).426

Temp Scaling is the most appropriate uncer-427

tainty quantifier for PLM-based pipelines. Com-428

pared to LL SVI, Temp Scaling diminishes ECE429

and maintains the competitive prediction quality of430

PLMs. Moreover, the post hoc recalibration man-431

ner of Temp Scaling adds little to the computational432

burden. In contrast, Ensemble or MC Dropout sig-433

nificantly increases the computational cost during434

fine-tuning or inference, respectively. Note that435

this distinction is of great importance given the436

enormous computational burdens of PLMs.437

6 Which Fine-tuning Loss?438

6.1 Experiment Setup439

Besides cross-entropy loss, we consider four other440

losses when fine-tuning a BERT base model and441

compare their calibration performance based on the442

setup in Section 3.1.443

1. Cross Entropy (Good, 1952) is the negative444

log likelihood of ground-truth classes.445

2. Brier Loss (Brier et al., 1950) is the squared446

difference between predictive distributions447

and one-hot ground-truth vectors.448

3. Focal Loss (Mukhoti et al., 2020) applies a449

modulating term to cross-entropy loss to focus450

model learning on hard misclassified samples.451

4. Label Smoothing (Müller et al., 2019) pro-452

duces targeting distributions by allocating 453

probability mass to non-ground-truth classes. 454

5. MMCE (Maximum Mean Calibration Error) 455

(Kumar et al., 2018) is a differentiable proxy 456

to regularize calibration error, usually used 457

alongside cross-entropy loss. 458

We use a smoothing factor of 0.1, and follow the 459

practice in Mukhoti et al. (2020) by setting the focal 460

hyperparameter to 5 when the predictive probabil- 461

ity for the ground-truth class ∈ [0, 0.2) and to 3 462

when the probability ∈ [0.2, 1]. 463

In addition, we leverage out-of-domain detection 464

to implicitly examine the quality of uncertainty 465

quantification. We want models to be less confident 466

on Dout than on Din and, hence, report the false 467

alarm rate at 95% recall (FAR95) (Hendrycks et al., 468

2020). This metric tells the ratio of samples in Din 469

whose confidence is lower than the 95th percentile 470

of samples in Dout. 471

6.2 Empirical Findings 472

As shown in Figure 4(a), Label Smoothing, Fo- 473

cal Loss, and MMCE generate better-calibrated 474

BERT base models compared to Cross Entropy 475

and Brier Loss. While models fine-tuned by Cross 476

Entropy, Focal Loss, or MMCE calibrate better in- 477

domain, Brier Loss and Label Smoothing enjoy a 478

decrease in ECE when evaluated out-of-domain. 479

This observation matches the findings in Desai and 480

Durrett (2020); Dan and Roth (2021) and is in- 481

tuitive for Label Smoothing since it deliberately 482
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(a) In-Domain and Out-Of-Domain Calibration of BERT-Base Fine-tuned with Different Losses
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(b) Out-Of-Domain Detection of BERT-Base Fine-tuned with Different Losses

Figure 4: Calibration and out-of-domain detection performance of BERT base models fine-tuned by five losses.
Focal Loss, Label Smoothing, and MMCE are more capable of fine-tuning well-calibrated models compared to
Cross Entropy and Brier Loss. Focal Loss is the best option due to its competitively low ECE and FAR95.

alleviates overconfidence during fine-tuning.483

Focal Loss is the most compelling fine-tuning484

loss for PLM-based pipelines. Among the five ex-485

amined options, Focal Loss delivers competitively486

low ECE, both in- and out-of-domain for all three487

tasks. Moreover, it scores the lowest in FAR95,488

as illustrated in Figure 4(b), meaning that models489

fine-tuned by Focal Loss are most alert to domain490

shift. We note that FAR95 scores are relatively491

high in Sentiment Analysis and Natural Language492

Inference, probably because these pipelines also493

predict well out-of-domain in Figure 2(d).494

7 Conclusion495

In this paper, we contribute a comprehensive anal-496

ysis on how to reduce calibration error in a PLM-497

based pipeline. We establish four key consider-498

ations behind the pipeline and compare a broad499

range of prevalent options for each consideration.500

Our empirical evaluations consist of three distinct501

NLP classification tasks and two different domain502

settings. Based on our large-scale systematic anal-503

ysis, we recommend the following:504

1. Use ELECTRA for PLM encoding.505

2. Use larger PLMs if possible.506

3. Use Temp Scaling for post hoc recalibration.507

4. Use Focal Loss during the fine-tuning stage.508

Compared to existing work, we also observe the fol-509

lowing novel phenomena that are unique to PLM-510

based pipelines:511

• The relative calibration quality of PLMs is512

consistent in general across tasks and domains,513

with an exception of XLNet, which is the least514

robust to domain shift. 515

• Larger PLMs are better calibrated under the in- 516

domain setting in Commonsense Reasoning, 517

unlike in the other NLP tasks. 518

• Uncertainty quantifiers are generally more ef- 519

fective in improving calibration performance 520

under the out-of-domain setting. 521

• Ensemble is less effective in reducing cal- 522

ibration error when used with PLM-based 523

pipelines, despite their convincing perfor- 524

mance with traditional models. 525

8 Limitation 526

Due to computational constraints, we are unable 527

to pre-train PLMs from scratch with other combi- 528

nations of pre-training corpora and tasks. Conse- 529

quently, while our analysis is applicable to existing 530

widely-used PLMs, we do not claim its generaliza- 531

tion to new combinations of pre-training corpora 532

and tasks. We believe that this does not invalidate 533

our claims which are primarily targeted toward 534

real-world practitioners using existing PLMs. It 535

is possible that techniques catering to the special 536

needs of PLM-based pipelines (Kong et al., 2020) 537

can mitigate calibration error further. 538

Moreover, although our setup involves domain 539

shift, we do not focus on inspecting how the degree 540

of domain shift affects the calibration performance 541

of PLM-based pipelines. It is also interesting to 542

consider how to construct a well-calibrated PLM- 543

based pipeline for other types of NLP tasks such 544

as cross-lingual text classification and generation, 545

which we leave to future work. 546
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PLM-based pipeline via extensive empirical stud- 791
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we believe that the takeaways from our analysis 795
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write off the computational cost in the future. 797

In particular, the Hugging Face package lever- 798
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evaluation benchmarks of our empirical analysis to 805
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