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ABSTRACT

Transformer-based language models (LMs) notably struggle to reliably capture
distant contextual information. This work introduces a novel approach using meta-
tokens – special tokens injected during pre-training – paired with a dedicated
meta-attention mechanism to guide LMs to use these tokens. We pre-train a
language model equipped with meta-attention in addition to causal multi-head
attention on <100B tokens, achieving strong performance on a suite of synthetic
tasks. Our method facilitates length generalization up to 2× the context window
after extension with YaRN. We provide an information-theoretic analysis which
reveals that meta-tokens sharpen the positional encoding, allowing them to operate
as content-based anchors that compress preceding context and “cache” it within
the meta-token. We empirically confirm this by visualizing model internals to
study the residual stream. Together, our findings demonstrate that meta-tokens and
meta-attention provide a simple, data-efficient pre-training method, grounded by
new mechanistic insights into their role in enabling length generalization behavior.

1 INTRODUCTION

Transformer-based language models (LMs) have showcased remarkable capabilities across diverse
language tasks (Brown et al., 2020b; Chowdhery et al., 2022; OpenAI, 2023). Nevertheless, such
models suffer from an inability to capture dependencies spanning over their entire context window.
With growing adoption and ever-expanding demands on the context over which the model can
process and reason, it is vital to develop methods that facilitate long-context adaptation and length
generalization. Despite numerous architectural remedies, including sparse attention (Beltagy et al.,
2020; Zaheer et al., 2020), recurrent blocks (Hutchins et al., 2022), and modified positional encoding
(Press et al., 2021; Su et al., 2021; Chen et al., 2023), the fundamental challenge still remains: how
can models reliably access and summarize distant context in a concise, cheap, yet expressive manner?

We propose a simple solution, by way of meta-tokens, learned tokens periodically injected into
the input sequence during pretraining, and cleverly placed during fine-tuning. Unlike conventional
dummy tokens (Goyal et al., 2024), meta-tokens are explicitly trained via a dedicated sparse attention
layer, guiding the model to condense and "cache" contextual information as an in-line storage
mechanism. As a result, these tokens act as adaptive content-based anchors, summarizing preceding
context segments into compact representations. At inference time, meta-tokens provide implicit
pathways to distant information, enabling models to generalize effectively across sequences longer
than those encountered during training.

We demonstrate the empirical efficacy of this approach by pre-training a 152M parameter modified
GPT-2 model with meta-tokens and a sparsely activated meta-attention mechanism. Our approach
not only excels on recall-oriented synthetic tasks but also generalizes up to 2× the context window
(including after extension via YaRN) — a rare feat for decoder-only architectures trained on 100B
tokens or less. We trace these gains to a subtle mechanism: meta-tokens provably induce a sharpening
effect on positional encoding, enabling the meta-token to locate its position based on the content it
stores and reducing the entropy of the attention distribution. We present theoretical and empirical
evidence that this sharpening is responsible for the ability to retrieve information from relevant distant
tokens, facilitating robust length generalization. Furthermore, by analyzing internal model activations
and studying the rate-distortion tradeoff, we validate that meta-tokens function as compressed
representations of context.

Our contributions can be summarized as follows:
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1. We introduce a simple language model pre-training scheme using meta-tokens and a meta-
attention mechanism to improve performance on a wide range of synthetic tasks.

2. We show that meta-tokens sharpen the positional encoding, enabling precise long-range
attention; we further show that length generalization improves without positional encoding.

3. The sharpening hypothesis and implicit compression behavior are supported by visualiza-
tions of model internals and information-theoretic analysis into the rate-distortion tradeoff.

2 PRELIMINARIES

Causal Multi-Head Attention. Let x = {x1, x2, . . . , xT } denote an input sequence of tokens of
length T , V denote the vocabulary size of V, and E : V → Rd represent the the token embedding
function mapping each token to a d-dimensional vector. Each xt is embedded into some continuous
representation where et = E(xt) + pt, such that pt is the positional encoding for t.

In decoder-only architecture, we utilize causal self-attention to ensure that predictions for a given
token are only based on preceding tokens. The causal self-attention mechanism modifies the attention
computation by masking future positions in the attention weights. Formally:

Causal Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

+M

)
where M masks future tokens, ensuring that the model can only attend to current and past tokens.

This masking zeros attention scores for future tokens, allowing only the relevant past tokens to
influence the current token’s representation.

Positional Encoding. Positional encoding was introduced in Transformer pre-training to provide
models with information about the ordering of tokens. With absolute positional embeddings (APE;
Vaswani et al. (2017)), each position t in the sequence receives a vector pt, independent of its
content, so tokens are distinguished in an index-by-index manner. Given learned token-embedding
lookup table E : V → Rd for vocabulary V and hidden dimension d, and positional embedding
pt = Embpos(t) for t ∈ [0, T − 1] and Embpos ∈ RT×d. Each token embedding is then defined as
et = E(xt) + pt; this method was used in GPT-2 and GPT-3 (Radford et al., 2019; Brown et al.,
2020a).

By contrast, Rotary Position Embedding (RoPE; Su et al. (2023)) rotates each pair of embedding
dimensions by an angle proportional to position, rather than adding a separate vector per position. This
makes the difference in attention scores directly encode relative distance between embeddings. The
hidden vector h is split into d

2 contiguous 2-D slices, and the angle for a position t is defined as θt,i =
t

100002i/d
. The 2-D rotation matrix is taken as R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. Then, RoPE(h)(2i:2i+1)

t =

R(θt,i)h
(2i:2i+1). This has proven successful in the Llama models (Grattafiori et al., 2024).

3 TRAINING LANGUAGE MODELS WITH META-ATTENTION

We introduce a set of M meta-tokens (denoted as m); given a context length or block size of the
model, n, we take M = kn for some constant fraction k ∈ [0, 1]1. The aim of introducing these meta-
tokens is to capture or store contextual information to enhance the model’s retrieval and reasoning
capabilities; attending to a meta-token should enable implicit retrieval of the context that it stores,
guiding shortcut paths over the context window.

The M tokens are injected into the input sequences during pre-training uniformly at random, which
was informed by two key premises. While we desire interpretability and control in applying these
tokens, and as a result, prefer distinguishability at the task level, this is challenging to do without
explicitly fixing a downstream task, impeding generality. The second consideration was in how they
specifically they should be injected. While Zelikman et al. (2024) introduced <|startofthought|> and

1We take k = 0.1 in practice; balancing next-token prediction over the standard vocabulary while injecting a
non-trivial number of meta-tokens.
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<|endofthought|> tokens interleaved between reasoning steps near punctuation (serving as natural
break), the introduction of a rough periodicity between tokens during pre-training could result in
being trapped into local minima in the optimization landscape. We instead chose to follow the random
injection scheme, supported by the pre-training approach outlined in Goyal et al. (2024).

We ensure that the trained model incurs no loss for predicting meta-tokens, unlike a standard token
in the vocabulary – the meta-tokens’ indices are simply shifted and removed when computing the
binary cross-entropy (BCE) loss.

Meta-Attention Mechanism. We augment our transformer H to take P which contains the posi-
tions of the meta-tokens. We introduce a sparse attention mechanism, called meta-attention, which
selectively modifies attention scores for the specially marked "meta-tokens" within a sequence. This
allows the model to simulate selective attention, influencing the final behavior by focusing on these
meta-tokens. The underlying principles of the desired behavior is influenced by dual cross-attention
(Jiang et al., 2024), such that operations are performed higher on the abstraction hierarchy than the
feature space alone. This induces a meta-learning-like setup over which attention on the meta-tokens
is learned.

Let the indices of meta-tokens be positions ∈ NB×T ′
, where T ′ is the number of meta-tokens per

batch. We then build a meta mask P ∈ RB×T×T to shape attention. For each batch b and token pair
i, j:

P [b, i, j] =

{
0 if both i and j are meta tokens (i.e., i, j ∈ positions[b, :])
−∞ otherwise

The meta-attention operation is defined as:

MetaAttention(Q,K, V ) = softmax
((

QK⊤
√
dk

+M

)
+ P

)
V

Where M is the same causal mask as before. Here, the meta mask P allows attention to flow
only among the meta tokens in the sequence, introducing a distinct interaction compared to regular
attention. This meta-attention layer selectively modifies the attention by influencing the flow of
information to and from these meta tokens, distinguishing itself from the standard causal attention.

To assemble the architecture used for our model, we insert the meta-attention mechanism after the
causal masked self-attention computation, to specifically attend to the injected meta tokens, as defined
above. We provide a complete breakdown of the architecture in Appendix A.

4 RESULTS

4.1 MODEL TRAINING AND ARCHITECTURE

All experiments were performed with 4 NVIDIA A100 GPUs, training the meta attention transformer
on 98B tokens using Distributed Data Parallel (DDP) on the Colossal Cleaned Crawl Corpus (C4)
(Raffel et al., 2020). The configuration and hyperparameters used in our pre-training are included in
Appendix A and B. As a baseline, we also pre-train GPT-2 (124M) on C4, with identical hyperparam-
eters. The primary change we make from a standard GPT-2 architecture is the addition of RoPE to
enable better generalization to longer contexts and improve stability in next-token prediction tasks.

