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Abstract
Enriching the quality of early childhood education
with interactive math learning at home systems,
empowered by recent advances in conversational
AI technologies, is slowly becoming a reality.
With this motivation, we implement a multimodal
dialogue system to support play-based learning
experiences at home, guiding kids to master ba-
sic math concepts. This work explores Spoken
Language Understanding (SLU) pipeline within a
task-oriented dialogue system developed for Kid
Space, with cascading Automatic Speech Recog-
nition (ASR) and Natural Language Understand-
ing (NLU) components evaluated on our home de-
ployment data with kids going through gamified
math learning activities. We validate the advan-
tages of a multi-task architecture for NLU and ex-
periment with a diverse set of pretrained language
representations for Intent Recognition and Entity
Extraction in the math learning domain. To recog-
nize kids’ speech in realistic home environments,
we investigate several ASR systems, including the
Google Cloud and the latest open-source Whisper
solutions with varying model sizes. We evaluate
the SLU pipeline by testing our best-performing
NLU models on noisy ASR output to inspect the
challenges of understanding children for math
learning in authentic homes.

1. Introduction and Background
The ongoing progress in Artificial Intelligence (AI) based
advanced technologies can assist humanity in reducing
the most critical inequities around the globe. The re-
cent widespread interest in conversational AI applications
presents exciting opportunities to showcase the positive so-
cietal impact of these technologies. The language-based AI
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systems have already started to mature to a level where we
may soon observe their influences in mitigating the most
pressing global challenges. Education is among the top pri-
ority improvement areas identified by the United Nations
(UN) (i.e., poverty, hunger, healthcare, and education). In
particular, increasing the inclusiveness and quality of ed-
ucation is within the UN development goals1 with utmost
urgency. One of the preeminent ways to diminish societal in-
equity is promoting STEM (i.e., Science, Technology, Engi-
neering, Math) education, specifically ensuring that children
succeed in mathematics. It is well-known that acquiring
basic math skills at younger ages builds students up for
success, regardless of their future career choices (Cesarone,
2008; Torpey, 2012). For math education, interactive learn-
ing environments through gamification present substantial
leverages over more traditional learning settings for study-
ing elementary math subjects, particularly with younger
learners (Skene et al., 2022). With that goal, conversational
AI technologies can facilitate this interactive learning en-
vironment where students can master fundamental math
concepts. Despite these motivations, studying spoken lan-
guage technologies for younger kids to learn basic math is a
vastly uncharted area of AI.

This work2 discusses a modular goal-oriented Spoken Dia-
logue System (SDS) specifically targeted for kids to learn
and practice basic math concepts at home setup. Initially, a
multimodal dialogue system (Sahay et al., 2019) is imple-
mented for Kid Space (Anderson et al., 2018), a gamified
math learning application for deployment in authentic class-
rooms. During this preliminary real-world deployment at
an elementary school, the COVID-19 pandemic impacted
the globe, and school closures forced students to switch
to online learning options at home. To support this sud-
den paradigm shift to at-home learning, previous school
use cases are redesigned for new home usages, and our
dialogue system is recreated to deal with interactive math
games at home. While the play-based learning activities are
adjusted for home usages with a much simpler setup, the
multimodal aspects of these games are partially preserved

1https://sdgs.un.org/goals
2The previous version of this paper has been accepted to the
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Figure 1. Multimodal Dialogue System Pipeline

along with the fundamental math concepts for early child-
hood education. These math skills cover using ones and tens
to construct numbers and foundational arithmetic concepts
and operations such as counting, addition, and subtraction.
The multimodal aspects of these learning games include
kids’ spoken interactions with the system while answering
math questions and carrying out game-related conversations,
physical interactions with the objects (i.e., placing cubes
and sticks as manipulatives) on a visually observed playmat,
performing specific pose and gesture actions as part of these
interactive games (e.g., jumping, standing, air high-five).

Our domain-specific SDS pipeline (see Figure 1) con-
sists of multiple cascaded components, namely Automatic
Speech Recognition (ASR), Natural Language Understand-
ing (NLU), Multimodal Dialogue Manager (DM), Natural
Language Generation (NLG), and Text-to-Speech (TTS)
synchronizing the agent utterances with virtual character
animations on Student User Interface (UI). Here we concen-
trate on the Spoken Language Understanding (SLU) task
on kids’ speech at home environments while playing basic
math games. Such application-dependent SLU approaches
commonly involve two main modules applied sequentially:
(i) Speech-to-Text (STT) or ASR module that recognizes
speech and transcribes the spoken utterances into text, and
(ii) NLU module that interprets the semantics of those ut-
terances by processing the transcribed text. NLU is one
of the most integral components of these goal-oriented di-
alogue systems. It empowers user-agent interactions by
understanding the meaning of user utterances via perform-
ing domain-specific sub-tasks. Intent Recognition (IR) and
Named Entity Recognition (NER) are essential sub-tasks
within the NLU module to resolve the complexities of hu-
man language and extract meaningful information for the
application at hand. Given a user utterance as input, the
Intent Classification aims to identify the user’s intention
(i.e., what the user desires to achieve with that interaction)
and categorize the user’s objective at that conversational
turn. The Entity Extraction targets locating and classifying
entities (i.e., specific terms representing existing things such
as person names, locations, and organizations) mentioned

in user utterances into predefined task-specific categories.

In this study, we present our efforts to convert the task-
oriented SDS (Okur et al., 2022c) designed for school use
cases (Aslan et al., 2022) to home usages after COVID-19
and inspect the performance of individual SDS modules
evaluated on the home deployment data we recently col-
lected from 12 kids individually at their homes. Although
the overall dialogue system handles multimodal interactions
(e.g., spoken interactions with the agent, physical inter-
actions with the objects, and pose-gesture interactions to
perform required game-specific actions), this study narrows
down on the kids’ verbal interplay with the system. Specifi-
cally, the current work focuses on assessing and improving
the SLU task performance on kids’ utterances at home by
utilizing this real-world deployment data. We first investi-
gate the ASR and NLU module evaluations independently.
Then, we inspect the overall SLU pipeline (i.e., ASR+NLU)
performance on kids’ speech by evaluating our NLU tasks
on ASR output (i.e., recognized text) at home environments.
As the erroneous and noisy speech recognition output would
lead to incorrect intent and entity predictions, we aim to un-
derstand these error propagation consequences with SLU
for children in the math learning domain. We experiment
with various recent ASR solutions and diverse model sizes
to gain more insights into their capabilities to recognize
kids’ speech at home. We then analyze the effects of these
ASR engines on understanding intents and extracting enti-
ties from children’s utterances. We discuss our findings and
observations for potential enhancements in future deploy-
ments of this dialogue system for math learning at home.

