
2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

TOWARD OPEN-ENDED EMBODIED TASKS SOLVING

Wei Wang
Western University
Canada
wwang828@uwo.ca

Dongqi Han
Microsoft Research Asia
China
dongqihan@microsoft.com

Xufang Luo
Microsoft Research Asia
China
xufang.luo@microsoft.com

Yifei Shen
Microsoft Research Asia
China
yifeishen@microsoft.com

Charles Ling
Western University
Canada
charles.ling@uwo.ca

Boyu Wang
Western University
Canada
bwang@csd.uwo.ca

Dongsheng Li
Microsoft Research Asia
China
dongsli@microsoft.com

ABSTRACT

Empowering embodied agents, such as robots, with Artificial Intelligence (AI) has
become increasingly important in recent years. A major challenge is task open-
endedness. In practice, robots often need to perform tasks with novel goals that
are multifaceted, dynamic, lack a definitive "end-state", and were not encountered
during training. To tackle this problem, this paper introduces Diffusion for Open-
ended Goals (DOG), a novel framework designed to enable embodied AI to plan
and act flexibly and dynamically for open-ended task goals. DOG synergizes the
generative prowess of diffusion models with state-of-the-art, training-free guid-
ance techniques to adaptively perform online planning and control. Our evalua-
tions demonstrate that DOG can handle various kinds of novel task goals not seen
during training, in both maze navigation and robot control problems. Our work
sheds light on enhancing embodied AI’s adaptability and competency in tackling
open-ended goals.

1 INTRODUCTION

Our Framework

Offline Experience
without

Goal-Condition

Handle
Open-ended Goals

Training-free

Achieve Desired State

Desired
State

Start

Movement Control
(speed)

Zero-shot Transfer
(to new environment)

No longer passable!

Language Guided

"Open the
door wide"

Figure 1: Open-Ended Goals. Our framework leverages diverse offline trajectories to master condi-
tional goal planning and execution. Key highlights include: (1) Achieve desired state as in traditional
goal-conditioned reinforcement learning, (2) Beyond (1), introducing process-level control such as
manipulating speed, (3) Adapt to new situations without prior training, by changing its behavior,
like avoiding certain areas, and (4) Understand and follow instructions given in natural language to
modify its actions.

Correspondence: dongqihan@microsoft.com; bwang@csd.uwo.ca.

1

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Task solving for open-ended goals (Fig. 1) in embodied artificial intelligence (AI) (Jin & Zhang,
2020) represent a cornerstone in the pursuit of creating machines that can assist humans in real-world
(Taylor et al., 2016). Unlike traditional AI that operates in virtual realms or specific, constrained
settings (Silver et al., 2016), embodied AI is situated in the physical world—think robots, drones,
or self-driving cars. Here, the utility is not merely in solving a specific problem but in the system’s
ability to perform a broad range of tasks, enabling everything from advanced automation to assistive
technologies for the disabled, much like humans and animals do.

Yet, this endeavor presents a myriad of challenges. Real-world tasks with open-ended goals are
highly diverse and often cannot be described by a single variable or a single type of variables.
For example, an embodied agent tasked with "assisting in household chores" would require the
capabilities to perform various tasks, from vacuuming to cooking, while adapting to new challenges
and human preferences over time. These goals are almost impossible to fully cover in learning. The
inherent complexity and variability of such goals necessitate a significant advancement in decision-
making capacity.

To create embodied AI that can flexibly handle open-ended goals, both the knowledge about the
world and skills of motor actions need to be equipped. Only until recent times, a handful of works
(Driess et al., 2023; Dai et al., 2023) started the attempts for ambition by leveraging the real-world
knowledge from pre-trained vision (Rombach et al., 2022) and/or language (Brown et al., 2020)
foundation models. On the other hand, Stooke et al. (2021); Bauer et al. (2023) endeavors to perform
large-scale multi-task training in a game world so that the agent can quickly adapt to novel tasks.
These works are worthy of recognition on the path to embodied AI that can truly tackle open-ended
tasks. Nonetheless, these studies are still trapped by the conventional goal-as-an-input paradigm
(Fig. 2 Left), and thus the flexibility of goals is limited (e.g., if a robot is trained to go anywhere in
the world, after training it cannot be asked to keep away from somewhere.).

In the presence of these challenges, we propose a novel framework for solving embodied planning
and control for open-ended goals. This work is a trial to approach the ultimate embodied AI that can
assist people with diverse tasks such as healthcare, driving, and housework, though further endeavor
is, of course, still largely demanded. Here, we empower embodied AI with the recent advance of
diffusion models (Ho et al., 2020) and training-free guidance (Yu et al., 2023b) to overcome the
challenges of open-ended goals. We refer to our framework as Diffusion for Open-ended Goals
(DOG). Our contributions can be summarized as follows:

1. By borrowing the concept of energy functions into the Markov decision process, we provide
a novel formulation for modeling open-ended embodied tasks. This scheme enjoys much
higher flexibility than traditional goal-conditioned decision-making methods.

2. We propose the DOG framework to solve open-ended tasks. In the training phase, the
unconditional diffusion models are employed to learn world knowledge from the offline
experience without goal-conditioning. During the inference stage, the agent would make
plans and act based on the world knowledge in diffusion models and the knowledge of
goals by performing energy minimization.

3. We evaluate the proposed method in a wide range of embodied decision-making tasks in-
cluding maze navigation, robot movement control, and robot arm manipulation. DOG is
shown to effectively and flexibly handle diverse goals that are not involved in training.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

A Markov Decision Process (MDP) (Bellman, 1957) is a mathematical framework used for modeling
decision-making problems. An MDP is formally defined as a tuple (S,A,P,R), where S is a space
of states, A is a space of actions, P : S × S → A is the state transition probability function, and R
is the reward function. Solving an MDP involves finding a policy π : S → A, which is a mapping
from states to actions, that maximizes the expected sum of rewards over time. Our work borrows
the terminologies and notations from MDPs, while we consider general task goals (Sec. 3) instead
of getting more rewards as in original MDPs.