We extend our transformer model’s context window from 1024 tokens to longer sequences by training
two distinct models with context lengths of 4096 and 8192 tokens, respectively. This extension is
implemented using the YaRN method (Peng et al., 2024), which dynamically scales Rotary Positional
Embeddings (RoPE) to effectively process significantly longer sequences without compromising
performance or computational efficiency. The key parameters are detailed in Appendix C.

4.2 EXPERIMENTAL SETUP AND TASKS

We designed four synthetic tasks (List Recall, Segment Counting, Parity, and Copying) to probe the
recall abilities of models trained with meta-tokens. Each task targets a distinct aspect of sequence
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Figure 1: We study the performance of the pre-trained GPT-2 w/ APE, Meta-attention w/ APE,
and Meta-attention w/ RoPE, as well as GPT-Neo-125M, all fine-tuned on synthetic data for their
respective tasks at the maximum train lengths indicated in the legends. All experiments are performed
on a test set of prompt lengths up to 512 tokens.

memory and is offered in three difficulty levels determined by maximum sequence length. To guide
meta-attention, we insert a designated _PAUSE_ meta-token at task-specific positions. We fine-
tune models on synthetic data generated for these tasks (binned by instance length) and evaluate
performance on a held-out test set. Examples of task instances are provided in Appendix H.

• List Recall: Given N lists of length k, the model recalls a specified item. A _PAUSE_
token follows the target list and precedes the question. Difficulty varies with N and k.

• Segment Counting: Lists contain a segment bounded by _PAUSE_ tokens. The prompt
asks how often a target item appears within that segment. Difficulty scales with list number
and size.

• Parity: A bit sequence contains a _PAUSE_ token marking a position. The model computes
the XOR of preceding bits. Difficulty depends on sequence length.

• Copying: A text span is bracketed by _PAUSE_ tokens. The model must reproduce the
span exactly. Difficulty grows with span length and complexity. Performance is measured
by sequence accuracy.

Within these tasks, we study length generalization by fine-tuning in multiple phases. At each phase,
we evaluate performance on sequences longer than those seen in training. Appendix D reports results
at 2048 tokens, twice the pretraining length of 1024.

Baselines. For a controlled comparison, we also pre-train a GPT-2 model (NanoGPT, 124M;
Karpathy (2023)) on C4, with identical hyperparameters as the meta-tokens model. Additionally, we
use Eleuther AI’s GPT-Neo-125M (Black et al., 2021) as another baseline.

4.3 META-TOKENS IMPROVE PERFORMANCE ON SYNTHETIC RECALL-ORIENTED TASKS.

As seen in Figure 1, we find that the models trained on meta-tokens substantially outperform our
pre-trained GPT-2 and GPT-Neo-125M baselines, across all tasks and all train lengths. The complete
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Table 1: Token Accuracy (%) on List Recall and Segment Counting across long contexts.
Task Train/Finetune 2k 3k 4k 5k 6k 7k 8k 10k 12k 14k 16k

List

4k / 2k 19.5 16.0 13.7 0.9 0.0 0.0 0.9 1.1 0.0 2.1 1.1
4k / 4k 85.0 88.2 90.2 20.5 1.8 1.0 3.5 4.4 1.1 2.1 2.1
8k / 4k 85.0 95.8 91.2 97.4 98.2 96.2 93.9 31.9 0.0 2.1 2.1
8k / 8k 92.9 98.3 97.1 100.0 98.2 100.0 100.0 89.0 26.1 10.4 9.6

Count

4k / 2k 19.1 23.8 19.2 14.6 25.2 14.1 14.0 12.0 16.0 8.0 6.0
4k / 4k 17.5 23.8 31.8 20.3 30.4 19.3 19.1 14.0 26.0 12.0 16.0
8k / 4k 19.1 23.8 14.3 11.1 20.6 12.7 12.7 14.0 16.0 14.0 12.0
8k / 8k 27.0 33.3 15.9 19.1 27.0 19.1 23.8 22.0 18.0 18.0 18.0

Table 2: The configurations where zeroing the positional encoding at inference time results in
accuracy improvements on the List Pointer task, denoted by the ∆(pp) percentage points column.

Model (Split, Train Len) Full No Pos ∆(pp)
Meta + APE (medium, 128) 77.8% 88.9% +11.1
Meta + APE (hard, 128) 11.1% 22.2% +11.1
Meta + APE (extra-hard, 512) 11.1% 50.0% +38.9

Meta + RoPE (medium, 128) 44.4% 55.6% +11.1
Meta + RoPE (hard, 256) 33.3% 66.7% +33.3
Meta + RoPE (extra-hard, 256) 0.0% 22.2% +22.2
Meta + RoPE (extra-hard, 512) 44.4% 55.6% +11.1

tables for these results are included in Appendix F. Our models outperform the GPT-Neo-125M
and GPT-2 with APE models by a substantial margin; given that GPT-Neo was pre-trained on 300B
tokens, nearly three times the volume of data on which our meta-attention models were trained (albeit
from a different corpus), highlighting the data-efficiency of our meta-tokens models. The models
also gain in performance much more quickly with fine-tuning when increasing the train length – a
phenomenon not observed with the GPT-2 models.

To study the effect of positional encoding on our results, we ablate by zeroing out the positional
encoding, zeroing out the text embedding, and performing both operations – all solely at the meta-
token indices. Curiously, we observe in Tables 10-13 that the score without positional encoding
nearly matches or exceeds the accuracy of the model with the positional encoding as is. The lone
exception is the segment counting task, where there is a gap for all settings except the model trained
with APE at a length of 256, which achieves a +4.8% improvement over the "Full" model. By
contrast, zeroing out the token embedding hurts performance substantially in nearly every setting
on List Recall, Segment Counting, and Copying; on Parity, this generally matches the performance
of zeroing out the positional encoding. Thus, we find that 1. pre-training with meta-tokens and
meta-attention boosts performance, and 2. zeroing out the positional encoding at just the meta-tokens
can match or improve performance at inference time.

Meta-Tokens Aid in Length Generalization. In Figure 1 and Appendix F, we find that the model
trained on meta-tokens length generalizes well on the parity and copying tasks with APE, and
performs somewhat well (much better than the baselines) on list recall and segment counting at a
train length of 256. For instance, despite relatively similar performance at the 128 train length on
the segment counting task, the performance on the test set of up to a length of 512 dramatically
increases when training at the 256 length, by +28.6% with APE and +10.7% with RoPE, compared
to +3.5% for GPT-2 with APE. Table 1 exhibits a similar trend for the YaRN models, achieving strong
performance across its respective context windows, and even achieves non-trivial accuracy beyond
the window. Fine-tuning the 8k YaRN model on examples of up to a length of 4k can generalize very
well up to 8k. These findings underscore the substantial advantages of training with meta-tokens and
the nuanced role positional encoding plays in task-specific and length-generalization contexts.
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Moreover, when looking at the results on Meta + RoPE on test set lengths of prompts up to 1024
tokens (denoted extra-hard in Table 2), we find that zeroing out the positional encoding also plays a
sizable role in improving length generalization, especially in the List Recall task. While the model
originally achieves performances of 11.1%, 0% and 44.4% when fine-tuned on train lengths of 512
(APE), 256 and 512 (RoPE), respectively, the scores improve by +38.9%, +22.2% and +11.2%, by
simply zeroing out the positional encoding at the meta-tokens.

If a meta-token retains its PE, a portion of its representational capacity is spent encoding position
rather than semantic content. This index-dependent signal introduces unnecessary variance, increasing
the distortion of the compressed summary. By contrast, zeroing out the PE forces the full embedding
capacity to encode task-relevant information. As a result, we observe lower distortion (higher retrieval
accuracy) at a given rate—both theoretically and empirically—across all four synthetic tasks.

5 WHAT MAKES META-TOKENS USEFUL?

The results in Table 2 suggest that the positional encoding of the meta-token can potentially be
holding back the downstream performance of the meta-attention models. We posit that the model is
instead relying on its content – cached context stored within the meta-token – to sharpen its sense of
its position in the sequence.