2. Related Work
2.1. Conversational AI for Math Learning

With the ultimate goal of improving the quality of educa-
tion, there has been a growing enthusiasm for exploiting
AI-based intelligent systems to boost students’ learning ex-
periences (Chassignol et al., 2018; Aslan et al., 2019; Jia
et al., 2020; Zhai et al., 2021; Baker, 2021). Among these,
interactive frameworks that support guided play-based learn-
ing spaces revealed significant advantages for math learn-
ing (Pires et al., 2019; Sun et al., 2021; Richey et al., 2021),
especially for building foundational math skills in early
childhood education (Nrupatunga et al., 2021; Skene et al.,
2022). To attain this level of interactivity within smart learn-
ing spaces, developing innovative educational applications
by utilizing language-based AI technologies is in growing
demand (Taghipour & Ng, 2016; Lende & Raghuwanshi,
2016; Raamadhurai et al., 2019; Cahill et al., 2020; Chan
et al., 2021; Rathod et al., 2022). In particular, designing
conversational agents for intelligent tutoring is a compelling
yet challenging area of research, with several attempts pre-
sented so far (Winkler & Söllner, 2018; Wambsganss et al.,
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2020; Winkler et al., 2020; Datta et al., 2020; Okonkwo
& Ade-Ibijola, 2021; Wollny et al., 2021), most of them
focusing on language learning (Bibauw et al., 2022; Tyen
et al., 2022; Zhang et al., 2022).

In the math education context, earlier conversational math
tutoring applications exist, such as SKOPE-IT (Nye et al.,
2018), which is based on AutoTutor (Graesser et al., 2005)
and ALEKS (Falmagne et al., 2013), and MathBot (Gross-
man et al., 2019). These are often text-based online systems
following strict rules in conversational graphs. Later, vari-
ous studies emerged at the intersection of cutting-edge AI
techniques and math learning (Mansouri et al., 2019; Huang
et al., 2021; Azerbayev et al., 2022; Uesato et al., 2022;
Yang et al., 2022). Among those, employing advanced
language understanding methods to assist math learning is
relatively new (Peng et al., 2021; Shen et al., 2021; Logi-
nova & Benoit, 2022; Reusch et al., 2022). The majority of
those recent work leans on exploring language representa-
tions for math-related tasks such as mathematical reasoning,
formula understanding, math word problem-solving, knowl-
edge tracing, and auto-grading, to name a few. Recently,
TalkMoves dataset (Suresh et al., 2022a) was released with
K-12 math lesson transcripts annotated for discursive moves
and dialogue acts to classify teacher talk moves in math
classrooms (Suresh et al., 2022b).

For the conversational AI tasks, the latest large language
models (LLMs) based chatbots, such as BlenderBot (Shuster
et al., 2022) and ChatGPT (OpenAI, 2022), gained a lot of
traction in the education community (Tack & Piech, 2022;
Kasneci et al., 2023), along with some concerns about using
generative models in tutoring (Macina et al., 2023; Cotton
et al., 2023). ChatGPT is a general-purpose open-ended
interaction agent trained on internet-scale data. It is an end-
to-end dialogue model without explicit NLU/Intent Rec-
ognizer or DM, which currently cannot fully comprehend
the multimodal context and proactively generate responses
to nudge children in a guided manner without distractions.
Using these recent chatbots for math learning is still in the
early stages because they are known to miss basic mathe-
matical abilities and carry reasoning flaws (Frieder et al.,
2023), revealing a lack of common sense. Moreover, they
are known to be susceptible to triggering inappropriate or
harmful responses and potentially perpetuate human biases
since they are trained on internet-scale data and require
carefully-thought guardrails.

On the contrary, our unique application is a task-oriented
math learning spoken dialogue system designed to perform
learning activities, following structured educational games
to assist kids in practicing basic math concepts at home. Our
SDS does not require massive amounts of data to understand
kids and generate appropriate adaptive responses, and the
lightweight models can run locally on client machines. In

addition, our solution is multimodal, intermixing the physi-
cal and digital hybrid learning experience with audio-visual
understanding, object recognition, segmentation, tracking,
and pose and gesture recognition.

2.2. Spoken Language Understanding

Conventional pipeline-based dialogue systems with super-
vised learning are broadly favored when initial domain-
specific training data is scarce to bootstrap the task-
oriented SDS for future data collection (Serban et al., 2018;
Budzianowski et al., 2018; Mehri et al., 2020). Deep
learning-based modular dialogue frameworks and practi-
cal toolkits are prominent in academic and industrial set-
tings (Bocklisch et al., 2017; Burtsev et al., 2018; Reyes
et al., 2019). For task-specific applications with limited
in-domain data, current SLU systems often use a cascade
of two neural modules: (i) ASR maps the input audio
to text (i.e., transcript), and (ii) NLU predicts intent and
slots/entities from this transcript. Since our main focus
in this work is investigating the SLU pipeline, we briefly
summarize the existing NLU and ASR solutions.

2.2.1. LANGUAGE REPRESENTATIONS FOR NLU

The NLU component processes input text, often detects
intents, and extracts referred entities from user utterances.
For the mainstream NLU tasks of Intent Classification and
Entity Recognition, jointly trained multi-task models are
proposed (Liu & Lane, 2016; Zhang & Wang, 2016; Goo
et al., 2018) with hierarchical learning approaches (Wen
et al., 2018; Okur et al., 2019; Vanzo et al., 2019). Trans-
former architecture (Vaswani et al., 2017) is a game-changer
for several downstream language tasks. With Transformers,
BERT (Devlin et al., 2019) is presented, which became one
of the most pivotal breakthroughs in language representa-
tions, achieving high performance in various tasks, includ-
ing NLU. Later, Dual Intent and Entity Transformer (DIET)
architecture (Bunk et al., 2020) is invented as a lightweight
multi-task NLU model. On multi-domain NLU-Benchmark
data (Liu et al., 2021a), the DIET model outperformed fine-
tuning BERT for joint Intent and Entity Recognition.

For BERT-based autoencoding approaches, RoBERTa (Liu
et al., 2019) is presented as a robustly optimized BERT
model for sequence and token classification. The Hug-
ging Face introduced a smaller, lighter general-purpose lan-
guage representation model called DistilBERT (Sanh et al.,
2019) as the knowledge-distilled version of BERT. Con-
veRT (Henderson et al., 2020) is proposed as an efficiently
compact model to obtain pretrained sentence embeddings
as conversational representations for dialogue-specific tasks.
LaBSE (Feng et al., 2022) is a pretrained multilingual model
producing language-agnostic BERT sentence embeddings
that achieve promising results in text classification.
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The GPT family of autoregressive LLMs, such as GPT-
2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020),
perform well at what they are pretrained for, i.e., text gener-
ation. GPT models can also be adapted for NLU, supporting
few-shot learning capabilities, and NLG in task-oriented
dialogue systems (Madotto et al., 2020; Liu et al., 2021b).
XLNet (Yang et al., 2019) applies autoregressive pretraining
for representation learning that adopts Transformer-XL (Dai
et al., 2019) as a backbone model and works well for lan-
guage tasks with lengthy contexts. DialoGPT (Zhang et al.,
2020) extends GPT-2 as a large response generation model
for multi-turn conversations trained on Reddit discussions,
whose representations can be exploited in dialogue tasks.

