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Abstract

Drug repositioning, the identification of novel uses of existing therapies, has be-
come an attractive strategy to accelerate drug development. Knowledge graphs
(KGs) have emerged as a powerful representation of interconnected data within
the biomedical domain. While link prediction on biomedical can ascertain new
connections between drugs and diseases, most approaches only state whether two
nodes are related. Yet, they fail to explain why two nodes are related. In this
project, we introduce an implementation of the semi-parametric Case-Based Rea-
soning over subgraphs (CBR-SUBG), designed to derive a drug query’s underlying
mechanisms by gathering graph patterns of similar nodes. We show that our adap-
tation outperforms existing KG link prediction models on a drug repositioning task.
Furthermore, our findings demonstrate that CBR-SUBG strategy can provide inter-
pretable biological paths as evidence supporting putative repositioning candidates,
leading to more informed decisions.

1 Introduction

Traditional drug discovery and development is a time-consuming and resource-intensive process [1].
Repositioning existing drugs for new therapeutic uses has emerged as a strategy aimed at reducing
drug development costs by decreasing failure rates and time to market[2].

Over recent years, there has been an increasing interest in utilizing biomedical knowledge graphs
(KGs) for drug repositioning [3, 4, 5, 6]. Briefly, biomedical KGs consist of nodes representing
biological concepts (such as genes, drugs, diseases, and pathways) and edges describing their
relationship (such as drugs treating diseases, or diseases associated with genes) [7].

A growing number of drug repositioning link prediction approaches on biomedical KGs have emerged
to predict connections of drugs to candidate diseases [8, 9, 10, 11]. However, these methods focus
on mapping nodes and relations to vector representations via translational distance models, matrix
factorization, or neural network models. Then, a scoring function is defined to measure the correctness
of a triple in the embedding space. While these projects have been successful predicting novel
indication candidates, the limitation of all these methods is that they neither consider nor explain the
biological mechanism of drugs and their relationship with a disease.

∗Code available at the following Github repository:github.com/Carolina1396/CBR-SUBG_MIND.git
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Figure 1: Explaining CBR-SUBG workflow for drug repositioning. Given a query (azlaire, indication,
?), (1) CBR-SUBG first retrieves k-NN similar drug nodes (astemizole, sulindac) to the input query
and gathers their reasoning paths that lead to the corresponding disease they treat. (2) Next, these
paths are reused to address the query of interest. (3) Finally, all gathered nodes by reasoning chains
are revised. The disease answer node (star) is the node within the query subgraph that exhibits the
highest similarity to the disease answer nodes of the k-NN nodes. Note that the reused paths required
to answer the query repeat over similar drugs (highlighted in green), and the reasoning chains not
obtained from similar drugs (highlighted in red) lead to incorrect answers.

As a solution, we explore Case-Based Reasoning (CBR) — an artificial intelligence approach that
learns from past experiences to solve new problems [12]. At a high level, the CBR system comprises
the following main steps: retrieve cases that are similar to the given problem, reuse solutions of
similar cases for the problem in hand, and revise if the solutions are appropriate for solving the given
problem [13].

In this paper we introduce a novel semi-parametric adaptation of CBR strategy over subgraphs
(CBR-SUBG) focused on drug repositioning. Previously, Das et al. [14] demonstrated the utility and
effectiveness of this semi-parametric approach for natural language queries [15]. Here, we leverage
reasoning paths from similar drugs to identify potential repositioning candidates for a given drug of
interest. Our framework utilizes a Graph Neural Network (GNN) trained on a queried drug’s CBR
extracted subgraph patterns. As the reasoning patterns of similar drug cases (solutions) reoccur within
the subgraph of a drug query of interest, a disease answer node can be found analogously located
within the subgraph.

Our CBR-SUBG implementation, not only outperforms sophisticated GNN-based models but also
enables interpretable biological mechanisms identification to support a given drug’s repositioning.
Moreover, we present a case study on azlaire and Parkinson’s disease, demonstrating the potential of
CBR-SUBG for drug repositioning and its effectiveness in uncovering intermediate biological nodes
that explain novel drug-disease associations.

2 Related work

Case-based reasoning models A simple non-parametric CBR approach for KG completion was
proposed by Das et al. [16, 17]. Simple CBR finds reasoning chains for a query of interest by
retrieving similar cases. However, it only handles symbolic matching to find similarities between
a query and similar cases. More recently, Das et al. proposed a CBR-SUBG model that uses
soft-matching to compare representations of answer queries and similar answer cases [14, 15]. Our
CBR-SUBG implementation for drug repositioning task takes advantage of derived reasoning patterns
from similar answer cases to explain putative drug reasoning candidates.