Next, we aim to formally define this notion of sharpness in the context of positional encoding, and its
relationship to the model’s logits. Let αi→k = softmaxk(QiK

T
j + bi−j) be the attention distribution

for query i over keys j, with relative bias term bi−j . We define the sharpness of the positional
encoding by the entropy:

H(αi) = −
∑
j

αi→j logαi→j

Intuitively, when a meta-token is present at position t, the model’s attention becomes peaked around
a small set of keys; this "honing in" behavior reduces H(α) compared to APE or RoPE without
meta-tokens. In this manner, meta-tokens behave as content-driven landmarks – they serve as a
low-entropy channel that serves as a pointer to relevant context. As noted prior, the data efficiency
observation suggests that the meta-token helps to accelerate next-token prediction behavior while
introducing a stabilizing effect in the midst of noisy positional encoding.
Theorem 5.1. Consider a Transformer head at query position i over keys 1, . . . , N . Let αabs

i (j) ∝
exp(QiK

T
j ) be the attention under absolute positional encoding and let αmeta

i ∝ exp(QiK
T
j +

δj,j∗∆) when a meta-token at position j∗ introduces an additive logit boost of ∆ > 0. Then, for
some function κ(∆) > 0:

H(αmeta
i ) ≤ H(αabs

i )− κ(∆) (1)

Proof Sketch. Parametrize the path by t ∈ [0,∆], and define logits ℓ
(t)
j and their softmax α(t)

respectively. Since boosting the true index tightens the margin, the derivative of H(α(t) is strictly
negative. Therefore, over the path, H(α(∆)) < H(α(0)), so H(αmeta) < H(αabs), where their
difference must be a function of ∆. The full proof is included in Appendix G.

We note that this theorem also applies to RoPE, using αRoPE
i (j) ∝ expQi(RoPE(Kj))

T . A natural
consequence of Theorem 5.1 is that the meta-token operates as an "anchor" from a logits standpoint
by creating a margin ∆ that concentrates the softmax. Concretely, we can specify that for meta-token
mt at position t and embedding et ∈ Rd, and query at position i with vector Qi, has contribution
to the (i, j) logit of ∆(t)

i,j = Qi ·Wet × 1j=t for learned linear head W . Summing over t yields the
bias matrix B ∈ Bmeta, the set of all realizable bias matrices under the meta-token embeddings. Thus,
any learned meta-token embedding – provided that it adds to the logits at the summary position j∗ –
guarantees sharper attention by reducing that attention head’s entropy.

In Figure 2, we analyze the logits, comparing two settings: (1.) the current meta-token and (2.) the
meta-token with its token embedding zeroed out. We find that the former gains a sizable amount over
the latter, reinforcing the assumption made in Theorem 4.1 that the meta-token introduces an additive
logit boost of ∆ > 0. Our empirical results show that the entropy over the softmax distribution of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: (Left) We analyze the change in logits at the meta-token position, and observe that the
meta-tokens do indeed induce a sizable boost in logits compare to zeroing its token embedding.
(Middle) We find the boost in logits to correspond with a meaningful reduction in Shannon entropy
over the softmax of the logits between the zeroed meta-token sequence and the sequence with the
meta-token as is. This corroborates with our assumptions and claims in Theorem 4.1. (Right) We
study the implicit "caching" ability of the meta-token by studying the cosine similarity over the token
embeddings. We observe high spikes (the yellow column), diminishing as we move further away.
This substantiates our claims of the presence of an implicit compression and "caching" mechanism.

the logits decreases (the difference between "non-meta-token" and "meta-token" is positive), thus
corroborating our central claim in Theorem 4.1.

5.1 A RATE-DISTORTION PERSPECTIVE ON CONTEXT COMPRESSION

Given that these results provide evidence that meta-tokens can compress context in their representation,
we develop mathematical formalizations to analyze this behavior. In particular, we turn to information-
theoretic tools – specifically, an information bottleneck view.

For a meta-token at xm succeeding a sequence of tokens X = xi:m−1 from indices i to m− 1, we
consider a compression function ζ(·) which transforms the subsequence X into xm. As such, we
define X̂ = ζ(X) = ζ(xi:m−1) to be the compressed representation stored in xm. This can be
generalized to the full set of M meta-tokens:

X̂1:M = [ζ1(X1:m1−1), ζ2(Xm1+1:m2−1), . . . ζM (mM+1 : mn)]

For practicality, we consider the variational information bottleneck (Alemi et al., 2017). This
introduces an encoder qϕ(x̂ | x) and decoder qθ(y | x̂), along with a simple prior r(x̂) (e.g. N(0, 1)),
yielding the following form to solve for these variational distributions:

min
qϕ,qθ

E
p(x,y)

[ E
qϕ(x̂|x)

[− log qθ(y | x̂]] + β · E
p(x)

[KL(qϕ(x̂ | x)||r(x̂))]

This form admits an equivalent perspective in rate-distortion theory. Specifically, the first term
measures the quality in predicting the downstream target given a lossy compression X̂ ("distortion").
The second term measures the average number of bits required to encode X̂ , relative to some simple
reference code r(z) ("rate"). As such, analyzing rate-distortion curves – sweeping over values of β –
can provide valuable insights into the quality of the "compression" behavior and its informativeness
when the meta-token is attended to.

Theorem 5.2. Let Dabs(R) be the minimum distortion achievable at rate R under the VIB objective
only using absolute positional encoding (no meta-tokens), and let Dmeta(R) be the minimum distortion
achievable at rate R with meta-tokens. Then, for every R ≥ 0,

Dmeta(R) ≤ Dabs(R) (2)

Intuitively, meta-tokens expand the feasible set of encoders and decoders, which will either match or
lower distortion for a given rate. Thus, the quality of compression with respect to its informativeness
in predicting the target can only improve. In Appendix G.4, we provide further intuition on how
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Figure 3: (Left) This plot shows the residual stream at each layer, highlighting the meta-token’s role
in causal attention. The colors before the meta-token (colored band across layers) indicate the context
it attends to/stores. The rightmost line shows the final meta-token, which attends to the previous
one at the band. (Right) We analyze the variational information bottleneck (VIB) objective and its
decomposition into rate and distortion components. Supporting Theorem 5.1, for a given rate R, the
distortion D is strictly lower for the meta-token compared to the last non-meta-token in the sequence.

meta-tokens facilitate context caching by showing that they act as inducing points in a Nyström
approximation of the softmax kernel. This connects directly to our rate-distortion analysis, as we
bound the prediction error (distortion) by the quality of kernel approximation.

5.2 RATE-DISTORTION INFORMS THE QUALITY OF CONTEXT CACHING

To obtain empirical rate–distortion curves for our meta-token bottleneck in Figure 3, we freeze the
pre-trained meta-token model and fix a small variational bottleneck head to the last meta-token hidden
state. Concretely, let hm ∈ RD be the output of the final Transformer layer at the last meta-token
position. We introduce

qϕ(z | hm) = N
(
µϕ(hm), diag(σ2

ϕ(hm))
)
, qθ(y | z) = softmax(Wz + b),

with µϕ, σϕ : RD → RL and W ∈ R|V|×L. We then optimize the ELBO:

min
ϕ,θ

Ehm,y

[
− log qθ(y | z)

]
+ β Ehm

[
KL

(
qϕ(z | hm) ∥N (0, I)

)]
.

Training is performed on the small List-Pointer D.1.1 split (50 examples, batch size 1), for 5 epochs
at each β ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}. After each run, we record the average cross-
entropy loss (“distortion”) and KL (“rate”) on the same 50 examples. Finally, we plot the resulting
rate–distortion curves on a symlog x-axis (linear below 20 nats, logarithmic above) so that both the
low-rate “knee” and the long tail are visible (see Figure 3).

6 RELATED WORK

Pause and Memory Tokens As detailed in our work, recent studies on Transformer-based models
have explored the introduction of special tokens, beyond ordinary vocabulary symbols. Pause or
dummy tokens as introduced in Goyal et al. (2024) enhance computational width, allowing models
to perform additional internal computation by effectively delaying their outputs, yielding empirical
gains on question answering and reasoning-intensive tasks. Similarly, Pfau et al. (2024) explore using
filler tokens – sequences of seemingly meaningless symbols – as a stand-in for chain-of-thought.
Recent works such as Merrill and Sabharwal (2025) and London and Kanade (2025) demonstrate
that the inclusion of a polynomial number of pause tokens to constant-depth Transformers increases

8
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expressivity to represent the TC0 class. In contrast, our work introduces meta-tokens that are not
merely delays or placeholders but are explicitly designed to direct attention and structure computation,
allowing the model to recall and generalize over the context length in ways these prior approaches
do not address. Works such as Memory Transformer (Burtsev et al., 2021) and Landmark Attention
(Mohtashami and Jaggi, 2023) introduce memory tokens; the former prepends them, while the latter
uses them as learnable keys for retrieval over blocks of context. Unlike Memory Transformer’s
prepended slots or Landmark Attention’s block-level landmarks, our meta-tokens are dynamically
positioned and operate through a dedicated meta-attention layer rather than fixed structural scaffolds.

Positional Encoding We have already described absolute positional embeddings (APE), rotary
positional embeddings (RoPE) and relative bias in Section 2. In addition to these methods, ALiBi
(Press et al., 2022) adds a fixed linear penalty to attention scores based on the distance between query
and key positions, favoring nearer tokens and generalizing to longer contexts with minimal loss in
perplexity. Recent work has suggested that Transformers without any added position embeddings can
still learn order information and, in some cases, generalize to longer sequences better than models
with standard positional encoding. NoPE (Kazemnejad et al., 2023) showed that models trained
without positional embeddings can achieve strong length extrapolation in comparison to models
trained with positional encoding. They can internally represent both absolute and relative PEs without
any explicit positional signal, suggesting these may emerge implicitly via training dynamics or over
the data distribution. NoPos (Haviv et al., 2022) also found a similar result, suggesting that models
trained without PE can infer their absolute position due to causal attention masks. These findings are
highly relevant to our work, given our evidence on length generalization behavior whiling zeroing the
positional encoding at the meta-tokens.