For language representations to be utilized in math-related
tasks, MathBERT (Shen et al., 2021) is introduced as a
math-specific BERT model pretrained on large math cor-
pora. Later, Math-aware-BERT and Math-aware-RoBERTa
models (Reusch et al., 2022) are proposed based on BERT
and RoBERTa, pretrained on Math Stack Exchange3.

2.2.2. SPEECH RECOGNITION WITH KIDS

Speech recognition technology has been around for some
time, and numerous ASR solutions are available today, both
commercial and open-source. Rockhopper ASR (Stemmer
et al., 2017) is an earlier low-power speech recognition en-
gine with LSTM-based language models, where its acoustic
models are trained using an open-source Kaldi speech recog-
nition toolkit (Povey et al., 2011). Google Cloud Speech-to-
Text4 is a prominent commercial ASR service powered by
advanced neural models and designed for speech-dependant
applications. Until recently, Google STT API was arguably
the leader in ASR services for recognition performance and
language coverage. Franck Dernoncourt (2018) reported
that Google ASR could reach a word error rate (WER) of
12.1% on LibriSpeech clean dataset (28.8% on LibriSpeech
other) (Panayotov et al., 2015) at that time, which is im-
proved drastically over time. Recently, Open AI released
Whisper ASR (Radford et al., 2022) as a game-changer
speech recognizer. Whisper models are pretrained on a vast
amount of labeled audio-transcription data (i.e., 680k hours),
unlike its predecessors (e.g., Wav2Vec 2.0 (Baevski et al.,
2020) is trained on 60k hours of unlabeled audio). 117k
hours of this data are multilingual, which makes Whisper ap-
plicable to over 96 languages, including low-resourced ones.
Whisper architecture follows a standard Transformer-based
encoder-decoder as many speech-related models (Latif et al.,
2023). The Whisper-base model is reported to achieve 5.0%
& 12.4% WER on LibriSpeech clean & other datasets.

Although speech recognition systems are substantially im-
proving to achieve human recognition levels, problems still

3https://math.stackexchange.com/
4https://cloud.google.com/speech-to-text/

occur, especially in noisy environments, with users having
accents and dialects or underrepresented groups like kids.
Child speech brings distinct challenges to ASR (Stemmer
et al., 2003; Gerosa et al., 2007; Yeung & Alwan, 2018),
such as data scarcity and highly varied acoustic, linguistic,
physiological, developmental, and articulatory characteris-
tics compared to adult speech (Claus et al., 2013; Shivaku-
mar & Georgiou, 2020; Bhardwaj et al., 2022). Thus, WER
for children’s voices is reported two-to-five times worse
than for adults (Wu et al., 2019), as the younger the child,
the poorer ASR performs. There exist efforts to mitigate
these difficulties of speech recognition with kids (Shivaku-
mar et al., 2014; Duan & Chen, 2020; Booth et al., 2020;
Kelly et al., 2020; Rumberg et al., 2021; Yeung et al., 2021).
Few studies also focus on speech technologies in educa-
tional settings (Reeder et al., 2015; Blanchard et al., 2015;
Bai et al., 2021; 2022; Dutta et al., 2022), often for lan-
guage acquisition, reading comprehension, and story-telling
activities.

3. Methods
3.1. Home Learning Data and Use Cases

We utilize two datasets for gamified basic math learning
at home usages. The first set is a proof-of-concept (POC)
data manually constructed based on User Experience (UX)
studies (e.g., detailed scripts for new home use cases) and
partially adopted from our previous school data (Okur et al.,
2022a). This POC data is used to train and cross-validate
various NLU models to develop the best practices in later
home deployments. The second set is our recent home
deployment data collected from 12 kids (ages 7-8) experi-
encing our multimodal math learning system at authentic
homes. The audio-visual data is transcribed manually, and
user utterances in these reference transcripts are annotated
for intent and entity types we identified for each learning
activity at home. Table 1 compares the NLU statistics for
Kid Space Home POC and Deployment datasets. Manu-
ally transcribed children’s utterances in deployment data
are employed to test our best NLU models trained on POC
data. We run multiple ASR engines on audio recordings
from home deployment data, where automatic transcripts
(i.e., ASR output) are utilized to compute WER to assess
ASR model performances on kids’ speech. We also evaluate
the SLU pipeline (ASR+NLU) by testing NLU models on
ASR output from deployment data.

The simplified home deployment setup includes a playmat
with physical manipulatives, a laptop with a built-in cam-
era, a wireless lavalier mic, and a depth camera on a tripod.
Home use cases follow a particular flow of activities de-
signed for play-based learning in early childhood education.
These activities are Introduction (Meet & Greet), Warm-up
Game (Red Light Green Light), Training Game, Learning
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Table 1. Kid Space Home POC and Deployment Data

NLU Data Statistics POC Deployment

# Intents Types 13 12
Total # Utterances 4091 733

# Entity Types 3 3
Total # Entities 2244 497

Min # Utterances per Intent 105 1
Max # Utterances per Intent 830 270
Avg # Utterances per Intent 314.7 61.1

Min # Tokens per Utterance 1 1
Max # Tokens per Utterance 40 33
Avg # Tokens per Utterance 4.49 2.30

# Unique Tokens (Vocab Size) 702 149
Total # Tokens 18364 1689

Game, and Closure (Dance Party). Note that these are not
fixed static games but rather dynamic interactions, such that
the agent’s responses and future actions to proceed with
the games depend on the kid’s utterances and multimodal
inputs. After meeting with the virtual character and playing
jumping games, the child starts the training game, where
the agent asks for help planting flowers. The agent presents
tangible manipulatives, cubes representing ones and sticks
representing tens, and instructs the kid to answer basic math
questions and construct numbers using these objects, go-
ing through multiple rounds of practice questions where
flowers in child-selected colors bloom as rewards. In the
actual learning game, the agent presents clusters of ques-
tions involving ones & tens, and the child provides verbal
(e.g., stating the numbers) and visual answers (e.g., plac-
ing the cubes and sticks on the playmat, detected by the
overhead camera). The agent provides scaffolding utter-
ances and performs animations to show and tell how to
solve basic math questions. The interaction ends with a
dance party to celebrate achievements and say goodbyes in
closure. Some of our intents can be considered generic (e.g.,
state-name, affirm, deny, repeat, out-of-scope), but some
are highly domain-specific (e.g., answer-flowers, answer-
valid, answer-others, state-color, had-fun-a-lot, end-game)
or math-related (e.g., state-number, still-counting). The en-
tities we extract are activity-specific (i.e., name, color) and
math-related (i.e., number).