2

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Figure 2: Difference from conventional goal-conditioned decision-making (left) and diagram of our
framework (right).

2.2 DIFFUSION MODELS AND CLASSIFIER GUIDANCE

Diffusion models have emerged as a powerful framework for generative modeling in deep learning
(Ho et al., 2020). These models iteratively refine a noisy initial input towards a data sample through
a series of reverse-diffusion steps. Diffusion models are a popular type of diffusion, whose core idea
is to estimate the score function ∇Ωn log p(Ωn), where Ωn is the noisy data at the time step t. Given
a random noise Ωn, diffusion models progressively predict Ωn−1 from Ωn using the estimated score
Ωn−1 = (1 + 1

2β
n)Ωn + βn∇Ωn log p(Ωn) +

√
βnϵ, n ≤ N , where βn is a coefficient and

ϵ ∼ N (0, I) is Gaussian noise. During the training process, the goal is to learn a neural network
sθ(x

n, t) ≈ ∇xn log p(xn), which will be used to replace ∇Ωn log p(Ωn) during inference.

A unique advantage of diffusion models is training-free conditional generation. To allow con-
ditional guidance, one should compute ∇Ωn log p(Ωn|c), where c is the condition. Using the
Bayesian formula, the conditional score function can be written as two terms: ∇Ωn log p(Ωn|c) =
∇Ωn log p(Ωn) + ∇Ωn log p(c|Ωn), where ∇Ωn log p(Ωn) is the unconditional score obtained by
the pretrained diffusion model and p(c|Ωn) ∝ exp(−ℓ(xn)), where ℓ(·) is an easy-to-compute loss
function. For example, in image generation, unconditional diffusion can generate natural images,
and p(c|Ωn) is a classifier. By adding the gradient of the classifier to the pretrained diffusion neural
network, the model can perform conditional generation based on classes.

3 OPEN-ENDED TASK GOALS FOR EMBODIED AI

Our work aims to solve practical tasks with embodied agents (Jin & Zhang, 2020; Gupta et al.,
2021) such as robots. Embodied decision-making faces distinguished challenges from computer
vision (Rombach et al., 2022) or nature language processing (Brown et al., 2020). First, embodied
tasks are constrained by real-world physics. Generative models such as diffusion models for image
generation can “draw” the pixels with any color, whereas a real-world painter can only use the colors
available in the palette. Second, decision-making involves sequence modeling, which requires an
agent to predict and plan actions over time. This is different from traditional machine learning tasks,
where the focus is on finding a single optimal output for a given input. Oftentimes we care about
multiple steps rather than a single state, e.g, asking a robot to move in circles. Therefore, tackling
open-ended task goals in embodied AI becomes challenging. To meet the need of describing open-
ended goals, we define an open-ended goal, using the notations in MDP, in an environment1 with the
format of energy function of a contiguous sequence of states (suppose the task horizon is T , which
can be finite or infinite):

To minimize g(s1:T) : RT ·ns → R, (1)

where state st ∈ S and ns is its dimension (Here we consider continuous state and actions for
embodied decision-making problems while the ideas can also apply to discrete actions.) The goal
energy function g is any differentiable 2 function with a real scalar output. Note that g is not fixed

1We consider an environment as a world with fixed physical laws, such as the earth, and various tasks (goals)
can be defined in this environment.

2In this work, we consider a differentiable goal energy function since it can already be applied to many
cases. For surrogate gradient or Monte-Carlo method could be used, which remains as future work.

3

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

nor pre-determined before training, but can be any function when needed. To consider an intuitive
example, imagine that a nanny robot is first trained to understand the structure of your house, then
you may ask the robot to perform various tasks in the house as long as you can define a goal func-
tion, e.g., using CLIP (Radford et al., 2021) to evaluate how much the robot’s visual observation
is consistent with the embedding of “clean, tidy”. This way of defining a goal is fundamentally
different from the conventional way of treating the goal as a variable (so it can be an input argument
to the decision-making model) (Andrychowicz et al., 2017; Liu et al., 2022).

Our goal definition by energy function (Eq. 1) offers several notable advantages (Fig. 2). Some
intuitive examples are explained as follows. Suppose a robot’s state at step t is represented by
horizontal and vertical coordinates (xt, yt). The goal can be to

• Partial goal: Go left (smaller x) regardless of y by letting c(x1:T , y1:T) =
∑

1:T xt;

• Negative goal: Avoid a position (x̂, ŷ) via c(x1:T , y1:T) = −
∑

1:T ((xt− x̂)2+(yt− ŷ)2);

• Sequence goal: Moving close to a given trajectory (x̂1:T , ŷ1:T) with c(x1:T , y1:T) =∑
1:T ((xt − x̂t)

2 + (yt − ŷt)
2);

• Hybrid goal: The combination of several goal energy functions by summation.

Due to the diverse input types, these goals cannot be directly handled by goal-as-input scheme
(Fig. 2) without training.

4 METHODS

4.1 OBJECTIVES AND CHALLENGES

In this section, we define the main goals and inherent challenges of our proposed method, formulated
for a two-phase approach. The primary objectives of the training and testing stages are as follows:

• Training Stage. The agent is designed to learn and internalize knowledge of the environ-
ment from offline data. The testing goal is unknown.

• Testing Stage. Given a novel task, the agent must interpret of goal description g ∈ G and
generate and then execute plans in alignment with the knowledge obtained during training
to complete the goal g.