7 DISCUSSION AND LIMITATIONS

Our findings suggest that decoder-only language models trained with meta-tokens and meta-attention
achieve strong performance on recall-oriented tasks. Furthermore, they are able to length generalize,
with performance improvements when removing the effect of positional encoding at the meta-tokens.
Given the prior findings of NoPos, we believe the introduction of the meta-attention mechanism and
a second causal mask (the "meta mask") could be responsible for this behavior, provided that this
behavior is specific to the meta-tokens. We suggest that hybrid attention methods such as RNoPE
(Yang et al., 2025) could be suitable for facilitating long-context modeling with meta-tokens.

Given the findings that the meta-tokens operate like anchors within the context, it would be valuable
to explore the impact of our proposed mechanism in pre-training larger models over longer context
windows, under greater computational resources. We employ synthetic tasks that are well-aligned to
recall abilities, and design experiments to test length generalization, with the aim of strong synergy
with long-context modeling capabilities. Nonetheless, training larger models would indicate the
viability of our approach for real-world deployment.

Notably, our method requires little overhead – the addition of meta-tokens is a simple data augmen-
tation strategy, and the meta-attention layer is added after standard causal masked self-attention,
as described in Appendix A. It would also be informative to study larger-scale corpora – given the
data-efficient nature of the meta-tokens approach in vastly outperforming the vanilla GPT-2 model at
the ≈ 100B tokens scale, how rapidly does each model saturate our designed synthetic tasks?

8 CONCLUSION

We introduce meta-tokens in language model pre-training, in addition to a dedicated meta-attention
mechanism which learns the relationship between standard tokens and meta-tokens. We find that this
improves performance on a suite of synthetic recall tasks, and enables length generalization behavior
when removing the positional encoding at each meta-token. We provide evidence to suggest that the
meta-tokens sharpen the positional encoding, enabling them to operate as content-based landmarks
in the context; we further show that they implicitly compress preceding context, demonstrated by
similar token embeddings. These interesting phenomena demonstrate the promise of long-context
language modeling enabled via data-efficient pre-training using meta-tokens.

9
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A FULL ARCHITECTURE DETAILS

We provide a full outline of the architecture design out method uses. Our architecture is equivalent to
the NanoGPT (GPT-2) architecture, while introducing the meta-attention block after the initial causal
masked attention and layer normalization computation.

1. Input Layer: Given an input sequence of tokens x = {x1, x2, . . . , xT }, we first embed
each token into a continuous representation. Instead of absolute positional encodings, we
apply Rotary Position Embeddings (RoPE) Su et al. (2023) to inject positional information.
For each token, the embedded representation is:

et = RoPE(E(xt), t),

where RoPE(·, t) denotes the rotary positional embedding applied to the tth position, with a
base θ = 10000.0.

2. Causal Masked Self-Attention: The first layer consists of the causal masked self-attention
mechanism. For each head h, the attention operation is computed as:

CausalAttentionh(Q,K, V ) = softmax
(
QK⊤

h√
dk

+M

)
Vh,

where Q,K, V are the query, key, and value matrices derived from the input embeddings E,
and M is the mask matrix.

3. Meta Attention Layer: After the causal masked self-attention, we integrate the meta-
attention mechanism to specifically attend to the injected meta tokens. This operation is
defined as:

MetaAttention(Q,K, V, P ) = softmax
(
QK⊤
√
dk

+Mcausal + P

)
V,

where P is the meta mask constructed from the indices of the meta tokens.
4. Feedforward Layer: Following the attention layers, we pass the output through a feedfor-

ward neural network defined by:

FFN(x) = ReLU(xW1 + b1)W2 + b2,

where W1,W2 are weight matrices, and b1, b2 are bias vectors.
5. Layer Normalization: After both the causal self-attention and meta-attention operations,

we apply layer normalization:

LayerNorm(x) =
x− µ

σ + ϵ
,

where µ and σ are the mean and standard deviation of the features, and ϵ is a small constant
for numerical stability.

6. Final Output Layer: The final layer projects the output of the last feedforward layer back
to the vocabulary size to produce the s for the next token prediction:

s = softmax(xWout + bout),

where Wout and bout are the output weight matrix and bias vector, respectively.
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B PRE-TRAINING HYPERPARAMETERS AND MODEL DETAILS

Our decoder-only modified GPT-2 model was pre-trained on the C4 dataset with the following
configuration and hyperparameters:

Table 3: Pretraining Configuration Parameters
Parameter Value
Batch Size 12
Gradient Accumulation Steps 40
Block Size 1024
Number of Layers 12
Number of Heads 12
Embedding Size 768
Learning Rate 6e-4
Weight Decay 1e-1
Max Iterations 600,000
Warmup Iterations 2,000
Minimum Learning Rate 6e-5
Dropout Rate 0.0
RoPE Theta 10000.0
Initial Model Resume
Optimizer AdamW
AdamW Beta1 0.90
AdamW Beta2 0.95
Gradient Clipping 1.0
Tokenizer tiktoken

C YARN HYPERPARAMETERS

Parameter 4096-token model 8192-token model
yarn_scale 4.0 8.0
yarn_original_max_seq_len 1024
yarn_extrapolation_factor 1.0
yarn_attn_factor 1.0
yarn_beta_fast 32.0
yarn_beta_slow 1.0

Table 4: YaRN parameter configurations for extended context models.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 SYNTHETIC DATA GENERATION

We generate 90,000 train examples and held-out test set of 10,000 examples for each task.

D.1.1 LIST RECALL

We generate a suite of “list-pointer” examples by sampling random categories and list items, inserting
a special meta token as a marker, and asking the model to recover the item immediately following the
meta-token. Each example consists of:

1. m categories drawn without replacement from a fixed set of 20.

2. n items per category, sampled with replacement from the category’s 10–item inventory

14
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3. One “target” category in which we inject a single meta token after the jth item (j ∈ [n]) and
then append the remaining items

4. A question line “Q: What is item j of <target>? _META_”

This pipeline yields curriculum-structured data that systematically probes the model’s ability to attend
to and copy items in long, multi-list contexts.

Phase m (Num. categories) n (List length) Approx. prompt-token range
1 Uniform 3–8 Uniform 3–10 Short (≈ 100–200 tokens)
2 Uniform 8–12 Uniform 3–16 (bimodal) Mid-range (≈ 200–300 tokens)
3 Uniform 12–19 Mixture {3–8, 9–16, 17–25} Full-range (≈ 500–700 tokens)
4 Uniform 15–20 Uniform 40–60 “Extra-hard” ≤ 1024 tokens
5 Uniform 15–20 Uniform 90–110 “Long” ≤ 2048 tokens

Table 5: Curriculum schedule for synthetic data.

D.1.2 SEGMENT COUNTING

Similar to List-pointer, except the model must count occurrences of a target token within a meta-token
bracketed list segment. Uses the schedule dictated by Table D.1.1. Asks the question: "Q: How many
times does <token> appear between the pauses around <Category>? _META_".

D.1.3 PARITY

Generates examples where the model computes the XOR (parity) of a bit-string segment up to the
first L characters where L is drawn phase-dependently. the same scheduling dictated by Table D.1.1.
Asks the question: "Q: What is the XOR of all bits before this pause? _META_ "

D.1.4 COPYING

Generates examples where the model must copy a bracketed span from a text. Uses schedule dictated
by Table D.1.1 and samples an additional copy length C and distance length D depending on the
phase

D.1.5 MULTI-HOP

Generates examples where the model must resolve a chain of references across list indices. Each
example begins with an input list containing items at numbered positions. The task specifies a starting
index, and the model must repeatedly follow the indicated pointers. Uses schedule dictated by Table
D.1.1.

E LICENSES

NANOGPT

Our implementation of the vanilla GPT-2 is based on the nanoGPT repository (https://github.
com/karpathy/nanoGPT), which is licensed under the MIT License.

ELEUTHERAI GPT-NEO-125M

We directly use the EleutherAI GPT-Neo 125M model checkpoint and weights, available via the
Hugging Face Model Hub at https://huggingface.co/EleutherAI/gpt-neo-125m.
This model is released under the MIT License.

C4 DATASET

Our model was trained on the C4 dataset (https://huggingface.co/datasets/
allenai/c4), which is provided under the Open Data Commons Attribution License (ODC-BY).
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TIKTOKEN

We use the tiktoken library from OpenAI for tokenization (https://github.com/openai/
tiktoken), which is released under the MIT License.
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F COMPLETE EXPERIMENTAL RESULTS

F.1 SYNTHETIC TASK ACCURACIES ACROSS TEST LENGTHS

We stress test RoPE models at a sequence length of 2048—twice the pretraining block size of
1024—as relative position embeddings naturally support extrapolation beyond the training context
window. In contrast, absolute positional encodings (APE) cannot generalize to sequences longer than
those seen during pretraining.

