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Abstract—In this work, we consider the problem of recovering
a sparse signal consisting of a sum of filtered spikes from the
output of a time encoding machine (TEM). This problem was
addressed before with recovery methods designed for filters with
specific shapes, mostly relying on Prony’s method for recovery.
Here we propose a new recovery method for sparse inputs
from TEM samples. Compared to existing approaches, the new
method relaxes significantly the assumption on the filters. The
method is associated by a theoretically guaranteed algorithm.
We provide numerical examples to evaluate the new method,
including an example with filters that are not compatible with
previous methods.

I. INTRODUCTION

A model encountered in many problems in basic and applied
sciences, the signal model represents a sum of filtered spikes
with different amplitudes. In the frequency domain, this is
equivalent to resolving parameters of complex-exponentials.
This representation is typically used when measurements are
directly performed in the Fourier domain. Mathematically, the
input is modelled as

g(t) =
∑K

k=1
akφ(t− τk), t ∈ [0, tmax] , (1)

where {τk}Kk=1 are positive real numbers representing time-
domain shifts of φ(t), and {ak}Kk=1 are real coefficients. The
recovery problem is to compute {τk, ak}Kk=1 using measure-
ments of g(t). Given its various different applications, this
problem was considered under various names, including (a)
Tauberian Approximation [1], (b) Time-Delay Estimation [2],
(c) Sparse Deconvolution [3], [4], (d) Super-resolution [5]
and (e) Finite-rate-of-Innovation Sampling [6]. More recent
applications have shown that (1) represents a core concept
also for areas such as ultra-fast time-of-flight imaging [7], the
Unlimited Sensing Framework [8]–[10] or analytical imaging
of paintings [11].

Motivation. Despite the extensive work in the topic, see [1]–
[6] and follow-up literature, there are remaining fundamental
research gaps due to the mathematical tractability of (1) in

This research is supported by the UK Research and Innovation coun-
cil’s Future Leaders Fellowship program “Sensing Beyond Barriers” (MRC
Fellowship award no. MR/S034897/1). Further details on Unlimited Sens-
ing and upcoming materials on reproducible research are available via
https://bit.ly/USF-Link.

the case of non-conventional sampling approaches. One such
approach is time encoding, which converts a continuous-time
input g(t) into an increasing sequence of time events tk.
The sampling model is known as a Time Encoding Machine
(TEM), which is inspired by the information processing in
the brain, and is characterized by low power consumption
[12]. A TEM with input g(t) is an operator T defined as
T g = {tk}k∈Z. The TEM thus generates a strictly increas-
ing sequence of time samples {tk}k∈Z, known as spikes
or trigger times. The input recovery approach, known as a
Time Decoding Machine (TDM) has been realised for the
case of bandlimited inputs [12]–[14], inputs belonging to
shift-invariant spaces [14], [15], and also inputs with jump
discontinuities [16]–[18].

In this work, we consider the problem of recovering sparse
inputs of the form (1) for a wide class of filteres φ(t) from
their corresponding TEM samples. This was considered before
for the case where φ(t) is a polynomial or exponential B-spline
[19], hyperbolic secant kernel [20], [21] or a biologically
inspired alpha synaptic model [22]. In [23], the problem of
sparse recovery for TEMs was considered for a filter compris-
ing a sum of complex exponentials, whose output (TEM input)
is a periodic bandlimited function. The recovery conditions
combine TEM Nyquist rate conditions with classical sparse
input recovery. Moreover, as before, the constraints on the
acquisition setup may be restrictive, e.g., in applications where
the TEM input is not bandlimited. This line of work was
further extended in [24], [25].

We note that the existing methods for sparse input recovery
for TEMs are dependent on specific expressions of φ(t). This
is a strong assumption, as a filter in real applications may
deviate from a specific shape. Moreover, the existing methods
are mostly based on Prony’s method for recovery. In this work,
we generalize the problem of sparse input recovery from TEM
samples for filters of arbitrary shape satisfying some mild
assumptions. Our contributions are as follows.

Contributions. We introduce theoretical guarantees under
which a sequence of filters of flexible shape can be recovered
from the TEM observations. We complement the theory with
a theoretically guaranteed recursive recovery algorithm that is
evaluated numerically for different filter shapes.



Figure 1: The asynchronous sigma-delta modulator (ASDM) diagram.

