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Abstract
We study policy-regret minimization problem in
dynamically evolving environments, modeled as
Markov games between a learner and a strategic,
adaptive opponent. We propose a general algorith-
mic framework that achieves the optimal O(

√
T )

policy regret for a wide class of large-scale prob-
lems characterized by an Eluder-type condition–
extending beyond the tabular settings of previous
work. Importantly, our framework uncovers a
simpler yet powerful algorithmic approach for
handling reactive adversaries, demonstrating that
leveraging opponent learning in such settings is
key to attaining the optimal O(

√
T ) policy regret.

1. Introduction
In recent years, reinforcement learning (RL) has achieved re-
markable success across a wide range of complex decision-
making problems. Notable examples include mastering
games such as Go (Silver et al., 2016; 2017; 2018), real-
time strategy games like StarCraft II (Vinyals et al., 2019)
and Dota (Berner et al., 2019), autonomous driving (Shalev-
Shwartz et al., 2016), and socially interactive games such as
hide-and-seek (Baker et al., 2019), capture-the-flag (Jader-
berg et al., 2019), and poker (Texas hold’em) (Moravčı́k
et al., 2017; Brown & Sandholm, 2018). Many of these set-
tings can be naturally formulated as instances of multi-agent
reinforcement learning (MARL), where multiple agents
interact and learn to make decisions in a shared environ-
ment (Yang & Wang, 2020; Zhang et al., 2021).

Despite these empirical advances, the theoretical and
algorithmic foundations of MARL remain relatively
underdeveloped–particularly in scenarios where the learner
faces adaptive opponents that adjust their strategies in re-
sponse to the learner’s behavior. Most prior work addresses
this challenge through the lens of external regret, which
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measures the gap between the learner’s performance and
that of the best fixed strategy in hindsight. However, ex-
ternal regret fails to capture the counterfactual nature of
adaptivity: it overlooks how opponents might have reacted
differently had the learner chosen a different strategy.

To address this limitation, policy regret (Arora et al., 2012b)
has emerged as a more suitable notion. Unlike external
regret, policy regret compares the learner’s performance
against the return they would have achieved by following
an alternate strategy, thereby accounting for the adaptive
behavior of opponents. Policy regret has been widely used
to analyze learning against adaptive adversaries in online
learning (Arora et al., 2012b; 2019) and repeated games
(Arora et al., 2018), but only recently extended to the set-
ting of multi-agent RL. In particular, Nguyen-Tang & Arora
(2024a) initiated the study of policy regret in Markov games,
establishing fundamental barriers and providing sufficient
conditions for achieving sublinear policy regret in tabular
environments. Their results hinge on two simplifying as-
sumptions: small discrete state and action spaces, and con-
sistent behavior–the adversary’s response in a state depends
solely on the learner’s policy in that state.

However, these assumptions are restrictive. In realistic envi-
ronments, an opponent’s strategy in a particular state may
depend on the learner’s actions in other states. Moreover, in
many real-world applications such as robotics and games,
the state and action spaces can be exponentially large or even
continuous and high-dimensional. making tabular guaran-
tees impractical. While function approximation has proven
effective in handling large-scale RL problems (Foster et al.,
2021; Liu et al., 2022; Jin et al., 2021; Zhan et al., 2023; Liu
et al., 2023; Chen et al., 2023; Zhong et al., 2022), its role in
minimizing policy regret within MARL remains unexplored.
This motivates the central question of our work:

Can we design sample-efficient RL algorithms for policy
regret minimization with function approximation?

In this work, we introduce BOVL–the first algorithmic
framework for policy-regret minimization in Markov games
for a broad class of problems characterized by ℓ2-type
Eluder coefficients. Our problem class subsumes the class of
tabular problems studied in (Nguyen-Tang & Arora, 2024a)
introduces a novel class of linear problems, extending the
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(Nguyen-Tang & Arora, 2024a) This work
RL problems Two-player Markov games Two-player Markov games
Learner policies Deterministic Deterministic/Stochastic
Adversary behavior Consistent Lipschitz
Representation Tabular General function approximation
Expressivity Exact Realizable, complete, and Eluder
Policy regret mV̄

√
HSAB(SAB(H +

√
S) +H2)

√
T/d∗ V̄ (m+H)

√
dEγT

Table 1. A comparison between our work and (Nguyen-Tang & Arora, 2024a). Due to fundamental barriers in policy regret minimization
for Markov games (Nguyen-Tang & Arora, 2024a), we only consider m-memory bounded and stationary adversaries for sample-efficient
learning. Here, T denotes the number of episodes, m the memory of the adversary, H the episode length, S, A and B, the cardinalities of
the state space, learner’s action space, and adversary’s action space, respectively, d∗ the minimum positive visitation probability, and γ,
dE the covering-type and Eluder-type complexity measures of the function classes.

landscape of policy-regret minimization. Furthermore, our
framework provides a significantly simpler algorithmic de-
sign while attaining tighter bounds when specialized to the
tabular case. It also resolves three of the four open problems
posed in (Nguyen-Tang & Arora, 2024a). Specifically,

• We identify a general class of problems character-
ized by ℓ2-type Eluder conditions (Condition 1 and
Condition 2), which includes both the tabular case
in (Nguyen-Tang & Arora, 2024a) and a new class
of linear Markov games. Our framework also in-
troduces a natural Lipschitz condition that models
how adversaries respond similarly to similar policy
sequences—an essential relaxation that overcomes the
fundamental barriers identified by Nguyen-Tang &
Arora (2024a, Theorem 3).

• We propose a generic algorithm, BOVL (Algorithm 1),
tailored to this broader class. BOVL employs a batch-
ing strategy to handle adaptive, memory-bounded ad-
versaries and constructs optimistic estimates of both
value functions and adversary responses based on col-
lected data. Compared to the layerwise exploration in
Nguyen-Tang & Arora (2024a), BOVL is conceptually
simpler and more amenable to large-scale settings.

• We show that BOVL attains a policy regret bound
of V̄ (m + H)

√
dEγT , where V̄ is the scale of the

value functions, m the memory of the adversary, H the
episode length, dE and γ the Eluder-type and covering-
type complexities of the function classes, respectively,
and T the total number of episodes. When instantiated
to the tabular case, this bound improves significantly
over Nguyen-Tang & Arora (2024a) by a factor of√

HSA
Bd∗ , where d∗ is the minimum positive visitation

probability—which can be arbitrarily small in prob-
lems with large state and action spaces.

We summarize these key improvements in Table 1.

1.1. Technical Contribution

A core technical contribution of our work is a novel ap-
proach to handling the batching component of BOVL.
Batching–originally inspired by Arora et al. (2012b)–divides
the total time budget into equally sized intervals during
which the algorithm commits to a fixed policy. This design
is crucial for coping with adaptive (but memory-bounded)
adversaries, as it allows the learner to observe consistent
responses over each batch.

A key challenge in this setup is that the models trained at
the beginning of a batch are not guaranteed to have small
empirical loss on the data subsequently collected within that
batch. Xiong et al. (2023) addressed this issue in the context
of value function learning by showing that only a small num-
ber of batches exhibit large in-batch empirical error. Their
analysis relies on a variant of ℓ2-type Eluder conditions.
However, their technique applies only to empirical squared
loss, which suffices for value function approximation but
not for adversary learning in our setting, which involves em-
pirical log-likelihood loss. The reason is that their approach
requires a lower tail bound that is trivial for squared loss but
remains unknown for log-likelihood.

To overcome this, we introduce a new approach that con-
trols batches with large total variation loss rather than log-
likelihood loss, thus avoiding reliance on unavailable lower-
tail bounds (see Appendix F.2). Beyond our current setting,
this technique naturally generalizes to obtain regret bounds
with low switching costs in online density estimation prob-
lems with function approximation such as those studied in
Liu et al. (2023).

2. Problem Setup and Preliminaries
We consider two-player Markov games (MGs), specified
by the tuple M = (S ,A ,B, H,P, r), where S denotes
the state space, A the learner’s action space, and B the
adversary’s action space. The game proceeds over H steps
per episode. The reward function is given by r = {rh}h∈[H],
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where each rh : S × A × B → R. We define [H] :=
{1, . . . ,H}. The transition dynamics are given by P =
{Ph}h∈[H], specifying the joint distribution over trajectories
s1:H conditioned on action sequences a1:H and b1:H :

P(s1:H |a1:H , b1:H)=P1(s1)

H∏
h=2

Ph(sh|sh−1, ah−1, bh−1).

Without loss of generality and for simplicity, we assume all
episodes begin at the same fixed initial state s1.

Interaction Protocol. At each episode, the learner and
adversary interact over H steps, starting from the fixed ini-
tial state s1. At time step h ∈ [H], the learner observes the
current state sh and selects an action ah ∈ A , while the ad-
versary selects an action bh ∈ B. The learner then observes
bh, receives a reward rh(sh, ah, bh), and the environment
transitions to the next state sh+1 ∼ Ph(·|sh, ah, bh). The
episode terminates after H steps.

Policies and Value Functions. A (Markov) policy for the
learner is denoted π = {πh}h∈[H], where each πh(·|s) ∈
∆(A ) specifies a distribution over actions at step h and
state s. Similarly, the adversary’s policy is µ = {µh}h∈[H],
where µh(·|s) ∈ ∆(B). Here, ∆(X ) denotes the set of
probability measures over a measurable space X . The value
function at step h and state s, under policy pair (π, µ),
is defined as V π,µ

h (s) := Eπ,µ[
∑H

l=h rl(sl, al, bl)|sh =
s], where the expectation is taken over trajectories gen-
erated by the joint policy and transition dynamics. We
also define the action-value function Qπ,µ

h (s, a, b) :=

Eπ,µ[
∑H

l=h rl(sl, al, bl)|(sh, ah, bh) = (s, a, b)]. We as-
sume that the learner and adversary select policies from
restricted classes ΠA and ΠB, respectively.