Graph Neural Networks In knowledge graph completion frameworks, different GNN architectures,
including relational-GCN (R-GCN) [18], and composition-based multi-relational GCN (CompGCN)
[19], serve as encoders of the entire immediate neighborhood of each node, along with a scoring
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function such as DistMult [20], and ConvE [21]. While CBR-SUBG is not dependent on any specific
Message Passing Neural Networks (MPNN) scheme, in contrast to other frameworks, a model like
CBR-SUBG generates tailored subgraphs, enabling the collection of relevant chains for a query.

3 Methods

Notation A KG is a directed labeled multi-graph G = (E ,R), defined by a set of nodes (E) and a set
of edges (R). A KG is a collection of facts represented as triplets of the form (e1, r, e2) where e1, e2
∈ E and r ∈ R. A path (p) in a KG is defined as a sequence of alternating nodes and edges connecting
a starting node and an ending node. Formally, a path is represented as p = (e1, r1, e2, ...rn, en+1).

Task Description We formulate drug repositioning as a series of query answering on a biomedical
KG. As described, in CBR a new problem is solved based on similar previously observed cases. In
our setting, we define a query problem (q) as (e1, r1, ?) (e.g. Azlaire, indication, ?), where e1 denotes
a particular drug entity and r1 the missing relation "indication" that links to a disease node. Here
we define a case (c) as an observed indication (e1, r, e2) in the KG along with a set of biological
reasoning paths (p) that connect a drug e1 to the corresponding disease e2 it treats.

Method overview As depicted in Figure 1, given a drug query input (q), CBR-SUBG first retrieves
k-nearest neighbor drug cases (k-NNq). For each retrieved case c, a collection of reasoning chains p
leading to its corresponding disease answers were collected. Next, paths retrieved were reused on the
input query to form a subgraph where a GNN encodes the underlying subgraph structure into a node
representation [22]. Lastly, CBR-SUBG reasons across the drug query and retrieved k-NNq drug’s
subgraphs to identify the correct query answer.

3.1 Model Description

In this section we describe CBR-SUBG’s composition and its implementation for drug repositioning
task following three main steps of CBR framework; retrieving similar cases, reusing solutions, and
revising results.

1- Retrieve Similar Drug Cases Given the input drug query q , CBR-SUBG first retrieves k-NNq

similar drug cases c using a pre-computed similarity matrix S ∈ RE×E that stores the similarity
score between all pairs of nodes. To model this, each drug entity is parameterized in an m-hot vector
e ∈ RR, with dimensions equal to the number of relation types on the KG. An entry in the vector
is set to 1 if a drug entity has at least one edge with that relation type, otherwise is set to 0. The
similarity score between two drug queries is given by the cosine similarity between their normalized
vector representations. Naturally, two drug nodes that capture the same relation types should have a
high similarity score. For each retrieved drug case, CBR-SUBG gathers the paths in the graph that
connect the drug entity to the corresponding disease it treats. Note that since the number of collected
paths between two nodes can grow exponentially, we only considered 1000 randomly sampled paths
of length up to three around each drug.

2- Reuse Drug Solutions Next, the gathered reasoning paths of retrieved similar drug cases are
reused for the query of interest. Beginning with the drug query node, the sequence of relation types
(path types) is applied. An example is depicted in Figure 1 where astemizole is retrieved as one of
the k-NNq similar drugs to our query, azlaire. The recovered path: (astemizole, affects, HRH4, part
of, histamine receptor, associated, rhinitis), is reused by gathering the sequence of relation types such
as: affects (drug, gene) ∧ affects (gene, pathway) ∧ associated (pathway, disease). After iterating
over all similar retrieved cases, the collected chains form a subgraph for the drug query.

3- Revise Disease Predictions Once the subgraphs for the drug query and the corresponding k-NNq

similar drugs are defined, CBR-SUBG reasons across them. For this, drug representations are encoded
with a GNN to incorporate its respective local subgraph structure. Finally, the most similar disease
node in the query subgraph to the answers in the k-NNq subgraph drugs is retrieved as the answer.