The realization of these objectives poses significant challenges within the existing frameworks. Tra-
ditional offline RL algorithms are often black-box optimization processes, usually targeting sin-
gular goals and exhibiting resilience to modifications for diverse objectives. Goal-conditioned al-
gorithms can only work when the task is achieve specific states s (refer to 6.4 for more discussion).
Large language models (Huang et al., 2023) can handle open-goal tasks but struggle to utilize of-
fline data to learn the environment transition. In summary, a gap exists for methods that can both
leverage offline data for environmental learning during training and can accommodate diverse goals
during testing.

4.2 TRAINING STAGE: UNDERSTANDING WORLD DYNAMICS BY DIFFUSION MODEL

(a) Trajectories in dataset (b) Unintentional plans (c) Plans under different goals

Impossible

Possible

A2

A1

B2

B1
C2

Goals A:
To target state

Goals B:
Avoid state

Goals C:
Direction

Figure 3: Illustration of the proposed framework.

4

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Given an offline dataset D = {τi}Nd
i consisting of Nd trajectories {τi}Nd

i as depicted in Fig. 3a,
where each line of identical color represents a distinct trajectory, our objective is to develop a pa-
rameterized probabilistic model, denoted as pθ(Ω|st). In this model, Ω = {st+i}Ti=1 signifies the
observation sequence of the succeeding T steps from st, intending to emulate the data distribution
p(Ω|st) found in the offline dataset. Possessing such a model enables the prediction of plausible
future trajectories originating from st, as illustrated in Fig. 3b. The training can be finished by
minimizing the following:

ℓθ(·) = E(s,Ω)∼D||pθ(·|s),Ω||2 (2)

4.3 TESTING STAGE: OPEN-ENDED GOAL-CONDITIONED PLANNING

Merely simulating the data distribution p(Ω|st) is inadequate for planning with open-ended goals.
The generated Ω∗ ∼ pθ(Ω|st) largely mimics the behavior of the dataset, making it suboptimal or
unavailable for innovative applications since it only replicates existing patterns. For more utility,
the sampling process needs to be aligned with the goal condition g. However, accomplishing this
is challenging, given that the available resources are confined to a trained model pθ and a goal-
descriptive function g.

To mitigate the identified limitations, we integrate innovations from conditional generative strate-
gies, widely acknowledged in the field of computer vision, into our planning process. Specifically,
we utilize the classifier guided diffusion model (Dhariwal & Nichol, 2021; Yu et al., 2023b), rec-
ognized for its expertise in creating sophisticated content. This model facilitates the generation
of optimal trajectories that are conditioned on precise goals, eliminating the need for supplemental
training. By doing so, it expedites the sampling process and ensures adherence to defined objectives,
proficiently fulfilling our requirements and presenting a viable resolution to our challenges.

The training phase proceeds conventionally to train a U-Net (Ronneberger et al., 2015) to learn the
score function sθ(Ω

n, n) ≈ ∇Ωn log pt(Ω
n). During the test phase, we define the conditional score

function as exp(−ηg(·)) and calculate the gradient

gradn = ∇Ωn log pt(c|Ωn) ≈ ∇Ωn log exp(−ηg(Ω0)) = −η∇Ωng(Ω0)

where c represents the goal, Ω̄0 =
√
ᾱnΩn +

√
1− ᾱnϵ is a denoised version of Ωn, g is the goal

energy function defined in equation 1, and the approximation follows (Chung et al., 2022). Then
the reversed diffusion process becomes:

Ωn−1 = (1 +
1

2
βn)Ωn + βtsθ(Ω

n, n) +
√

βnϵ+ gradn, n ≤ N (3)

Note that, depending on whether our goal needs to include the history, we may concatate the history
into the decision process to guide the generation of future plans.

By implementing this methodology, we facilitate efficient generation conforming to the goal con-
dition g. This ensures that the generated trajectories are not only optimal but are also in alignment
with predetermined objectives, enhancing the model’s versatility and reliability across various ap-
plications.

4.4 PLAN EXECUTING

Once the plans are generated, an actor is required to execute them. Our framework is designed
to be flexible, allowing the incorporation of various types of actors, provided they are capable of
directing the agent according to the intended state transitions. Several optional can be made for the
plan executor which selects action at at st to achieve the middle waypoint ŝ ∈ Ω. We summarize
the possible implementation in Sec. E.

Here, we elaborate on a supervised learning implementation, drawing ideas from Hindsight Experi-
ence Replay (HER) (Andrychowicz et al., 2017). The executor is a mapping function pϕ : S ×S →
A. Training is conducted by sampling state pairs s, a, s′, where s and s′ are within one episode with
an interval of t ∼ Uniform(1, ..., Ta). In this context, Ta represents the maximum tolerance of state
shifting, allowing us to sample non-adjacent states for a multi-step target state ŝ from the planner,
avoiding the constraints of only sampling adjacent states. The recorded action at state s serves as

5

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

the predictive label. This approach enables utilization of offline data to deduce the action needed to
reach ŝ from s. The training loss is expressed as:

ℓϕ(·) = E(s,a,ŝ)∼D ∥pϕ(a|s, ŝ)∥2 (4)

Since our executor to multiple-step actions, the generated plan can be preserved and deployed over
multiple steps. A summary of the algorithm is provided in Alg. 1 in Sec. D

5 RESULTS

Details on our model architecture are presented in Section A.1. The development of the goal function
is described in Section A.2 of the supplementary material. For an overview of the experimental
environments, see Section B.

5.1 MAZE NAVIGATION IN OPEN-ENDED SCENARIOS

Our methodology is adept at generating plausible plan distributions for future H steps. As depicted
in Fig. 4a, when the agent performs rollouts without any guidance, it is observable that the endpoints
are distributed randomly across the map. This random distribution represents all the possible future
distributions of the agent interacting with the environment. The source model is trained using 1
million steps of offline data, with the generating policy consistent with D4RL (Fu et al., 2020).