Policy Norm. To compare the similarity between two
policies within ΠA or ΠB, we define generic norms ∥·∥ΠA

and ∥ · ∥ΠB on the corresponding policy spaces. Our results
are stated in generality and do not depend on any specific
choice of norm. However, to provide concrete examples:

• If policies are stochastic and the action space is discrete,
one can use the ℓ1/ℓ∞ norm:

∥π − π′∥ΠA = max
h∈[H]

sup
s∈S

∥πh(·|s)− π′
h(·|s)∥1. (1)

• In contrast, if ΠA contains only deterministic policies
and A is continuous (e.g., in robotics), the norm above is
ill-defined. In such cases, it is more appropriate to use:

∥π − π′∥ΠA = max
h∈[H]

sup
s∈S

∥πh(s)− π′
h(s)∥A ,

where πh : S → A and ∥ · ∥A is a norm on the continu-
ous action space A (e.g., an ℓp norm).

Additional Notation. Let f = (f1, . . . , fH), where each
fh : S × A × B → R. For any policy pair (π, µ),
we define the expectation of fh under policies π and µ as
fh(s, π, µ) := Ea∼πh(·|s),b∼µh(·|s) [fh(s, a, b)]. We define
the Bellman operator T π,µ

h : RS×A ×B → RS×A ×B as:

[Tπ,µ
h fh+1](x) = rh(x) + ⟨Ph+1(·|x), fh+1(·, π, µ)⟩,

where ⟨·, ·⟩ denotes the dot product between two vectors.

We denote the p-norm by ∥ · ∥p, the maximum and mini-
mum of two values by x ∨ y := max{x, y} and x ∧ y :=
min{x, y}, respectively. We write f ≲ g to indicate
f = O(g), i.e., f ≤ cg for some absolute constant c. Sim-
ilarly, we define the asymptotic relations ≳ and ≍ as the
counterparts of ≥ and = up to constant factors.

We also introduce the following shorthand notation:
• xh = (sh, ah, bh), and X = S × A × B,
• zh := (sh, ah, bh, rh, sh+1), Z = S ×A ×B×R×S ,
• zth = (sth, a

t
h, b

t
h, r

t
h, s

t
h+1) for episode t.

Define

Eπ,µ
h (fh, fh+1)(xh)= [Tπ,µ

h fh+1 − fh](xh),

lπ,µ(fh, fh+1)(zh)=(fh(sh, ah, bh)− rh−fh+1(sh+1, π, µ))
2

∆lπ,µ(fh, fh+1)(zh)= lπ,µ(fh, fh+1)(zh)

− lπ,µ(Tπ,µ
h fh+1, fh+1)(zh)

Boundedness. Without loss of generality and for simplic-
ity, we assume that all rewards are bounded: rh ∈ [0, V̄ ] for
all h ∈ [H], where V̄ is a known constant.

Adaptive Adversaries. We consider adaptive adver-
saries, following the framework introduced by Arora et al.
(2012b;a); Nguyen-Tang & Arora (2024a). Specifically, the
adversary is allowed to adapt its behavior over time using
arbitrary deterministic algorithms. Formally, at episode t,
the adversary selects a policy µt using a (potentially un-
bounded) deterministic mapping At : Π

t
A → ΠB, which

maps the history of the learner’s policies π1, . . . , πt to the
adversary’s response µt.

This reactive model generalizes the canonical Stackelberg
game setup (Von Stackelberg, 2010), where a “defender”
(the learner) first commits to a strategy, and an “attacker”
(the adversary) responds optimally, given knowledge of the
defender’s strategy.

Policy regret minimization. We measure the learner’s
performance using policy regret (Merhav et al., 2002; Arora
et al., 2012b), which compares the learner’s cumulative
reward to that of the best fixed policy sequence in hind-
sight, accounting for the adaptive nature of the adversary.
Formally, the policy regret after T episodes is defined as:

PR(T )= sup
π∈ΠA

T∑
t=1

V
π,At([π]

t)
1 (s1)−V

πt,At(π
1,...,πt)

1 (s1)
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where [π]t denotes the repeated sequence (π, . . . , π) of
length t, and At([π]

t) is the adversary’s policy if the learner
had used π in all past episodes.

3. Problems with Large State-Action Spaces
We begin by recalling the fundamental barriers to policy
regret minimization in Markov games identified by Nguyen-
Tang & Arora (2024a). These barriers hinge on two criti-
cal concepts: m-memory boundedness (Definition 1) and
stationarity of the adversary (Definition 2). An adversary
is said to be m-memory bounded if it only considers the
learner’s most recent m policies. An adversary is stationary
if its behavior does not vary over time.

Definition 1 (m-memory bounded adversaries). An adver-
sary is said to be m-memory bounded for some m ≥ 0, if
for every t and any policy sequence π1, . . . , πt, we have:

At(π
1, . . . , πt) = At(π

1∨(t−m+1), . . . , πt).

Definition 2 (Stationary adversaries). An m-memory
bounded adversary is said to be stationary if there exists a
mapping µ∗ : Πm

A → ΠB such that, for every t and any
policy sequence π1, . . . , πt, we have:

At(π
1, . . . , πt) = µ∗(π1∨(t−m+1), . . . , πt).

Nguyen-Tang & Arora (2024a) show that policy regret min-
imization is not sample-efficient against adversaries that are
either (i) unbounded in memory or (ii) memory-bounded
but non-stationary.

Motivated by this impossibility result, we restrict our fo-
cus for the remainder of the paper to memory-bounded and
stationary adversaries as formalized in Definition 2. Specif-
ically, we assume that the adversary is governed by a fixed
mapping µ∗, and is m-memory bounded and stationary,
where m is known to the learner.

For convenience, we assume that the adversary employs
Markov policies. Thus, we can write the joint distribution
over adversary actions b1:H as:

µ∗(b1:H |s1:H , π1∨(t−m+1):t)=

H∏
h=1

µ∗
h(bh|sh, π1∨(t−m+1):t),

Whenever it is clear from the context, we also use the short-
hand µ∗(π) to denote µ∗([π]m).

3.1. Value Function Approximation

We consider the setting of large state spaces, where the
state space S is exponentially large. In such cases, it is
undesirable for the policy regret to scale polynomially with
the number of states |S |. To address this, it is common in
practice–especially in deep RL (Mnih et al., 2015)–to use
function approximation (e.g., neural networks) to estimate
value functions. We adopt this approach in our work.

Formally, the learner is given a function class F = F1 ×
. . .× FH , where each Fh ⊂ {X → [0, V̄ ]} provides a set
of candidate functions to approximate Q

π,µ∗([π]m)
h for any

π ∈ ΠA , with µ∗ denoting the m-memory bounded and
stationary adversary.

Learning in Markov games remains extremely challenging
without additional expressivity assumptions on the func-
tion class. We adopt the standard assumption of Bellman
completeness.

Assumption 3.1 (Bellman completeness). For all π ∈
ΠA , f ∈ F , and h ∈ [H], we have Tπ,µ∗([π]m)

h fh+1 ∈ Fh.

Bellman completeness requires the function class to be
closed under the Bellman operator. It also implies real-
izability, i.e., Q

π,µ∗([π]m)
h ∈ Fh,∀(π, h) ∈ ΠA × [H].

This assumption is widely used as a sufficient condition
for sample-efficient RL with function approximation (see,
e.g., Jin et al. (2021)).

Covering number. When the function class F and policy
class ΠA are finite, their statistical complexity can be mea-
sured via their log cardinalities, log |F| and log |ΠA |. For
infinite classes, we use the standard notion of ε-covering
number.

Definition 3 (ϵ-covering). For any ϵ > 0, the ϵ-covering
number of a pseudometric space (X , d), denoted by
N(ϵ;X , d), is the smallest integer n such that there exists a
subset Xϵ ⊆ X with |Xϵ| = n and sup

x∈X
inf

x′∈Xϵ

d(x, x′) ≤ ϵ.

We apply the covering numbers to the spaces (F , ∥ · ∥∞)
and (ΠA , ∥ ·∥ΠA ), where ∥f−g∥∞ := maxh ∥fh−gh∥∞.
For notational simplicity, we omit the metric dependence
and write NF (ϵ) and NΠA (ϵ), instead of N(ϵ;F , ∥ · ∥∞)
and N(ϵ; ΠA , ∥ · ∥ΠA ), respectively.

Example 3.1 (Linear function approximation). Consider
a linear Markov game with feature map ϕ:X→Rdin , i.e.,
∀h ∈ [H], the transition and reward functions are given
by Ph(s

′|x) = ⟨ϕ(x), νh(s′)⟩ and rh(x) = ⟨ϕ(x), θh⟩, for
some functions νh(·) and parameters θh ∈ Rdin (Jin et al.,
2023). The function class F⊂{x 7→⟨ϕ(x), w⟩ :w ∈ Rdin}.

Lemma 3.1. In Example 3.1, logNF (ϵ) =
O (dinH log(1/ϵ)).

Lipschitzness assumption. Finally, we assume that func-
tions in F are Lipschitz with respect to both the learner’s
and adversary’s policies.

Assumption 3.2. (Lipschitzness for Value Functions)
There exists a constant LipQ such that for all π, π′ ∈ ΠA ,
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µ, µ′ ∈ ΠB, f ∈ F and (s, h) ∈ (S , [H]),

|fh(s, π, µ)− fh(s, π
′, µ)| ≤ LipQ · ∥π − π′∥ΠA ,

|fh(s, π, µ)− fh(s, π, µ
′)| ≤ LipQ · ∥µ− µ′∥ΠB .

For example, if we define ∥ · ∥ΠA and ∥ · ∥ΠB using the
ℓ1/ℓ∞ as in Equation (1) norm, then LipQ ≤ V̄ .

3.2. Opponent Function Approximation

Nguyen-Tang & Arora (2024a, Theorem 3) show that achiev-
ing sublinear policy regret is impossible–even against m-
memory bounded and stationary adversaries–if there is no
constraint on how the adversary responds to two similar
sequences of learner policies. To address this issue, they
propose a sufficient condition for learnability, namely con-
sistency: if the learner plays two sequences of policies that
agree at certain states s and steps h, then a consistent adver-
sary should respond with policies that also agree at those
same states and steps.

