
Under review as a conference paper at ICLR 2023

NOAH: A NEW HEAD STRUCTURE TO IMPROVE DEEP
NEURAL NETWORKS FOR IMAGE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

A modern deep neural network (DNN) for image classification typically consists
of two parts: a backbone for feature extraction, and a head for feature encod-
ing and class predication. We notice that the head structures of prevailing DNNs
share a similar processing pipeline, exploiting global feature dependencies while
disregarding local ones. Instead, this paper presents Non-glObal Attentive Head
(NOAH), a simple and universal head structure, to improve the learning capaci-
ty of DNNs. NOAH relies on a novel form of attention dubbed pairwise object
category attention, which models dense local-to-global feature dependencies via
a concise association of feature split, interaction and aggregation operations. As a
drop-in design, NOAH can replace existing heads of many DNNs, and meanwhile,
maintains almost the same model size and similar model efficiency. We validate
the efficacy of NOAH mainly on the large-scale ImageNet dataset with various
DNN architectures that span convolutional neural networks, vision transformers
and multi-layer perceptrons when training from scratch. Without bells and whis-
tles, experiments show that: (a) NOAH can significantly boost the performance of
lightweight DNNs, e.g., bringing 3.14%|5.30%|1.90% top-1 accuracy improve-
ment for MobileNetV2 (0.5×)|Deit-Tiny (0.5×)|gMLP-Tiny (0.5×); (b) NOAH
can generalize well on relatively large DNNs, e.g., bringing 1.02%|0.78%|0.91%
top-1 accuracy improvement for ResNet50|Deit-Small|MLP-Mixer-Small 1; (c)
NOAH can still bring acceptable performance gains to large DNNs (having over
50 million parameters), e.g., 0.41%|0.37%|0.35% top-1 accuracy improvement
for ResNet152|Deit-Base|MLP-Mixer-Base. Besides, NOAH also retains its ef-
fectiveness in the aggressive training regime (e.g., a ResNet50 model with NOAH
reaches 79.32% top-1 accuracy, yielding 0.88% gain) and other image classifica-
tion tasks. Code is provided for results reproduction.

1 INTRODUCTION

Image classification, a central task in computer vision, has been actively studied for several decades.
In the pre-deep learning era, the bag-of-words model based on hand-crafted features (Lowe, 1999;
Dalal & Triggs, 2005; Perronnin et al., 2010; Carreira et al., 2012; Lazebnik et al., 2006) was com-
monly used. With the tremendous advances in deep learning, deep neural networks (DNNs) have be-
come the predominant learning models to many vision problems, leading to a fundamental paradigm
shift from hand-crafted feature designing to neural architecture designing. Modern DNN architec-
tures for image classification are constructed with a de-facto engineering pipeline that decomposes
the network body into two parts: a backbone for feature extraction, and a head for feature encoding
and class predication. Both of them are essential to the performance of the resulting networks.

Along with substantial research efforts in the backbone engineering, current DNN architectures in
general have evolved into three major categories, namely convolutional neural networks (CNNs), vi-
sion transformers (ViTs) and multi-layer perceptrons (MLPs), built on convolutional, self-attention
and linear layers, respectively. Over the past decade, CNNs have been the go-to image classification
models, which are known to have the inductive bias possessing the locality and translation equivari-
ance across all convolutional layers. Early top performing CNN models, AlexNet (Krizhevsky et al.,

1Although these ViT and MLP models are named with a keyword “Small”, they contain about 20 million of
learning parameters (see Table 1, 2, 3), which is actually at a similar level to the model size of ResNet50.

1

Under review as a conference paper at ICLR 2023

2012) and VGG (Simonyan & Zisserman, 2015), use a parameter-intensive head consisting of a max
pooling layer, three fully connected (FC) layers and a softmax classifier. GoogLeNet (Szegedy et al.,
2015) replaces the max pooling layer by a global average pooling (GAP) layer based on NIN (Lin
et al., 2014), and further shows that removing the first two FC layers does not incur accuracy drop
yet enjoys significantly reduced model size. Consequently, subsequent CNNs (He et al., 2016;
Huang et al., 2017; Xie et al., 2017; Zoph & Le, 2017; Radosavovic et al., 2020; Tan & Le, 2019)
mostly follow the head design of GoogLeNet. In 2021, Dosovitskiy et al. (2021) directly applied
a pure transformer, the dominant model in natural language processing (NLP), to image classifica-
tion tasks, achieving promising performance compared to top CNNs. With much less inductive bias
than CNNs, this ViT architecture adopts a patchify stem where the self-attention is directly comput-
ed within non-overlapping local image patches (i.e., visual tokens). Its head merely comprises an
FC layer and a softmax classifier, and takes the representation of an extra class token (a learnable
embedding vector) as the input to predict the classification output. The class token interacts with
the visual tokens across all multihead self-attention (MSA) layers, resembling transformers in NLP
applications (Vaswani et al., 2017; Devlin et al., 2019). Subsequent ViTs, such as DeiT (Touvron
et al., 2021b) and PVT (Wang et al., 2021), use the same head structure. It is noteworthy that some
contemporaneous works (Liu et al., 2021c; Zhai et al., 2022; Huang et al., 2021) select the head
design of GoogLeNet and its follow-ups. Specifically, they apply a GAP layer over the feature maps
from the last MSA layer to generate head input, achieving very similar accuracy but much better
memory efficiency, compared to the use of the class token. In Table 2, we also validate this on Ima-
geNet with Deit-Tiny architecture. The GAP based head shows 0.2% top-1 gain to the class-token,
while the gain of our design is 2.13%. Recently, a type of conceptually more simple architectures,
which is entirely built upon MLP layers repeatedly applied across either the channel-patch or patch-
channel dimensions, has been presented (Melas-Kyriazi, 2021; Tolstikhin et al., 2021; Touvron et al.,
2021a). MLPs retain the patchify stem of ViTs, but remove the self-attention component. Regarding
the choice of head structure, they adopt the GAP-based design, as like (Liu et al., 2021c; Zhai et al.,
2022; Huang et al., 2021). In summary, the above design instantiations indicate that the head struc-
tures of prevailing CNNs, ViTs and MLPs mostly share a similar processing pipeline, exploiting
global feature dependencies while disregarding local ones. Such typed head structures are simple,
and have proven to be easy to optimize. However, they maybe incapable of capturing rich class-
specific cues as they coarsely process critical information about the spatial layout of local features.
We conjecture this may limit the feature abstraction ability of image classification models and result
in suboptimal performance, which will become even more serious for compact DNNs developed to
adapt resource-constrained environments (Howard et al., 2017; Zhang et al., 2018b).

There exist many research works that are directly or indirectly related to designing a better classi-
fication head, when typically given a CNN backbone. They mainly focus on descriptive methods
to pooling (Lin et al., 2015; Gao et al., 2016; 2019a; Ionescu et al., 2015; Li et al., 2018; Wang
et al., 2020; Saeedan et al., 2018; Zhao & Snoek, 2021; Zhang, 2019; Rippel et al., 2015; Zhai
et al., 2017; Gao et al., 2019b; Cui et al., 2017; Wang et al., 2018a; Zeiler & Fergus, 2013), multi-
layer/multi-region feature aggregation (Kim et al., 2020; Islam et al., 2021; Gao & Zhou, 2021; Liu
et al., 2015), parametric learnable embedding (Arandjelovic et al., 2016; Tang et al., 2016; Wang
et al., 2017; 2019; Gou et al., 2018), and attentive decoder (Zhu et al., 2017; Liu et al., 2021b; Zhu &
Wu, 2021). Generally, their performance either depends on careful tuning of basic hyperparameters
(e.g., decay of learning rate) (Lin et al., 2015; Gao et al., 2016; Ionescu et al., 2015; Gou et al.,
2018; Gao et al., 2019a; Wang et al., 2018a; 2020; Zhu & Wu, 2021; Liu et al., 2015) or customized
regularization strategies such as second-order optimization (Ionescu et al., 2015; Li et al., 2018;
Wang et al., 2017; 2019; Gou et al., 2018) and data/feature/knowledge augmentation (Islam et al.,
2021; Zhu et al., 2017; Zhang, 2019; Zhao & Snoek, 2021; Kim et al., 2020). In addition, many
of them suffer from heavy computational cost (Lin et al., 2015; Gao et al., 2016; Gou et al., 2018;
Ionescu et al., 2015; Gao et al., 2019a; Wang et al., 2017; 2019; 2018a; Islam et al., 2021), and
some are tailored to multi-label/fine-grained classification tasks with the region-based input (Gao &
Zhou, 2021; Zhu et al., 2017; Liu et al., 2021b; Gou et al., 2018; Ionescu et al., 2015; Cui et al.,
2017; Wang et al., 2017; 2019) or weakly supervised learning scenarios (Arandjelovic et al., 2016;
Pu et al., 2022). Because of the above factors, these methods are hardly ever used in the DNN archi-
tecture engineering, to the best of our knowledge. Driven by this analysis, a critical and unexplored
question arises:is it possible to develop a new, yet still simple and easy-to-optimize head alternative
that can be generalized to various DNN architectures, for the improved image classification purpose,
especially on large-scale datasets like ImageNet (Russakovsky et al., 2015)?