Nevertheless, the utility of this method is maximized when it is conditioned on a specific goal as
mentioned previously. Here, we illustrate various meaningful goal types within 2D Maze envi-
ronments to showcase the extensive applicability of our methods. The original maze is devoid of
obstacles, enabling an unobstructed view of the episode distribution. For each setting, we present
100 episodes both from the same start point (marked as green star). The end point of the trajectories
are marked are red point. For clear visualization, we only show 10 full trajectories, each as one line.

(a) Unintentional (b) To destination state (c) Stay close (d) Move faraway

(e) Direction (f) Partial:(x, y) → (1, ·) (g) Partial:(x, y) → (5, ·) (h) Zero-Shot transfer

Figure 4: Exploring Open-Ended Goals in Maze2D Environments.

Goal as State. In Fig. 4b, we exhibit our proficiency in addressing traditional goal-conditioned
RL. The agent is prompted to navigate to a designated location, it shows that it explores varied
trajectories to reach the location. Partial goal. Often, our objectives align only partially with ob-
served states, requiring more flexibility in goal setting. Consider a scenario where the goal is to
stand higher, however, typically requires the specification of all observation s values. In Fig. 4g,
we instruct the agent to navigate to locations where the x value is either 5 or 1, without specifying

6

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

the y value. This allows the agent to identify viable end (x, y) pairs and the corresponding paths,
demonstrating our method’s adaptability to partial goals. Relative goal. Goal can be the relationship
between states. In Fig. 4c- 4d, our goal is to control the moving distance, which could be calculated
as the sum of the distance of consecutive points. Corresponding plans would be generated. Non-
specific Goal. Often, our objective isn’t state-specific but aims at maximizing or minimizing some
certain property, like speed or height. Traditional goal-conditioned RL falters in such rudimentary
and prevalent cases. In Fig. 4e, we direct the agent towards a direction (right-bottom), resulting in
episode ends congregating around the right-bottom corner, substantiating our aptitude in managing
directional goals. Zero-shot transfer to new environment. It’s commonplace to deploy agents in
environments distinct from their training grounds. Humans, leveraging knowledge acquired during
training, can adapt when informed of changes; contrastingly, conventional RL frameworks often fal-
ter in integrating new insights into policies. Fig. 4h exemplifies our algorithm’s prowess in zero-shot
adaptability. When deployed in a maze with impassable grids, the agent is directed to attain the goal
without traversing these zones and successfully formulates plans in compliance with these stipula-
tions. Hybrid goals Our algorithm transcends mere single-goal accomplishments. By incorporating
the gradients of multiple goals, the agent endeavors to address problems under varied conditions.
Fig. 4h displays outcomes where the agent concurrently avoids fire and attains the goal position.
Fig. 4e guide the x and y position at the same time.

5.2 MUJOCO PERFORMANCE BY REWARD AS METRIC

Dataset Environment BC CQL IQL DT TT MOPO MOReL MBOP Diffuser AdaptDiffuser Ours
Med-Expert HalfCheetah 55.2 91.6 86.7 86.8 94.0 63.3 53.3 105.9 88.9 89.6 98.7
Med-Expert Hopper 52.5 105.4 91.5 107.6 110.0 23.7 108.7 55.1 103.3 111.6 111.2
Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 44.6 95.6 70.2 106.9 108.2 106.3

Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.3 42.1 44.6 42.8 44.2 41.0
Medium Hopper 52.9 58.5 66.3 67.6 61.1 28.0 95.4 48.8 74.3 96.6 83.8
Medium Walker2d 75.3 72.5 78.3 74.0 79.0 17.8 77.8 41.0 79.6 84.4 80.6

Med-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 53.1 40.2 42.3 37.7 38.3 43.9
Med-Replay Hopper 18.1 95.0 94.7 82.7 91.5 67.5 93.6 12.4 93.6 92.2 94.2
Med-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 39.0 49.8 9.7 70.6 84.7 85.3

Average 51.9 77.6 77.0 74.7 78.9 42.1 72.9 47.8 77.5 83.40 82.89

Average on Mixed Dataset 49.32 87.25 83.43 81.40 87.15 48.53 73.53 49.27 83.50 87.60 89.67

Table 1: Performance on D4RL (Fu et al., 2020) MuJoCo environments using default reward metric
(normalized average returns). This table presents the the mean of 5 rollouts reward after offline learning.
Values over 95% of the best are marked as bold of each dataset row. Baseline results from Liang et al. (2023).

We utilize MuJoCo tasks as a benchmark to assess the capability of our DOG when learning from
diverse data with different quality levels sourced from the widely recognized D4RL datasets (Fu
et al., 2020). To contextualize the efficacy of our technique, we compare it against a spectrum of
contemporary algorithms encompassing various data-driven strategies. Overview of these methods
are deferred to Sec. C. Comprehensive outcomes of this comparison can be found in Table 1.

Note that our scenario is more challenging compared to the offline RL baselines as we lack knowl-
edge of the goal during the training phase. Our primary objective is to increase speed guide
grad = ∇Ωspeed(Ω), aiming to generate a high-speed plan.

The findings are documented in Tab.1. In single dataset settings, our model demonstrates compet-
itiveness with other offline RL algorithms. Specifically, on mixed datasets with expert data, our
model consistently outperforms both Diffuser and AdaptDiffuser.

Our model excels particularly in mixed dataset scenarios. This substantiates our ability to sample
from the distribution aligned with the goal while mitigating the impact of inferior samples. BC
can be construed as the standard distribution, allowing us to surpass the original behavior. An
enhancement in performance is observed when using Med-Replay in lieu of Medium, illustrating our
proficiency in assimilating the high-value segments of diverse data without significant disturbance
from the lower-value segments. This holds considerable significance for offline RL, especially in
scenarios where acquiring high-quality expert data poses challenges.