Definition 4 (Consistent adversaries (Nguyen-Tang & Arora,
2024a)). An m-memory bounded and stationary adversary
is said to be consistent if, for any two sequences of learner’s
policies π1, . . . , πm and ν1, . . . , νm, and any (s, h) ∈ S ×
[H], the following holds: if πi

h(·|s) = νih(·|s),∀i ∈ [m],
then µ∗

h(·|s, π1, . . . , πm) = µ∗
h(·|s, ν1, . . . , νm).

In essence, the adversary’s response at step h and state s
depends only on how the learner’s policies behave at that
state and step. While consistency enables learnability in
tabular Markov games by overcoming the fundamental hard-
ness barrier, it significantly limits the class of admissible
adversaries and does not generalize to large state spaces.

To overcome this limitation, we instead assume that the
adversary’s response is Lipschitz in the learner’s policy:

Assumption 3.3 (Lipschitz Adversary). There exists a
constant LipAdv such that for all π, π′ ∈ ΠA , we have

∥µ∗([π]m)− µ∗([π′]m)∥ΠB ≤ LipAdv · ∥π − π′∥ΠA .

This assumption ensures that similar learner policies yield
similar adversary responses, under the respective policy
norms. It generalizes the consistency assumption: for in-
stance, even if πh = π′

h for some h ∈ [H], a LipAdv-
Lipschitz adversary need not satisfy µ∗

h(π) = µ∗
h(π

′), as
required under consistency. When ΠA contains only deter-
ministic policies, a consistent adversary is 1-Lipschitz.

Behavior Model Class. We assume that the learner has
access to a known model class of adversary behaviors that

contains the true adversary. Specifically, the learner is given
a behavior model class Ψ = Ψ1 × · · · × ΨH , where each
µh ∈ Ψh maps ΠA × S to distributions over B. We
assume realizability:

Assumption 3.4 (Adversary realizability). The adver-
sary’s response function satisfies µ∗([·]m) ∈ Ψ.

Remark 1. We only model how µ∗ responds to a repeated
sequence [π]m = (π, . . . , π), as this is the benchmark used
in defining policy regret. No assumptions are made about
how µ∗ responds to arbitrary sequences of differing policies.

Following standard practice in maximum likelihood estima-
tion (MLE) analysis (Geer, 2000), we measure the complex-
ity of Ψ using the bracketing number:

Definition 5 (Bracketing number). A collection {[li, ui], i ∈
[N ]} of function pairs li, ui : ΠA × S × B → R+ is said
to be an ϵ-bracketing cover of Ψh if

• max
i∈[N ]

sup
π∈ΠA

sup
s∈S

∥ui(π, s, ·)∥1 ≤ O(1);

• For every µh ∈ Ψh there exists i ∈ [N ] such that
li(π, s, b) ≤ µh(b|s, π) ≤ ui(π, s, b) for all (π, s, b);

• max
i∈[N ]

sup
π∈ΠA

sup
sh∈S

∥li(π, sh, ·)− ui(π, sh, ·)∥1 ≤ ϵ.

The smallest such N , denoted by N
[]
Ψh

(ϵ), is called the ϵ-
bracketing number of Ψh. The ϵ-bracketing number of Ψ, de-
noted by N

[]
Ψ(ϵ), is defined as N []

Ψ(ϵ) = maxh∈[H] N
[]
Ψh

(ϵ).

The bracketing number gives stronger control over model
complexity than the covering number and is commonly used
in model-based RL (Liu et al., 2022; 2023). Unlike those
works, our definition does not assume a specific factoriza-
tion of µh(π).

Running Example. We illustrate these ideas with a linear
adversary response model:

Example 3.2 (Linear Response). For all (s, h, π),

µ∗
h(·|s, [π]m) = ⟨Φ∗, wπ

hs⟩

where Φ∗ : Rdadv → RB
+ maps v ∈ Rdadv to ⟨Φ∗, v⟩, and

wπ
hs ∈ Rdadv that depends on π, h, s with ∥wπ

hs∥1 = O(1).

In the tabular setting of Nguyen-Tang & Arora (2024a) with
consistent adversary and ΠA including only deterministic
policies, we recover this form with dadv = HSA and wπ

hs

being the one-hot vector corresponding to (h, s, πh(s)).

Lemma 3.2. Assume the linear response in Example 3.2.
Let Ψ = Ψ1 × . . . × ΨH where each Ψh is the set of µh
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such that µh(·|s, π) = ⟨Φ, wπ
hs⟩ with ∥Φ∥∞ = O(1). Then

the bracketing number of Ψ can be bounded as:

logN
[]
Ψ(ϵ) = O (dadvB log(B/ϵ)) .

The proof is given in Appendix G.

4. Algorithmic Framework
In this section, we introduce a simple yet general algorithm-
Batching and Optimism based on Value and Likelihood
fitting (BOVL)–for policy regret minimization with function
approximation. The pseudocode is provided in Algorithm 1.

BOVL combines both value-based and model-based learn-
ing: the former for learning value functions, and the latter
for modeling the adversary’s behavior. It takes as input the
value function class F , the adversary model class Ψ, the
policy class ΠA , the number of effective episodes T 1, and
the number of batches K.

The algorithm proceeds as follows:

• Optimistic planning (Line 3): At each episode t ∈ [T ],
BOVL computes an optimistic policy πt that maximizes
the expected return under the most optimistic combina-
tion of a value function and an adversary model.

• Data collection (Line 4): The learner executes policy πt

to collect a trajectory τ t, with the adversary responding
based on the most recent m policies of the learner.

• Periodic confidence set updates (Lines 5–8): Every
⌊T/K⌋ episodes, the algorithm updates its confidence
sets F t(·, ·) and Ψt using all collected data. In between
updates, the confidence sets remain fixed (Line 9).

A core component of BOVL is the construction of confi-
dence sets F t(·, ·) and Ψt. The set F t(π, ν) includes all
value functions f ∈ F that approximately explain the data
collected so far, up to an error α, in terms of squared loss as
a proxy for the Bellman error under the policy pair (π, ν).
This construction is rather standard in RL and is similar to
that in the GOLF algorithm of Liu et al. (2023). The set
Ψt includes all models µ ∈ Ψ whose log-likelihood over
the collected data is within β of the best possible model in
Ψ. This can be viewed as a relaxation of maximum likeli-
hood estimation: when β = 0, Ψt reduces to a singleton
containing the MLE.

The key design in BOVL for handling m-memory bounded
adversaries is its batching strategy. The algorithm partitions
the total episode budget T + (m− 1)K into evenly spaced
intervals (batches) of size m− 1 + ⌊T/K⌋, and holds the
policy fixed throughout each batch. The confidence sets–
and therefore the policy–are only updated at the start of each

1BOVL runs for T + (m− 1)K episodes due to Line 6.

batch. This structure allows the learner to observe and infer
the adversary’s behavior in response to repeated executions
of the same policy. Notably, Line 6 implements a “warm-up”
phase where the learner executes πt for m − 1 episodes
(without collecting data) to ensure that the adversary’s re-
sponse stabilizes to the current policy.
Remark 2. The tri-level optimization in Line 3 generally
cannot be solved efficiently, and our analysis is primarily
theoretical.

Comparison with the algorithm by (Nguyen-Tang &
Arora, 2024a) for tabular MGs. Since our work resolves
several open questions posed by Nguyen-Tang & Arora
(2024a), it is useful to contrast the algorithmic design prin-
ciples of both works.

• Similarities: Both algorithms employ batching to ad-
dress m-memory bounded adversaries. They also share
the high-level idea of jointly learning the environment
and the adversary through optimism over value functions
and opponent models.

• Differences: Our algorithm handles large state and action
spaces through function approximation, whereas Nguyen-
Tang & Arora (2024a) is limited to tabular Markov games.
Their algorithm uses a complex layerwise exploration
mechanism that requires full coverage of the state-action
space at every time step h ∈ [H]. This involves mark-
ing infrequent transitions and truncating reward func-
tions—designs that are fragile and impractical in large
or continuous domains. Furthermore, their method de-
pends on knowledge of the minimum nonzero visitation
probability, a strong assumption that may not hold in
practice. In contrast, BOVL uses more modular and in-
terpretable components—standard squared-loss fitting
for value functions and log-likelihood based updates for
opponent modeling—leading to a significantly simpler
and more general algorithm.

5. Theoretical Guarantees
In this section, we establish theoretical guarantees for our
algorithm BOVL. Specifically, we introduce a general suf-
ficient condition, called the ℓ2-type Eluder condition, and
prove that for any Markov game satisfying this condition,
BOVL achieves Õ(

√
T ) policy regret.

5.1. ℓ2-type Eluder Conditions

The Eluder condition is a structural complexity measure
inspired by the pigeonhole principle and the elliptical poten-
tial lemma, which have been widely used in tabular MDPs
(Jin et al., 2018) and linear MDPs (Jin et al., 2023). Variants
of Eluder conditions have become a standard tool for analyz-
ing optimistic exploration algorithms in both bandit and RL

6
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Algorithm 1 BOVL(F ,Ψ,ΠA , T,K) – Batching and Optimism based on Value and Likelihood fitting
1: Initialize: Ψ0 = Ψ, and F0(π, µ(π)) = F ,∀(π, µ) ∈ ΠA ×Ψ,

α ≍ V̄ 2 log(2NF (1/T )NΠA (1/T )TH/δ) + V̄ LipQ(1 + LipAdv),

β ≍ log
(
N

[]
Ψ(1/T )TH/δ

)
.