2

Under review as a conference paper at ICLR 2023

To explore this question, in this paper, we present Non-glObal Attentive Head (NOAH), which relies
on a novel form of attention called Pairwise Object Category Attention (POCA) efficiently encoding
dense spatial feature dependencies. When constructing NOAH, we learn POCAs at local to global
scales by a neat association of feature split, interaction and aggregation operations, taking the feature
maps from the last layer of a backbone as the input (for ViTs and MLPs, we remove the class token
if exists, as like (Liu et al., 2021c; Zhai et al., 2022; Huang et al., 2021)). Specifically, we split
the input into multiple non-overlapping feature groups containing the same number of channels,
allowing NOAH to efficiently learn group-wise POCAs in parallel. Upon each feature group, we
then take use of a POCA block, which starts from a pair of parallel linear embeddings followed
by a mixing operator, to produce a tensor representation of the POCAs at a local scale. Finally,
the tensors of local POCAs projected from all feature groups are aggregated into a global POCA
vector via a simple summation along the spatial dimension, which is fed to a softmax classifier for
estimating a class label per image.

We evaluate NOAH on ImageNet with various DNN architectures. Specifically, we apply NOAH
to 10 CNN backbones, 8 ViT backbones and 8 MLP backbones, using up all of our computational
resources to cover a relatively large range of model complexity. For these models, the number
of learnable parameters (Params) ranges from 1.68 million to 86.86 million, and the number of
multiply-adds (MAdds) ranges from 59.3 million to 17.58 billion. Despite its simplicity, NOAH
attains promising performance in terms of both model accuracy and efficiency. In the standard
from-scratch training regime, the top-1 gain by NOAH ranges from 0.35% to 5.30%, without bells
and whistles. In the aggressive from-scratch training regime (Liu et al., 2022), NOAH reaches
79.32% top-1 accuracy with a ResNet50 model, yielding 0.88% gain. Besides, NOAH also retains
its efficacy on other image classification benchmarks.

2 RELATED WORK

Convolutional neural networks. The breakthrough in the ImageNet challenge 2012, made by
AlexNet (Krizhevsky et al., 2012), ignited the resurgence of CNNs. A lot of subsequent works, e.g.,
VGG (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016),
DenseNet (Huang et al., 2017) and ResNeXt (Xie et al., 2017), focus on constructing more powerful
CNN architectures by scaling up network depth or width. Besides, many lightweight CNNs are also
presented to meet resource-constrained applications, for example, MobileNets (Howard et al., 2017;
Sandler et al., 2018; Howard et al., 2019) and ShuffleNets (Zhang et al., 2018b; Ma et al., 2018).
Unlike the aforementioned CNNs that are designed manually, automatic network design using neural
architecture search has recently attracted great attention (Zoph & Le, 2017; Pham et al., 2018; Tan
& Le, 2019; Real et al., 2019; Tan et al., 2019; Radosavovic et al., 2020).

Vision transformers. Along with the recent success of transformers (Devlin et al., 2019; Vaswani
et al., 2017) in NLP, some works (Hu et al., 2018; Wang et al., 2018b; Chen et al., 2020; Carion
et al., 2020) make explorations in combining convolution and self-attention for computer vision
problems. Dosovitskiy et al. (2021) present the first clean ViT architecture for image classification,
taking raw image patches as input. DeiT (Touvron et al., 2021b) uses a token based distillation
strategy to boost the training of ViT models on ImageNet, with no external data. Many recent works
extend popular architectural practices from CNNs to advance ViT designs, including PVT (Wang
et al., 2021) and Swin (Liu et al., 2021c) using pyramid self-attention structures to construct a
hierarchical representation, TNT (Han et al., 2021) and T2T (Yuan et al., 2021) using fine-grained
patch partition strategies to strengthen the representation ability, and so forth (Touvron et al., 2021c;
Zhai et al., 2022; Huang et al., 2021; Pan et al., 2021).

Multi-layer perceptrons. Although ViTs have become a strong alternative to CNNs, they typically
suffer from the quadratic complexity of self-attention operations. Recently, several concurrent work-
s, such as Mixer (Tolstikhin et al., 2021), ResMLP (Touvron et al., 2021a) and gMLP (Liu et al.,
2021a), show that replacing self-attention operations by linear operations does not affect the training
performance, resulting in a class of much simpler DNN architectures entirely built with MLP layers.
Following MLP variants incorporate modifications like shift (Yu et al., 2022; Lian et al., 2021; Chen
et al., 2021) or permutator (Hou et al., 2022) modules to strengthen feature communication.

Being a universal head design, our NOAH would be applicable to all these DNN architectures.

3

Under review as a conference paper at ICLR 2023

Backbone Popular Head

𝑰

OR

CNN

P
atch

ify

𝑭𝑵 S
u

m

𝑭𝟏
Pairwise Object

Category Attention

S
o

ftm
ax

𝑷

S
p

lit

S
o

ftm
ax

Fully Connected Layers

𝑷

NOAH

𝑭𝒊

·

C
o

n
v

 1×
1

S
o

ftm
ax

C
o

n
v

 1×
1𝐶𝑣

𝑭𝒗𝒊

M
atM

u
l

Q

K

V

M
atM

u
l

S
o

ftm
ax

S
cale

ViT

Channels

P
at

ch
es

Patches

T
C

h
an

n
el

s

MLP 2
MLP 2
MLP 2
MLP 2

T
MLP 1
MLP 1
MLP 1
MLP 1
MLP 1

MLP

L
in

ear P
ro

jectio
n

POCA

𝑽𝒊

𝑀

𝑷𝒊

𝑀

𝑨𝒊

𝑀

𝑭𝒌𝒊

𝐶𝑘

𝐶/𝑁

𝐶

OR
𝑭

G
lo

b
al E

n
co

d
in

g

Figure 1: The macro-structure of DNNs with a Non-glObal Attentive Head (NOAH). Unlike pop-
ular heads using the global feature encoding, NOAH relies on Pairwise Object Category Attentions
(POCAs) learnt at local to global scales via a neat association of feature split (two levels), interaction
and aggregation operations, taking the feature maps from the last layer of a backbone as the input.

3 METHOD

Our basic goal is to design a simple, efficient and easy-to-optimize head alternative that can be used
to improve various DNN models for image classification in a plug-and-play manner. An overview
of our Non-glObal Attentive Head, abbreviated as NOAH, is shown in Figure 1.

Overall structure of non-global attentive head. NOAH is built upon a new form of attention
called Pairwise Object Category Attention (POCA), which efficiently models dense spatial feature
dependencies. In NOAH, we leverage a concise association of feature split (two levels), interaction
and aggregation operations to learn POCAs at local to global scales in a group-wise manner. Given
a backbone, let F ∈ RH×W×C be the feature maps from the last layer. For CNNs, H , W and C
denote the channel height, width and number, respectively. For ViTs and MLPs, we remove the class
token if exists, as like (Liu et al., 2021c; Zhai et al., 2022; Huang et al., 2021), and reshape the output
feature sequence of the backbone into a square shape, then H and W denote the number of image
patches in column and row, respectively. To ensure decent discrimination ability and efficiency of
NOAH, we evenly split F into N non-overlapping feature groups F1,F2, ...,FN ∈ RH×W×C/N

along the channel axis (this is called the first-level feature split), then parallelly apply N POCA
blocks with the same structure to these N feature groups (one feature group fed to one POCA block).
This results in N tensor representations P1,P2, ...,PN ∈ RH×W×M of local POCAs, where M
denotes the number of image classes. Next, they are directly aggregated into a global POCA vector
P ∈ R1×1×M via a simple summation of them along the spatial dimension (NHW → 1), which is
fed to a softmax classifier that will predict a class label for each image.

Formulation of pairwise object category attention. Clearly, the POCA block acts as a key com-
ponent in NOAH. When formulating POCA, we mimic the notations of ViT (Dosovitskiy et al.,
2021) for brevity (but it should be noted that POCA and self-attention have clear distinctions both
in formulation and focus, which will be thoroughly discussed at the end of this section). Given
the ith feature group Fi ∈ RH×W×C/N , 1 ≤ i ≤ N , we further split it into two disjoint sub-
groups Fki ∈ RH×W×Ck and Fvi ∈ RH×W×Cv along the channel axis by a split ratio r, where
Ck = brC/Nc and Cv = d(1− r)C/Ne. As a side benefit, this second-level feature split fur-
ther improves the efficiency of NOAH, yet has slight effect on the model accuracy compared to the
counterpart without it, as can seen from the results in Table 5. Then, we formulate POCA by taking
use of a pair of parallel linear embeddings (termed “key” and “value” embeddings) and a mixing
operator. The key embedding, composed of a 1 × 1 convolutional kernel Wki ∈ R1×1×Ck×M a-
long the channel dimension and a softmax activation function across the spatial dimension, which
projects each pixel in Fki to a desired image category dimension M , producing an “attention” tensor
Ai ∈ RH×W×M that encodes dense position-specific object category attentions. The value embed-
ding uses another 1×1 convolutional kernel Wvi ∈ R1×1×Cv×M to Fvi, producing a “value” tensor
Vi ∈ RH×W×M that maintains the same dimensions to the attention tensor Ai. The final mixing

4

Under review as a conference paper at ICLR 2023

operator makes an interaction between the attention and value tensors via the Hadamard product,
generating another tensor Pi ∈ RH×W×M capturing the POCAs at a local scale. Mathematically,
the POCA block conditioned on the ith feature group Fi can be written as:

Ai = softmax(Wki ∗ Fki), Vi = Wvi ∗ Fvi, Pi = Ai �Vi, (1)

where ∗ denotes the convolution operation, and � denotes the Hadamard product.