3.2. NLU and ASR Models

Customizing open-source Rasa framework (Bocklisch et al.,
2017) as a backbone, we investigate several NLU models for
Intent Recognition and Entity Extraction tasks to implement
our math learning conversational AI system for home usage.
Our baseline approach is inspired by the StarSpace (Wu
et al., 2018) method, a supervised embedding-based model
maximizing the similarity between utterances and intents in

shared vector space. We enrich this simple text classifier by
incorporating SpaCy (Honnibal et al., 2020) pretrained lan-
guage models5 for word embeddings as additional features
in the NLU pipeline. CRF Entity Extractor (Lafferty et al.,
2001) with BILOU tagging is also part of this baseline NLU.
For home usages, we explore the advantages of switching
to a more recent DIET model6 for joint Intent and Entity
Recognition, a multi-task architecture with two-layer Trans-
formers shared for NLU tasks. DIET leverages combining
dense features (e.g., any given pretrained embeddings) with
sparse features (e.g., token-level encodings of char n-grams).
To observe the net benefits of DIET, we first pass the iden-
tical SpaCy embeddings used in our baseline (StarSpace)
as dense features to DIET. Then, we adopt DIET with pre-
trained BERT7, RoBERTa8, and DistilBERT9 word embed-
dings, as well as ConveRT10 and LaBSE11 sentence em-
beddings to inspect the effects of these autoencoding-based
language representations on NLU performance (see 2.2.1 for
more details). We also evaluate pretrained embeddings from
models using autoregressive training such as XLNet12, GPT-
21314, and DialoGPT15 on top of DIET. Next, we explore
recently-proposed math-language representations pretrained
on math data for our basic math learning dialogue system.
MathBERT (Shen et al., 2021) is pretrained on large math
corpora (e.g., curriculum, textbooks, MOOCs, arXiv papers)
covering pre-k to college-graduate materials. We enhance
DIET by incorporating embeddings from MathBERT-base16

and MathBERT-custom17 models, pretrained with BERT-
base original and math-customized vocabularies, respec-
tively. Math-aware-BERT18 and Math-aware-RoBERTa19

models (Reusch et al., 2022) are initialized from BERT-base
and RoBERTa-base, and further pretrained on Math Stack-

5https://github.com/explosion/
spacy-models/releases/tag/en_core_web_md-3.
5.0

6Please check Bunk et al. (2020) for hyper-parameter tuning,
hardware specs, and computational costs.

7https://huggingface.co/bert-base-uncased
8https://huggingface.co/roberta-base
9https://huggingface.co/

distilbert-base-uncased
10https://github.com/connorbrinton/

polyai-models/releases
11https://huggingface.co/rasa/LaBSE
12https://huggingface.co/xlnet-base-cased
13https://huggingface.co/gpt2
14Excluded GPT-3 and beyond that are not open-source.
15https://huggingface.co/microsoft/

DialoGPT-medium
16https://huggingface.co/tbs17/MathBERT
17https://huggingface.co/tbs17/

MathBERT-custom
18https://huggingface.co/AnReu/math_

pretrained_bert
19https://huggingface.co/AnReu/math_

pretrained_roberta
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Table 2. NLU Model Selection Results in F1-scores (%) Evaluated
on Kid Space Home POC Data (10-fold CV)

NLU Model Intent Detection Entity Extraction

StarSpace+SpaCy 92.71±0.25 97.08±0.21
DIET+SpaCy 94.29±0.05 98.38±0.12

DIET+BERT 97.25±0.23 99.23±0.02
DIET+RoBERTa 95.50±0.18 99.11±0.12
DIET+DistilBERT 97.41±0.20 99.49±0.12
DIET+ConveRT 98.80±0.25 99.61±0.03
DIET+LaBSE 98.19±0.18 99.72±0.04

DIET+XLNet 94.99±0.19 98.38±0.14
DIET+GPT-2 95.35±0.27 99.01±0.27
DIET+DialoGPT 96.00±0.49 98.94±0.12

DIET+MathBERT-base 94.55±0.22 98.10±0.21
DIET+MathBERT-custom 94.61±0.34 97.48±0.29
DIET+Math-aware-BERT 95.95±0.15 98.94±0.19
DIET+Math-aware-RoBERTa 94.20±0.16 98.75±0.21

Exchange20 with extra LaTeX tokens to better tokenize math
formulas for ARQMath-3 tasks (Mansouri et al., 2022). We
exploit these representations with DIET to investigate their
effects on our NLU tasks in the basic math domain.

For the ASR module, we explore three main speech rec-
ognizers for our math learning application at home, which
are explained further in 2.2.2. Rockhopper ASR21 is the
baseline local approach previously inspected, which can
be adjusted slightly for kids. Its acoustic models rely on
Kaldi22 generated resources and are trained on default adult
speech data. In the past explorations, when Rockhopper’s
language models fine-tuned with limited in-domain kids’
utterances (Sahay et al., 2021) from previous school usages,
WER decreased by 40% for kids but remained 50% higher
than adult WER. Although this small-scale baseline solution
is unexpected to reach Google Cloud ASR performance,
Rockhopper has a few other advantages for our applica-
tion since it can run offline locally on low-power devices,
which could be better for security, privacy, latency, and cost
(relative to cloud-based ASR services). Google ASR is a
commercial cloud solution providing high-quality speech
recognition service but requiring connectivity and payment,
which cannot be adapted or fine-tuned as Rockhopper. The
third ASR approach we investigate is Whisper23, which
combines the best of both worlds as it is an open-source
adjustable solution that can run locally, achieving new state-
of-the-art (SOTA) results. We inspect three configurations
of varying model sizes (i.e., base, small, and medium) to
evaluate the Whisper ASR for our home math learning usage
with kids.

20https://archive.org/download/
stackexchange

21https://docs.openvino.ai/2018_R5/
_samples_speech_sample_README.html

22https://github.com/kaldi-asr/kaldi
23https://github.com/openai/whisper

Table 3. NLU Evaluation Results in F1-scores (%) for
DIET+ConveRT Models Trained on Kid Space Home POC Data
& Tested on Home Deployment Data

Intent Detection Entity Extraction
Activity POC Deploy ∆ POC Deploy ∆

Intro (Meet & Greet) 99.9 97.3 -2.6 99.2 97.4 -1.8
Warm-up Game 98.8 93.4 -5.4 - - -
Training Game 98.4 94.2 -4.2 99.9 99.8 -0.1
Learning Game 98.9 94.3 -4.6 99.8 99.4 -0.4
Closure (Dance) 98.8 98.7 -0.1 - - -

All Activities 98.8 94.2 -4.6 99.6 99.3 -0.3

4. Experimental Results
To build the NLU module of our SLU pipeline, we train
Intent and Entity Classification models and cross-validate
them over the Kid Space Home POC dataset to decide upon
the best-performing NLU architectures moving forward for
home. Table 2 summarizes the results of model selection ex-
periments with various NLU models. We report the average
of 5 runs, and each run involves a 10-fold cross-validation
(CV) on POC data. Compared to the baseline StarSpace
algorithm, we gain almost 2% F1 score for intents and more
than 1% F1 for entities with multi-task DIET architecture.
For language representations, we observe that incorporating
DIET with the BERT family of embeddings from autoen-
coders achieves higher F1 scores relative to the GPT family
of embeddings from autoregressive models. We cannot
reveal any benefits of employing math-specific represen-
tations with DIET, as all such models achieve worse than
DIET+BERT results. One reason we identify is the mis-
match between our early math domain and advanced math
corpora, including college-level math symbols and equa-
tions, that these models trained on. Another reason could
be that such embeddings are pretrained on smaller math cor-
pora (e.g., 100 million tokens) compared to massive-scale
generic corpora (e.g., 3.3 billion words) that BERT models
use for training. DIET+ConveRT is the clear winner for
intents and achieves second-best but very close results for
entities compared to DIET+LaBSE. ConveRT and LaBSE
are both sentence-level embeddings, but ConveRT performs
well on dialogue tasks as it is pretrained on large conversa-
tional corpora, including Reddit discussions. Based on these
results, we select DIET+ConveRT as the final multi-task
architecture for our NLU tasks at home.