2: for t = 1, . . . , T do
3: πt = argmax

π∈ΠA

max
µ∈Ψt−1

max
f∈Ft−1(π,µ(π))

f1(s1, π, µ(π))

4: Execute πt to collect a trajectory τ t = {(sth, ath, bth, rth)}h∈[H] (the adversary responds to the last m policies of the
learner, including πt)

5: if t = tj := j⌊T/K⌋+ 1 for some integer j then
6: Execute πt for m− 1 consecutive episodes (and collect nothing)
7: Update the confidence sets F t(·, ·) and Ψt as follows:

F t(π, ν) :=

{
f ∈ F :

t∑
i=1

lπ,ν(fh, fh+1)(z
i
h)− inf

gh∈Fh

t∑
i=1

lπ,ν(gh, fh+1)(z
i
h) ≤ α,∀h ∈ [H]

}

Ψt :=

{
µ ∈ Ψ : sup

µ′
h∈Ψh

t∑
i=1

log
µ′
h(b

i
h|sih, πi)

µh(bih|sih, πi)
≤ β,∀h ∈ [H]

}

where lπ,ν(fh, fh+1)(s, a, b, r, s
′) = (fh(s, a, b)− r − fh+1(s

′, π, ν))2 and zih = (sih, a
i
h, b

i
h, r

i
h, s

i
h+1).

8: else
9: F t(·, ·) ≡ F t−1(·, ·) and Ψt ≡ Ψt−1

10: end if
11: end for

settings (e.g., Russo & Van Roy (2013); Liu et al. (2022);
Jin et al. (2021); Zhan et al. (2023); Liu et al. (2023); Chen
et al. (2023); Zhong et al. (2022)).

In our case, we extend the Eluder condition to two com-
ponents of learning: value function approximation and op-
ponent modeling. Moreover, due to the batching nature
of BOVL, we require a slightly stronger version known as
the ℓ2-type Eluder condition—first introduced in the con-
text of online learning with limited adaptivity by Xiong
et al. (2023). This condition is critical for controlling errors
within each batch where confidence sets are not updated.

To highlight the distinction between the standard and ℓ2-type
Eluder conditions, we begin with a simple example:

Example 5.1 (Standard vs. ℓ2-type Eluder Conditions). Let
Φ and Y be vector spaces. Consider sequences {ϕi} in Φ
and {yi} in Y , and let λ > 0.

The standard Eluder condition characterizes the complexity
of (Φ,Y) by the smallest d such that if

∑t−1
i=1⟨ϕt, yi⟩2 ≤ λ

for all t ∈ [T ], then the cumulative sum of inner products is
bounded:

∑t
i=1⟨ϕi, yi⟩ ≤

√
dTλ.

The ℓ2-type Eluder condition strengthens this conclusion by
bounding the sum of squared inner products, requiring that∑t

i=1⟨ϕi, yi⟩2 ≤ dλ log T .

Clearly, the ℓ2-type condition is stronger. In fact, it implies
the standard one via Cauchy–Schwarz:

∑t
i=1⟨ϕi, yi⟩ ≤√

T
∑t

i=1⟨ϕi, yi⟩2 ≤
√
dTλ log T .

We now formally define the ℓ2-type Eluder conditions for
value functions and adversary models.

Condition 1 (ℓ2-type Eluder coefficient for value function
class). The ℓ2-type Eluder coefficient of (F ,ΠA ), denoted
by dimE(F ,ΠA ), is the smallest d such that for any T ∈ N
and any sequences {f t}t∈[T ] ⊂ F , {πt}t∈[T ] ⊂ ΠA and
{xt

h}t∈[T ] ⊂ S ×A ×B and for any λ > 0, the following
holds:

if
t−1∑
i=1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2 ≤ λ ∀t ∈ [T ],

then
t∑

i=1

Eπi,µ∗(πi)
h (f i

h, f
i
h+1)(x

i
h)

2 ≤ O(dλ log t).

This condition states that small cumulative in-sample Bell-
man errors imply small cumulative in-distribution Bellman
errors, where the bound depends on dimE(F ,ΠA ).

Lemma 5.1. The Eluder coefficient for the linear model in
Example 3.1 satisfies dimE(F ,ΠA ) = O(din) for any ΠA .

7



Policy-Regret Minimization in Markov Games with Function Approximation

Function Approximation Policy Regret

BOVL (Ours)

General V̄ (m+H)
√
dEγT

Linear V̄ (m+H)(din ∨ dadv)
√

(H +B)T

Tabular V̄ (m+H)SA
√
(H +B)3T

APE-OVE
(Nguyen-Tang & Arora, 2024a) Tabular mV̄

√
HSAB(SAB(H +

√
S) +H2)

√
T
d∗

Table 2. A summary of our main result and its instantiation to the linear case and the tabular case.

Condition 2 (ℓ2-type Eluder coefficient for adversary class).
Let dimE(Ψ,ΠA ) denote the ℓ2-type Eluder coefficient of
the adversary class Ψ. It is the smallest d such that for any
T ∈ N, any sequences {µt

1}t∈[T ] ⊂ Ψ1 and {πt}t∈[T ] ⊂
ΠA , and any λ > 0, the following holds:

if
t−1∑
i=1

∥µt
1(π

i)− µ∗
1(π

i)∥21 ≤ λ ∀t ∈ [T ],

then
t∑

i=1

∥µi
1(π

i)− µ∗
1(π

i)∥21 ≤ O(dλ log t).

This condition extends Eluder-type reasoning to adversary
models using total variation (TV) distance. Similar assump-
tions have been employed in the optimistic MLE literature
(e.g., Liu et al. (2023), Condition 3.1).

Lemma 5.2. Consider the linear response model in Exam-
ple 3.2 with dimension dadv. Then dimE(Ψ,ΠA ) = O(dadv)
for any ΠA .

5.2. Main Result

We now present the main result, which provides a theoretical
guarantee on the policy regret of BOVL.

Theorem 1. Fix any δ ∈ (0, 1). Under Assumptions
3.1, 3.2, 3.3 and 3.4, and Conditions 1 and 2, if we set

K ≍
√

T ·dE ·log3 T
γ in BOVL, then with probability at

least 1− δ,

PR(T ) = O(V̄ (H +m)

√
dEγT log3 T ),

where γ= α
V̄ 2∨β, dE=dimE(F ,ΠA )∨dimE(Ψ,ΠA ).

This result shows that the policy regret of BOVL is inde-
pendent of the cardinalities of the state space S and action
spaces A , B, making BOVL suitable for large-scale prob-
lems, including those with continuous high-dimensional
actions. We instantiate this result for two cases.

For linear value functions (see Example 3.1) and lin-
ear adversary models (see Example 3.2), we can bound
γ = O((Hdin ∨ Bdadv) log(BT )) (by Lemma 3.1 and
Lemma 3.2) and dE = O(din ∨ dadv) (by Lemma 5.1 and
Lemma 5.2).

The tabular case studied in Nguyen-Tang & Arora (2024a)
with consistent adversaries corresponds to the linear case
with din = SAB and dadv = HSA.

We summarize these instantiated bounds in Table 2. Even
in the tabular case, our policy regret bound improves over

Nguyen-Tang & Arora (2024a) by a factor of
√

HSA
Bd∗ , which

can be significantly large when d∗ is small, as is often the
case in finite but large-state problems.

5.3. Sketch Proof of the Main Theorem

We outline the main steps in proving the policy regret bound
for BOVL. The full proof appears in Appendix A.

Step 1: Optimism and Error Decomposition. We begin
by showing that, with high probability, the confidence sets
Ψt−1 contain the true adversary model µ∗ and F t−1(π, ν)
contains the value function Qπ,ν for all π, ν and t ∈ [T ] (see
Lemma D.1). This follows from martingale concentration
and the construction of confidence radii α and β in BOVL.

Let

(f t, µt) = argmax
f∈Ft−1(πt,µ(πt)),µ∈Ψt−1

f1(s1, π
t, µ(πt)).

Each time the algorithm switches policies or plays a pol-
icy for fewer than m consecutive episodes, it may incur
up to O(V̄ ) additional regret. Since such events happen at
most mK times (due to K policy switches and (m− 1)K
instances of “immature” plays), the total regret can be de-
composed as:

PR(T + (m− 1)K)≲mKV̄ + V̄

T∑
t=1

∥µt
1(π

t)− µ∗
1(π

t)∥1

+

T∑
t=1

H∑
h=1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h). (2)
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Step 2: Leveraging the Confidence Set Design By de-
sign, for each batch j ∈ {0, . . . ,K − 1}, construction of
the confidence sets in Line 7 forces f tj+1 and πtj+1 to have
small squared loss (a proxy for Bellman error). Using stan-
dard martingale concentration inequalities (Lemma E.1), we
can show that, with high probability

tj∑
i=1

Eπtj+1,µ∗(πtj+1)
h (f

tj+1
h , f

tj+1
h+1 )(xi

h)
2 ≲ α.

Because confidence sets are only updated at the start of each
batch, we cannot guarantee that the total empirical squared
Bellman error will be small for all episodes within the batch.
However, by the ℓ2-type Eluder condition (Condition 1), the
number of batches where this fails is small. In particular,
the cardinality of the set Ks of all batches with large total
empirical squared is bounded as (Lemma F.2):

|Ks| ≲ dimE(F ,ΠA ) log T log(T V̄ 2). (3)

Then, for all episodes t in any batch in {0, . . . ,K − 1}/Ks:

t−1∑
i=1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2 ≲ α. (4)

Similarly, by Condition 2, the number of batches with large
total variation error is also small (Lemma F.4):

|Ktv| ≲ dimE(Ψ,ΠA ) log2 T, (5)

and for all t in batches indexed by {0, . . . ,K − 1}/Ktv:

t−1∑
i=1

∥µt
1(π

i)− µ∗
1(π

i)∥21 ≲ β. (6)

Step 3: From Conditions to Final Regret Bound. Using
the ℓ2-type Eluder conditions, we can now relate the bounds
above to the regret decomposition in Eq. (2). In particular,
by Cauchy–Schwarz:∑

t∈{0,...,K−1}/Ks

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h)

≲
√
TdimE(F ,ΠA )α log T . (7)

A similar chain of arguments establish that∑
t∈{0,...,K−1}/Ktv

∥µt
1(π

t)−µ∗
1(π

t)∥1

≲
√
TdimE(Ψ,ΠA )β log T . (8)

Combining Eqs. (2), (7), (8), and the bounds on |Ks| and
|Ktv|, we obtain the desired Õ(

√
T ) policy regret.