II. THE TIME ENCODING MACHINE

Here we consider the case of an Asynchronous Sigma-
Delta Modulator (ASDM) TEM, which is characterised by low
power consumption [26] and modular design [27]. The ASDM
comprises a loop with an adder, integrator, and a noninverting
Schmitt trigger, as depicted in Fig. 1. At t = 0, the Schmitt
trigger is initialised as z(0) = −b, where b is a constant
denoting the amplitude of the ASDM output. The first ASDM
output sample is t0 = 0. Subsequently, the output sequence
{tn}n⩾1 satisfies the t-transform equations [12]

Lng = (−1)
n
[2δ − b(tn+1 − tn)] , n ∈ Z∗

+, (2)

where Lng ≜
∫ tn+1

tn
g (s), δ is the threshold and b is the

amplitude of the Schmitt trigger output. We assume that
|g(t)| ⩽ c < b, c > 0, which yields the following bounds
on the density of the ASDM samples ∆tn ≜ tn+1 − tn [12]

2δ

b+ c
⩽ ∆tn ⩽

2δ

b− c
. (3)

When the input g(t) is bandlimited to Ω rad/s, it was shown
that exact input recovery is possible provided that |∆tn| < π

Ω .

III. SAMPLING SPARSE SIGNALS WITH A TEM

A. Proposed Sampling Pipeline

We consider that g(t) belongs to the input space spanned by
(1), where {ak, τk}Kk=1 are unknown real numbers satisfying
εa < |ak| < c, 0 < τk < τk+1 < tmax, τk+1 − τk > ετ ,
εa, ετ , c, tmax > 0 and K is the unknown number of pulses
with shape φ(t). We assume that φ(t) is known and has
finite support [−L/2, L/2]. Without reducing the general-
ity, we assume that the pulses are normalized such that
maxt |φ(t)| = 1. Furthermore, we assume maxt |g(t)| < c,
ετ < L/2, τ1 ⩾ L/2 and φ(t) is second order differentiable
on (−L/2, L/2) and continuous on R. We also assume that
φ′(t) > 0, t ∈ [−L/2, 0). Besides the normalization condition,
the conditions on φ(t) are defining a space of functions that
are relatively common, including the previously considered
cases of polynomial and exponential splines [19], hyperbolic
secant kernel [20] and alpha synaptic activation function [22].

We assume that g(t) is sampled with an ASDM TEM with
parameters δ, b over the finite time interval [0, tmax] to yield
output time encoded samples {tn}Nn=1. We assume that

ετ > 6δ
b−c , which, based on the TEM properties in Section

II, ensures that there are at least 3 TEM output samples in
between each two consecutive pulses. The problem we propose
is to recover {ak, τk}Kk=1 from {tn}Nn=1.

B. Proposed Recovery Approach

The idea behind the proposed recovery is that one can
use a number of TEM samples to uniquely determine the
time and amplitude of each pulse, under significantly reduced
assumptions on the filter. Let nk ∈ Z be the index of the TEM
output located right before the onset of the kth filter

nk = max
n∈{1,...,N}

{
n
∣∣ tn ⩽ τk − L/2

}
. (4)

Using the ASDM equations it follows that, given that g(t) =
0 for t ∈ [tn, tn+1] , n < n1 then Lng = 0,∀n ∈
{1, . . . , n1 − 1}. Furthermore, using the pulse separation as-
sumption ετ > 6δ

b−c , we have that Ln1
g ̸= 0 and Ln1+1g ̸= 0,

since |a1| > εa > 0 and

Lng =

∫ tn+1

tn

a1φ (t− τ1) dt, n ∈ {n1, n1 + 1} . (5)

Thus, using (2), one can find n1 as

ñ1 = min
n∈{1,...,N}

{
n
∣∣ |2δ − b(tn+1 − tn)| > 0

}
. (6)

In practice, due to numerical errors, one would compute
|2δ − b(tn+1 − tn)| > tol, where tol is a small tolerance
set by the user, modelling the estimation error of the pre-
vious filters at time tn. Using Ln1

g and Ln1+1g, the first
objective is to compute τ1, a1. We first denote In(τ) ≜∫ tn+1

tn
φ(t − τ)dt, which implies that Ln1

g = a1In1
(τ1) and

Ln1+1g = a1In1+1(τ1) (5). We note that Ln1+1

Ln1
=

In1+1(τ1)

In1
(τ1)

is not a function of a1. Therefore, if In1+1(τ)

In1
(τ) is strictly mono-

tonic as a function of τ , then τ1 can be uniquely estimated.
Subsequently, a1 can be estimated as Ln1g

In1
(τ1)

. We first give a

theorem analysing the monotonicity of In1+1(τ)

In1 (τ)
. Subsequently,

we show how to recover recursively the remaining values
{τk, ak}Kk=2.