7

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Slower Faster Lower Higher

(a) Visualization of Hopper robot rollout trajectories guided by different goals using DOG

No Goal Slower Faster
Types of Goal

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 S
pe

ed

(b) Speed

No Goal Lower Higher
Types of Goal

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 H
ei

gh
t

(c) Height

Slower Faster Lower Higher
Types of Goal

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 R
ew

ar
d

(d) Reward

Figure 5: Guidance of Robotic Movement. (a) For the Hopper-v4 environment, we present guided
rollouts depicted in 128 frames, displayed in intervals of 8 within a single figure. All four originate
from the same state s0, yet exhibit varied behavior under goal guidance. (b, c, d) The distribution of
Speed, Height and original task reward under goal guidance.

5.3 ROBOTIC MOVEMENT CONTROL

Fig. 5 demonstrates that controlling robotic deployment involves calibrating properties like speed
and height to comply with environmental constraints. Conventional RL techniques are typically
limited to training with a single goal, and goal-conditioned RL primarily reaches specific states
without extending control over the process. Here, we emphasize the aptitude of our method in
altering the action sequence during the evaluation phase.

We deploy Hopper-v2, with the outcomes displayed in Fig. 5c - 5b, revealing various adaptations
in speed and height upon the implementation of respective guidance. These modifications combine
the accuracy of manual tuning with the merits of autonomous learning from demonstrations, all
while staying within logical distribution ranges. There is no obligation to predefine the speed value,
empowering the agent to make autonomous recalibrations to align with the target direction.

5.4 ROBOT ARM PLANNING

We present result of interacting with the object with robot hand in this section. The goal of the
original environment is to open a door with hand, which including sub steps: hold the handle and
open as show in Fig. 6a. We use the “cloned” part of the D4RL dataset to train the planner model.

5.4.1 GOAL OF INTERACTING WITH OBJECT

In Fig. 6c-6e, we exhibit some example rendering results of generating varied plans by assigning
goals to different end states of the door. Notably, while the primary intention of this dataset is to
accumulate data related to opening the door, it proves versatile enough to allow the formulation of
plans that include keeping the door closed, opening it, and opening it to a specified angle.

5.4.2 FORMULATING GOAL FUNCTIONS WITH LLMS

We employ GPT-4 32K (OpenAI, 2022) by feeding it prompts to generate requisite functions. The
input prompt comprises our objective and comprehensive environmental data including each ob-
servation dimension’s description and significance, coupled with several input-output pairs for in-
context learning—a standard practice in prompt engineering (Min et al., 2021; 2022). Detailed input
instances and dialogue history are available in Sec.F in the Appendix. Three prompts are input as
depicted in Fig.6b. The outcomes confirm that the contemporary LLMs adeptly interpret our re-
quirements and transfigure them into goal functions within our framework. And we only need to
query once for one task.

8

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Init

Hold

Open

(a) Environment Illustration

Objective: Create function g, ...
Information Provided:

Env: ...
Observation: ...
Goal: ...

Python Code Template ...
Examples

... (In-Context Learning) ...

Language based prompt

Prompt: “Grasp the handle”Prompt: “Open the door as wide as possible”

Prompt: “Keep the door closed”

(b) Text to goal function

(c) Close door (d) Open door (e) Different angles

Figure 6: Demonstrations in D4RL Adroit Door-v1 Environments. (a) Depicts the initial state
and the standard process to achieve the target. (b) Demonstrates the methodology for converting
natural language prompts into specific goal functions using ChatGPT. (c-e) Illustrate the rendered
trajectory outputs generated by our diffusion model.

6 RELATED WORKS

6.1 RELATED WORK: DIFFUSION MODELS FOR DECISION MAKING

With the popularity of diffusion models in many generation tasks recently, there emerges a few at-
tempts to leverage the power of diffusion models for decision-making problems. Wang et al. (2023);
Pearce et al. (2023) used diffusion models to approximate more sophisticated policy distribution
from offline RL datasets, achieving promising performance on GCRL tasks. By contrast, we use
diffusion models to generate state trajectories. Janner et al. (2022) and Liang et al. (2023) proposed
Diffuser and AdaptDiffuser, from which we have been inspired. While they focused on conventional
offline RL/GCRL scheme, we extend to open-ended goal space by leveraging latest training-free
guidance techniques (Yu et al., 2023b). Another key difference is that they used the diffusion model
to generate both states and actions, thus need to struggle with the consistency between them (Liang
et al., 2023). Besides, Ajay et al. (2022) and Dai et al. (2023) used diffusion models to generate
state trajectories and use inverse kinematics to compute the action, similar to ours. However, they
rely on classifier-free diffusion guidance (Ho & Salimans, 2021), meaning that the goal space need
to be involved in training, thus it can not handle open-ended goals in evaluation.

6.2 TASK OPEN-ENDEDNESS IN EMBODIED AI

The concept of task open-endedness (Ruiz-Mirazo et al., 2004; Taylor et al., 2016) (while the exact
definition remains debatable) has long been recognized in biological learning and evolution. How-
ever, in machine learning and deep learning, models and algorithms until 2010’s could only deal with
single-objective tasks with real-world level difficulty (Krizhevsky et al., 2012; Silver et al., 2016).
With the blossom with deep learning AI in recent few years, arguably represented by GPT-3 (Brown
et al., 2020), AI researchers started to investigate the way to solve open-ended tasks by embodied
AI in more realistic environments (Stooke et al., 2021; Bauer et al., 2023). One way is to exploit the
planning capacity of large language models (LLMs) to decompose a task a into a sequence of primi-
tive tasks described by nature language (e.g., “grab · · · ”, “move to · · · ”) (Brohan et al., 2023; Driess
et al., 2023). However, the primitive tasks need to be pre-defined so that the robot can execute, thus
limits its versatility. Moreover, nature languages may not be suitable for describing meticulous ac-
tion movements such as shadow play using fingers. Another idea from Yu et al. (2023c) is to leverage
the coding ability of LLMs to translate task instructions into reward functions, which can be used to