6. Conclusion and Discussion
In this work, we develop the first general algorithmic frame-
work for policy regret minimization in Markov games with
function approximation, addressing a fundamental open
problem in sequential decision-making under strategic in-
teraction. Unlike prior works that are restricted to tabular
settings or rely on strong assumptions such as consistency
of adversaries, our framework handles large-scale and con-
tinuous environments through function approximation. Our
approach achieves an optimal O(

√
T ) policy regret bound

under natural assumptions, notably ℓ2-type Eluder condi-
tions that jointly characterize the complexity of the value
function and opponent model classes.

A key technical insight in our design is the batching mech-
anism that enables the learner to commit to policies over
multiple rounds, which is critical for learning in the pres-
ence of reactive adversaries. To overcome the challenge
that confidence sets are not updated within a batch, we
introduce a novel analysis technique that quantifies the num-
ber of batches with large in-sample error using Eluder-type
arguments. This allows us to tightly control the regret contri-
butions from both value estimation and opponent modeling.
In contrast to previous work, which only handles squared
loss for value estimation, our method supports total vari-
ation loss and bypasses the need for lower tail bounds on
log-likelihood, which are unknown.

We also demonstrate that our regret bound remains indepen-
dent of the cardinality of the state and action spaces, making
our algorithm suitable for continuous high-dimensional do-
mains. When specialized to linear or tabular models, our
bounds not only recover but also strictly improve upon those
of prior work, such as Nguyen-Tang & Arora (2024a), with
significant gains in the tabular case.

While our framework provides a principled foundation for
learning in Markov games with function approximation,
several important directions remain open. First, extending
our guarantees to adversaries with unbounded memory or
greater adaptivity would broaden the scope of our frame-
work. Second, it would be valuable to explore alternative
complexity measures that can relax or replace the current
Lipschitz assumptions. Third, designing adaptive batching
schemes could further improve empirical performance, es-
pecially in non-stationary settings. Fourth, validating the
framework on large-scale benchmarks would help bridge the
gap between theory and practice. Finally, generalizing the
algorithm to cooperative or aligned multi-agent scenarios
could open new avenues for applying policy regret mini-
mization to collaborative decision-making.
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A. Full Proof of Main Theorem
We restate Theorem 1 with more details in the following theorem.

Theorem 2. Fix any δ ∈ (0, 1). Under Assumptions 3.1, 3.2, 3.3, 3.4, and Conditions 1, 2, with probability at least 1− δ,
the policy regret of BOVL can be bounded as

PR(T + (m− 1)K) ≲ mKV̄ +H
√

α · T · dimE(F ,ΠA ) · log T + V̄
√
β · T · dimE(Ψ,ΠA ) · log T

+HV̄
T

K
· dimE(F ,ΠA ) · log2 T + V̄

T

K
· dimE(Ψ,ΠA ) · log2 T.

Proof of Theorem 2. In this subsection, we present a brief sketch proof for the policy regret bound of BOVL. Our proof
strategy consists of the following key steps.

Step 1: Optimism and error decomposition. We firstly show that with high probability, the confidence sets Ψt−1

contains the true response µ∗ and F t−1(π, ν) contains Qπ,ν for all π, ν and t ∈ [T ] (Lemma D.1). This naturally comes
from martingale concentration and the choice of confidence radii α and β in BOVL. Let

(f t, µt) = argmax
f∈Ft−1(πt,µ(πt)),µ∈Ψt−1

f1(s1, π
t, µ(πt)).

Notice that switching a policy or playing the same policy but for less than m consecutive episodes adds O(V̄ ) to the policy
regret in the worst case. There are at most mK times BOVL perform such behavior (K policy switches + (m− 1)K times
playing a policy “immaturally”). Thus we have,

PR(T + (m− 1)K)−mKV̄

≤
T∑

t=1

V
π∗,µ∗(π∗)
1 (s1)− V

πt,µ∗(πt)
1 (s1)

≤
T∑

t=1

max
µ∈Ψt−1

max
f∈Ft−1(π∗,µ(π∗))

f1(s1, π
∗, µ(π∗))− V

πt,µ∗(πt)
1 (s1)

≤
T∑

t=1

max
µ∈Ψt−1

max
f∈Ft−1(πt,µ(πt))

f1(s1, π
t, µ(πt))− V

πt,µ∗(πt)
1 (s1)

=

T∑
t=1

f t
1(s1, π

t, µt(πt))− V
πt,µ∗(πt)
1 (s1)︸ ︷︷ ︸

ξt1

,

where the second inequality is due to optimism, the third inequality is due to the optimistic planning (Line 4) of Algorithm 1.
We have

ξt1 = f t
1(s1, π

t, µ∗(πt))− V
πt,µ∗(πt)
1 (s1)︸ ︷︷ ︸

ζt
1

+ f t
1(s1, π

t, µt(πt))− f t
1(s1, π

t, µ∗(πt))︸ ︷︷ ︸
γt
1

By the standard error decomposition (Lemma B.1), we have

ζt1 =

H∑
h=1

Eπt,µ∗(πt)

[
Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(xh)

]
,

where Eπ,µ denotes the expectation taken over the random trajectory (s1, a1, b1, . . . , sH , aH , bH) induced by following π
and µ, and xh = (sh, ah, bh). We have

γt
1 ≤ V̄ · ∥µt

1(·|s1, πt)− µ∗
1(·|s1, πt)∥1.

12
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Therefore,

PR(T + (m− 1)K)−mKV̄ ≤
T∑

t=1

ζt1 +

T∑
t=1

γt
1

≤
T∑

t=1

H∑
h=1

Eπt,µ∗(πt)

[
Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(xh)

]
+ V̄

T∑
t=1

∥µt
1(·|s1, πt)− µ∗

1(·|s1, πt)∥1

≤
T∑

t=1

H∑
h=1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h) + Õ(H

√
T ) + V̄

T∑
t=1

∥µt
1(·|s1, πt)− µ∗

1(·|s1, πt)∥1, (9)

where the last inequality follows the standard Azuma-Hoelfding’s inequality.

Step 2: Control the number of batches with large in-batch loss. A batch j starts at episode tj + 1 and ends at episode
tj+1, where tj := j⌊T/K⌋+ 1. Let us denote by Bj the set of all episodes within batch j, i.e.,

Bj := [tj + 1, tj+1] := {tj + 1, tj + 2, . . . , tj+1}

Let us define the “normalized” in-batch losses for all batch j ∈ {0, . . . ,K − 1},

∆j :=
1

α

tj+1∑
i=tj+1

Eπi,µi(πi)
h (f i

h, f
i
h+1)(x

i
h)

2 (10)

Λj :=
1

β

tj+1∑
i=tj+1

∥µi
1(π

i)− µ∗
1(π

i)∥21. (11)

Define Ks be the set of all batches j ∈ {0, . . . ,K − 1} with large in-batch bias-centered squared loss, i.e.,

Ks := {j ∈ {0, . . . ,K − 1} : ∆j ≥ 3}.

Similarly, define Ktv be the set of all batches j ∈ {0, . . . ,K − 1} with large in-batch TV distance, i.e.,

Ktv := {j ∈ {0, . . . ,K − 1} : Λj ≥ Ω(1)}

By Lemma F.2 and Lemma F.4, with probability at least 1− δ, we have

|Ks| ≲ dimE(F ,ΠA ) · log T log(T V̄ 2). (12)

|Ktv| ≲ dimE(Ψ,ΠA ) log2 T. (13)

We also define the complement sets K̄s = {0, . . . ,K − 1}/Ks and K̄tv = {0, . . . ,K − 1}/Ktv .

Step 3: Utilize the design of our confidence sets. Recall that, for any batch j ∈ [K], our construction of the confidence
sets at Line 7 forces f tj+1 and πtj+1 to have small bias-centered squared loss which is a proxy for squared Bellman error.
By standard martingale concentration inequalities (Lemma E.1), we can show that, with probability at least 1− δ,

∀j ∈ {0, . . . ,K − 1},
tj∑
i=1

Eπtj+1,µ∗(πtj+1)
h (f

tj+1
h , f

tj+1
h+1 )(xi

h)
2 ≲ α.

Combining with the construction of K̄s, we have

∀t ∈
⋃

j∈K̄s

Bj ,

t−1∑
i=1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2 ≲ α. (14)

13
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By Lemma D.3, the construction of the confidence set Ψt in Algorithm 1, and Assumption 3.4, we have with probability at
least 1− δ,

∀j ∈ {0, . . . ,K − 1},
tj∑
i=1

∥µtj+1
1 (·|s1, πi)− µ∗

1(·|s1, πi)∥21 ≲ β.

Similarly, by the construction of K̄tv , we have

∀t ∈
⋃

j∈K̄tv

Bj ,

t−1∑
i=1

∥µt
1(·|s1, πi)− µ∗

1(·|s1, πi)∥21 ≲ β. (15)

Step 4: Establishing the relations between Equation (14), Equation (15) with Equation (9). So far, we want to bound
Equation (9) while we know Equation (14) and Equation (15). Note that the terms in Equation (9) look similar to the
corresponding terms in Equation (14) and Equation (15), except that the terms in Equation (14) and Equation (15) control
the losses of the models at time t for all collected data up to time t− 1. It turns out the Eluder conditions will exactly help
us with establishing the relations between Equation (14), Equation (15) with Equation (9). In particular, by Condition 1,
Equation (14) implies that ∑

t∈
⋃

j∈K̄s Bj

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h)

2 ≲ dimE(F ,ΠA ) · α log T.