Table 6: Accuracy (%) across evaluation lengths for each model train on List Recall
Model (Train Length) 128 256 512 1024 2048
GPT-2 APE (128) 4.2 1.2 0.0 0.0 —
GPT-2 APE (256) 6.8 2.4 0.0 0.0 —
GPT-2 APE (512) 19.8 9.5 3.6 0.0 —
Meta + APE (128) 100.0 86.4 12.0 4.1 —
Meta + APE (256) 100.0 98.6 42.6 3.9 —
Meta + APE (512) 100.0 100.0 98.7 11.1 —
Meta + RoPE (128) 100.0 60.7 5.9 0.0 0.0
Meta + RoPE (256) 100.0 100.0 48.6 23.5 0.0
Meta + RoPE (512) 100.0 100.0 99.3 58.9 5.6
GPT-Neo-125M 85.6 86.0 81.2 — —

Table 7: Accuracy (%) across evaluation lengths for each model trained on Segment Counting. Each
model is evaluated on longer contexts than seen during training.

Model (Train Length) 128 256 512 1024 2048
GPT-2 APE (128) 32.1 27.4 20.2 0.0 —
GPT-2 APE (256) 40.3 56.2 23.7 0.0 —
GPT-2 APE (512) 30.1 32.1 25.0 0.0 —
Meta + APE (128) 77.4 55.9 25.0 11.1 —
Meta + APE (256) 83.3 77.4 53.6 22.4 —
Meta + APE (512) 91.7 79.8 80.9 33.3 —
Meta + RoPE (128) 77.4 64.3 25.0 22.7 0.0
Meta + RoPE (256) 64.3 64.3 35.7 33.3 0.0
Meta + RoPE (512) 90.9 91.4 95.3 66.7 11.1
GPT-Neo-125M 31.4 25.9 24.9 — —

Table 8: Accuracy (%) across evaluation lengths for each model train on Parity
Model (Train Length) 128 256 512 1024 2048
GPT-2 APE (128) 75.0 56.0 53.4 45.2 —
GPT-2 APE (256) 75.0 67.0 60.7 46.2 —
GPT-2 APE (512) 75.0 54.8 60.0 40.5 —
Meta + APE (128) 100.0 75.0 67.9 52.4 —
Meta + APE (256) 100.0 97.6 96.4 69.1 —
Meta + APE (512) 100.0 100.0 100.0 86.7 —
Meta + RoPE (128) 100.0 66.7 76.2 59.5 44.1
Meta + RoPE (256) 97.6 100.0 96.4 61.9 52.4
Meta + RoPE (512) 100.0 100.0 100.0 69.1 63.1
GPT-Neo-125M 80.4 59.1 54.8 — —
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Table 9: Accuracy (%) across evaluation lengths for each model trained on Copying
Model (Train Length) 128 256 512 1024 2048
GPT-2 APE (128) 6.0 5.3 3.0 0.0 —
GPT-2 APE (256) 6.8 6.0 5.7 0.0 —
GPT-2 APE (512) 3.8 4.8 7.8 0.0 —
Meta + APE (128) 100.0 66.7 76.2 2.6 —
Meta + APE (256) 100.0 100.0 96.4 7.9 —
Meta + APE (512) 100.0 100.0 98.5 87.4 —
Meta + RoPE (128) 96.6 73.0 5.2 0.0 0.0
Meta + RoPE (256) 98.2 100.0 23.6 9.3 3.2
Meta + RoPE (512) 99.0 98.9 98.9 89.4 11.8
GPT-Neo-125M 31.5 22.7 16.9 — —

F.2 ABLATIONS ON POSITIONAL ENCODING AND TOKEN EMBEDDING

Table 10: Accuracy (%) on the List-Recall task under different ablations: zeroing the positional
encoding (No Pos), zeroing the text embeddings (No Embed), or zeroing both of the meta-tokens.

Model (PE) Full No Pos No Embed Neither
Meta + APE (128) 100.0 99.3 17.4 59.7
Meta + RoPE (128) 100.0 100.0 32.4 24.0
Meta + APE (256) 86.4 86.9 12.2 16.2
Meta + RoPE (256) 100.0 100.0 4.0 6.6
Meta + APE (512) 100.0 100.0 52.1 84.3
Meta + RoPE (512) 100.0 100.0 59.6 25.2

Table 11: Accuracy (%) on the Segment Counting task under different ablations: zeroing the positional
encoding (No Pos), text embeddings (No Embed), or both, only on the meta-token.

Model (Train Length) Full No Pos No Embed Neither
Meta + APE (128) 77.4 63.1 31.0 47.6
Meta + APE (256) 83.3 88.1 32.1 40.5
Meta + APE (512) 91.7 82.1 34.5 51.2
Meta + RoPE (128) 77.4 70.2 59.5 36.9
Meta + RoPE (256) 64.3 53.6 30.9 30.9
Meta + RoPE (512) 80.9 72.6 36.9 25.0

Table 12: Accuracy (%) on the Parity task under different ablations: zeroing the positional encoding
(No Pos), text embeddings (No Embed), or both, only on the meta-token.

Model (Train Length) Full No Pos No Embed Neither
Meta + APE (128) 100.0 100.0 100.0 100.0
Meta + APE (256) 75.0 77.4 77.4 79.8
Meta + APE (512) 67.9 71.4 72.6 66.7
Meta + RoPE (128) 100.0 97.6 100.0 100.0
Meta + RoPE (256) 66.7 66.7 73.8 66.7
Meta + RoPE (512) 76.2 75.0 75.0 64.3
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Table 13: Accuracy (%) on the Copying task under different ablations: zeroing the positional encoding
(No Pos), text embeddings (No Embed), or both, only on the meta-token.

Model (Train Length) Full No Pos No Embed Neither
Meta + APE (128) 96.6 93.2 7.2 4.8
Meta + APE (256) 98.2 99.6 5.0 3.6
Meta + APE (512) 99.0 96.6 5.7 5.4
Meta + RoPE (128) 100.0 99.6 6.9 4.9
Meta + RoPE (256) 100.0 100.0 4.5 5.1
Meta + RoPE (512) 100.0 95.6 6.9 4.9

F.3 POSITIONAL ENCODING ROBUSTNESS ABLATIONS

Table 14: Accuracy (%) on the List Pointer task with Gaussian noise added to positional encoding.
Model (Train Length) Noise 0.0 Noise 0.1 Noise 0.5 Noise 1.0 Noise 2.0
GPT-2 + APE (128) 4.8 1.2 2.4 2.6 3.5
GPT-2 + APE (256) 17.4 11.9 4.6 3.6 3.2
GPT-2 + APE (512) 14.0 16.3 16.7 17.9 14.3
Meta + APE (128) 98.7 98.6 67.5 55.6 42.8
Meta + APE (256) 81.8 79.7 48.9 43.1 37.9
Meta + APE (512) 100.0 100.0 79.5 65.5 57.1
Meta + RoPE (128) 98.1 100.0 100.0 96.0 88.9
Meta + RoPE (256) 100.0 100.0 100.0 97.9 82.6
Meta + RoPE (512) 100.0 100.0 100.0 98.8 81.0

Table 15: Accuracy (%) on the Copying task with Gaussian noise added to positional encoding.
Model (Train Length) Noise 0.0 Noise 0.1 Noise 0.5 Noise 1.0 Noise 2.0
GPT-2 Abs (128) 2.9 1.2 0.0 0.0 0.0
GPT-2 Abs (256) 6.0 7.1 3.6 0.8 0.7
GPT-2 Abs (512) 6.0 5.8 3.6 0.4 0.3
Meta + APE (128) 96.1 98.5 69.8 58.6 54.9
Meta + APE (256) 100.0 100.0 76.3 68.8 57.2
Meta + APE (512) 98.9 98.7 74.4 68.9 50.5
Meta + RoPE (128) 100.0 100.0 75.9 68.6 49.9
Meta + RoPE (256) 100.0 100.0 82.6 65.6 45.1
Meta + RoPE (512) 100.0 100.0 84.4 67.6 46.3
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F.4 LENGTH GENERALIZATION ABILITY UNDER NO POSITIONAL ENCODING ABLATION

Table 16: List-Recall: “No Pos” vs. Full accuracy for Meta-attention with APE and Meta-attention
with RoPE.