Computational complexity of NOAH. For each POCA block, it has MC/N learnable parameters
(Params) and requires HWMC/N +HWM multiply-adds (MAdds) plus HWM Multiplications
(for the Hadamard product), without considering the bias term. The summation and the softmax
classifier require HWMN Adds and M MAdds, respectively. In total, NOAH has MC Params and
requires HWMC+2HWMN +M MAdds. Because of its simplicity, applying NOAH to replace
existing heads of prevailing DNNs maintains almost the same model complexity in terms of both
Params and MAdds in most cases, as can be seen from the results in Table 1, 2, 3.

Differences with the self-Attention. Although POCA in NOAH and self-attention in ViT share
some similar notations, they are different both in formulation and focus: (1) POCA does not use a
patchify stem and a “query” embedding, and does not need to compute the self-attention typically
having a quadratic complexity; (2) In a POCA block, the attention and value embeddings process
two disjoint feature subgroups separately, without a shared input used in the self-attention block; (3)
Furthermore, for multiple POCA blocks run in parallel, there is also no feature sharing across them,
in sharp contrast to the multihead self-attention (MSA) that shares the same input to all self-attention
blocks in the same layer; (4) In order to encode dense position-specific object category attentions,
the key and value embeddings of a POCA block project each pixel in their corresponding feature
subgroups to a desired image category dimension M , and the resulting attention and value tensors
are element-wisely mixed via the Hadamard product, which is another key distinction of POCA to
the self-attention; (5) Besides the above differences in the attention formulation, our NOAH built
upon POCA focuses on the classification head design but not the backbone design, and it can be used
to improve the learning ability of different DNN architectures including CNNs,ViTs and MLPs.

4 EXPERIMENTS

In this section, we evaluate the performance of NOAH on image classification benchmarks, study
the design of NOAH from different aspects, and explore its potentials in diverse training scenarios.

4.1 IMAGE CLASSIFICATION ON IMAGENET

Dataset, training setup and evaluation metric. Our main experiments are conducted on the pop-
ular ImageNet dataset (Russakovsky et al., 2015). It consists of over 1.2 million images for train-
ing and 50,000 images for validation, including 1,000 image classes. To have a comprehensive
evaluation conditioned on the extreme capability of our current computational resources, we ap-
ply NOAH to a variety of DNN architectures including 10 CNN backbones, 8 ViT backbones and
8 MLP backones, covering a relatively large range of model complexity (see Table 1, 2, 3). For
CNNs, we select backbones from ResNet (He et al., 2016), MobileNetV2 (Sandler et al., 2018),
MobileNetV3 (Howard et al., 2019) and ShuffleNetV2 (Ma et al., 2018) families. For ViTs, we se-
lect backbones from DeiT (Touvron et al., 2021b) and PVT (Wang et al., 2021) families. For MLPs,
we select backbones from Mixer (Tolstikhin et al., 2021) and gMLP (Liu et al., 2021a) families. In
the experiments, we construct our networks by replacing the existing head of each selected DNN
architecture by a NOAH. For NOAH, we set N = {4, 8}, r = {1/2, 1/4, 1/8} for different typed
DNNs following an empirical principle: the smaller the backbone size the larger the N , and the
lager the C/N the smaller the r. We adopt the standard data augmentation to train and evaluate
each network. For training, we first resize the input images to 256 × 256, then randomly sample
224× 224 image crops or their horizontal flips. We standardize the cropped images with mean and
variance per channel. For evaluation, we use the center crops of the resized images, and report top-1
and top-5 recognition rates on the ImageNet validation set. For fair comparisons, we use the public
PyTorch codes of these networks with the exactly same settings to train all baseline models and our
models from scratch. Our trained baseline models are either better than or at least on par with the
reported ones. Experimental details are put in the Appendix.

5

Under review as a conference paper at ICLR 2023

Table 1: Results comparison on ImageNet with CNN backbones. For NOAH, we set: N = 4,
r = 1/2 in ResNet18; N = 4, r = 1/8 in ResNet50, ResNet101 and ResNet152; N = 8, r = 1/4
in MobileNetV2 family, MobileNetV3-Small and ShuffleNetV2.

Network Params MAdds Top-1(%) Top-5(%)
ResNet18 11.69M 1.81G 70.25 89.38
+ NOAH 11.70M 1.84G 71.81 (↑1.56) 90.18 (↑0.80)
ResNet50 25.56M 3.86G 76.23 93.01
+ NOAH 25.56M 3.96G 77.25 (↑1.02) 93.65 (↑0.64)
ResNet101 44.55M 7.57G 77.41 93.67
+ NOAH 44.56M 7.67G 78.22 (↑0.81) 94.13 (↑0.46)
ResNet152 60.19M 11.28G 78.16 94.06
+ NOAH 60.20M 11.38G 78.57 (↑0.41) 94.36 (↑0.30)
MobileNetV2 (1.0×) 3.50M 300.8M 72.02 90.43
+ NOAH 3.52M 363.0M 73.35 (↑1.33) 91.13 (↑0.70)
MobileNetV2 (0.75×) 2.64M 209.1M 69.65 88.99
+ NOAH 2.65M 271.3M 71.44 (↑1.79) 89.87 (↑0.88)
MobileNetV2 (0.5×) 1.97M 97.1M 64.30 85.21
+ NOAH 1.98M 159.4M 67.44 (↑3.14) 87.11 (↑1.90)
MobileNetV2 (0.35×) 1.68M 59.3M 59.62 81.79
+ NOAH 1.69M 121.5M 63.40 (↑3.78) 83.91 (↑2.12)
MobileNetV3-Small 2.94M 61.1M 67.11 87.36
+ NOAH 2.95M 158.7M 68.92 (↑1.81) 88.08 (↑0.72)
ShuffleNetV2 (1.0×) 2.28M 144.3M 69.43 88.81
+ NOAH 2.29M 194.2M 70.72 (↑1.29) 89.38 (↑0.57)

Main results on CNNs. Table 1 shows the results comparison on CNNs. Generally, we can see that
our NOAH always achieves superior results on all of these CNN backbones than the standard head
structures, maintaining almost the same model size. In terms of top-1 accuracy, we can observe: (1)
NOAH can significantly boost the performance of lightweight CNNs (having less than 5 million of
learnable parameters), e.g., bringing an absolute top-1 gain of 1.33 ∼ 3.78%, 1.81% and 1.29% for
MobileNetV2 family, MobileNetV3-Small and ShuffleNetV2 (×1.0), respectively; (2) NOAH can
generalize well on relatively large CNNs (having about 10 ∼ 45 million of learnable parameters),
improving ResNet50 and ResNet101 by a top-1 gain of 1.02% and 0.81%, respectively; (3) NOAH
can still bring acceptable performance gains to large CNNs (having over 60 million parameters),
e.g., 0.41% top-1 gain to ResNet152. Note that the performance improvement is obtained under
the condition of simply replacing the existing heads of these CNN backbones by the corresponding
NOAHs, without bells and whistles both in training and evaluation. To NOAH, the performance
improvement gradually decreases when the network becomes deeper, larger and more powerful.
This is a common experimental trend in deep learning, as large CNN backbones have many more
parameters, and tend to have much better learning capacities, compared to smaller CNN backbones.
Another thing we want to emphasize is that, only to extremely lightweight CNN backbones (not in-
cluding ViTs and MLPs), NOAH introduces obviously more extra MAdds, e.g., 1.60× extra MAdds
for MobileNetV3-Small (the worst case among all our experiments). This is because they typically
use depthwise separable convolutions which significantly reduce the convolutional cost in terms of
MAdds. However, the extra runtime cost of NOAH to MobileNetV3-Small is just 0.2684× on a s-
ingle GPU and 0.2729× on a single CPU core (see Table 10). We find that the MAdds index usually
cannot well reflect the runtime speed of prevailing CNNs (also including ViTs and MLPs), which
has already been validated by some recent works (Wang et al., 2022; Radosavovic et al., 2020).

Main results on ViTs. From the results in Table 2, we can see that the ViT models trained with
NOAH show consistently higher accuracy than the baseline models, and the top-1 gain is in the range
of 0.37% ∼ 5.30%. The performance trend of NOAH on ViTs is similar to that on CNNs (shown in
Table 1). Compared to the baseline models, our models maintain almost the same model complexity
in terms of both Params and MAdds. It is noteworthy that current ViT models are usually much
larger than CNN models. For instance, the number of learnable parameters in DeiT-Small and PVT-
Tiny is 22.06 million and 13.23 million, respectively, although they are named with the keyword
“Small” and “Tiny”. Besides, in light of MAdds, they are also not lightweight, compared to CNN
counterparts. In order to better explore the generalization ability of NOAH to more lightweight
ViTs, we use a uniform width multiplier (0.75, 0.5) to scale down the number of feature channels in
every building block of DeiT-Small and PVT-Tiny, resembling MobileNetV2 (Sandler et al., 2018).

Main results on MLPs. The results comparison on MLPs is given in Table 3. Again, we can
find that the MLP models trained with NOAH always achieve better performance than the baseline
models, maintaining almost the same model size and very similar MAdds. Similar to the results

6

Under review as a conference paper at ICLR 2023

Table 2: Results comparison on ImageNet with
ViT backbones. We use a uniform width
multiplier (0.75, 0.5) to scale down DeiT-Tiny
and PVT-Tiny, resembling MobileNetV2. For
NOAH, we set N = 4, r = 1/2 in all models.