Theorem 1. Let {tn+i}2i=−1 be a set satisfying

0 < tn−1 ⩽ τ − L/2 < tn < tn+1 < tn+2.

Furthermore, assume that 2δ
b+c ⩽ ∆tn+i ⩽ 2δ

b−c for some
δ, b, c > 0 and i ∈ {−1, 0, 1}. Let In(τ) =

∫ tn+1

tn
φ(t− τ)dt,

for τ ∈ (tn−1 + L/2, tn + L/2). Then In+1(τ)
In(τ)

is well-defined,
differentiable, and strictly increasing if the following holds

b− c

b+ c
⩾

φ′
max,δ

2

φ′
min,δ

2 +
2φ

(
−L

2 + 2δ
b−c

)
φ′
min,δ

2 ·∥φ′′∥∞·
(
1 +

b+ c

b− c

)
−2,

(7)
where ∥φ′′∥∞ denotes the absolute norm on (−L/2, L/2) and

φ′
max,δ ≜ max

t∈Sδ
φ′(t), φ′

min,δ ≜ min
t∈Sδ

φ′(t), (8)

where Sδ ≜
[
−L

2 ,−
L
2 + 6δ

b−c

]
.

Proof. The filter satisfies φ(t) = 0, t < −L/2 and, given
that φ′(t) > 0, t ∈ [−L/2, 0), it follows that φ(t) > 0, t ∈
(−L/2, 0) and thus φ(t−τ) > 0, t ∈ (−L/2+τ, τ). It follows



that In(τ) > 0 and thus In+1(τ)
In(τ)

is well-defined. Moreover,
In(τ) is the composition of differentiable functions, therefore
it is itself differentiable.

For simplicity, let f(t) ≜ φ(t − τ), t ∈ [τ − L/2, τ ] , fl =
f (tl) , l ∈ {n, n+ 1, n+ 2}, and ∆fl = fl+1 − fl, ∆tl =
tl+1 − tl, l ∈ {n, n+ 1}. The following holds

I ′n(τ) = φ (tn − τ)− φ (tn+1 − τ) = −∆fn,

I ′n+1(τ) = φ (tn+1 − τ)− φ (tn+2 − τ) = −∆fn+1.(
In+1(τ)

In(τ)

)′

=
I ′n+1(τ)In(τ)− In+1(τ)I

′
n(τ)

I2n(τ)

=
∆fn · In+1(τ)−∆fn+1 · In(τ)

I2n(τ)
.

(9)

The sign of the derivative is dictated by the numerator in (9),
which is strictly positive if and only if

1

∆fn

∫ tn+1

tn

f(t)dt <
1

∆fn+1

∫ tn+2

tn+1

f(t)dt. (10)

Function f(t) inherits the properties of being positive, differ-
entiable and strictly increasing from φ(t). We expand f(t) in
Taylor series with anchor points tn and tn+1, respectively,

f(t) = fn+f ′ (ξn) (t− tn) ⩽ fn+f ′
max(t− tn), t ∈ [tn, tn+1]

f(t) = fn+1 + f ′ (ξn+1) (t− tn+1) ⩾ fn+1 + f ′
min(t− tn+1),

for t ∈ [tn+1, tn+2], such that

tn ⩽ ξn ⩽ t ⩽ tn+1, f ′
max = max

t∈[tn,tn+2]
f ′(t)

tn+1 ⩽ ξn+1 ⩽ t ⩽ tn+2, f ′
min = min

t∈[tn,tn+2]
f ′(t).

Then we can bound the corresponding integrals of f(t) as∫ tn+1

tn

f(t)dt ⩽ fn ·∆tn + f ′
max

∆t2n
2

, (11)∫ tn+2

tn+1

f(t)dt ⩾ fn+1 ·∆tn+1 + f ′
min

∆t2n+1

2
. (12)

Then a sufficient condition for (10) is

fn
∆tn
∆fn

+
f ′
max

2

∆t2n
∆fn

< fn+1
∆tn+1

∆fn+1
+

f ′
min

2

∆t2n+1

∆fn+1
. (13)

We then use that fn, fn+1 > 0, and thus

fn
∆tn
∆fn

+
f ′
max

2

∆t2n
∆fn

⩽
fn
f ′
min

+
f ′
max∆tn
2f ′

min

,

fn+1
∆tn+1

∆fn+1
+

f ′
min

2

∆t2n+1

∆fn+1
⩾

fn+1

f ′
max

+
f ′
min∆tn+1

2f ′
max

.