Encoding node representations Considering that biomedical KGs are heterogeneous graphs with
labeled edges, we employed the multi-relational R-GCN model [18]. We followed the general MPNN
scheme that iteratively updates the representation of each node by aggregating the representation of
its neighbors [23]. In particular the lth layer of GNN is given by,
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ale = AGGREGATEl(hl−1
s : s ∈ N (e), hl−1

e ) (1)

hl
e = COMBINEl(hl−1

e , ale) (2)

where, ale is the aggregated message form the neighbors, hl
e denotes the representation of node e

in the lth layer, and N (e) denotes the set of immediate neighbors of node e. For multi-relational
R-GCN model, these steps are defined as:

ale =
∑R

r=1

∑
e∈Nr(e)

W l
rh

l−1
e (3)

hl
e = ReLU(W l

selfh
l−1
e + ale) (4)

where, R is the total number of relation types captured in the KG, Nr(e) denotes the immediate
outgoing neighbors of node e under relation r; W l

r is the transformation matrix used to propagate the
message in the lth layer for relation r.

Training During training, the disease answer node (di) of the query subgraph (Gi) and the disease
answer node (dj) of the k-NNq subgraphs (Gj) are trained to be more similar to each other in
comparison to incorrect disease answer nodes. This similarity is calculated as the cosine similarity
between the normalized disease answer representations. Considering that retrieved similar drug case
could arrive at a set of answers (Dj), we calculate the mean of the scores between di and all answer
nodes in Gj as sim(di, Dj)=

1
|Dj |

∑
dj∈Dj

( d⊤i dj / ∥di∥ ∥dj∥). Then, the similarity mean score
of all retrieved similar drug cases is aggregated for the given drug query. The loss function used is
an extension of the normalized temperature-scaled cross entropy loss used in Chen et al. [24] and
introduced by Das et al. [15]:

L = −log

∑
di∈Di

exp(
∑

qj∈kNNqi
sim(di, Dj)/T )∑

xi∈E(Gi)
exp(

∑
qj∈kNNqi

sim(xi, Dj)/T )
(5)

where, Di represents the set of all answer nodes in Gi, while Dj denotes the set of all answer nodes
of retrieved similar k-NNq drug cases, xi ∈ Gi represents all nodes in the subgraph of drug query
and T denotes the temperature hyperparameter. This way, the loss score the disease answer nodes in
Di higher than all other nodes in Gi with respect to the answer nodes in k-NNq drug subgraph.

Reasoning Message-passing is run across both the drug query subgraph and the subgraphs of retrieved
k-NNq drugs, resulting in the generation of node representations. A ranking of similarity scores is
returned, where the highest score node in the query subgraph with respect to all answer nodes in the
retrieved drug subgraphs is returned as a more likely repositioning answer. For this,

ans = argmax
∑

di∈Di

exp(
∑

qj∈kNNqi

sim(di, Dj))(6)

4 Experimental setup

Dataset Details In this section, we conduct experiments on Mechanistic Repositioning Network
with Indications (MIND), a biomedical knowledge graph that integrates two biomedical resources:
Mechanistic Repositioning Network (MechRepoNet) and DrugCentral [25]. Briefly, MechRepoNet
is a comprehensive biomedical knowledge graph that was constructed by integrating 18 different
data sources, consisting of of 9,652,116 edges, 250,035 nodes, 9 node types and 22 relations [4].
DrugCentral, is a publicly available online resource that incorporates information from indications
that have received approval from regulatory agencies [26]. Here, we divided MIND into subsets:
train (80%, 2087 indications), and test (20%, 390 indications).

Hyperparameter optimisation For CBR-SUBG model, we optimized hyperparameters using Optuna
software [27]. Next, our model was trained and tested on datasets mentioned above. We used one
GCN layer with 64 dimensions and a dropout of 0.7965, where edges are randomly dropped from the
graph while aggregating information from the neighborhood. For training and evaluation we used 5
and 10 nearest neighbors, respectively. We optimized the loss using Adam Optimizer. The learning
rate is set to be 0.01 with a temperature value of 0.1053.

4



Evaluation We compared CBR-SUBG with various state-of the art models using standard ranking
metrics: Hits@N metric, which assesses the accuracy of identifying the correct disease answer within
the top N predictions, and mean reciprocal rank (MRR), the average of the reciprocal of the positional
rank for all correct disease answers.