Therefore, by Cauchy-Schwartz inequality, we have∑
t∈

⋃
j∈K̄s Bj

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h) ≲

√
T · dimE(F ,ΠA ) · α log T . (16)

By a similar chain of arguments, using Condition 2 and Cauchy-Schwartz inequality, Equation (15) implies∑
t∈

⋃
j∈K̄tv Bj

∥µt
1(·|s1, πt)− µ∗

1(·|s1, πt)∥1 ≲
√
T · dimE(Ψ,ΠA ) · β log T . (17)

We are now ready to bound the terms in Equation (9) using Equation (16) and Equation (17). We have

T∑
t=1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h) =

∑
t∈

⋃
j∈K̄s Bj

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h) +

∑
t∈

⋃
j∈Ks Bj

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

t
h)

≤
√
T · dimE(F ,ΠA ) · α log T + V̄

T

K
|Ks|

≤
√
T · dimE(F ,ΠA ) · α log T + V̄

T

K
dimE(F ,ΠA ) · log T log(T V̄ 2)

where the first inequality follows from Equation (16) and the second inequality is due to Equation (12). Similarly, we have

T∑
i=1

∥µt
1(·|s1, πt)− µ∗

1(·|s1, πt)∥1 =
∑

t∈
⋃

j∈K̄tv Bj

∥µt
1(·|s1, πt)− µ∗

1(·|s1, πt)∥1 +
∑

t∈
⋃

j∈Ktv Bj

∥µt
1(·|s1, πt)− µ∗

1(·|s1, πt)∥1

≤
√

T · dimE(Ψ,ΠA ) · β log T +
T

K
dimE(Ψ,ΠA ) log2 T,

where the inequality follows from Equation (17) and Equation (13). Rearranging the terms and rescaling δ complete our
proof.

14
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B. Technical Lemmas
We present a standard value-policy error decomposition that straightforwardly generalizes the value-function error decompo-
sition in (Jiang et al., 2017; Jin et al., 2021), from an arbitrary value function and its greedy policy to an arbitrary value
function and an arbitrary policy.

Lemma B.1 (Value-policy error decomposition). For any f ∈ F and any policy π, µ, we have

f1(s1, π1, µ1)− V π,µ
1 (s1) =

H∑
h=1

Eπ,µ [(fh − Tπ,µ
h fh+1)(sh, ah, bh)] .

Proof of Lemma B.1. We have

f1(s1, π1, µ1)− V π,µ
1 (s1) = Eπ,µ [f1 −Qπ,µ

1 ]

= Eπ,µ[f1]− Eπ,µ [Tπ,µ
1 Qπ,µ

2 ]

= Eπ,µ[f1]− Eπ,µ [Tπ,µ
1 f2] + Eπ,µ [Tπ,µ

1 {f2 −Qπ,µ
2 }]

= Eπ,µ [f1 − Tπ,µ
1 f2] + Eπ,µ [f2 −Qπ,µ

2 ]

= . . .

=

H∑
h=1

Eπ,µ [fh − Tπ,µ
h fh+1] ,

where the first equation follows from the Bellman equation, and the last equation follows from induction.

The following lemma controls the running sum of zero-mean random variables by their variance, typically known as the
Freedman inequality (Freedman, 1975). The proof for Freedman’s inequality is elementary, which could be found in e.g.
(Nguyen-Tang & Arora, 2024b).

Lemma B.2 (Freedman’s inequality). Let X1, . . . , XT be the sequence of any random real-valued variables. Denote
Et[·] = E[·|X1, . . . , Xt−1]. Assume that Xt ≤ R for some R > 0 and Et[Xt] = 0 for all t. Define the random variables

S :=

T∑
t=1

Xt, V :=

T∑
i=1

Et[X
2
t ].

Then for any δ > 0, with probability at least 1− δ, for any λ ∈ [0, 1/R],

S ≤ (e− 2)λV +
ln(1/δ)

λ
.

We define the σ-algebra Bk
h = σ

(
∪t∈[k−1],j∈[H]Dt

j ∪ {(skj , akj , bkj , rkj )}j∈[h−1] ∪ (skh, a
k
h, b

k
h)
)

denote Ek,h[·] := E[·|Bk
h].

The following lemma establishes the variance condition on the excess TD loss, a TD analogous to the variance condition
that is widely used in the empirical process theory (Massart, 2000).

Lemma B.3 ((Nguyen-Tang & Arora, 2024b, Lemma B.1)). For any Bk
h-measurable policy π, µ and any Bk

h-measurable
function f ∈ F , we have

Ek,h[∆lπ,µ(fh, fh+1(z
k
h)] = Eπ,µ

h (fh, fh+1)(x
k
h)

2,

Ek,h[∆lπ,µ(fh, fh+1)(z
k
h)

2] ≤ 36V̄ 2Eπ,µ
h (fh, fh+1)(x

k
h)

2.
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Algorithm 2 Meta-algorithm
1: for t = 1, 2, . . . , T do
2: Choose πt as a deterministic function of {(πi, τ i)}i∈[t−1]

3: Execute πt and collect τ t ∼ Pπt

θ∗

4: end for

C. Maximum Likelihood Estimation
In this section, we analyze the maximum likelihood estimation (MLE) in the following meta-algorithm in Algorithm 2.
Here, a trajectory distribution is uniquely induced by a policy π ∈ Π and a parameter θ ∈ Θ, denoted by Pπ

θ .

We generalize the MLE guarantees from the tabular case in (Liu et al., 2022) to the general model Pπ
θ . To do so, we need to

define the bracketing numbers of Φ for our model in a way that makes sense and generalizes the results in (Liu et al., 2022),
which we present as follows.

Definition 6. {[li, ui], i ∈ [N ]} where li, ui : Π× T → R+ is an ϵ-bracketing cover of Θ if,

• There exists an absolute constant c > 0 such that maxi∈[N ] supπ∈Π ∥ui(π, ·)∥1 ≤ c, and

• For any θ ∈ Θ, there exists i ∈ [N ] such that li(π, τ) ≤ Pπ
θ (τ) ≤ ui(π, τ),∀(π, τ) ∈ (Π, T ), and

• maxi∈[N ] supπ ∥li(π, ·)− ui(π, ·)∥1 ≤ ϵ.

The smallest such N , denoted by NΘ(ϵ), is called the ϵ-bracketing number of Θ (w.r.t. the model Pπ
θ ).

Remark 3. The upper bracket ui(π, ·) in Definition 6 does not need to be a valid probability over T , but its sum over T
must be bounded from above by an absolute constant, which is crucial for our model. This small detail is missing from the
proof of Proposition 14 of (Liu et al., 2022) because all upper brackets in the tabular model of (Liu et al., 2022) is a valid
probability.

Remark 4. When the trajectory distribution Pπ
θ can be factorized as Pπ

θ (τ) = fθ(τ) × π(τ), our bracketing number in
Definition 6 reduces to the bracketing number defined in (Liu et al., 2023) (the paragraph right after their Definition 2.2). In
other words, we do not need this factorization in our definition of bracketing numbers and our results.

Our first result, similar to (Liu et al., 2022, Proposition 13), states that the log-likelihood of the true model is close to the
maximum log-likelihood, up to an estimation error that is driven by the complexity of the model class.

Lemma C.1. Fix any δ ∈ (0, 1) and T . With probability at least 1− δ, for all t ∈ [T ] and θ ∈ Θ,

t∑
i=1

log
Pπi

θ (τ i)

Pπi

θ∗(τ i)
≲ log (NΘ(1/T )T/δ) .

Our second result, similar to (Liu et al., 2022, Proposition 14), specifies how the empirical log-likelihood between a model
and the true model controls the total variation distance between the two models.

Lemma C.2. Fix any δ ∈ (0, 1) and T . With probability at least 1− δ, for all t ∈ [T ] and all θ ∈ Θ,

t∑
i=1

∥Pπi

θ − Pπi

θ∗∥21 ≲
t∑

i=1

log
Pπi

θ∗(τ i)

Pπi

θ (τ i)
+ log (NΘ(1/T )T/δ) .

Proof of Lemma C.1 and Lemma C.2. By the definition of bracketing numbers in Definition 6, for any θ ∈ Θ, there exists
i ∈ [NΘ(1/T )] such that

• supπ∈Π ∥ui(π, ·)∥1 ≤ c for some absolute constant c, and

• ui(π, τ) ≥ Pπ
θ (τ),∀(π, τ) ∈ Π× T , and
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• supπ∈Π ∥ui(π, ·)− Pπ
θ (·)∥1 ≤ 1/T .

The proof of Lemma C.1 and Lemma C.2 then closely follow that of Proposition 13 and Proposition 14 of (Liu et al., 2022),
respectively, by replacing their fθ × π by our Pπ

θ .

D. Optimism
Lemma D.1 (Optimism). Under Assumption 3.2, Assumption 3.3, Assumption 3.1, Assumption 3.4, with probability at least
1− δ,

∀(π, t) ∈ Π× [T ], µ∗ ∈ Ψt and Qπ,µ∗(π) ∈ F t(π, µ∗(π)).

Proof of Lemma D.1. We will prove that, with probability at least 1− δ, ∀(π, t, h) ∈ Π× [T ]× [H], we have
t∑

i=1

lπ,µ∗(π)(Q
π,µ∗(π)
h , Q

π,µ∗(π)
h+1 )(zih)− inf

fh∈Fh

t∑
i=1

lπ,µ∗(π)(fh, Q
π,µ∗(π)
h+1 )(zih) ≤ α,

−
t∑

i=1

logµ∗
h(b

i
h|sih, πi) + sup

µh∈Ψh

t∑
i=1

logµh(b
i
h|sih, πi) ≤ β.

The first inequality follows from Lemma D.4 and the second inequality follows from Lemma D.2.

D.1. Optimistic MLE

In this section, we establish the MLE guarantees for our adversary model.

Lemma D.2. Fix any δ ∈ (0, 1) h ∈ [H], and T ∈ N. With probability at least 1− δ, for all t ∈ [T ] and all µh ∈ Ψh,

t∑
i=1

log
µh(b

i
h|sih, πi)

µ∗
h(b

i
h|sih, πi)

≲ log (NΨh
(1/T )T/δ) ,

where NΨh
(ϵ) is the ϵ-bracketing number of Ψh as defined in Definition 5.