Network Params MAdds Top-1(%) Top-5(%)
DeiT-Base 86.86M 17.58G 81.85 95.59
+ NOAH 86.86M 17.63G 82.22 (↑0.37) 95.75 (↑0.16)
DeiT-Small 22.06M 4.60G 79.78 94.99
+ NOAH 22.06M 4.66G 80.56 (↑0.78) 95.39 (↑0.40)
DeiT-Tiny (1.0×) 5.72M 1.26G 72.16 91.30
+ GAP 5.72M 1.25G 72.36 (↑0.20) 91.33 (↑0.03)
+ NOAH 5.72M 1.29G 74.29 (↑2.13) 92.27 (↑0.97)
DeiT-Tiny (0.75×) 3.29M 0.75G 62.55 85.32
+ NOAH 3.30M 0.77G 66.64 (↑4.09) 87.79 (↑2.47)
DeiT-Tiny (0.5×) 1.53M 0.37G 51.36 76.79
+ NOAH 1.54M 0.38G 56.66 (↑5.30) 80.41 (↑3.62)
PVT-Tiny (1.0×) 13.23M 1.96G 75.10 92.41
+ NOAH 13.24M 1.98G 76.51 (↑1.41) 93.25 (↑0.84)
PVT-Tiny (0.75×) 7.62M 1.12G 71.81 90.35
+ NOAH 7.62M 1.14G 74.22 (↑2.41) 91.82 (↑1.47)
PVT-Tiny (0.5×) 3.54M 0.51G 65.33 86.61
+ NOAH 3.55M 0.52G 68.50 (↑3.17) 88.42 (↑1.81)

Table 3: Results comparison on ImageNet with
MLP backbones. We use a uniform width mul-
tiplier (0.75, 0.5) to scale down Mixer-Small
and gMLP-Tiny, resembling MobileNetV2. For
NOAH, we set N = 4, r = 1/2 in all models.

Network Params MAdds Top-1(%) Top-5(%)
Mixer-Base 59.88M 12.62G 77.14 93.02
+ NOAH 59.88M 12.77G 77.49 (↑0.35) 93.27 (↑0.25)
Mixer-Small (1.0×) 18.53M 3.78G 74.18 91.56
+ NOAH 18.54M 3.88G 75.09 (↑0.91) 92.22 (↑0.66)
Mixer-Small (0.75×) 10.75M 2.14G 71.13 90.07
+ NOAH 10.76M 2.22G 72.32 (↑1.19) 90.57 (↑0.50)
Mixer-Small (0.5×) 5.07M 0.97G 65.22 86.34
+ NOAH 5.08M 1.02G 66.81 (↑1.59) 87.07 (↑0.73)
gMLP-Small 19.42M 4.41G 79.65 94.70
+ NOAH 19.42M 4.46G 79.95 (↑0.30) 94.86 (↑0.16)
gMLP-Tiny (1.0×) 5.87M 1.34G 72.05 91.23
+ NOAH 5.87M 1.36G 73.39 (↑1.34) 91.81 (↑0.58)
gMLP-Tiny (0.75×) 3.91M 0.84G 65.95 87.19
+ NOAH 3.91M 0.86G 67.71 (↑1.76) 88.32 (↑1.13)
gMLP-Tiny (0.5×) 2.41M 0.45G 54.99 80.02
+ NOAH 2.41M 0.47G 56.89 (↑1.90) 81.00 (↑0.98)

Table 4: Ablation on ImageNet with ResNet50
backbone: comparison of NOAH under differ-
ent settings of the key ratio r and the number of
the POCA blocks N . Best results are bolded.

Network r N Params MAdds Top-1(%) Top-5(%)
ResNet50 - - 25.56M 3.86G 76.23 93.01

+ NOAH

1/2 4 25.56M 3.96G 76.84 (↑0.61) 93.32 (↑0.31)
1/4 4 25.56M 3.96G 77.07 (↑0.84) 93.52 (↑0.51)
1/8 4 25.56M 3.96G 77.25 (↑1.02) 93.65 (↑0.64)
1/8 1 25.56M 3.96G 76.50 (↑0.27) 93.21 (↑0.20)
1/8 2 25.56M 3.96G 76.77 (↑0.54) 93.36 (↑0.35)
1/8 4 25.56M 3.96G 77.25 (↑1.02) 93.65 (↑0.64)
1/8 8 25.57M 3.96G 76.94 (↑0.71) 93.34 (↑0.33)

Table 5: Ablation on ImageNet with ResNet
backbones: comparison of NOAH without vs.
with feature split (FS). Best results are bolded.

Network 1st FS 2nd FS Params MAdds Top-1(%) Top-5(%)

ResNet101 - - 44.55M 7.57G 77.41 93.67

+ NOAH
- - 58.89M 8.37G 78.10 (↑0.69) 94.07 (↑0.40)
X - 46.60M 7.77G 78.48 (↑1.07) 94.22 (↑0.55)
X X 44.56M 7.67G 78.22 (↑0.81) 94.13 (↑0.46)

ResNet50 - - 25.56M 3.86G 76.23 93.01

+ NOAH
- - 39.90M 4.66G 77.24 (↑1.01) 93.62 (↑0.61)
X - 27.61M 4.06G 77.48 (↑1.25) 93.77 (↑0.76)
X X 25.56M 3.96G 77.25 (↑1.02) 93.65 (↑0.64)

ResNet18 - - 11.69M 1.81G 70.25 89.38

+ NOAH
- - 15.28M 2.01G 73.08 (↑2.83) 91.01 (↑1.63)
X - 12.21M 1.86G 72.22 (↑1.97) 90.42 (↑1.04)
X X 11.70M 1.84G 71.81 (↑1.56) 90.18 (↑0.80)

on CNNs and ViTs, the top-1 accuracy improvement by NOAH is pronounced when the model
size becomes smaller. Just like ViTs, current small MLPs, such as Mixer-Small and gMLP-Small,
actually are not small or efficient, compared to CNN counterparts. We also apply the width scaling
strategy to Mixer-Small and gMLP-Small besides DeiT-Small and PVT-Tiny, and use the resulting
more lightweight variants to test the performance of NOAH to thin MLPs.

The aforementioned experiments well validate the effectiveness and the generalization ability of
NOAH. The performance improvement by NOAH is attributed to the learnt pairwise object category
attentions, which effectively model local-to-global feature dependencies in a group-wise manner.

4.2 ABLATION STUDIES

To have a deep analysis of our NOAH, we further provide a lot of ablative experiments, which are
mostly performed on ImageNet, unless otherwise stated.

The selection of N and r. Recall that NOAH uses two levels of simple feature split to learn POCAs
at local to global scales. The first-level feature split uses a hyper-parameter N to control the number
of POCA blocks in NOAH, and the second-level feature split uses another hyper-parameter r to
control the key ratio in each POCA block. Accordingly, our first set of ablative experiments is
conducted for the selection of N and r. In the experiments, we use ResNet50 as the backbone, and
heuristically set N = 4 to compare different r options first, and then choose the best r to compare
different N options. From the results of Table 4, we can find that all settings improve the model
accuracy while maintaining almost the same computational complexity. Comparatively, the setting
of N = 4 and r = 1/8 is the best, so we choose it for ResNet50. For the other 25 backbones, we
simply adjust this setting via an empirical principle: the smaller the backbone size the larger the N ,
and the lager the C/N the smaller the r, without tuning N and r network by network.

The role of the feature split. In Table 5, a comparison of NOAH based models trained without vs.
with feature split operations is given. We can see that: (1) When removing two levels of feature split
from the standard NOAH, it shows obviously better results on small ResNet18 backbone but slightly

7

Under review as a conference paper at ICLR 2023

Table 6: Ablation on ImageNet with ResNet18
backbone: comparison of the POCA block with
a softmax function along different dimensions to
obtain attention tensor Ai.

Network Activation Params MAdds Top-1(%) Top-5(%)

ResNet18 - 11.69M 1.81G 70.25 89.38

+ NOAH Along spatial (our design) 11.70M 1.84G 71.81 (↑1.56) 90.18 (↑0.80)
Along channel 11.70M 1.84G 69.09 (↓1.16) 88.88 (↓0.50)

Table 7: Ablation on ImageNet with ResNet18
backbone: comparison of NOAH using differen-
t operators to aggregate all local POCA tensors
into a global POCA vector.

Network Method Params MAdds Top-1(%) Top-5(%)

ResNet18 - 11.69M 1.81G 70.25 89.38

+ NOAH
Sum (our design) 11.70M 1.84G 71.81 (↑1.56) 90.18 (↑0.80)
Max pooling 11.70M 1.84G 67.73 (↓2.52) 87.72 (↓1.66)
Average pooling 11.70M 1.84G 71.12 (↑0.87) 89.81 (↑0.43)

Table 8: Ablation on ImageNet with ResNet50
backbone: comparison of NOAH in the stan-
dard training regime vs. in the aggressive from-
scratch training regime used in Liu et al. (2022).

Network Params MAdds Top-1(%) Top-5(%)

ResNet50 25.56M 3.86G 78.44 94.24
+ NOAH 25.56M 3.96G 79.17 (↑0.73) 94.51 (↑0.27)
+ NOAH (w/o 2nd FS) 27.61M 4.06G 79.32 (↑0.88) 94.60 (↑0.36)
+ NOAH (w/ no FS) 39.90M 4.66G 79.00 (↑0.56) 94.33 (↑0.09)

Table 9: Ablation on person ReID dataset
Market-1501 with ResNet50 backbone: com-
parison of NOAH in the from-scratch training
regime and in the fine-tuning regime.