5 Results

5.1 Performance Comparison

Table 1: Inference performance results on MIND

Model MRR Hits@1 Hits@3 Hits@5 Hits@10

RGCN + DistMult 0.1157 0.0180 0.1084 0.2108 0.3494
RGCN + ConvE 0.1197 0.0240 0.1144 0.1867 0.3614

CompGCN + DistMult 0.27735 0.1954 0.30651 0.36398 0.44828
CompGCN + ConvE 0.36112 0.25287 0.41762 0.47126 0.55556
Non-parametric CBR 0.03269 0.0158 0.0317 0.0396 0.0634

CBR-SUBG 0.3770 0.2796 0.4329 0.4789 0.5708

In this section, we evaluate the performance of CBR-SUBG and other KG completion state-of-the-art
models on the MIND dataset to identify drug repositioning candidates. In particular, we compare
to other GNN-based link prediction models such as R-GCN [18], and CompGCN [19], as well as
the non-parametric CBR model [16] that gathers reasoning chains to find an answer. Evaluation
of GNN-based models was conducted using ConvE [21] and DistMult [20] as scoring functions.
As demonstrated in Table 1, our implementation of CBR-SUBG significantly outperforms all the
baselines in all metrics. We further discuss the results in section 6.

5.2 Propranolol Case Study

Propranolol was first approved by FDA as a beta-blocker to manage heart-related issues, such as
hypertension [28]. Since beta blockers were known to relax the cardiac muscle and block nerve
impulses to the muscle, it was later approved for essential tremor [29]. Therefore, we investigated if
CBR-SUBG could have predicted this repositioning within MIND (Figure 2). While hypertension
was predicted in the first position, Parkinson’s disease was the second prediction. Notably, one of
the primary symptoms of Parkinson’s disease is tremor, aligning with propranolol’s repositioning
potential [30].
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Figure 2: Propranolol case study. a) PCA visualization of propanolol disease predictions. The red
dot depicts the mean representation of answer nodes derived from k-NN similar drugs. Color scale
illustrates repositioning ranking. Expected true answer (star) and top two predictions are displayed.
Note that prediction 500 is shown as scale reference. b) Evidence supporting propranolol prediction
for true answer (star) and top two repositioning answers.
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Considering the CBR hypothesis, where the representation of answer nodes of drug query q and
retrieved k-NNq drug subgraphs should be similar as the local structure around them share similarities.
A PCA visualization of propranolol predictions shows that answer nodes within retrieved k-NNq

drug query subgraphs cluster together alongside the top repositioning answers (Figure 2a). As
illustrated, as the node representation similarity of disease predictions gets apart w.r.t k-NNq answers,
the ranking of them decreases.

Illustrated in Figure 2b, CBR-SUBG model is able to provide interpretable chains for propranolol
indication predictions. These reasoning paths enable the identification of shared biological targets
among repositioning answers, ultimately enhancing the quality of decision-making with more compre-
hensive insights. As illustrated, propranolol binds to beta-2 receptor [31], member of GCPR family,
playing an important role in regulating heart rate [32]. Furthermore, beta-2 receptor is associated
with an increased risk of developing Parkinson [33]. Moreover, we detected that propranolol targets
interleukin-6 [34] regulating phosphorylation of transcription factor STAT1. This modulation is
documented to take part in the pathogenesis of various cardiac insults [35] and reported to mediate
thyroid morphology and function [36].

6 Conclusion

Our work presents a novel adaptation of the CBR paradigm for drug repositioning tasks. While graph
computational drug repositioning approaches continue evolving, the interpretable explanation of
predictions made continues mostly unsolved. Here, we demonstrated that reasoning chains provided
by our implementation of CBR-SUBG approach can provide important domain insights to better
assess whether novel drug-disease candidates are plausible.

From the results, we demonstrated CBR-SUBG outperforms various GNN-based and non-parametric
CBR models on drug repositioning tasks. While the non-parametric CBR model has the ability to
provide reasoning chains that explain drug-disease predictions, it is limited by the exact symbolic
matching done to find an answer. Next, compared to GNN-based models, CBR-SUBG only considers
important features that are reused from similar solutions. As described, this is done by leveraging
the graph structure patterns from similar drug nodes and reasoning over a subgraph query. In other
words, instead of considering all the neighbor nodes around a given query during message-passing
scheme, CBR-SUBG only considers relevant features to make an inference.

Acknowledgments The authors would like to thank Dr Rajarshi Das and Dr Chunlei Wu for support
and feedback.
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