Next, we evaluate our NLU module on Kid Space Home
Deployment data collected at authentic homes over 12 ses-
sions with 12 kids. Each child goes through 5 activities
within a session, as described in 3.1. In Table 3, we ob-
serve overall F1% drops (∆) of 4.6 for intents and 0.3 for
entities when our best-performing DIET+ConveRT models
are tested on home deployment data. These findings are ex-
pected and relatively lower than the performance drops we
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Table 4. ASR Model Results: Avg Word Error Rates (WER) for Child Speech at Kid Space Home Deployment Data

Raw Lowercase Remove Num2Word LC & LC & RP NW & LC & RP &
ASR Model Output (LC) Punct (RP) (NW) RP & NW Clean NW & Clean

Rockhopper 0.939 0.919 0.924 0.937 0.886 0.884 0.937 0.884
Google Cloud 0.829 0.798 0.775 0.763 0.695 0.602 0.763 0.602
Whisper-base 1.042 1.020 0.971 0.985 0.946 0.856 0.622 0.500
Whisper-small 0.834 0.804 0.760 0.756 0.720 0.621 0.537 0.405
Whisper-medium 0.905 0.870 0.824 0.814 0.785 0.675 0.522 0.384

previously observed at school (Okur et al., 2022b). We wit-
ness distributional and utterance-length differences between
POC/training and deployment/test datasets. Real-world data
would always be noisier than anticipated as these utterances
come from younger kids playing math games in dynamic
conditions.

To further improve the performance of our Kid Space Home
NLU models (trained on POC data) by leveraging this re-
cent deployment data, we experiment with merging the two
datasets for training and evaluating the performance on in-
dividual deployment sessions via leave-one-out (LOO) CV.
At each of the 12 runs (for 12 sessions/kids), we merge the
POC data with 11 sessions of deployment data for model
training and use the remaining session as a test set, then take
the average performance of these runs. That would simu-
late how combining POC with real-world deployment data
would help us train more robust NLU models that perform
better on unseen data in future deployment sessions. The
overall F1-scores reach 96.5% for intents (2.3% gain from
94.2%) and 99.4% for entities (0.1% gain) with LOOCV,
which are promising for our future deployments.

To inspect the ASR module of our SLU pipeline, we
experiment with Rockhopper, Google, and Whisper-
base/small/medium ASR models evaluated on the same
audio data collected during home deployments. Using the
manual session transcripts as a reference, we compute the
average WER for kids with each ASR engine to investigate
the most feasible solution. Table 4 summarizes WER results
before and after standard pre-processing steps (e.g., lower
casing and punctuation removal) as well as application-
specific filters (e.g., num2word and cleaning). The numbers
are transcribed inconsistently within reference transcripts
plus ASR output (e.g., 35 vs. thirty-five), and we need to
standardize them all in word forms. The cleaning step is ap-
plied to Whisper ASR output only due to known issues such
as getting stuck in repeat loops and hallucinations (Radford
et al., 2022). We seldom observe trash output from Whisper
(4-to-7%) having very long transcriptions with non-sense
repetitions/symbols, which hugely affect WER due to their
length, yet these samples can be easily auto-filtered. Even
after these steps, the relatively high error rates can be at-
tributed to many factors related to the characteristics of these

Table 5. SLU Pipeline Evaluation Results in F1-scores (%) for
ASR+NLU and VAD-Adjusted ASR+NLU on Kid Space Home
Deployment Data

Intent Detection Entity Extraction
ASR Model F1 Adjusted-F1 F1 Adjusted-F1

Rockhopper 36.7 15.5 82.9 35.0
Google Cloud 78.0 39.7 96.2 49.0
Whisper-base 64.7 60.0 95.4 88.5
Whisper-small 72.2 68.1 96.6 91.1
Whisper-medium 76.5 73.1 98.5 94.1

recordings (e.g., incidental voice and phrases), very short
utterances to be recognized (e.g., binary yes/no answers
or stating numbers with one-or-two words), and recogniz-
ing kids’ speech in ordinary home environments. Still, the
comparative results indicate that Whisper ASR solutions
perform better on kids’ utterances, and the WER can benefit
from increasing the model size from base to small (while the
error rates with small vs. medium-sized models are close).

For SLU pipeline evaluation, we test our highest-performing
NLU models on noisy ASR output. Table 5 presents the
Intent and Entity Classification results achieved on home
deployment data where the DIET+ConveRT models run on
varying ASR models output. Note that Voice Activity De-
tection (VAD) is an integral part of ASR that decides the
presence/absence of human speech. We realize that the VAD
stage is filtering out a lot of audio chunks with actual kid
speech with Rockhopper and Google. Thus, our VAD-ASR
nodes can ignore a lot of audio segments with reference tran-
scripts (57.9% for Rokchopper, 49.1% for Google). That
is less of an issue with Whisper-base/small/medium, miss-
ing 7.1%/5.7%/4.4% of transcribed utterances (often due
to filtering very long and repetitive trash Whisper output).
When we treat these entirely missed utterances with no
ASR output as classification errors for NLU tasks (i.e., miss-
ing to predict intent/entities when no speech is detected),
we can adjust the F1-scores accordingly to evaluate the
VAD-ASR+NLU pipeline. These VAD-adjusted F1-scores
are compared in Table 5, aligned with the WER results,
where NLU on Whisper ASR performs relatively higher
than Google and Rockhopper. For enhanced Intent Recog-
nition in real-world deployments with kids, increasing the
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Table 6. NLU Error Analysis: Intent Recognition Error Samples from Kid Space Home Deployment Data

Sample Kid Utterance Intent Prediction

Pepper. state-name answer-valid
Wow, that’s a lot of red flowers. out-of-scope answer-flowers
None. state-number deny
Nothing. state-number deny
Yeah. Can we have some carrots? affirm out-of-scope
Okay, Do your magic. affirm out-of-scope
Maybe tomorrow. affirm out-of-scope
He’s a bear. out-of-scope answer-valid
I like the idea of a bear out-of-scope answer-valid
Oh, 46? Okay. still-counting state-number
94. Okay. still-counting state-number
Now we have mountains. out-of-scope answer-valid
A pond? out-of-scope answer-valid
Sorry, I didn’t understand it. Uh, five tens. state-number still-counting
Ah this is 70, 7. state-number still-counting