Model (Split, Train Len) Full No Pos ∆ (pp)
Meta + APE (128)

small — — —
medium 77.8% 88.9% +11.1
hard 11.1% 22.2% +11.1

Meta + APE (256)
small 100.0% 100.0% 0.0
medium 100.0% 100.0% 0.0
hard 44.4% 22.2% –22.2

Meta + APE (512)
small — — —
medium — — —
hard 100.0% 100.0% 0.0

Meta + RoPE (128)
small — — —
medium 44.4% 55.6% +11.1
hard 11.1% 11.1% 0.0
extra-hard 0.0% 0.0% 0.0
long 0.0% 11.1% +11.1

Meta + RoPE (256)
small 100.0% 100.0% 0.0
medium 100.0% 100.0% 0.0%
hard 33.3% 66.7% +33.3
extra-hard 0.0% 22.2% +22.2
long 0.0 0.0 0.0

Meta + RoPE (512)
small — — —
medium 100.0% 100.0% 0.0
hard 100.0% 100.0% 0.0
extra-hard 44.4% 55.6% +11.1
long 0.0% 0.0% 0.0

F.5 MULTI-HOP RETRIEVAL RESULTS

Table 17: Accuracy (%) across evaluation lengths for each model trained on Multi-Hop Retrieval
Model (Train Length) 128 256 512 1024
GPT-2 APE (128) 27.5 4.7 2.2 3.6
GPT-2 APE (256) 32.0 31.3 18.3 6.4
GPT-2 APE (512) 38.3 31.7 21.4 2.1
Meta + APE (128) 27.7 3.6 4.5 2.9
Meta + APE (256) 29.1 26.4 23.0 15.4
Meta + APE (512) 41.0 33.0 34.0 15.9
Meta + RoPE (128) 78.8 66.0 51.1 18.4
Meta + RoPE (256) 74.2 84.1 59.7 39.4
Meta + RoPE (512) 85.0 72.0 72.0 62.0
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F.6 RANDOM PLACEMENT OF META-TOKENS AT INFERENCE

Since our list-recall results succeed the answer, we also explore a variant with random placement to
ensure that meta-tokens and meta-attention actually help. Uniform placement is explored in D.1.5

Model (Train Length) 128 256 512
GPT-2 APE (128) 1.2% 0.0% 0.0%
GPT-2 APE (256) 1.7% 1.8% 0.0%
GPT-2 APE (512) 1.7% 1.9% 1.5%
Meta + APE (128) 12.4% 9.9% 6.7%
Meta + APE (256) 16.8% 18.2% 8.6%
Meta + APE (512) 17.4% 18.6% 15.5%

Table 18: Performance of GPT-2 APE and Meta + APE models across different train lengths.

F.7 INFERENCE EFFICIENCY

Meta-tokens are generated at inference. The additional computation is sparse—each attention
head only considers a small number of meta positions rather than the full attention matrix. In our
current PyTorch implementation, which materializes the sparse mask as a dense tensor, we observe a
throughput drop from 130.82 to 117.86 tokens/sec and a TTFT increase from 7.44ms to 7.57ms, i.e.,
a 1.11× slowdown. We expect optimized sparse attention implementations to reduce or eliminate this
overhead.

Table 19: Inference speed comparison with and without meta/pause tokens.
Metric No meta/pause tokens With meta/pause tokens

TPS (tokens/sec) 130.82 117.86
TTFT (ms) 7.44 7.57
Slowdown factor 1.00 1.11

G THEORETICAL ANALYSIS

G.1 PROOF OF THEOREM 4.1

Lemma G.1. Let ℓ1, ℓ2, . . . , ℓN be logits and define softmax distribution αj =
exp(ℓj)∑N

k=1 exp(ℓk)
. Suppose

that for some "correct" index j∗ we have ℓj∗ = L, and for all other indices j ̸= j∗, ℓj ≤ L−∆ for
some ∆ > 0. Then, entropy H(α) is strictly decreasing in ∆.

Proof. First, we can group the other logits (i.e. j ̸= j∗, such that S =
∑

j ̸=j∗
eℓj . Then, since each ℓj

carries the property that eℓj ≤ eL−∆ given ℓj∗ = L, we have that S ≤ (N − 1)eL−∆ since there are
N −1 terms. Revisiting the softmax α, we have that αj∗ = eL

eL+S
≥ eL

eL+(N−1)eL−∆ = 1
1+(N−1)e−∆ .

We will denote this quantity as p henceforth. Next, each other softmax αj for j ̸= j∗ must have the
property that αj =

eℓ

eL+S
≤ eL−∆

eL(1+(N−1)e−∆)
= e−∆

1+(N−1)e−∆ = 1−p
N−1 .
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As a result, we have the following entropy maximization problem:

maximize
α1,...,αN

−
N∑
j=1

αj logαj

subject to
N∑
j=1

αj = 1,

αj∗ = p,

αj ≥ 0, j = 1, . . . , N.

Observe that the entropy (objective) function is Schur-concave in α, so it is maximized when αj∗ = p

and the remaining softmax mass is split uniformly over the N − 1 elements, i.e. αj =
1−p
N−1 ∀ j ̸= j∗.

Plugging this in for H(α) yields:

H(α) ≤ −p log p− (1− p) log(1− p) + (1− p) log(N − 1) (3)

Next, we aim to study the relationship between H and ∆. By the chain rule, dH
d∆ = dH

dp · dp
d∆ .

dH
dp = −(1 + log p) + log 1−p

N−1 + 1 = log 1−p
(N−1)p . Substituting 1−p

p = (N − 1)e−∆, we get
dH
dp = −∆ and since ∆ > 0, dH

dp < 0. We then turn to dp
d∆ = (N−1)e−∆

[1+(N−1)e−∆]2 > 0 since both

numerator and denominator must be > 0. Therefore, dH
d∆ = −∆ (N−1)e−∆

[1+(N−1)e−∆]2 < 0, meaning that
H(α) is strictly decreasing in the margin ∆.

We will now use Lemma G.1 to prove Theorem 5.1.

Proof of Theorem 4.1. Consider a parametrized path by variable t ∈ [0,∆]; define ℓ(t)j = ℓj + δj,j∗t,

and α
(t)
j = e

ℓ
(t)
j

N∑
k=1

eℓ
(t)
k

= e
(ℓj+δj,j∗ t)

N∑
k=1

e
(ℓk+δk,j∗ t)

. Define ℓ
′(t)
j = d

dtℓ
(t)
j and α

′(t)
j = d

dtα
(t)
j .

Next, we differentiate the entropy H(α) with respect to t:

d

dt
H(α) = −

N∑
j=1

[α′
j lnαj + αj

α′
j

αj
] = −

N∑
j=1

α′
j(1 + lnαj) = −

N∑
j=1

α′
j + α′

j lnαj

Since
∑

α′
j = 0 due to

∑
αj = 1, this simply reduces to d

dtH(α) = −
∑N

j=1 α
′
j lnαj .

From Cover and Thomas (2006), we have that α′
j = αj(ℓ

′
j − Eα[ℓ

′]), where Eα[ℓ
′] =

N∑
k=1

αkℓ
′
k.

Plugging this into the expression for the derivative of entropy with respect to t:

d

dt
H(α) = −

∑
j

αj(ℓ
′
j − Eα[ℓ

′]) lnαj = −(
∑
j

ajℓ
′
j lnαj − Eα[ℓ

′]
∑
j

αj lnαj)

Observe that
∑

j αj lnαj = Eα[lnα] so this simply reduces as:

d

dt
H(α) = −(Eα[ℓ

′ lnα]− Eα[ℓ
′]Eα[lnα]) = −Covα(ℓ

′, lnα) (4)

Revisiting the meta-token setup where only the "correct" logit at j∗ is boosted, this suggests that
ℓ′j = 1(j = j∗). Therefore, Eα[ℓ

′] = αj∗ and Eα[ℓ
′ lnα] = αj∗ lnαj∗ . This can be substituted into

the covariance term above:

d

dt
H(α) = −Covα(ℓ′, lnα) = −(αj∗ lnαj∗ − αj∗ Eα[lnα]) = −αj∗(lnαj∗ − Eα[lnα])
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Due to the Schur-concavity of H(α) (Marshall et al., 2011), lnαj∗ = maxj lnαj and lnαj∗ >
Eα[lnα]. As such, given αj∗ > 0 and lnαj∗ − Eα[lnα] > 0, this suggests that Covα(ℓ′, lnα) > 0

and thus, d
dtH(α) < 0. Therefore, we conclude that adding a positive logit boost at the meta-token

index ("correct" logit) strictly decreases entropy, supporting the proposed "anchoring" effect notion.

G.2 PROOF OF THEOREM 5.1

Proof of Theorem 5.1. The meta-tokens are simply a new (latent) channel that may be utilized to
search for candidate distributions. However, this latent can be ignored, yielding the original search
space; that is, any encoder qϕ(x̂ | x) that does not use meta-tokens can be implemented in the
meta-token model by zeroing out all meta-token contributions. Therefore, Qabs ⊆ Qmeta, where
q = (qϕ, qθ) over the feasible combinations of encoder and decoder. Naturally, minimizing a function
over a larger feasible set cannot increase its minimum. Thus, for a fixed rate R,

Dmeta(R) = min
q∈Qmeta : I(X;X̂)=R

D(q) ≤ min
q∈Qabs : I(X;X̂)=R

D(q) = Dabs(R).

Note that the same result holds for RoPE in place of APE (i.e. DRoPE in place of Dabs), as well.