9

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

compute low-level actions via model predictive control (Howell et al., 2022). However, this requires
the LLM to know the specific robot used and it may struggle with high-dimensional action space.
Besides relying on pre-trained LLMs, training large transformer (Vaswani et al., 2017) models from
scratch for embodied decision-making on multi-tasks (or meta-learning) is also under investigation
Stooke et al. (2021); Fan et al. (2022); Bauer et al. (2023). They differ from our method in terms
of that their agents are heavily trained with a variety of human-defined goals (thus can generalize
to novel goals) while our agents are trained without a goal. Finally, utilizing the power of diffusion
models (Rombach et al., 2022; Dai et al., 2023) is another direction of exploration, which we defer
to Sec. 6.1 for detailed discussion.

6.3 MODEL-BASED PLANNING

Model-based planning methods searches (optimizes) a sequence of of state transitions that lead to
desired outcome (e.g., more rewards) using a world model, typically by backpropagation (Deisenroth
& Rasmussen, 2011; Parmas et al., 2018) or amortized inference (Hafner et al., 2019; Okada et al.,
2020). The diffusion model in our framework serves for the same purpose, while employing totally
distinct methodology. Model-based planning usually leverages state space models such as RNNs
(Hafner et al., 2019) to model the state transition function in MDP explicitly, whereas our framework
skips learning the exact state transition function, but straightforwardly generates state trajectories
(with variant intervals) by using diffusion models and training-free guidance (Yu et al., 2023b). This
is similar to people’s planning in often cases, where one can imagine a trajectory of a basketball
without an exact state-transition models or knowing Newton’s law.

6.4 GOAL-CONDITIONED DECISION-MAKING

A bunch of studies have worked on reinforcement learning (RL) and imitation learning (IL) in pres-
ence of a goal (Liu et al., 2022), known as goal-conditioned RL/IL (we refer to both as GCRL for
simplicity). Studies of GCRL typically include controlling robots or mechanical arms to manipulate
objects (Andrychowicz et al., 2017; Mendonca et al., 2021), going to a target position in a specific
environment (Sharma et al., 2020; Yang et al., 2022). These work usually model the goal by a de-
sired state to reach. Guided policy search (Levine & Koltun, 2013) and latent plans from play (Lynch
et al., 2020; Rosete-Beas et al., 2023) share some high-level idea with ours, that is constraining the
goal-directed policy close to that learned from offline experience so as to reduce search space. How-
ever, the key difference between GCRL and our work is that our training process does not involve
a goal while can open-ended goals can be handled in evaluation, whereas GCRL pre-defines a goal
space on which both training and evaluation are based, and treats the goal as input to the policy
network. In short, unlike our framework, GCRL cannot handle goals undefined in training (e.g.,
keeping away from a state).

7 CONCLUSIONS AND DISCUSSIONS

In this work, we proposed the scheme of open-ended goals for embodied AI and Diffusion for
Open-ended Goals (DOG), a framework for open-ended task planning of embodied AI. Trained
with general offline/demonstration data, DOG is featured with its capacity to handle novel goals that
are not involved in training, thanks to the recent development of diffusion models and training-free
guidance. While recent AI has been competitive with humans on natural language (Bubeck et al.,
2023) and vision (Kirillov et al., 2023) tasks, currently embodied AI is far behind humans on e.g.,
cooking, room-cleaning and autonomous driving. Our work introduces a novel way of solving open-
ended embodied tasks, which may shed light on cognitive neuroscientific research on understanding
human intelligence (Taylor et al., 2016).

8 ACKNOWLEDGEMENTS

This work was supported by Microsoft Research and the Natural Sciences and Engineering Research
Council of Canada (NSERC) under the Discovery Grants program. We thank Che Wang, Yifan
Yang and Shihong Deng for their insightful contributions to the discussions that greatly enhanced
this research.

10

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, volume 30, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar Bhoopchand, Nathalie
Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al. Human-timescale adap-
tation in an open-ended task space. In International Conference on Machine Learning, 2023.

Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics, pp.
679–684, 1957.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on Robot Learning, pp. 287–318. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Advances in Neural Information Processing Systems, volume 34, 2021.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

Yilun Dai, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans,
and Pieter Abbeel. Learning universal policies via text-guided video generation. arXiv preprint
arXiv:2302.00111, 2023.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the International Conference on Machine Learning, pp. 465–472, 2011.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via learning
and evolution. Nature communications, 12(1):5721, 2021.

11

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2019.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yuval
Tassa. Predictive sampling: Real-time behaviour synthesis with mujoco. arXiv preprint
arXiv:2212.00541, 2022.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, volume 34, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Dongdong Jin and Li Zhang. Embodied intelligence weaves a better future. Nature Machine Intel-
ligence, 2(11):663–664, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105,
2012.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pp. 1–9. PMLR, 2013.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp. 1113–
1132. PMLR, 2020.

Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. How far i’ll go: Offline goal-
conditioned reinforcement learning via f -advantage regression. arXiv preprint arXiv:2206.03023,
2022.

12

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models. Advances in Neural Information Processing Systems,
34:24379–24391, 2021.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn
in context. arXiv preprint arXiv:2110.15943, 2021.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Masashi Okada, Norio Kosaka, and Tadahiro Taniguchi. Planet of the Bayesians: Reconsidering
and improving deep planning network by incorporating Bayesian inference. In International
Conference on Intelligent Robots and Systems, 2020.