Network Training from scratch Fine-tuning
Top-1(%) mAP(%) Top-1(%) mAP(%)

ResNet50-FC 91.5 78.2 92.2 79.9
+ NOAH 93.5(↑2.0) 81.8(↑3.6) 93.7(↑1.5) 82.3(↑2.4)

worse results on larger ResNet50/ResNet101 backbone. However, the model size is significantly
increased compared to the baseline model, for example, the number of Params for ResNet50 with
NOAH increases from 25.56 million to 39.9 million; (2) The standard NOAH with two levels of
feature split can well balance model accuracy and efficiency; (3) Removing the second-level feature
split from the standard NOAH always gets more accurate models with few extra Params and MAdds.

The importance of the softmax function and the summation. Within each POCA block, we use
a softmax activation function along the spatial dimension to generate the attention tensor Ai, which
is an important design of NOAH to learn POCAs at a local scale. Another natural choice is to apply
the softmax along the channel dimension. In Table 6, we study these two choices on ImageNet using
ResNet18 as the backbone. Surprisingly, the softmax along the channel dimension leads to 1.16%
top-1 accuracy drop against the baseline, but our design brings 1.56% improvement. This suggests
that explicitly modeling dense spatial feature dependencies by producing a spatial attention map for
each image category is essential for the POCA block. Moreover, we use a summation operator along
the spatial dimension to aggregate all local POCA tensors into a global POCA vector. Despite of its
simplicity, this design is also important. We compare it with max pooling and average pooling in
Table 7. Obviously, the performance gap between the summation and the max pooling even reaches
to 4.08%. Our design also outperforms the average pooling by 0.69% top-1 gain.

Model training in the aggressive regime. Recent work (Liu et al., 2022) shows that, compared to
the standard training regime, much more accurate models can be attained when properly using strong
training augmentations like increasing training epochs by multiple times, a linear warmup with tens
of epochs, a cosine weight decay, a combination of data augmentation methods, multiple regular-
ization strategies to alleviate overfitting, etc. Table 8 studies the generalization ability of NOAH in
this aggressive from-scratch model training regime. Experiments are performed on ImageNet with
ResNet50. We can see that NOAH performs well in this aggressive training regime, no matter using
feature split operations or not. With two levels of feature split, NOAH brings 0.73% top-1 gain to
the baseline model. Without the second-level feature split, the ResNet50 model with NOAH reaches
79.32% top-1 accuracy, showing 0.88% gain. Detailed training settings are put in the Appendix.

Performance on other image classification benchmarks. To evaluate the generalization ability
of NOAH, we next perform ablative experiments on the popular person re-identification dataset
Market-1501 (Zheng et al., 2015), which contains 750 and 751 identities for training and testing,
respectively. We adopt ResNet50-FC as the baseline, following the common settings on Market-
1501. Specifically, an extra FC layer is appended after the global average pooling layer of ResNet50
first, then the output 512-D feature vector is used for person matching. We consider two training
regimes: the standard from-scratch training and the fine-tuning. Table 9 summarizes the results,
showing that NOAH consistently achieves large margins against the baseline models trained in these
two different training regimes, in terms of both top-1 accuracy and mAP. Comparatively, NOAH
shows better results with the fine-tuning than the from-scratch training. However, NOAH gets higher
accuracy margins for the from-scratch training than the fine-tuning, and the margin gaps are 0.5%
for top-1 accuracy (2.0% vs. 1.5%) and 1.2% for mAP (3.6% vs. 2.4%).

8

Under review as a conference paper at ICLR 2023

Table 10: Ablation on ImageNet with 26 different CNN, ViT and MLP backbones: runtime inference
speed (frames per second) comparison of our models with NOAHs vs. the baseline models. All
models are tested on an NVIDIA TITAN X GPU (with batch size 200) and a single core of Intel
E5-2683 v3 CPU (with batch size 1), separately. The input image size is 224×224.

Network Vanilla NOAH + GPU(%) + CPU(%)Params Speed on GPU Speed on CPU Params Speed on GPU Speed on CPU

CNNs
ResNet152 60.19M 275.08 2.15 60.20M 269.70 2.09 1.96 2.79
ResNet101 44.55M 398.98 3.20 44.56M 388.38 3.08 2.66 3.75
ResNet50 25.56M 674.44 5.46 25.56M 641.36 5.25 4.90 3.85
ResNet18 11.69M 2394.00 12.98 11.70M 2117.88 12.20 11.53 6.01
MobileNetV2 (1.0×) 3.50M 1522.62 17.38 3.52M 1361.38 16.06 10.59 7.59
MobileNetV2 (0.75×) 2.64M 1762.84 20.31 2.65M 1565.28 17.32 11.21 14.72
MobileNetV2 (0.5×) 1.97M 2829.84 28.43 1.98M 2361.18 22.88 16.56 19.52
MobileNetV2 (0.35×) 1.68M 3576.58 36.09 1.69M 2850.02 28.60 20.31 20.75
MobileNetV3-Small 2.94M 4178.04 48.84 2.95M 3056.74 35.51 26.84 27.29
ShuffleNetV2 (1.0×) 2.28M 4241.94 34.36 2.29M 3312.82 29.21 21.90 14.99

ViTs
DeiT-Base 86.86M 172.59 1.64 86.86M 164.16 1.59 4.89 3.05
DeiT-Small 22.06M 525.86 5.71 22.06M 456.79 5.48 13.14 4.03
DeiT-Tiny (1.0×) 5.72M 1246.51 15.76 5.72M 1039.72 14.55 16.59 7.68
DeiT-Tiny (0.75×) 3.29M 1606.39 23.52 3.30M 1271.78 20.74 20.83 11.82
DeiT-Tiny (0.5×) 1.53M 2169.99 34.51 1.54M 1644.79 29.30 24.20 15.10
PVT-Tiny (1.0×) 13.23M 619.85 9.13 13.24M 603.67 8.82 2.61 3.40
PVT-Tiny (0.75×) 7.62M 804.17 14.35 7.62M 766.34 13.20 4.70 8.01
PVT-Tiny (0.5×) 3.54M 1088.50 23.75 3.55M 1035.93 20.47 4.83 13.81

MLPs
Mixer-Base 59.88M 236.49 2.13 59.88M 229.55 2.05 2.94 3.76
Mixer-Small (1.0×) 18.53M 733.96 7.18 18.54M 674.54 6.81 8.10 5.15
Mixer-Small (0.75×) 10.75M 1050.20 11.25 10.76M 929.10 10.57 11.53 6.04
Mixer-Small (0.5×) 5.07M 2037.45 23.88 5.08M 1615.76 20.62 20.70 13.65
gMLP-Small 19.42M 381.12 5.57 19.42M 368.22 5.28 3.38 5.20
gMLP-Tiny (1.0×) 5.87M 776.58 13.65 5.87M 712.21 12.31 8.29 9.82
gMLP-Tiny (0.75×) 3.91M 987.63 19.33 3.91M 882.56 17.29 10.64 10.55
gMLP-Tiny (0.5×) 2.41M 1343.41 26.95 2.41M 1140.75 23.10 15.09 14.29

Inference speed. In the deep learning community, the Params and the MAdds are two popular
indices to measure the model size and the model efficiency, respectively. However when deploying
a well-trained model on real computational devices, the wall-clock time at inference is significantly
more important than the MAdds index. We also perform comprehensive experiments on ImageNet
to study the runtime inference speed of our method. Specifically, we use an NVIDIA TITAN X
GPU (with batch size 200) and a single core of Intel E5-2683 v3 CPU (with batch size 1) to test
and compare 26 pairs of the NOAH based model and the baseline model, including 10 CNN pairs,
8 ViT pairs and 8 MLP pairs. Detailed results are shown in Table 10. We can observe that: (1)
both on GPU and CPU, the models trained with NOAH in general show a relatively slower runtime
speed than the baselines, but the extra latency by NOAH is acceptable (1.96% ∼ 26.84% on GPU,
and 2.79% ∼ 27.29% on CPU) considering the accuracy improvement; (2) the extra latency by
NOAH gradually increases when the network size becomes smaller; (3) similar speed trends are
demonstrated on different CNN, ViT and MLP architectures. It is worth mentioning that all these
results are obtained under the condition that the NOAH based models maintain almost the same
model size to the respective baseline models (the number of Params ranges from 1.68 million to
86.86 million). In addition, we can also find that the MAdds index usually cannot well reflect the
practical latency of prevailing DNN models, which has already been validated on CNNs by some
recent works (Wang et al., 2022; Radosavovic et al., 2020).

More analysis. Please note that in the Appendix we provide more ablative experiments to study
NOAH from other perspectives, including: (1) several variant attention designs for the POCA block;
(2) some visualization results to illustrate the learnt attention feature Ai, value feature Vi and POCA
feature Pi; (3) the stability of the model training process with vs. without NOAH; (4) comparisons
of NOAH with some previous methods on ImageNet. The limitations of NOAH are also discussed.

5 CONCLUSION

In this paper, we explore the head structure designing to improve the representation learning capabil-
ities of DNNs for image classification. NOAH, a simple and easy-to-optimize head alternative built
upon dense pairwise object category attentions learnt at local to global scales, is presented. We show
that NOAH can attain promising performance (in terms of both model accuracy and efficiency) on
the ImageNet classification benchmark when plugging it into various DNN models including CNNs,
ViTs and MLPs, in both standard and aggressive from-scratch training regimes. We hope NOAH
would inspire the community to pay more attention to the head structure in future DNN architecture
engineering and representation learning research.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn archi-
tecture for weakly supervised place recognition. In CVPR, 2016.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Joao Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu. Semantic segmentation with
second-order pooling. In ECCV, 2012.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In ICML, 2020.

Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, and Ping Luo. Cyclemlp: A
mlp-like architecture for dense prediction. In ICLR, 2021.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Le Quoc V. Randaugment: Practical auto-
mated data augmentation with a reduced search space. In NeurIPS, 2020.

Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin, and Serge Belongie. Kernel pooling for
convolutional neural networks. In CVPR, 2017.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR,
2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Bin-Bin Gao and Hong-Yu Zhou. Learning to discover multi-class attentional regions for multi-label
image recognition. IEEE TIP, 2021.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In CVPR,
2016.

Zilin Gao, Jiangtao Xie, Qilong Wang, and Peihua Li. Global second-order pooling convolutional
networks. In CVPR, 2019a.

Ziteng Gao, Limin Wang, and Gangshan Wu. Lip: Local importance-based pooling. In ICCV,
2019b.

Mengran Gou, Fei Xiong, Octavia Camps, and Mario Sznaier. Monet: Moments embedding net-
work. In CVPR, 2018.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. In NeurIPS, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng, Shuicheng Yan, and Jiashi Feng. Vision
permutator: A permutable mlp-like architecture for visual recognition. TPAMI, 2022.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for mobilenetv3. In ICCV, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

10

Under review as a conference paper at ICLR 2023

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018.

Gao Huang, Yu Sun, Zhuang Liu, Sedra Daniel, and Weinberger Kilian Q. Deep networks with
stochastic depth. In ECCV, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Zilong Huang, Youcheng Ben, Guozhong Luo, Pei Cheng, Gang Yu, and Bin Fu. Shuffle trans-
former: Rethinking spatial shuffle for vision transformer. arXiv preprint arXiv:2106.03650, 2021.

Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix backpropagation for deep
networks with structured layers. In ICCV, 2015.

Md Amirul Islam, Matthew Kowal, Sen Jia, Konstantinos G Derpanis, and Neil DB Bruce. Global
pooling, more than meets the eye: Position information is encoded channel-wise in cnns. In ICCV,
2021.

Ildoo Kim, Woonhyuk Baek, and Sungwoong Kim. Spatially attentive output layer for image clas-
sification. In CVPR, 2020.

Takumi Kobayashi. Gaussian-based pooling for convolutional neural networks. In NeurIPS, 2019a.

Takumi Kobayashi. Global feature guided local pooling. In ICCV, 2019b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, 2012.

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR, 2006.

Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions in convolu-
tional neural networks: Mixed, gated, and tree. In AISTATS, 2016.

Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In CVPR, 2018.

Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. As-mlp: An axial shifted mlp architecture
for vision. In ICLR, 2021.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In ICLR, 2014.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
visual recognition. In ICCV, 2015.

Hanxiao Liu, Zihang Dai, David R So, and Quoc V Le. Pay attention to mlps. In NeurIPS, 2021a.

Lingqiao Liu, Chunhua Shen, and Anton Van Den Hengel. The treasure beneath convolutional
layers: Cross-convolutional-layer pooling for image classification. In CVPR, 2015.

Shilong Liu, Lei Zhang, Xiao Yang, Hang Su, and Jun Zhu. Query2label: A simple transformer way
to multi-label classification. arXiv preprint arXiv:2107.10834, 2021b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021c.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

David G Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018.

11

Under review as a conference paper at ICLR 2023

Luke Melas-Kyriazi. Do you even need attention? a stack of feed-forward layers does surprisingly
well on imagenet. arXiv preprint arXiv:2105.02723, 2021.

Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jianfei Cai. Scalable vision transformers
with hierarchical pooling. In ICCV, 2021.

Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale
image classification. In ECCV, 2010.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In ICML, 2018.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 1992.

Tao Pu, Tianshui Chen, Hefeng Wu, and Liang Lin. Semantic-aware representation blending for
multi-label image recognition with partial labels. In AAAI, 2022.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing
network design spaces. In CVPR, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI, 2019.

Oren Rippel, Jasper Snoek, and Ryan P Adams. Spectral representations for convolutional neural
networks. In NIPS, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Fei-Fei
Li. Imagenet large scale visual recognition challenge. IJCV, 2015.

Faraz Saeedan, Nicolas Weber, Michael Goesele, and Stefan Roth. Detail-preserving pooling in
deep networks. In CVPR, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Shlens Jonathon, and Wojna Zbigniew. Re-
thinking the inception architecture for computer vision. In CVPR, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In ICML, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

Peng Tang, Xinggang Wang, Baoguang Shi, Xiang Bai, Wenyu Liu, and Zhuowen Tu. Deep fishernet
for object classification. arXiv preprint arXiv: 1608.00182, 2016.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-mixer: An
all-mlp architecture for vision. In NeurIPS, 2021.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al. Resmlp:
Feedforward networks for image classification with data-efficient training. arXiv preprint arX-
iv:2105.03404, 2021a.

12

Under review as a conference paper at ICLR 2023

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
ICML, 2021b.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Herve Jegou. Going
deeper with image transformers. In ICCV, 2021c.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Linnan Wang, Chenhan Yu, Satish Salian, Slawomir Kierat, Szymon Migacz, and Alex Fit Florea.
Gpunet: Searching the deployable convolution neural networks for gpus. In CVPR, 2022.

Qilong Wang, Peihua Li, and Lei Zhang. G2denet: Global gaussian distribution embedding network
and its application to visual recognition. In CVPR, 2017.

Qilong Wang, Zilin Gao, Jiangtao Xie, Wangmeng Zuo, and Peihua Li. Global gated mixture of
second-order pooling for improving deep convolutional neural networks. In NeurIPS, 2018a.

Qilong Wang, Peihua Li, Qinghua Hu, Pengfei Zhu, and Wangmeng Zuo. Deep global generalized
gaussian networks. In CVPR, 2019.

Qilong Wang, Li Zhang, Banggu Wu, Dongwei Ren, Peihua Li, Wangmeng Zuo, and Qinghua Hu.
What deep cnns benefit from global covariance pooling: an optimization perspective. In CVPR,
2020.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In ICCV, 2021.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
CVPR, 2018b.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In CVPR, 2017.

Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. S2-mlp: Spatial-shift mlp architecture
for vision. In WACV, 2022.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In ICCV, 2021.

Sangdoo Yun, , Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
ICCV, 2019.

Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization of deep convolutional
neural networks. In ICLR, 2013.

Shuangfei Zhai, Hui Wu, Abhishek Kumar, Yu Cheng, Yongxi Lu, Zhongfei Zhang, and Rogerio
Feris. S3pool: Pooling with stochastic spatial sampling. In CVPR, 2017.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, 2022.

Hongyi Zhang, Cisse Moustapha, N Dauphin Yann, and Lopez-Paz David. mixup: Beyond empirical
risk minimization. In ICLR, 2018a.

Richard Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In CVPR, 2018b.

Jiaojiao Zhao and Cees G. M. Snoek. Liftpool: Bidirectional convnet pooling. In ICLR, 2021.

13

Under review as a conference paper at ICLR 2023

Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person
re-identification: A benchmark. In ICCV, 2015.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In AAAI, 2020.

Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu, and Xiaogang Wang. Learning spatial regu-
larization with image-level supervisions for multi-label image classification. In CVPR, 2017.

Ke Zhu and Jianxin Wu. Residual attention: A simple but effective method for multi-label recogni-
tion. In ICCV, 2021.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

14

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 DATASETS AND IMPLEMENTATION DETAILS

A.1.1 IMAGE CLASSIFICATION ON IMAGENET

Recall that our main experiments are conducted on the popular ImageNet dataset (Russakovsky
et al., 2015). It consists of over 1.2 million images for training and 50,000 images for validation,
including 1,000 image classes. To have a comprehensive evaluation conditioned on the extreme ca-
pability of our current computational resources, we apply NOAH to a variety of DNN architectures
including 10 CNN backbones, 8 ViT backbones and 8 MLP backones, covering a relatively large
range of model complexity (see Table 1,2,3 in the main manuscript). For CNNs, we select back-
bones from ResNet (He et al., 2016), MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard
et al., 2019) and ShuffleNetV2 (Ma et al., 2018) families. For ViTs, we select backbones from
DeiT (Touvron et al., 2021b) and PVT (Wang et al., 2021) families. For MLPs, we select backbones
from Mixer (Tolstikhin et al., 2021) and gMLP (Liu et al., 2021a) families. In the experiments,
we construct our networks by replacing the existing head of each selected DNN architecture by
a NOAH (in the main manuscript, we provide some ablative experiments to study the settings of
NOAH). Typically, we adopt the standard data augmentation to train and evaluate each network,
unless otherwise stated. For training, we first resize the input images to 256 × 256, then randomly
sample 224 × 224 image crops or their horizontal flips. We standardize the cropped images with
mean and variance per channel. For evaluation, we use the center crops of the resized images, and
report top-1 and top-5 recognition rates on the ImageNet validation set. For fair comparisons, we
use the public PyTorch codes of these networks 2 3 4 5 with the exactly same settings to train all
baseline models and our models from scratch. Note that our trained baseline models are better than
or at least on par with the reported ones.