G.3 THEOREM G.2

Theorem G.2. Consider functions p : {0, . . . , T − 1} → R and b : {−(T − 1), . . . , T − 1} → R for
absolute postional biases and relative biases, respectively. Let Babs to be the set of all fixed absolute
positional bias matrices Babs

i,j = p(j) and Brel to be the set of all fixed relative biases Brel
i,j = b(i− j).

Let Bmeta be the set of bias matrices implementable by the Transformer augmented with meta-token
embeddings {mt} which emit a content-dependent logit boost at their respective indices. Then,

Babs ∪ Brel ⊊ Bmeta (5)

Proof. We break this argument down into two parts → (i.) the forward direction, where we show that
all absolute and relative biases without meta-tokens can be modeled by the meta-token model.

(i) Babs∪Brel ⊆ Bmeta. Every B ∈ Bmeta is obtained by choosing meta-token embeddings et ∈ Rd

at each position t and a linear head W , so that the total bias at (i, j) is Bi,j =
∑

t Q⊤
i W et 1j=t.

• Absolute case. Given p(j), set W ∈ R1×d and choose each ej so that Q⊤
i W ej = p(j) ∀ i.

All other et ̸=j are zero. Then Bi,j = p(j).

• Relative case. Given b(i − j), place a meta-token at every position j. Choose W and
embeddings ej so that Q⊤

i W ej = b(i− j) ∀ i, j.

For instance, if we let W = Id and arrange that ej encodes the vector
(
b(1 − j), b(2 −

j), . . . , b(T − j)
)
, then Q⊤

i ej = b(i− j) when Qi is the i-th standard basis vector.

Therefore, every absolute or relative bias (in Babs and Brel) lies in Bmeta.

(ii) There exists a bias B∗ ∈ Bmeta such that B∗ /∈ Babs ∪ Brel. Define a content-dependent bias
B∗

i,j = f
(
Cj

)
where Cj is the full token context preceding position j and f is any non-constant

function. Such a B∗ arises by setting each meta-token embedding ej = f(Cj) and W = Id, so
B∗ ∈ Bmeta.

However, if there was B∗ ∈ Babs, then there is p(j) with p(j) = f(Cj) for all j and all possible
Cj , which is impossible since Cj varies. Furthermore, if B∗ ∈ Brel, then there is b(i − j) with
b(i − j) = f(Cj) independent of i; again, this condition is impossible to be satisfied. Therefore
B∗ /∈ Babs ∪ Brel.

As a result, we conclude that the biases represented by Bmeta contain the set of both absolute and
relative biases without meta-tokens, and represent additional biases that cannot be represented without
meta-tokens.
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The result of Theorem G.2 is that the introduction of meta-tokens strictly grows the expressivity of
biases that may be represented, while still being entirely inclusive of the fixed realizable absolute and
relative encoding biases. As a result, we do not "lose" anything representationally by introducing
meta-tokens, from a positional biases standpoint. This enhanced expressive power also plays a
role in enabling the model to learn to focus attention on relevant context spans, reinforcing the
aforementioned sharpening effect.

G.4 META-TOKENS AS CONTENT-ADAPTIVE INDUCING POINTS

We formally show that meta-tokens operate akin to inducing points or landmarks, with respect to
the attention kernel. Specifically, we suggest that routing attention through a small set of meta-
tokens across the context behaves like a Nyström approximation, a low-rank factorization with
a provable attention error bound. Consider the softmax kernel Kij = exp(QKT

√
dk

), and weights
W = exp(B) ≥ 0 over masks and biases, so the effective kernel is K ′ = K ⊙W , and attention can
be defined as A = RowNorm(K ′). Let the meta-token indices be M ⊂ {1, . . . , T}.

Theorem G.3. Define the Nyström kernel K̃ = K:,MK+
M,MKM,:, and Ã = RowNorm(K̃ ⊙W ).

For any row i, for smin = min
r

∑
j

(K ⊙W )rj:

||Ai,: − Ãi,:||1 ≤ 2

smin
||(K − K̃)i,: ⊙Wi,:||1 (6)

If the kernel feature map of {kj} lies in the span of {km : m ∈ M}, then K̃ = K and therefore
Ã = A.

Proof. First, we start by showing that K, the gram matrix of κ(x, y) = exp( ⟨x,y⟩√
d
) is

a positive semidefinite matrix. By the power series, exp( ⟨x,y⟩√
d
) =

∞∑
m=0

1
m! (

⟨x,y⟩√
d
)m =

∞∑
m=0

⟨ 1√
m!dm/2

x⊗m, 1√
m!dm/2

y⊗m⟩. Thus, we can write κ(x, y) = ⟨ϕ(x), ϕ(y)⟩, so K is a Gram

matrix of inner products, and therefore is PSD (and a valid kernel).

Lemma G.4. For positive u,v ∈RT :

|| u

1Tu
− v

1T v
||1 ≤ 2

min (1Tu, 1T v)
||u− v||1 (7)

Proof of Lemma G.3. Let a = 1Tu and b = 1T v; we can write the following:

u

a
− v

b
=

ub− va

ab
=

(u− v)b+ v(b− a)

ab

Next, taking the L1-norm on both sides and applying the triangle inequality yields:

||u
a
− v

b
||1 =

1

ab
||(u− v)b+ v(b− a)||1 ≤ 1

ab
(||(u− v)b||1 + ||v(b− a)||1)

Since ||v||1 = b and |b− a| = |1T v − 1Tu| ≤ ||u− v||1, we have:

||u
a
− v

b
||1 ≤ b||u− v||1 + b||u− v||1

ab
=

2

a
||u− v||1

By symmetry, the tightest bound is:

||u
a
− v

b
||1 ≤ 2

min (a, b)
||u− v||1 =

2

min (1Tu, 1T v)
||u− v||1
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Take u = (K ⊙W )i,: and v = (K̃ ⊙W )i,:, and apply Lemma G.3. This yields:

||RowNorm(u)− RowNorm(v)||1 ≤ 2

min (1Tu, 1T v)
||u− v||1 (8)

Recall that Ai,: = RowNorm(u) and Ãi,: = RowNorm(v). Observe that all rows are positive, so
1Tu and 1T v are ≥ 0. Therefore, we can replace min (1Tu, 1T v) by smin = min

r

∑
j

(K ⊙ W )rj ,

and substitute the values of u and v in to yield our desired result:

||Ai,: − Ãi,:||1 ≤ 2

smin
||(K − K̃)i,: ⊙Wi,:||1 (9)

We currently have that the softmax kernel can be written as an inner product in a feature space, as
K = Φ(Q)Φ(K)T . Suppose that the feature vectors of all keys {Φ(kj)} lie in the span of meta-token
features {Φ(km) : m ∈ M}. This means there exists some coefficient matrix C such that for
Φ(K)M which only collects the meta-token feature columns, Φ(K) = Φ(K)MC. Substituting this
into the kernel expression yields:

K = Φ(Q)(CTΦ(K)TM) = (Φ(Q)Φ(K)TM)CT (10)

We can observe that (Φ(Q)Φ(K)TM) is equivalent to the sub-matrix of K with columns at the
meta-token indices, which is denoted by K:,M, so

K = K:,MCT

and since every column of K lies in the span of K:,M under this assumption, there must exist some
matrix C such that this holds.

Consider a single column j of K, over the rows indexed by M, yielding:

KM,j = KM,Mcj

for coefficient vector cj (the j-th column of CT ). This is a linear system of the form Ax = b,
and stacking the columns gives the form of KM,: = KM,MCT , which is a least-squares problem
for which the general solution is given by using the Moore-Penrose pseudoinverse, so CT =
K+

M,MKM,:

Now, recall that the Nyström approximation is defined as K̃ = K:,MK+
M,MKM,:. This is exactly

equivalent to our form for K = K:,MCT = K:,MK+
M,MKM,:! Since K̃ = K, the row-normalized

attentions must be equivalent as well, so Ã = A.

This suggests that if meta-tokens span the feature map of a segment of context, then they capture that
segment’s structure, and it thus the meta-tokens perfectly represent the attention kernel.
Proposition G.5. Take f = [0, 1]T to denote a test statistic for a downstream task, and ŷi = ⟨Ai,:, f⟩
to be the predicted score at query position i; the distortion is measured by Di = |⟨Ai,:, f⟩ −
⟨Ãi,:, f⟩| = |ŷi − ỹi|, the change induced by the low-rank approximation of A. Then, for smin =
min
r

∑
j

(K ⊙W )rj:

|ŷi − ỹi| ≤
1

2
||Ai,: − Ãi,:||1 ≤ 1

smin
||(K − K̃)i,: ⊙Wi,:||1 (11)

Proof. We can first show that |ŷi − ỹi| = |⟨Ai,: − Ãi,:, f⟩| ≤ 1
2 ||Ai,: − Ãi,:||1. Take p = Ai,: and

q = Ãi,:, and let z = p−q be a probability distribution; notably,
∑

j zj = 0. Split the indices of z into
positive and negative sets: S+ = j : zj ≥ 0 and S− = j : zj < 0, so ⟨z, f⟩ =

∑
j∈S+

zjfj+
∑

j∈S−

zjfj .