OpenAI. Introducing chatgpt, 2022. URL https://openai.com/blog/chatgpt/.

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS: Flexible model-based
policy search robust to the curse of chaos. In International Conference on Machine Learning, pp.
4065–4074. PMLR, 2018.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pp.
1838–1849. PMLR, 2023.

Kepa Ruiz-Mirazo, Juli Peretó, and Alvaro Moreno. A universal definition of life: autonomy and
open-ended evolution. Origins of Life and Evolution of the Biosphere, 34:323–346, 2004.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja
Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended learning leads to generally capable
agents. arXiv preprint arXiv:2107.12808, 2021.

Tim Taylor, Mark Bedau, Alastair Channon, David Ackley, Wolfgang Banzhaf, Guillaume Beslon,
Emily Dolson, Tom Froese, Simon Hickinbotham, Takashi Ikegami, et al. Open-ended evolution:
Perspectives from the oee workshop in york. Artificial life, 22(3):408–423, 2016.

13

https://openai.com/blog/chatgpt/

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Hsiang-Chun Wang, Shang-Fu Chen, and Shao-Hua Sun. Diffusion model-augmented behavioral
cloning. arXiv preprint arXiv:2302.13335, 2023.

Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought imitation with
procedure cloning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
energy-guided conditional diffusion model. arXiv preprint arXiv:2303.09833, 2023a.

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
energy-guided conditional diffusion model. arXiv preprint arXiv:2303.09833, 2023b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023c.

14

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

A IMPLEMENTATION DETAILS

A.1 MODEL STRUCTURE

We follow Liang et al. (2023) and Janner et al. (2022) to use a a temporal U-Net (Ronneberger
et al., 2015) with 6 repeated residual blocks is employed to model the noise of the diffusion process.
Timestep embeddings are generated by a single fully-connected layer and added to the activation
output after the first temporal convolution of each block.

A.2 GOAL FUNCTION DESIGN SUMMARY

In this section, we provide a consolidated overview of the various goal functions implemented within
our experiments, organized and summarized for coherent assimilation. The meticulous design of
goal functions plays a pivotal role in shaping the trajectory of our experiments, facilitating nuanced
interactions between the agent and its environment. It is essential to comprehend the multiplic-
ity and specificity of these goal functions to appreciate their impact on the respective experimental
outcomes. We aim to elucidate the intricate relations between observations, methods, and the cor-
responding goal function designs, aiding in a deeper understanding of the experimental setup and
results.

To offer a structured perspective, we have tabulated all the goal functions, aligning them with their
corresponding observations and methods, in Tab. 2. This table serves as a succinct reference, aid-
ing readers in correlating the diversity of goal functions with the experimental setups and drawing
insights from their interrelations.

B ENVIRONMENT INFORMATION

Maze2D Envrionment (Fu et al., 2020) serves as a navigation task platform where a 2D agent
navigates from a randomly chosen start location to a predetermined goal location. Here, the agent is
awarded a reward of 1 upon reaching the goal, with no intermediate rewards provided, necessitating
efficient trajectory planning to secure optimal rewards.

This environment is structured to test the proficiency of offline RL algorithms in leveraging pre-
viously accumulated sub-trajectories to discern the optimal path to the designated goal. It offers
three distinct maze layouts named "umaze," "medium," and "large." For the dataset we used in this
paper, we build a maze with both height and width as 5 with no walls. Then generate 1 million steps
followint the genration policy provided by Fu et al. (2020).

MuJoCo Environment developed by Todorov et al. (2012), is a physics engine esteemed for its
ability to simulate intricate mechanical systems in real-time. It’s primarily used for developing
and testing algorithms in robotic and biomechanical contexts. Within MuJoCo, various tasks like
Hopper, HalfCheetah, and Walker2d are available, each providing a unique set of challenges and
learning opportunities for reinforcement learning models.

Each task within MuJoCo is associated with four different datasets: “medium,” “random,” “medium-
replay,” and “medium-expert” by D4RL dataset. The "medium" dataset is formulated by training a
policy using a specific algorithm and accumulating 1M samples. The “random” dataset is derived
from a policy initialized randomly.

The “medium-replay” dataset comprises all samples recorded during training until the policy attains
a predefined performance level. Additionally, there exists a “medium-expert” dataset, representing a
collection of more advanced, intricate scenarios and data points. These datasets are crucial for eval-
uating the adaptability, efficacy, and robustness of reinforcement learning algorithms under varying
conditions and degrees of complexity.

Adroit-Door Environment (Rajeswaran et al., 2017) is designed as a sophisticated platform for
interaction and manipulation tasks involving door objects. It presents an intricate set of challenges
focused on analyzing the agent’s capacity to interact with and manipulate objects effectively within
defined parameters.

15

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Observations Goal Goal Function Design

Include observations
{x, y, vx, vy}.

Goal as State (x− x̂)2 + (y − ŷ)2

Include observations
{x, y, vx, vy}. (x, y) is the
current position of the agent
and (vx, vy) is the velocity.

Partial goal (x− x̂)2

Distance - Go faraway −
√∑N−1

i=1 (xi+1 − xi)2

Distance - Stay close
√∑N−1

i=1 (xi+1 − xi)2

Non-specific Goal x

Zero-shot transfer to new
environment

−|x− x0| · I(|x− x0| < σ),
where σ = 1 is the radius of

points affected

Hybrid goals
∑Ng

i ηi · gi(·) where g1:Ng
is

the series of goal functions
and ηi is the weight for each

function.

Hopper HalfCheetah have
different observations, while
they both have dimension for
the x-velocity and z-position
of the robot tip. We denote
the velocity as vx and
z-position as xh.

Faster −vx (we consider one
direction)

Slower vx

Higher −xh

Lower xh

Include observations r as the
angle of the hinge and a flag o
indicate whether the door is
open, open as 1.