Proof of Lemma D.2. Let τ = (s1, a1, b1, . . . , sh, ah, bh), and define

Pπ
µh
(τ) = P1(s1)π1(a1|s1)µ∗

1(b1|s1, π)P2(s2|s1, a1, b1) . . . µh(bh|sh)

Lemma D.3. Fix any δ ∈ (0, 1) h ∈ [H], and T ∈ N. With probability at least 1− δ, for all t ∈ [T ] and all µh ∈ Ψh,

t∑
i=1

E
sh∼Pπi

h
∥µh(·|sh, πi)− µ∗

h(·|sh, πi)∥1 ≲
t∑

i=1

log
µ∗
h(b

i
h|sih, πi)

µh(bih|sih, πi)
+ log (NΨh

(1/T )T/δ) ,

where Pπ
h(sh) is the probability over sh by following π and {µ∗

h(·|·, π)}h∈[H], and NΨh
(ϵ) is the ϵ-bracketing number of

Ψh as defined in Definition 5.

Proof of Lemma D.2 and Lemma D.3. We apply Lemma C.1 and Lemma C.2, respectively, with

τ = (sh, bh), θ = µh,Θ = Ψh,Pπ
θ (τ) = µh(bh|sh, π)Pπ

h(sh).

Given the above realization, note that if {[li, ui], i ∈ [N ]} is a ϵ-bracketing cover of Ψh, in the sense defined in Definition 5,
then {[l̃i, ũi], i ∈ [N ]} is an ϵ-bracketing cover of Ψh in the sense defined in Definition 6, where l̃i(π, τ) := li(π, sh, bh)×
Pπ
h(sh) and ũi(π, τ) = ui(π, sh, bh)× Pπ

h(sh).
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D.2. Optimistic Value Function

Lemma D.4. Fix any ϵ > 0, δ ∈ (0, 1). Under Assumption 3.2 and Assumption 3.3, with probability at least 1− δ, for all
(t, h, π) ∈ [T ]× [H]×Π,

t∑
i=1

lπ,µ∗(π)(Q
π,µ∗(π)
h , Q

π,µ∗(π)
h+1 )(zih)− inf

fh∈Fh

t∑
i=1

lπ,µ∗(π)(fh, Q
π,µ∗(π)
h+1 )(zih)

≤ 36(e− 2)V̄ 2 log(NF (ϵ)NΠA (ϵ)TH/δ) + 10V̄ LipQ(1 + LipAdv)tϵ+ 2V̄ tϵ.

Proof of Lemma D.4. Fix any (h, π, fh, fh+1) ∈ [H] × Π × Fh × Fh+1. By Lemma B.2 and Lemma B.3, we have that
with probability at least 1− δ, for all τ ∈ [0, 1

13V̄ 2 ],

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 −
t∑

i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h)

≤ 36(e− 2)V̄ 2τ
t∑

i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 +
1

τ
log(1/δ).

By setting τ = 1
36(e−2)V̄ 2 , we have that, with probability at least 1− δ,

−
t∑

i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h) ≤ 36(e− 2)V̄ 2 log(1/δ).

By replacing fh+1 in the above inequality by Q
π,µ∗(π)
h+1 and using Tπ,µ∗(π)

h Q
π,µ∗(π)
h+1 = Q

π,µ∗(π)
h , we have that, with

probability at least 1− δ,

t∑
i=1

lπ,µ∗(π)(Q
π,µ∗(π)
h , Q

π,µ∗(π)
h+1 )(zih)−

t∑
i=1

lπ,µ∗(π)(fh, Q
π,µ∗(π)
h+1 )(zih) ≤ 36(e− 2)V̄ 2 log(1/δ).

We have

Q
π,µ∗(π)
h (xh)−Q

π,µ∗(π)
h+1 (sh+1, π, µ

∗(π))−Q
π′,µ∗(π′)
h (xh) +Q

π′,µ∗(π′)
h+1 (sh+1, π

′, µ∗(π′))

= Q
π,µ∗(π)
h (xh)−Q

π′,µ∗(π)
h (xh)

+Q
π′,µ∗(π)
h (xh)−Q

π′,µ∗(π′)
h (xh)

−Q
π,µ∗(π)
h+1 (sh+1, π, µ

∗(π)) +Q
π,µ∗(π)
h+1 (sh+1, π

′, µ∗(π))

−Q
π,µ∗(π)
h+1 (sh+1, π

′, µ∗(π)) +Q
π,µ∗(π)
h+1 (sh+1, π

′, µ∗(π′))

−Q
π,µ∗(π)
h+1 (sh+1, π

′, µ∗(π′)) +Q
π′,µ∗(π)
h+1 (sh+1, π

′, µ∗(π′))

−Q
π′,µ∗(π)
h+1 (sh+1, π

′, µ∗(π′)) +Q
π′,µ∗(π′)
h+1 (sh+1, π

′, µ∗(π′))

≤ LipQ · ∥π − π′∥ΠA + LipQ · ∥µ∗(π)− µ∗(π′)∥ΠB + LipQ · ∥π − π′∥ΠA + LipQ · ∥µ∗(π)− µ∗(π′)∥ΠB

+ LipQ · ∥π − π′∥ΠA + LipQ · ∥µ∗(π)− µ∗(π′)∥ΠB

≤ 3LipQ(1 + LipAdv) · ∥π − π′∥ΠA

Therefore,

lπ,µ∗(π)(Q
π,µ∗(π)
h , Q

π,µ∗(π)
h+1 )(zih)− lπ′,µ∗(π′)(Q

π′,µ∗(π′)
h , Q

π′,µ∗(π′)
h+1 )(zih) ≤ 6V̄ LipQ(1 + LipAdv) · ∥π − π′∥ΠA .

Similarly, we have

lπ,µ∗(π)(fh, Q
π,µ∗(π)
h+1 )(zih)− lπ′,µ∗(π′)(f

′
h, Q

π′,µ∗(π′)
h+1 )(zih) ≤ 4V̄ LipQ(1 + LipAdv) · ∥π − π′∥ΠA + 2V̄ ∥f − f ′∥∞.
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By applying a union bound and a standard discretization, we have, with probability at least 1 − δ, for all (t, h, π) ∈
[T ]× [H]×Π,

t∑
i=1

lπ,µ∗(π)(Q
π,µ∗(π)
h , Q

π,µ∗(π)
h+1 )(xi

h)− inf
fh∈Fh

t∑
i=1

lπ,µ∗(π)(fh, Q
π,µ∗(π)
h+1 )(zih)

≤ 36(e− 2)V̄ 2 log(NF (ϵ)NΠA (ϵ)TH/δ) + 10V̄ LipQ(1 + LipAdv)tϵ+ 2V̄ tϵ.

E. In-distribution Error Control
Lemma E.1. Fix any ϵ > 0, δ ∈ (0, 1). Under Assumption 3.2 and Assumption 3.3 , with probability at least 1− δ, for all
(f, π, t, h) ∈ F ×ΠA × [T ]× [H], we have

(a)

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 ≤ 2

t∑
i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h)

+ 144(e− 2)V̄ 2 log(2NF (ϵ)NΠA (ϵ)TH/δ) + 6t(LipQ(1 + LipAdv) + 2)V̄ ϵ,

and

(b)

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 ≥ 1

2

t∑
i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h)

− 18(e− 2)V̄ 2 log(2NF (ϵ)NΠA (ϵ)TH/δ)− 3t(LipQ(1 + LipAdv) + 2)V̄ ϵ.

Proof of Lemma E.1. Fix ϵ > 0. Let Fϵ,Πϵ be the ϵ-coverings of F and ΠA , respectively. Fix any (f, π, t, h) ∈
Fϵ ×Πϵ × [T ]× [H]. By Lemma B.2 and Lemma B.3, we have that with probability at least 1− δ, for all τ ∈ [0, 1

13V̄ 2 ],∣∣∣∣∣
t∑

i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 −
t∑

i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h)

∣∣∣∣∣
≤ 36(e− 2)V̄ 2τ

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 +
1

τ
log(2/δ)

By setting τ = 1
72(e−2)V̄ 2 and τ = 1

36(e−2)V̄ 2 , respectively, the above inequality implies:

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 ≤ 2

t∑
i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h) + 144(e− 2)V̄ 2 log(2/δ),

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 ≥ 1

2

t∑
i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h)− 18(e− 2)V̄ 2 log(2/δ).

Applying a union bound and rescaling δ, we have that with probability at least 1 − δ, it holds for all (f, π, t, h) ∈
Fϵ ×Πϵ × [T ]× [H] that

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 ≤ 2

t∑
i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h) + 144(e− 2)V̄ 2 log(2NF (ϵ)NΠA (ϵ)TH/δ), (18)

t∑
i=1

Eπ,µ∗(π)
h (fh, fh+1)(x

i
h)

2 ≥ 1

2

t∑
i=1

∆lπ,µ∗(π)(fh, fh+1)(z
i
h)− 18(e− 2)V̄ 2 log(2NF (ϵ)NΠA (ϵ)TH/δ). (19)

19
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We will now bound the discretization errors of Eπ,µ∗(π)
h (fh, fh+1) and lπ,µ∗(π)(fh, fh+1) when we discretize F and ΠA .