Specifically, the models of ResNet18, ResNet50, ResNet101, ResNet152, MobileNetV2 (1.0×),
MobileNetV2 (0.75×), MobileNetV2 (0.5×), MobileNetV2 (0.35×), MobileNetV3-Small, Shuf-
fleNetV2 (1.0×), DeiT-Tiny (1.0×), DeiT-Tiny (0.75×), DeiT-Tiny (0.5×), PVT-Tiny (1.0×), PVT-
Tiny (0.75×), PVT-Tiny (0.5×), Mixer-Small (1.0×), Mixer-Small (0.75×), Mixer-Small (0.5×),
gMLP-Tiny (1.0×), gMLP-Tiny (0.75×) and gMLP-Tiny (0.5×) are trained on servers with 8 N-
VIDIA Titan X GPUs. The other models of DeiT-Base, DeiT-Small, Mixer-Base and gMLP-Small,
which require much larger memory cost, are trained on servers with 8 NVIDIA Tesla V100 GPUs.
Detailed training setups for different DNN backbones are as follows.

Training setup for ResNet models. The initial learning rate is set to 0.1 and decayed by a factor of
10 every 30 epochs. All models are trained by the stochastic gradient descent (SGD) optimizer for
100 epochs, with a batch size of 256, a weight decay of 0.0001 and a momentum of 0.9.

Training setup for MobileNet models. The initial learning rate is set to 0.05 and scheduled to
arrive at zero with a cosine decaying strategy. All models are trained by the SGD optimizer for 150
epochs, with a batch size of 256, a weight decay of 0.00004 and a momentum of 0.9. Unlike the other
backbones including the MobileNetV2 family, the original head of MobileNetV3-Small architecture
has two fully connected (FC) layers after the global average pooling (GAP) layer. When constructing
NOAH, we additionally insert one 1× 1 convolutional layer ahead of our basic NOAH to match the
parameter size of this head structure. This is the reason why NOAH introduces obviously more extra
MAdds to MobileNetV3-Small backbone compared to the other DNN backbones (see Table 1 in the
main manuscript).

Training setup for ShuffleNetV2 models. The initial learning rate is set to 0.5 and scheduled to
arrive at zero linearly. All models are trained by the SGD optimizer for 240 epochs, with a batch
size of 1024, a weight decay of 0.00004 and a momentum of 0.9.

Training setup for DeiT and PVT models. The initial learning rate is set to 0.0005 and scheduled
to arrive at zero with a cosine decaying strategy. All models are trained by the AdamW optimiz-
er (Loshchilov & Hutter, 2019) for 300 epochs, with a batch size of 1024, a weight decay of 0.05

2https://github.com/pytorch/vision/tree/main/torchvision/models
3https://github.com/facebookresearch/deit
4https://github.com/whai362/PVT
5https://github.com/rwightman/pytorch-image-models

15

https://github.com/pytorch/vision/tree/main/torchvision/models
https://github.com/facebookresearch/deit
https://github.com/whai362/PVT
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2023

and a momentum of 0.9. Following Touvron et al. (2021b) and Wang et al. (2021), we use Label
Smoothing (Szegedy et al., 2016), RandAugment (Cubuk et al., 2020), Random Erasing (Zhong
et al., 2020), Mixup (Zhang et al., 2018a) and CutMix (Yun et al., 2019) during training.

Training setup for Mixer and gMLP models. The initial learning rate is set to 0.0007 and sched-
uled to arrive at zero with a cosine decaying strategy. All models are trained by the AdamW opti-
mizer for 300 epochs, with a batch size of 1536, a weight decay of 0.067 and a momentum of 0.9.
Following Tolstikhin et al. (2021) and Liu et al. (2021a), we use Label Smoothing, RandAugment,
Random Erasing, Mixup and CutMix during training.

Training setup in the aggressive regime. Besides the aforementioned training settings, in our ab-
lative experiments we also study the generalization ability of NOAH to a much more aggressive
from-scratch training regime used by ConvNeXt (Liu et al., 2022). Based on the public code 6

with the default settings, we compare the training of ResNet50 on ImageNet with vs. without us-
ing NOAH. Specifically, we use the AdamW optimizer to train each model for 300 epochs with
a learning rate of 0.004, a batch size of 4096 and a weight decay of 0.05. There is a 20-epoch
linear warmup and a cosine learning rate decaying schedule afterward. For data augmentations,
popular schemes including Mixup, CutMix, RandAugment and Random Erasing are used. Besides,
Stochastic Depth (Huang et al., 2016), Label Smoothing, LayerScale (Touvron et al., 2021c) and
Exponential Moving Average (Polyak & Juditsky, 1992) are also adopted to regularize the training
process. The results of Table 8 in the main manuscript show that, in the best case, the ResNet50
model with NOAH reaches 79.32% top-1 accuracy, bringing 0.88% top-1 gain to the baseline.

A.1.2 PERSON RE-IDENTIFICATION ON MARKET-1501

To evaluate the generalization ability of NOAH to other image classification tasks, we also perform
ablative experiments (see Table 9 in the main manuscript) on the popular person re-identification
dataset Market-1501 (Zheng et al., 2015), which contains 750 and 751 identities for training and
testing, respectively. We adopt ResNet50-FC as the baseline, following the common settings on
Market-1501. Specifically, an extra FC layer is appended after the GAP layer of ResNet50 first,
then the output 512-D feature vector is used for person matching. We consider two training regimes:
the standard from-scratch training and the fine-tuning.

From-scratch training: the initial learning rate is set to 0.065 and decayed by a factor of 10 at
epoch 150, 225 and 300. All models are trained by the SGD optimizer for 350 epochs, with a batch
size of 64, a weight decay of 0.0001 and a momentum of 0.9.

Fine-tuning: the initial learning rate is set to 0.0003 and decayed by a factor of 10 every 60 epochs.
All models pre-trained on ImageNet are fine-tuned by the Amsgrad optimizer (in PyTorch) for 150
epochs, with a batch size of 64, a weight decay of 0.0001 and a momentum of 0.9.

All models are trained with a single NVIDIA Titan X GPU.

A.2 VARIANT DESIGNS FOR THE POCA BLOCK

Note that NOAH relies on the Pairwise Object Category Attentions (POCAs) learnt at local to global
scales. In the main manuscript, we provide several sets of ablative experiments to study our basic
components for learning either local POCAs (see Table 4, 5, 6) or global POCAs (see Table 7). For
a better understanding of our proposed attention mechanism for the POCA block, here we provide
more ablative experiments on the ImageNet dataset with ResNet18 as the backbone. Specifically,
in the experiments, we set N = 4 and r = 1/2, and compare our proposed attention design for
the POCA block with the following 4 variant designs: (1) for the activation function, replacing the
softmax by the sigmoid; (2) for the key embedding Wki and the value embedding Wvi, replacing
1×1 convolutional kernels by 3×3 convolutional kernels; (3) for the key embedding Wki, removing
the second-level feature split, and generating a single (instead of 1000, that is, one unique spatial
attention matrix per image category) spatial attention Ai ∈ RH×W×1 which is shared to the value
tensor Vi ∈ RH×W×M along the image category dimension M ; (4) adding an extra linear (1 × 1
convolutional) layer before the key embedding Wki, and also adding an extra linear (1 × 1 convo-
lutional) layer before the value embedding Wki, whose output features have the same dimensions

6https://github.com/facebookresearch/ConvNeXt

16

https://github.com/facebookresearch/ConvNeXt

Under review as a conference paper at ICLR 2023

Table 11: Results comparison of NOAH with different attention designs for the POCA block. Ex-
periments are performed on ImageNet with ResNet18 as the backbone. In the experiments, we set
N = 4 and r = 1/2, and compare our proposed POCA design with 4 variant designs including: (1)
for the activation function, replacing the softmax by the sigmoid; (2) for the key embedding Wki

and the value embedding Wvi, replacing 1×1 convolutional kernels by 3×3 convolutional kernels;
(3) for the key embedding Wki, removing the second-level feature split, and generating a single
(instead of 1000, that is, one unique spatial attention matrix per image category) spatial attention
Ai ∈ RH×W×1 which is shared to the value tensor Vi ∈ RH×W×M along the image category
dimension M ; (4) adding an extra linear (1× 1 convolutional) layer before the key embedding Wki,
and also adding an extra linear (1× 1 convolutional) layer before the value embedding Wki, whose
output features have the same dimensions to the input features, respectively. Best results are bolded.

Network Method Params MAdds Top-1(%) Top-5(%)
ResNet18 - 11.69M 1.81G 70.25 89.38

+ NOAH

The POCA block (our design) 11.70M 1.84G 71.81 (↑1.56) 90.18 (↑0.80)
Replacing the softmax by the sigmoid 11.70M 1.84G 70.68 (↑0.43) 89.64 (↑0.26)
Replacing 1× 1 conv. kernels by 3× 3 ones 15.79M 2.04G 71.57 (↑1.32) 90.05 (↑0.67)
Sharing a single spatial attention to M image categories 11.69M 1.84G 70.26 (↑0.01) 89.41 (↑0.03)
Adding an extra linear layer before Wki and Wvi 11.73M 1.84G 71.28 (↑1.03) 89.97 (↑0.59)

to the input features, respectively. Table 11 shows the results, from which we can see that all these
5 attention designs for the POCA block can improve model accuracy. Comparatively, our proposed
design is the best, bringing 1.56% top-1 accuracy improvement to the baseline while maintaining
almost the same model complexity. Surprisingly, replacing 1 × 1 convolutional kernels by 3 × 3
convolutional kernels does not lead to improved model accuracy although it introduces more pixels
(that encode a larger spatial field) to compute each local POCA.