Table 7. SLU Pipeline (ASR+NLU): Intent Recognition Error Samples from Kid Space Home Deployment Data

Human Transcript ASR Output ASR Model Intent Prediction

Six. thanks Rockhopper state-number thank
fifteen if he Rockhopper state-number out-of-scope

fifteen Mickey Google Cloud state-number state-name
Five. bye Google Cloud state-number goodbye

Blue. Blair. Whisper-base state-color state-name
twenty Plenty. Whisper-base state-number had-fun-a-lot
A lot. Oh, la. Whisper-base had-fun-a-lot out-of-scope

A lot. Oh, wow. Whisper-small had-fun-a-lot out-of-scope
Two. you Whisper-small state-number out-of-scope
Four. I’m going to see this floor. Whisper-small state-number out-of-scope

twenty Swamy? Whisper-medium state-number state-name
Eight. E. Whisper-medium state-number out-of-scope

ASR model size from small to medium could be worth the
trouble for Whisper. Yet, the F1 drop is still huge, from
94.2% with NLU to 73.1% with VAD-ASR+NLU, when
VAD-ASR errors propagate into the SLU pipeline.

5. Error Analysis
For NLU error analysis, Table 6 reveals utterance samples
from our Kid Space Home Deployment data with misclas-
sified intents obtained by the DIET+ConveRT models on
manual/human transcripts. These language understanding
errors illustrate the potential pain points solely related to the
NLU model performances, as we are assuming perfect or
human-level ASR here by feeding the manually transcribed
utterances into the NLU. Such intent prediction errors occur
in real-world deployments for many reasons. For example,
authentic user utterances can have multiple intents (e.g.,
“Yeah. Can we have some carrots?” starts with affirm and
continues with out-of-scope). Some utterances can be chal-
lenging due to subtle differences between intent classes

(e.g., “Ah this is 70, 7.” is submitting a verbal answer with
state-number but can easily be mixed with still-counting
too). Moreover, we observe utterances having colors and
“flowers” within out-of-scope (e.g., “Wow, that’s a lot of
red flowers.”), which can be confusing for the NLU models
trained on relatively cleaner POC datasets.

For further error analysis on the SLU pipeline (ASR+NLU),
Table 7 demonstrates Intent Recognition error samples from
Kid Space Home Deployment data obtained on ASR output
with several speech recognition models we explored. These
samples depict anticipated error propagation from speech
recognition to language understanding modules in the cas-
caded SLU approach. Please check Appendix A for a more
detailed ASR error analysis.

6. Conclusion
To increase the quality of math learning experiences at home
for early childhood education, we develop a multimodal di-
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alogue system with play-based learning activities, helping
the kids gain basic math skills. This study investigates a
modular SLU pipeline for kids with cascading ASR and
NLU modules, evaluated on our first home deployment data
with 12 kids at individual homes. For NLU, we examine
the advantages of a multi-task architecture and experiment
with numerous pretrained language representations for In-
tent Recognition and Entity Extraction tasks in our applica-
tion domain. For ASR, we inspect the WER with several
solutions that are either low-power and local (e.g., Rock-
hopper), commercial (e.g., Google Cloud), or open-source
(e.g., Whisper) with varying model sizes and conclude that
Whisper-medium outperforms the rest on kids’ speech at
authentic home environments. Finally, we evaluate the
SLU pipeline by running our best-performing NLU models,
DIET+ConveRT, on VAD-ASR output to observe the signif-
icant effects of cascaded errors due to noisy voice detection
and speech recognition performance with kids in realistic
home deployment settings. In the future, we aim to fine-tune
the Whisper ASR acoustic models on kids’ speech and lan-
guage models on domain-specific math content. Moreover,
we consider exploring N-Best-ASR-Transformers (Ganesan
et al., 2021) to leverage multiple Whisper ASR hypotheses
and mitigate errors propagated into cascading SLU.

Limitations
By building this task-specific dialogue system for kids, we
aim to increase the overall quality of basic math education
and learning at-home experiences for younger children. In
our previous school deployments, the overall cost of the
whole school/classroom setup, including the wall/ceiling-
mounted projector, 3D/RGB-D cameras, LiDAR sensor,
wireless lavalier microphones, servers, etc., can be consid-
ered as a limitation for public schools and disadvantaged
populations. When we shifted our focus to home learning
usages after the COVID-19 pandemic, we simplified the
overall setup for 1:1 learning with a PC laptop with a built-
in camera, a depth camera on a tripod, a lapel mic, and a
playmat with cubes and sticks. However, even this minimal
instrumentation suitable for home setup can be a limitation
for kids with lower socioeconomic status. Moreover, the
dataset size of our initial home deployment data collected
from 12 kids in 12 sessions is relatively small, with around
12 hours of audio data manually transcribed and annotated.
Collecting multimodal data at authentic homes of individual
kids within our target age group (e.g., 5-to-8 years old) and
labor-intensive labeling process is challenging and costly.
To overcome these data scarcity limitations and develop
dialogue systems for kids with such small-data regimes,
we had to rely on transfer learning approaches as much as
possible. However, the dataset sizes affect the generaliz-
ability of our explorations, the reliability of some results,
and ultimately the robustness of our multimodal dialogue

system for deployments with kids in the real world. We
aim to collect more deployment data (both at school and
home) to try to mitigate the known data scarcity issues and
strengthen our investigation results to build a more robust
system. Please note that although our dialogue system and
data are constructed for English-language, it can be adapted
easily to other languages by exploiting the available mul-
tilingual resources for NLU (e.g., pretrained non-English
language representations) and ASR (e.g., Whisper supports
both English-only and multilingual ASR).

Ethics Statement
Prior to our initial research deployments at home, a meticu-
lous process of Privacy Impact Assessment is pursued. The
legal approval processes are completed to operate our re-
search with educators, parents, and the kids. Individual
participants and parties involved have signed the relevant
consent forms in advance, which inform essential details
about our research studies. The intentions and procedures
and how the participant data will be collected and utilized
to facilitate our research are explained in writing in these re-
quired consent forms. Our collaborators comply with stricter
data privacy policies as well. For further discussion on ethi-
cal implications of this work, please check Appendix B.
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N., Deng, A., Letondor, A., O’Regan, R., and Zhou, Q.
Soapbox labs verification platform for child speech. In
INTERSPEECH, pp. 486–487, 2020.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In International Conference
on Machine Learning, ICML, pp. 282–289, 2001.

Latif, S., Zaidi, A., Cuayahuitl, H., Shamshad, F., Shoukat,
M., and Qadir, J. Transformers in speech processing: A
survey. arXiv preprint arXiv:2303.11607, 2023.

Lende, S. P. and Raghuwanshi, M. Question answering
system on education acts using nlp techniques. In 2016
world conference on futuristic trends in research and
innovation for social welfare (Startup Conclave), pp. 1–6.
IEEE, 2016.