(14)

As before, we use (14) to get a sufficient condition for (13),
by rearranging the terms as

∆tn+1

∆tn
⩾

2f ′
max

f ′
min

[
f ′
max

2f ′
min

− fn+1/f
′
max − fn/f

′
min

∆tn

]
=

f ′
max

2

f ′
min

2 − 2
fn+1 · f ′

min − fn · f ′
max

f ′
min

2∆tn
.

(15)

We note that, if f ′(t) is constant for t ∈ [tn, tn+2] then
f ′
min = f ′

max and the condition above amounts to ∆tn+1

∆tn
⩾

1 − 2 ∆fn
∆tnf ′

min
, sufficiently guaranteed by b−c

b+c > −1, which is
always true given the LHS is strictly positive. This gives us
a margin that can be exploited for the case when f ′(t) is not
constant, as shown next. By rearranging the terms,

∆tn+1

∆tn
⩾

f ′
max

2

f ′
min

2 − 2
fn+1 − fn
f ′
min∆tn

+ 2fn
f ′
max − f ′

min

f ′
min

2∆tn
. (16)

We continue the derivation of a sufficient condition by finding
a lower bound for the LHS as ∆tn+1

∆tn
⩾ b−c

b+c . Furthermore, we
get an upper bound for the second term on the RHS as

−2
fn+1 − fn
f ′
min∆tn

= −∆fn
∆tn

2

f ′
min

= −2f ′(ξ̄n)

f ′
min

⩽ −2, (17)

where ξ̄n ∈ [tn, tn+1]. Lastly, we get an upper bound for the
third term in the RHS of (16) as

2fn
f ′
max − f ′

min

f ′
min

2∆tn
= 2fn

f ′(ζM )− f ′(ζm)

f ′
min

2∆tn

=
2fn

f ′
min

2

f ′(ζM )− f ′(ζm)

ζM − ζm
· ζM − ζm
tn+1 − tn

=
2fn

f ′
min

2 ·
∣∣f ′′(ζ̄n)

∣∣ · ζM − ζm
tn+1 − tn

(18)

⩽
2f

(
2δ
b−c + τ − L

2

)
f ′
min

2 · f ′′
max ·

tn+2 − tn
tn+1 − tn

⩽
2φ

(
−L

2 + 2δ
b−c

)
f ′
min

2 · f ′′
max ·

(
1 +

b+ c

b− c

)
,

where ζm, ζM ∈ [tn, tn+2] s.t. f ′(ζm) = f ′
min and f ′(ζM ) =

f ′
max, ζ̄n ∈ [tn, tn+2] s.t.

∣∣f ′′(ζ̄n)
∣∣ = f ′(ζM )−f ′(ζm)

ζM−ζm
and

f ′′
max = maxt∈[tn,tn+2] |f ′′(t)|. Furthermore, in the last in-

equality, we use that tn−1 ⩽ τ − L/2 < tn to compute a
bound for fn. Lastly, we have that

φ′
max,δ = max

t∈Sτδ
f ′(t), φ′

min,δ = min
t∈Sτδ

f ′(t), (19)

where Sτδ =
[
τ − L/2, τ − L/2 + 6δ

b−c

]
. Using [tn, tn+1] ⊆

Sτδ , we get that f ′
max ⩽ φ′

max,δ and φ′
min,δ ⩽ f ′

min. By plugging
this in (16) together with (18) and (17), we get the final
sufficient condition.

Remark 1. We note that the sufficient condition (7) in Theo-
rem 1 is achievable. In fact, if we assume that φ′(−L/2) ̸= 0,
then

lim
δ→0

φ′
max,δ

2

φ′
min,δ

2 = 1, lim
δ→0

2φ
(
−L

2 + 2δ
b−c

)
φ′
min,δ

2 = 0. (20)

The latter equality holds because φ(t) = 0, t < −L/2, and
using continuity on R we get φ(−L/2) = 0. It follows that,
for δ → 0, (7) becomes

b− c

b+ c
⩾ −1,



Algorithm 1: Recovery Algorithm.

Data: {tn}Nn=1 , δ, b, φ(t), L, ετ , tol.
Result: K, {τ̃k, ãk}Kk=1

1) Compute L1
ng = (−1)n [2δ − b∆tn] , n ∈ {1, . . . , N},

set k = 1.
2) While ∃n ∈ {1, . . . , N} s.t.