Fix any (h, z) ∈ [H]× (S × A × B). For any π, π′, f, f ′, we have

Eπ,µ∗(π)
h (fh, fh+1)− Eπ′,µ∗(π′)

h (f ′
h, f

′
h+1)

= (Tπ,µ∗(π)
h − Tπ′,µ∗(π)

h )f ′
h+1 + (Tπ′,µ∗(π)

h − Tπ′,µ∗(π′)
h )f ′

h+1 + Tπ,µ∗(π)
h (fh+1 − f ′

h+1) + (fh − f ′
h)

≤ V̄ LipQ(1 + LipAdv)∥π − π′∥ΠA + 2∥f − f ′∥∞,

where the last inequality follows from the Lipschitzness assumption in Assumption 3.3. By the definition of ϵ-coverings, for
any (π, f) ∈ ΠA ×F , there exist (π′, f ′) ∈ Πϵ ×Fϵ such that ∥f − f ′∥∞ ≤ ϵ and ∥π − π′∥1,∞ ≤ ϵ. Therefore, we have

|Eπ,µ∗(π)
h (fh, fh+1)

2 − Eπ′,µ∗(π′)
h (f ′

h, f
′
h+1)

2|

= |Eπ,µ∗(π)
h (fh, fh+1)− Eπ′,µ∗(π′)

h (f ′
h, f

′
h+1)| · |E

π,µ∗(π)
h (fh, fh+1) + Eπ′,µ∗(π′)

h (f ′
h, f

′
h+1)|

≤ 2(V̄ LipQ(1 + LipAdv) + 2)V̄ ϵ. (20)

Similarly, we have

|∆π,µ∗(π)(fh, fh+1)−∆π′,µ∗(π′)(f
′
h, f

′
h+1)| ≤ 2(V̄ LipQ(1 + LipAdv) + 2)V̄ ϵ. (21)

Combining both Equation (20) and Equation (21) into Equation (18) and Equation (19) completes our proof.

F. Handling Batches
Let

tj := j⌊T/K⌋+ 1.

Let us first fix any h ∈ [H]. For any j ∈ {0, 1, . . . ,K}, we know that

∀t ∈ Bj := [tj + 1, tj+1], π
t = πtj+1, f t = f tj+1, µt = µtj+1, (22)

F.1. For Value Function Approximation

We define the “normalized” in-batch cumulative Bellman errors for each batch j ∈ [K] as

∆j :=
1

α

tj+1∑
i=tj+1

Eπi,µi(πi)
h (f i

h, f
i
h+1)(z

i
h)

2.

Lemma F.1. Fix any C ≥ 3. Under Assumption 3.1 and Condition 1, with probability at least 1− δ,

|{j ∈ [K] :
C

2
≤ ∆j ≤ C}| ≲ dimE(F ,ΠA ) · log T.

Proof of Lemma F.1. Let j1 ≤ . . . jM be all the batches j such that C
2 ≤ ∆j ≤ C. Thus, we have∑

i∈
⋃

m∈[M] Bjm

Eπi,µi(πi)
h (f i

h, f
i
h+1)(z

i
h)

2 ≥ MCα

2
. (23)

By Lemma E.1, with probability at least 1− δ,

∀(j, h) ∈ [K]× [H],

tj∑
i=1

Eπtj+1,µ∗(πtj+1)
h (f

tj+1
h , f

tj+1
h+1 )(xi

h)
2 ≤ 2

tj∑
i=1

∆lπtj+1,µ∗(πtj+1)(z
i
h) + α ≤ 3α,

20
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where the last inequality due to Algorithm 1 that the version space Ct is updated at episode tj , and thus∑tj
i=1 ∆lπtj+1,µ∗(πtj+1)(z

i
h) ≤ α. Under the same event as the above inequality, for all m ∈ [M ] and all t ∈ Bjm =

[jm + 1, jm+1], we have∑
i∈[t−1]∩

⋃
m∈[M] Bjm

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2 ≤
∑

i∈[t−1]

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2

=

tjm∑
i=1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2 +

t−1∑
i=tjm+1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2

=

tjm∑
i=1

Eπtjm
+1,µ∗(πtjm

+1)
h (f

tjm+1
h , f

tjm+1
h+1 )(xi

h)
2 +

t−1∑
i=tjm+1

Eπt,µ∗(πt)
h (f t

h, f
t
h+1)(x

i
h)

2

≤ 3α+ Cα = (C + 3)α.

By Condition 1, the above inequalities imply that∑
i∈

⋃
m∈[M] Bjm

Eπi,µ∗(πi)
h (f i

h, f
i
h+1)(x

i
h)

2 ≲ d(F ,Π) · (C + 3)α log T

Combining the above inequality with Equation (23) gives

M ≲ dimE(F ,ΠA ) · log T,

for C ≥ 3.

Lemma F.2. Under Assumption 3.1 and Condition 1, with probability at least 1− δ log(T V̄ 2),

|{j ∈ [B] : ∆j ≥ 3}| ≲ dimE(F ,ΠA ) · log T log(T V̄ 2).

Proof. Note that, ∆j ≤ (T/K)V̄ 2

α ≲ T V̄ 2. In addition, [3, BV̄ 2] ⊆
⋃log(T V̄ 2/3)

i=1 [3× 2i−1, 3× 2i). Applying Lemma F.1 to
each [3× 2i−1, 3× 2i) and using a union bound completes our proof.

F.2. For Adversary Approximation

We define the normalized in-batch cumulative TV distance for each batch j as

Λj :=
1

β

tj+1∑
i=tj+1

∥µi
1(π

i)− µ∗
1(π

i)∥21,∀j ∈ [K].

Lemma F.3. For any C that is greater than some absolute constant C0, under Assumption 3.4 and Condition 2, with
probability at least 1− δ,

|{j ∈ [K] :
C

2
≤ ∆j ≤ C}| ≲ dimE(Ψ,ΠA ) · log T.

Proof of Lemma F.3. By Lemma D.3, there is an absolute constant c such that with probability at least 1− δ, for all j ∈ [B],
we have

tj∑
i=1

∥µtj+1
1 (πi)− µ∗

1(π
i)∥21 ≲

tj∑
i=1

log
µ∗
1(b

i
1|si1, πi)

µ
tj+1
1 (bi1|si1, πi)

+ β ≤ sup
µ∈Ψ

tj∑
i=1

log
µ1(b

i
1|si1, πi)

µ
tj+1
1 (bi1|si1, πi)

+ β ≤ 2β, (24)
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where the second inequality follows from Assumption 3.4 and the last inequality is due to the control of the log-likelihood
loss at the beginning tj + 1 of batch j in Algorithm 1.

Fix C > 0. Let j1 < j2 < . . . < jM be all the batches j such that

Cβ

2
≤

∑
i∈Bj

∥µi
1(π

i)− µ∗
1(π

i)∥21 ≤ Cβ. (25)

Thus, we have ∑
i∈

⋃
m∈[M] Bjm

∥µi
1(π

i)− µ∗
1(π

i)∥21 ≥ MCβ

2
. (26)

Under the same event for Equation (24), for all t ∈ Bjm = [jm + 1, jm+1], we have

∑
i∈[t−1]∩

⋃
m∈[M] Bjm

∥µt
1(π

i)− µ∗
1(π

i)∥21 ≤
t−1∑
i=1

∥µt
1(π

i)− µ∗
1(π

i)∥21

=

jm∑
i=1

∥µt
1(π

i)− µ∗
1(π

i)∥21 +
t−1∑

i=jm+1

∥µt
1(π

i)− µ∗
1(π

i)∥21

=

jm∑
i=1

∥µjm+1
1 (πi)− µ∗

1(π
i)∥21 +

t−1∑
i=jm+1

∥µt
1(π

i)− µ∗
1(π

i)∥21

≤ O(1)β + Cβ.

where the second equality comes from µt = µjm+1,∀t ∈ Bjm , the second inequality comes from Equation (24), and
Equation (25).

Therefore, by Condition 2, ∑
i∈

⋃
m∈[M] Bjm

∥µi
1(π

i)− µ∗
1(π

i)∥21 ≤ dimE(Ψ,ΠA )(O(1) + C)β log(T ).

Combining with Equation (26), we have

M ≲ dimE(Ψ,ΠA ) log T

as long as C is greater than some absolute constant.

Lemma F.4. There is an absolute constant C0 such that, with probability at least 1− δ log(T ),

|{j ∈ [K] : Λj ≥ C0}| ≲ dimE(Ψ,ΠA ) log2 T.

Proof of Lemma F.4. Note that ∆j ≤ K
β ≤ K ≤ T , where β is Ω(1). We have [C0, T ] ⊂

⋃log(T/C0)
i=0 [C02

i−1, C02
i).

Applying Lemma F.3 to each interval [C02
i−1, C02

i) and combining them via a union bound completes the proof.

G. Proofs of Supporting Lemmas in the Main Paper
Proof of Lemma 3.1. Bounding the log ϵ-covering of a linear model is standard, e.g., see (Wainwright, 2019). Since F is
the product space of H function classes, the log ϵ-covering number of F can be bounded by the sum of the bounds on the
log ϵ-covering number of all Fh.
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Proof of Lemma 3.2. Note that by the structure of Ψ, each µh ∈ Ψh, µh(·|s, π) depends on (π, h, s) only via the vector
wπ

sh, where Φ is completely independent of (π, h, s). Thus, the bracketing number of Ψ is bounded by the bracketing
number of {Φ ∈ RB×dadv

+ , ∥Φ∥∞ = O(1)}. We can construct an ϵ-bracketing cover of that set from an ϵ-cover w.r.t. ∥ · ∥∞.
In particular, for each Φ ∈ RB×dadv , we write Φ = (Φ1, . . .ΦB) where Φj ∈ Rdadv . Each coordinate Φj can be ϵ-covered
by at most O

(
( 1ϵ )

dadv
)

balls of radius ϵ (Wainwright, 2019). From each ϵ-cover, we can construct one ϵ-bracket. Indeed, let
say Φ̃j is an ϵ-cover of Φj , i.e., ∥Φ̃j − Φj∥∞ ≤ ϵ. Then, [Φ̃j − ϵ1, Φ̃j + ϵ1] is a valid ϵ-bracket of Φj , where 1 denotes
the dadv-dimensional vector with all coordinates of 1. Then, perform a combinatorial count over all j ∈ [B] and a careful
rescaling of ϵ complete our proof.

Proof of Lemma 5.1 and Lemma 5.2. With simple algebraic manipulations, the problems in the above lemmas reduce to the
standard elliptical potential lemma (Abbasi-Yadkori et al., 2011; Jin et al., 2023).
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