Liu, B. and Lane, I. Attention-based recurrent neural net-
work models for joint intent detection and slot filling. In
Interspeech 2016, pp. 685–689, 2016. doi: 10.21437/
Interspeech.2016-1352. URL http://dx.doi.org/
10.21437/Interspeech.2016-1352.

Liu, X., Eshghi, A., Swietojanski, P., and Rieser, V. Bench-
marking natural language understanding services for
building conversational agents. In Increasing Natural-
ness and Flexibility in Spoken Dialogue Interaction: 10th
International Workshop on Spoken Dialogue Systems, pp.
165–183. Springer, 2021a.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang,
Z., and Tang, J. Gpt understands, too. arXiv preprint
arXiv:2103.10385, 2021b.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019. URL http://arxiv.org/
abs/1907.11692.

12

https://aclanthology.org/2021.acl-short.14
https://aclanthology.org/2021.acl-short.14
https://aclanthology.org/N18-2118
https://aclanthology.org/N18-2118
https://aclanthology.org/2020.findings-emnlp.196
https://aclanthology.org/2020.findings-emnlp.196
https://github.com/explosion/spaCy
https://github.com/explosion/spaCy
https://mathai4ed.github.io/papers/papers/paper_7.pdf
https://mathai4ed.github.io/papers/papers/paper_7.pdf
http://dx.doi.org/10.21437/Interspeech.2016-1352
http://dx.doi.org/10.21437/Interspeech.2016-1352
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Assessing SLU for Kids Learning Math at Home

Loginova, E. and Benoit, D. Structural information in math-
ematical formulas for exercise difficulty prediction: a
comparison of nlp representations. In Proceedings of
the 17th Workshop on Innovative Use of NLP for Build-
ing Educational Applications (BEA 2022), pp. 101–106,
2022.

Macina, J., Daheim, N., Wang, L., Sinha, T., Kapur,
M., Gurevych, I., and Sachan, M. Opportunities and
challenges in neural dialog tutoring. arXiv preprint
arXiv:2301.09919, 2023.

Madotto, A., Liu, Z., Lin, Z., and Fung, P. Language models
as few-shot learner for task-oriented dialogue systems.
arXiv preprint arXiv:2008.06239, 2020.

Mansouri, B., Rohatgi, S., Oard, D. W., Wu, J., Giles, C. L.,
and Zanibbi, R. Tangent-cft: An embedding model for
mathematical formulas. In Proceedings of the 2019 ACM
SIGIR international conference on theory of information
retrieval, pp. 11–18, 2019.

Mansouri, B., Novotný, V., Agarwal, A., Oard, D. W., and
Zanibbi, R. Overview of arqmath-3 (2022): Third clef
lab on answer retrieval for questions on math. In Barrón-
Cedeño, A., Da San Martino, G., Degli Esposti, M., Se-
bastiani, F., Macdonald, C., Pasi, G., Hanbury, A., Pot-
thast, M., Faggioli, G., and Ferro, N. (eds.), Experimental
IR Meets Multilinguality, Multimodality, and Interaction,
pp. 286–310, Cham, 2022. Springer International Pub-
lishing. ISBN 978-3-031-13643-6.

Mehri, S., Eric, M., and Hakkani-Tür, D. Dialoglue:
A natural language understanding benchmark for task-
oriented dialogue. CoRR, abs/2009.13570, 2020. URL
https://arxiv.org/abs/2009.13570.

Nrupatunga, Kumar, A., and Rajagopal, A. Phygital math
learning with handwriting for kids. In Workshop on Math
AI for Education (MATHAI4ED), 35th Conference on
Neural Information Processing Systems (NeurIPS 2021),
2021. URL https://mathai4ed.github.io/
papers/papers/paper_5.pdf.

Nye, B. D., Pavlik, P. I., Windsor, A., Olney, A. M., Hajeer,
M., and Hu, X. Skope-it (shareable knowledge objects as
portable intelligent tutors): overlaying natural language
tutoring on an adaptive learning system for mathematics.
International journal of STEM education, 5:1–20, 2018.

Okonkwo, C. W. and Ade-Ibijola, A. Chatbots applica-
tions in education: A systematic review. Computers and
Education: Artificial Intelligence, 2:100033, 2021.

Okur, E., Kumar, S. H., Sahay, S., Arslan Esme, A.,
and Nachman, L. Natural language interactions in
autonomous vehicles: Intent detection and slot fill-
ing from passenger utterances. In Gelbukh, A. (ed.),

Computational Linguistics and Intelligent Text Pro-
cessing, pp. 334–350, Cham, 2019. Springer Nature
Switzerland. ISBN 978-3-031-24340-0. doi: 10.1007/
978-3-031-24340-0 25. URL https://doi.org/
10.1007/978-3-031-24340-0_25.

Okur, E., Sahay, S., Fuentes Alba, R., and Nachman, L.
End-to-end evaluation of a spoken dialogue system for
learning basic mathematics. In Proceedings of the 1st
Workshop on Mathematical Natural Language Processing
(MathNLP), pp. 51–64, Abu Dhabi, United Arab Emirates
(Hybrid), December 2022a. Association for Computa-
tional Linguistics. URL https://aclanthology.
org/2022.mathnlp-1.7.

Okur, E., Sahay, S., and Nachman, L. NLU for game-
based learning in real: Initial evaluations. In Proceed-
ings of the 9th Workshop on Games and Natural Lan-
guage Processing within the 13th Language Resources
and Evaluation Conference, pp. 28–39, Marseille, France,
June 2022b. European Language Resources Associa-
tion. URL https://aclanthology.org/2022.
games-1.4.

Okur, E., Sahay, S., and Nachman, L. Data augmenta-
tion with paraphrase generation and entity extraction for
multimodal dialogue system. In Proceedings of the Thir-
teenth Language Resources and Evaluation Conference,
pp. 4114–4125, Marseille, France, June 2022c. Euro-
pean Language Resources Association. URL https:
//aclanthology.org/2022.lrec-1.437.

OpenAI. Chatgpt: Optimizing language models for dia-
logue, 2022.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
Librispeech: an asr corpus based on public domain au-
dio books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp.
5206–5210. IEEE, 2015.

Peng, S., Yuan, K., Gao, L., and Tang, Z. Mathbert: A pre-
trained model for mathematical formula understanding.
CoRR, abs/2105.00377, 2021. URL https://arxiv.
org/abs/2105.00377.
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normalization of children’s speech. In Eighth European
Conference on Speech Communication and Technology,
2003.

Stemmer, G., Georges, M., Hofer, J., Rozen, P., Bauer,
J. G., Nowicki, J., Bocklet, T., Colett, H. R., Falik, O.,
Deisher, M., et al. Speech recognition and understanding
on hardware-accelerated dsp. In Interspeech, pp. 2036–
2037, 2017.