∣∣Lk
ng

∣∣ > tol

2a) Compute ñk = minn∈{1,...,N}
{
n
∣∣ ∣∣Lk

ng
∣∣ > tol

}
2b) Compute In(τ) =

∫ tn+1

tn
φ(t− τ)dt for

n ∈ {ñk, ñk + 1} and
τ ∈ (tn−1 + L/2, tn + L/2).

2c) Compute τ̃k by solving
Iñk+1(τ)

Iñk
(τ) =

Lñk+1

Lñk

via line
search.

2d) Compute ãk =
Lk

ñk
g

Iñk
(τ̃k)

.

2e) Compute Lk+1
n g ≜ Lk

ng −
∫ tn+1

tn
ãkφ (t− τ̃k) dt,

k = k + 1.
3) Compute K = k − 1.

which is always true. Therefore, if φ′(−L/2) ̸= 0 then (7)
is true for δ small enough. We show in the numerical study
section that the recovery works even when φ′(−L/2) = 0.

Using Theorem 1, In1+1(τ)

In1
(τ) =

Ln1+1

Ln1
has a unique solution

τ1. We estimate it as τ̃1 via a line search algorithm. Thereon,
the amplitude of the first pulse is estimated as ã1 =

Ln1g

In1
(τ̃1)

.
Note that computing τk, ak can be de-coupled and each can be
computed by a different method. For the next pulse, we remove
the contribution of the first pulse from the measurements via

L2
ng ≜ Lng −

∫ tn+1

tn

a1φ (t− τ1) dt. (21)

The process continues recursively. The proposed recovery
approach is summarized in Algorithm 1.

IV. NUMERICAL STUDY

We test our recovery algorithm for two different pulse
shapes φ(t). The input is g(t) =

∑K
k=1 akφ (t− τk), where

K = 6, amplitudes ak are randomly generated in [−4,−2] ∪
[2, 4], values τk are randomly generated in [0, 10] with minimal
distance ετ = 1. For the first example φ(t) = β3(t) is the
B-spline of order 3 with support [−1, 1] and amplitude 1.
Without any additional pre-filtering, the input is then encoded
with an ASDM TEM with parameters δ = 1, b = 12, which
leads to a sequence of TEM samples {tn}59n=1. We then
implement Algorithm 1 for L = 2, ετ = 1, tol = 4.5 · 10−2

and estimate K̃ = K = 6, and sparse signal parameters
{τ̃k, ãk}Kk=1 with the following average percentage errors
Errτ = 0.05%,Erra = 0.42%, defined as

Errτ = 1
K

K∑
k=1

100· |τ̃k − τk|
|τk|

, Erra = 1
K

K∑
k=1

100· |ãk − ak|
|ak|

.

(22)
The input, filter output TEM output and recovered input are
depicted in Fig. 2(a). We note that our algorithm works well

for this input, despite the fact that φ′(−L/2) = 0 (see Remark
1). We repeat the experiment above with a new pulse shape
generated using the hyperbola curve 1/t

φ(t) =


− 1

t−1 − 0.5, t ∈ (−1, 0],
1

t+1 − 0.5, t ∈ (0, 1),

0, t ∈ (−∞,−1] ∪ [1,∞).

(23)

We note that this pulse is generated in a fundamentally
differently way from the pulses in the existing literature,
that are generated using complex exponentials [24] or real
exponentials [19], [20], [22]. This means the existing methods
are not directly applicable. We use Algorithm 1 with a new
set of 6 randomly generated values {τk, ak}. In this case
φ′(−L/2) ̸= 0, and thus Remark 1 via Theorem 1 guarantees
recovery for δ small enough. We use the same parameters as
in the previous example. The results are depicted in Fig. 2(b),
and the errors are Errτ = 0.05%,Erra = 0.57%.

V. CONCLUSIONS

In this work we presented a new method for recovering
a sparse input from the output of a TEM. The new method
is part of a new class of approaches not relying on Prony’s
method and does not assume a specific filter shape. We
introduced recovery guarantees and validated the method via
numerical simulations. This approach opens the path for
working with real world pulses that are known, but rarely
have a mathematically precise shape. In the future, we will
also consider extending this sparse input recovery problem for
TEM architectures for inputs with high dynamic range [16].



Figure 2: Recovery of a sparse input from TEM samples with the proposed method for two clases of pulses generated using: (a) polynomials and (b) function
1/t.
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