Becuase 0 ≤ fj ≤ 1, we have
∑

j∈S+

zjfj ≤
∑

j∈S+

zj and
∑

j∈S−

zjfj ≥ 0, so

⟨z, f⟩ ≤
∑
j∈S+

zj
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Similarly, using fj ≥ 0 over S+ and fj ≤ 1 on S−, we have

⟨z, f⟩ ≥
∑
j∈S−

zj

Thus, ∑
j∈S−

zj ≤ ⟨z, f⟩ ≤
∑
j∈S+

zj

However, note that for a zero-sum vector, the L1 norm would split evenly between positive and
negative indices, so

∑
j∈S+

zj = −
∑

j∈S−

zj =
1
2 ||z||1. Therefore,

⟨z, f⟩ ≤ 1

2
||z||1

Substituting z = Ai,: − Ãi,: yields:

⟨Ai,: − Ãi,:, f⟩ ≤
1

2
||Ai,: − Ãi,:||1 (12)

Next, applying the result in Theorem 5.2 that ||Ai,: − Ãi,:||1 ≤ 2
smin

||(K − K̃)i,: ⊙Wi,:||1 provides
the complete result:

|ŷi − ỹi| = |⟨Ai,: − Ãi,:, f⟩| ≤
1

2
||Ai,: − Ãi,:||1 ≤ 1

smin
||(K − K̃)i,: ⊙Wi,:||1 (13)

From a rate-distortion perspective, the number of meta-tokens controls the rate, and the approximation
error in ŷi is an upper bound on the distortion. The above analysis provides a total variation bound
for the distortion in application to downstream tasks, which we can frame in terms of the Nyström
kernel residual. This perspective guides our analysis on meta-tokens caching preceding context.

H EXAMPLE PROMPTS FOR SYNTHETIC TASKS

We provide example prompts and target completions for each synthetic task used in our experiments.
Each example illustrates the input format, the placement of _PAUSE_ meta-tokens, and the expected
model output.

List Recall

Prompt:

Fruits: orange peach banana plum
Tools: hammer wrench level pliers
Sports: boxing baseball boxing golf
Spices: turmeric cardamom cumin cinnamon
Animals: cat tiger wolf fox
Professions: teacher nurse lawyer architect
Vegetables: onion cucumber broccoli cucumber
Instruments: piano clarinet violin piano
Professions: teacher nurse lawyer _PAUSE_ architect
Q: What is item 3 of Professions? _PAUSE_

Completion:

lawyer
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Segment Counting

Prompt:

Fruits: orange peach banana plum
Tools: _PAUSE_ hammer wrench level pliers _PAUSE_
Sports: boxing baseball boxing golf
Spices: turmeric cardamom cumin cinnamon
Q: How many times does wrench appear between the pauses around Tools? _PAUSE_

Completion:

1

Parity

Prompt:

Bits: 0 _PAUSE_ 1 0 0
Q: What is the XOR of all bits before this pause? _PAUSE_

Completion:

0

Copying

Prompt:

...as ever Mr _PAUSE_ . Darcy had been, was much
relieved by discerning such different feelings.

They had not been long together before Darcy told her that Bingley was
also coming to wait on her; and she had barely time to express her
satisfaction, and prepare for such a visitor, when Bingley’s quick step
was heard on the stairs, and in a moment he entered the room. All
Elizabeth’s anger against him had been long done away; but had she still
felt any, it could hardly have stood its ground against the unaffected
cordiality with which he expressed himself on seeing her again. He
inquired in a friendly, though general, way, after her family, and
looked and spoke with the same _PAUSE_ good-humoured ease that he had done.
Q: Copy the bracketed text. _PAUSE_

Completion:

. Darcy had been, was much
relieved by discerning such different feelings.

They had not been long together before Darcy told her that Bingley was
also coming to wait on her; and she had barely time to express her
satisfaction, and prepare for such a visitor, when Bingley’s quick step
was heard on the stairs, and in a moment he entered the room. All
Elizabeth’s anger against him had been long done away; but had she still
felt any, it could hardly have stood its ground against the unaffected
cordiality with which he expressed himself on seeing her again. He
inquired in a friendly, though general, way, after her family, and
looked and spoke with the same.

Multi-Hop Retrieval

Prompt:

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Flowers: sunflower daisy sunflower tulip rose marigold rose jasmine daisy lily PAUSE
BodyParts: nose back ear foot hand foot mouth mouth ear foot PAUSE
Minerals: calcite dolomite halite gypsum magnetite halite gypsum magnetite feldspar pyrite PAUSE
Animals: tiger elephant giraffe elephant elephant dog wolf tiger tiger zebra PAUSE
Hobbies: reading hiking cycling painting gaming painting reading painting writing reading PAUSE
Clothes: scarf scarf gloves shirt dress coat dress dress dress shirt PAUSE
Planets: Pluto Mercury Uranus Ceres Uranus Mercury Jupiter Jupiter Jupiter Pluto PAUSE
Vehicles: scooter plane bus train train plane plane tram van car PAUSE
Fruits: orange kiwi mango kiwi orange lemon pear plum grape banana PAUSE
Spices: turmeric paprika clove saffron pepper turmeric pepper turmeric nutmeg saffron PAUSE

Jumps:
nose -> Vehicles[3]
bus -> Vehicles[7]
plane -> Animals[1]
tiger -> Flowers[8] PAUSE

Start: BodyParts[1]
Hops: 4
Q: After following 4 jumps, what is the final item? PAUSE

Completion:

jasmine

I ADDITIONAL RELATED WORK

I.1 LANGUAGE MODELING WORKS WITH SPECIAL TOKENS

Kim et al. (2025) inserts pause tokens when the token log-likelihood is low, allowing the model to
think for longer, aiding reasoning. These special tokens may also delineate phases of reasoning, as in
Quiet-STaR (Zelikman et al., 2024). Quiet-STaR uses a begin-of-thought token and an end-of-thought
token, generating a silent rationale sequence for each step before emitting the next word, showing that
this helps zero-shot reasoning. Such demarcations have begun to be used widely in the development
of large reasoning models (Muennighoff et al., 2025).

I.2 META-TOKENS IN VISION TRANSFORMERS

For vision transformers (ViTs), LeMeVit (Jiang et al., 2024) introduces a similar meta-tokens notion
as our work by adding learnable sparse tokens and an attention mechanism between standard tokens
and their meta tokens, improving performance and reducing spatial redundancy. Darcet et al. (2024)
uses specialized "register" tokens applies to patches to denoise images by extracting the high-norm,
outlier tokens, smoothening the feature and attention maps. These works suggest that special tokens,
even devoid of semantic content, can influence a model’s internal reasoning and memory mechanisms.

I.3 NYSTRÖM APPROXIMATION OF ATTENTION KERNEL

There exist a few works related to our Nyström approximation in Appendix G.4; Nyströmformer
(Xiong et al., 2021) approximates self-attention, yielding an O(n) method that outperforms standard
self-attention at longer lengths. It selects inducing points or landmarks using Skyformer (Chen et al.,
2021) uses a Gaussian kernel (kernelized attention) in place of softmax in self-attention, and applies
the Nyström method for efficiency. We instead use the Nyström method as an analysis tool to study
the role of meta-tokens – inducing points that we introduced during training – in approximating the
softmax kernel by caching preceding context.
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J BROADER IMPACTS STATEMENT

Our work on learned meta-tokens and meta-attention offers a lightweight, data-efficient way to pre-
train language models while demonstrating strong performance when fine-tuned for recall tasks. This
suggests a path toward more capable, leaner language models that could be used to handle contexts
such as like long legal or medical documents, extended multi-turn dialogues, or large codebases
without resorting to prohibitively large architectures or expensive fine-tuning runs. Such models
could bring real benefits to areas such as conversational agents for education or healthcare. Building
off of prior literature that performs a more explicit learned retrieval from the context (Mohtashami
and Jaggi, 2023), this could induce improved and efficient in-line retrieval over vast corpora.

Our work relates strongly to the recent debates in the language modeling community on the impact of
positional encoding, particularly around works such as NoPE (Kazemnejad et al., 2023). We provide
strong evidence that zeroing the positional encoding can improve performance, providing motivation
for hybrid attention mechanisms such as RNoPE (Yang et al., 2025), and other, more efficient ways
to pre-train language models with long-context modeling settings in mind. We note that advances in
long-context modeling could introduce risks around misuse and unintended harm. More powerful
context understanding over long ranges can fuel phishing text and distracted models, especially in
the phase of noisy context. However, models trained on corpora without data pre-processing a priori
may be subject to harmful behavior such as profane generations. In the context of our work, which
uses standard, pre-filtered corpora, this issue is avoided; we encourage users to audit the data used for
pre-training first.

K LARGE LANGUAGE MODEL USAGE STATEMENT

Large language models (LLMs) were used in proofreading and editing the writing in this paper, for
the purpose of ensuring the contributions and findings in this work are made clear to readers. They
were also used to confirm consistency of the mathematical notation used in the paper.
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