Sun, Y., Play, T., Nambiar, R., and Vidyasagaran, V. Gami-
fying math education using object detection. In Workshop
on Math AI for Education (MATHAI4ED), 35th Confer-
ence on Neural Information Processing Systems (NeurIPS
2021), 2021. URL https://mathai4ed.github.
io/papers/papers/paper_11.pdf.

Suresh, A., Jacobs, J., Harty, C., Perkoff, M., Martin,
J. H., and Sumner, T. The TalkMoves dataset: K-12
mathematics lesson transcripts annotated for teacher and
student discursive moves. In Proceedings of the Thir-
teenth Language Resources and Evaluation Conference,
pp. 4654–4662, Marseille, France, June 2022a. Euro-
pean Language Resources Association. URL https:
//aclanthology.org/2022.lrec-1.497.

Suresh, A., Jacobs, J., Perkoff, M., Martin, J. H., and
Sumner, T. Fine-tuning transformers with additional
context to classify discursive moves in mathematics
classrooms. In Proceedings of the 17th Workshop on
Innovative Use of NLP for Building Educational Ap-
plications (BEA 2022), pp. 71–81, Seattle, Washing-
ton, July 2022b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.bea-1.11. URL https:
//aclanthology.org/2022.bea-1.11.

Tack, A. and Piech, C. The ai teacher test: Measuring the
pedagogical ability of blender and gpt-3 in educational
dialogues. In Proceedings of the 15th International Con-
ference on Educational Data Mining, pp. 522, 2022.

Taghipour, K. and Ng, H. T. A neural approach to automated
essay scoring. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing,

pp. 1882–1891, Austin, Texas, November 2016. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
D16-1193. URL https://aclanthology.org/
D16-1193.

Torpey, E. Math at work: Using numbers on the job. Occu-
pational Outlook Quarterly, 56(3):2–13, 2012.

Tyen, G., Brenchley, M., Caines, A., and Buttery, P. To-
wards an open-domain chatbot for language practice. In
Proceedings of the 17th Workshop on Innovative Use of
NLP for Building Educational Applications (BEA 2022),
pp. 234–249, Seattle, Washington, July 2022. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/2022.bea-1.28. URL https://aclanthology.
org/2022.bea-1.28.

Uesato, J., Kushman, N., Kumar, R., Song, H. F., Siegel,
N. Y., Wang, L., Creswell, A., Irving, G., and Hig-
gins, I. Solving math word problems with process-
based and outcome-based feedback. In Workshop
MATH-AI: Toward Human-Level Mathematical Reason-
ing, 36th Conference on Neural Information Processing
Systems (NeurIPS 2022), New Orleans, Louisiana, USA,
2022. URL https://mathai2022.github.io/
papers/26.pdf.

Vanzo, A., Bastianelli, E., and Lemon, O. Hierarchi-
cal multi-task natural language understanding for cross-
domain conversational AI: HERMIT NLU. In Pro-
ceedings of the 20th Annual SIGdial Meeting on Dis-
course and Dialogue, pp. 254–263, Stockholm, Swe-
den, September 2019. Association for Computational
Linguistics. doi: 10.18653/v1/W19-5931. URL https:
//aclanthology.org/W19-5931.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 De-
cember 2017, Long Beach, CA, USA, pp. 5998–6008,
2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.

Wambsganss, T., Winkler, R., Söllner, M., and Leimeister,
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A. Appendix: Additional Error Analysis
Please refer to Table 8 for additional error analysis on ASR output from our home deployment data. Here, we compare
manually transcribed utterances (i.e., human transcripts) with the speech recognition output (i.e., raw ASR transcripts) using
five different ASR models that we investigated in this study. These ASR errors demonstrate the challenges faced in the
speech recognition model performances on kids’ speech, which potentially would be propagated into the remaining modules
in the conventional task-oriented dialogue pipeline.

We may attribute various factors to these speech recognition errors, often related to our deployment data characteristics.
Incidental voices and phrases constitute a good chunk of the overall home deployment data, along with very short utterances
to be recognized (e.g., stating names, colors, types of flowers, numbers, and binary answers with one-or-two words), plus
the remaining known challenges present with recognizing kids’ speech in noisy real-world environments.

Table 8. ASR Error Samples from Kid Space Home Deployment Data

Human Transcript Rockhopper Google Cloud Whisper-base Whisper-small Whisper-medium

Atticus. - - Yeah, that’s cute. I have a kiss. Now I have to kiss.

I am Genevieve. i’m twenty-two I’m going to be I’m Kennedy. I’m Genevieve. I’m Genevieve.

Red. rab - Ralph. Red. Red.

Blue. lil blue Blair. Blue. Blue.

Yes, laughs yes Yes? Yes? Yes?

Roses. it is roses Okay. Okay focus

Zero. you know no No. No, no. No.

four. you swore - forward. Over. Over.

five. - bye Bye. Bye. Bye.

eight all - Thank you. Bye. Oh

forty eight wall e 48 48 48 48

forty nine already 49 49 49 49

fifty one if you want 51 51 51 51

seventy four stopping before 74 74 74 74

Maybe tomorrow. novarro tomorrow I need some water, I’m going to leave I’m leaving tomorrow.
though. it tomorrow.

Flowers, flowers in lean forward Greenhouse In forward, in I think forward, In the green house.
the greenhouse? phelps hours forward, in the both flowers and

than we green house. the greenhouse.

There are seventeen, seventeen 17 + 17 - 27 There are 17 and There are 17 and What is the maximum
and seventeen minus seventeen 17 minus 10 17 minus 10 number of children in the
ten equals seven. rooms equals 7. equals 7. world? Um... There are 17

and 17 minus 10 equals 7.

B. Appendix: Further Ethical Considerations
As we briefly discussed in the Ethics Statement section (see page 9), all the required legal approval procedures are completed,
and the signed consent forms are collected from the participants that provided their data for research purposes during our
home deployment sessions. The multimodal data we collected in these sessions include the video streams from the built-in
laptop and depth cameras, audio streams from built-in and lapel mics, all relevant system and interaction logs with the
users, plus the UX research data such as interviews with the parents and children prior/after the sessions. To address privacy
concerns due to the sensitive nature of this data involving kids, we comply with rigorous data privacy and security policies
to prevent any attacks or information leakage.
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Our application area, education, is also highly critical to be preserved from any uncertainties and forms of biases. To increase
our control over the generated agent responses to kids, currently, we are exploiting template-based or canned responses at
the NLG module of our SDS pipeline. When the multimodal DM module predicts the verbal response types in the form of
agent actions, the NLG retrieves these pre-defined agent response templates. Creating variety in the final response text has
been ensured by preparing multiple templates for each response type, usually with 3-to-6 variations. Among these variations
in response templates, a final response text is picked randomly at run-time. Note that each response text is carefully designed
by the UX experts and vetted by educators for age and grade appropriateness in advance. Employing this version of the
template-based response approach makes the overall system more reliable and consistent, which is crucial for our application
domain. These pre-defined templates would also serve as a guardrail to prevent harmful or inappropriate responses to
children and mitigate potential bias issues.
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