A.3 VISUALIZATION RESULTS

Recall that our NOAH leverages a concise association of feature split (two levels), interaction and
aggregation operations to learn local-to-global POCAs in a group-wise manner. To have a better
understanding of this parallel POCA learning mechanism, it is necessary to study the learnt values
of POCAs. To this end, we use the well-trained ResNet18/DeiT-Tiny model with NOAH (see Table
1/2 in the main manuscript) to analyze the learnt attention tensor Ai ∈ RH×W×M , the learnt value
tensor Vi ∈ RH×W×M , and the learnt local POCA tensor Pi ∈ RH×W×M for each of 4 POCA
blocks. Given any image sample in the ImageNet validation set, for visualization, we select the
spatial attention/value channel (that corresponds to the ground truth image category, and is normal-
ized into [0, 1]/[−1, 1] for visualization) of Ai/Vi for each of 4 POCA blocks, and the summation
output (that corresponds to the ground truth image category, and is normalized into [−1, 1] for vi-
sualization) of the local POCA channels of Pi tensors generated by 4 POCA blocks, respectively.
Illustrative results are shown in Fig. 2. Here, for the NOAH based ResNet18/DeiT-Tiny model,
N = 4, r = 1/2, and (H = 7,W = 7)/(H = 14,W = 14), respectively. We can observe that
parallel POCA blocks tend to learn varying spatial object category attention distributions, which
are complementary to each other by visualization examples, showing their capability to capture rich
spatial context cues to some degree.

A.4 TRAINING STABILITY

Fig. 3 shows the training and validation accuracy curves of the ResNet18/ResNet50/MobileNetV2
(1.0×)/MobileNetV2 (0.5×) models trained on the ImageNet dataset with the standard head vs.
NOAH. We can see that the ResNet18/ResNet50/MobileNetV2 (1.0×)/MobileNetV2 (0.5×) mod-
el with NOAH shows relatively high top-1 gains throughout the training process compared to the
baseline, respectively.

A.5 COMPARISON OF NOAH WITH SOME PREVIOUS METHODS ON IMAGENET

As we discussed in the Introduction section of the main manuscript, there exist many research works
that are directly or indirectly related to designing a better classification head, when typically given a
CNN backbone. Due to different focuses (e.g., multi-label/fine-grained classification tasks with the

17

Under review as a conference paper at ICLR 2023

OutputImage

mantis

Attention Value

palace

face

powder

10 1-1

stole

stone wall

cellular

telephone

goblet

mountain

tent

harmonica

mountain

bike

OutputImage Attention Value
10 1-1

Figure 2: Illustrative visualization results. We use the well-trained ResNet18/DeiT-Tiny mod-
el with NOAH (see Table 1/2 in the main manuscript) to analyze the learnt attention tensor
Ai ∈ RH×W×M , the learnt value tensor Vi ∈ RH×W×M , and the learnt local POCA tensor
Pi ∈ RH×W×M for each of 4 POCA blocks. Given any image sample in the ImageNet validation
set, for visualization, we select the spatial attention/value channel (that corresponds to the ground
truth image category, and is normalized into [0, 1]/[−1, 1] for visualization) of Ai/Vi for each of 4
POCA block, the summation output (that corresponds to the ground truth image category, and is
normalized into [−1, 1] for visualization) of the local POCA channels of Pi tensors generated by 4
POCA blocks, respectively. For the NOAH based ResNet18/DeiT-Tiny model, N = 4, r = 1/2,
and (H = 7,W = 7)/(H = 14,W = 14), respectively. These visualization results indicate that
parallel POCA blocks tend to learn varying spatial attention distributions, which are complementary
to each other by visualization examples, showing their capability to capture rich spatial context cues
to some degree.

18

Under review as a conference paper at ICLR 2023

Figure 3: Curves of top-1 training accuracy (dashed line) and validation accuracy (solid line) of the
ResNet18/ResNet50/MobileNetV2 (1.0×)/MobileNetV2 (0.5×) models trained on the ImageNet
dataset with the standard head vs. NOAH. Comparatively, the ResNet18/ResNet50/MobileNetV2
(1.0×)/MobileNetV2 (0.5×) model with NOAH converges with the best validation accuracy, show-
ing 1.56%/1.02%/1.33%/3.14% top-1 gain to the baseline while maintaining almost the same mod-
el size, respectively.

19

Under review as a conference paper at ICLR 2023

Table 12: Horizontal comparison of NOAH with some previous methods which report the results
for ResNet50 on the ImageNet dataset. For NOAH, we set N = 4 and r = 1/8. The results for
the reference methods are collected from the original papers. Typically, these methods differ in
focus, training configuration and regularization strategy, and thus the apple-to-apple performance
comparison is not applicable. Best results are bolded.

Network Params MAdds Top-1(%) Top-5(%)
ResNet50 25.56M 3.86G 76.23 93.01
GatedPool (AISTATS2016) (Lee et al., 2016) NA NA 77.73 93.67
MixedPool (AISTATS2016) (Lee et al., 2016) NA NA 77.19 93.47
DPP (CVPR2018) (Saeedan et al., 2018) 25.60M 6.59G 77.22 93.64
BlurPool (ICML2019) (Zhang, 2019) NA NA 77.04 NA
LIP (with Bottleneck-128) (ICCV2019) (Gao et al., 2019b) 24.70M 5.33G 78.19 93.96
LIP (with Bottleneck-256) (ICCV2019) (Gao et al., 2019b) 25.80M 7.61G 78.15 94.02
GFGP (ICCV2019) (Kobayashi, 2019b) NA NA 78.21 94.05
Half-GaussPool (NeurIPS2019) (Kobayashi, 2019a) NA NA 78.34 94.12
iSP-GaussPool (NeurIPS2019) (Kobayashi, 2019a) NA NA 78.63 94.32
GCP (CVPR2020) (Wang et al., 2020) NA NA 78.03 93.95
LiftDownPool (ICLR2021) (Zhao & Snoek, 2021) NA NA 77.64 93.89
3G-Net (CVPR2019) (Wang et al., 2019) NA NA 78.69 94.39
CSRA (ICCV2021) (Zhu & Wu, 2021) NA NA 75.70 NA
SAOL+KD (CVPR2020) (Kim et al., 2020) NA NA 77.11 93.59
SAOL+KD+Cutmix (CVPR2020) (Kim et al., 2020) NA NA 78.85 94.24
NOAH (standard from-scratch training) 25.56M 3.96G 77.25 93.65
NOAH (aggressive from-scratch training) 25.56M 3.96G 79.17 94.51

region-based input, or weakly supervised learning scenarios), training configurations (e.g., network
architectures, decay of learning rate, or warm-up time) and regularization strategies (e.g., second-
order optimization, data/feature augmentation, or knowledge distillation), the apple-to-apple perfor-
mance comparison is not applicable. Here, we provide a horizontal comparison of our method with
some previous methods which report the results for ResNet50 on the ImageNet dataset. Specifical-
ly, the reference methods mainly focus on pooling (GatedPool (Lee et al., 2016), MixedPool (Lee
et al., 2016), DPP (Saeedan et al., 2018), BlurPool (Zhang, 2019), LIP (Gao et al., 2019b), GFG-
P (Kobayashi, 2019b), GaussPool (Kobayashi, 2019a), GCP (Wang et al., 2020) and LiftDown-
Pool (Zhao & Snoek, 2021)), parametric learnable embedding (3G-Net (Wang et al., 2019)), and
attentive decoder (SAOL (Kim et al., 2020) and CSRA (Zhu & Wu, 2021)). A brief horizontal
performance comparison is shown in Table 12. We can see that NOAH achieves competitive per-
formance although it differs with these methods in motivation (we attempt to develop a new yet still
simple and easy-to-optimize head alternative that can be generalized to various DNN architectures,
for the improved image classification purpose, especially on large-scale datasets like ImageNet).

A.6 LIMITATIONS OF NOAH

Clearly, the above experiments well validated that NOAH has favorable abilities to improve the
representation learning of a variety of CNN, ViT and MLP architectures for image classification
tasks. Despite of its simplicity and effectiveness, NOAH has two limitations. The major limitation
lies in the generalization to dense downstream tasks, mainly due to different training paradigms.
For example, when training a deep model for object detection, it typically starts with removing the
head of a pre-trained classification network, then appends two new head structures (one for region-
based classification, and the other for object localization) to the pre-trained backbone, and finally
fine-tunes them on the given dataset while keeping either all layers or some particular layers of the
pre-trained backbone fixed. Such a fundamental training paradigm difference makes NOAH cannot
be directly used to dense downstream tasks. Our preliminary test of merely using the backbone
pre-trained with NOAH to object detection dataset MS-COCO only brings negligible mAP gains.
Besides, restricted by our current computational resources, the potential of applying NOAH to super-
large DNN architectures (particularly ViTs and MLPs) is not explored. We hope we can explore it
in the future, especially for training them with NOAH on a significant larger volume of training
samples besides the ImageNet dataset.

20

	Introduction
	Related Work
	Method
	Experiments
	Image classification on ImageNet
	Ablation studies

	Conclusion
	Appendix
	Datasets and implementation details
	Image classification on ImageNet
	Person re-identification on Market-1501

	Variant designs for the POCA block
	Visualization results
	Training stability
	Comparison of NOAH with some previous methods on ImageNet
	Limitations of NOAH