Open the door wide r

Close the door o

Open the door −o

Table 2: Summary of Methods and Goal Function Design

This environment incorporates a complex observation space consisting of 39 dimensions, encom-
passing various aspects such as angle, position, and speed. This multi-dimensional space is con-
ducive to examining the interaction dynamics between the agent and the door, providing insights
into the efficiency and adaptability of the applied algorithms.

The environment aims to simulate real-world interactions with objects, making it a suitable platform
to test reinforcement learning algorithms’ efficacy in performing tasks with high precision and re-
liability. The tasks designed in this environment range from simple interactions, like opening and
closing doors, to more complex ones requiring a fine-tuned understanding of the object’s state and
the surrounding environment.

C MUJOCO BASELINES

The Mujoco baselines include model-free RL algorithms like CQL Kumar et al. (2020) and IQL
Kostrikov et al. (2021), return-modulated techniques such as the Decision Transformer (DT) Chen
et al. (2021), and model-based RL algorithms like the Trajectory Transformer (TT) Janner et al.
(2021), MOPO Yu et al. (2020), MOReL Kidambi et al. (2020), and MBOP Argenson & Dulac-
Arnold (2020).

16

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

D ALGORITHM SUMMARY

We summarize the algorithm in Alg. 1.

Algorithm 1 DOG

Training Stage
Input: Offline data D = {τi}Nd

i .
Output: Planner pθ and Executor pϕ
Learn unconditional Planner pθ(Ω | st) (Eq. 2)
Learn Executor pϕ(at | st, s′) (Eq. 4) stage

Deployment Stage
Input: Goal description g ∈ G.
for each step t do

(Optional) Accept new goal g′ ∈ G, set g = g′.
if need to update plan then

Calculate plan Ω∗ with Eq. 3. Record plan step tp = t.
end if
Decide next waypoint as s′ = Ω∗[t− tp].
Select and execute action a with executor pϕ(at | st, s′).

end for

E LIST OF POSSIBLE EXECUTOR IMPLEMENTATIONS

1. Hindsight Experience Replay (HER)-based (Andrychowicz et al., 2017). The actor
function, denoted by , takes as input the current state st and an expected future state s′,
producing an action at as output. Training is finished by sampling state pair {s, s′} within
one episode with interval of t ∼ Uniform(1, ..., Ta), where Ta is the max tolerance of state
shifting. The recorded action of state s would be used as predicting label.

2. Goal-conditioned controller Goal-conditioned RL study how to reach custom s ∈ S ,
which is a great option for our underline controller since what we need is to achieve a
waypoint ŝ from current state st. Specifically, we adopt the Ma et al. (2022) as the underline
controller for its great performance and easy implementation.

3. Model Predictive Control (MPC) (Yu et al., 2023a) We can learn an environmental model
E : S × A → S so that next state sk+1 can be estimated by E(sk, ak). Then, we find the
optimal at as argmina∆t,t:t+∆t−1

ℓ(st+∆t, ŝ).

F GPT PROMPT DEMONSTRATIONS

17

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

LLM Prompt - Prefix

Objective:
Create a Python function, ‘g‘, that returns the loss value, ‘res‘,

for a given input ‘ep‘. The function ‘g‘ should be
differentiable and minimizeable via gradient descent. This
function is intended to construct a sequence \(\tau = \{s_1,
..., s_T\} \) such that \(\tau = \arg\min_\tau g(\tau) \) based
on specified language-based requirements described in the ’Goal

’.

Information Provided:
- **Env: ** A text description of the environment
- **Observation (‘s‘):** Provides the shape and the meaning of each

position in ‘ep‘.
- **Goal:** A text description outlining the objective for which ‘g

‘ needs to be developed.

Python Code Template:
def goal(ep):

code start
res = ...

code end
return res

Example 1
USER INPUT:
Env: Move a ball in 2d World
Observation: 4 dim

0: position x of the ball
1: position y
2: velocity x
3: velocity y

Goal: "Move the ball to (1, 3)"
YOUR REPLAY:
res = ((ep[-1,:2] - torch.tensor([1,3])) ** 2).sum()

Example 2
USER INPUT:
Env: Move a ball in a room
Observation: 4 dim

0: position x
1: position y
2: velocity x
3: velocity y

Goal: "Find the shortest path"
YOUR REPLAY:
res = ((ep[1:]-ep[:-1])[:2]**2).sum(dim=-1).sqrt().sum()

Example 3
USER INPUT:
Env: Driving a car in a 2D world
Observation: 2 dim

0: velocity x of the car
1: velocity y

Goal: "Move faster"
YOUR REPLAY:
res = ep[:,0].mean()

Now, Let Us Begin, my input:

18

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

LLM Prompt - Example 1 (Open the door as wide as possible)

Env:
A 28 degree of freedom system which consists of a 24

degrees of freedom ShadowHand and a 4 degree of freedom
arm. The latch has significant dry friction and a bias
torque that forces the door to stay closed.

Observation:
0 Angular position of the vertical arm joint
1 Angular position of the horizontal arm joint
2 Roll angular value of the arm
3 Angular position of the horizontal wrist joint
4 Angular position of the vertical wrist joint
5 Horizontal angular position of the MCP joint of the

forefinger
6 Vertical angular position of the MCP joint of the

forefinge
7 Angular position of the PIP joint of the forefinger
8 Angular position of the DIP joint of the forefinger
9 Horizontal angular position of the MCP joint of the

middle finger
10 Vertical angular position of the MCP joint of the

middle finger
11 Angular position of the PIP joint of the middle

finger
12 Angular position of the DIP joint of the middle

finger
...
32 x position of the handle of the door
33 y position of the handle of the door
34 z position of the handle of the door
35 x positional difference from the palm of the hand

to the door handle
36 y positional difference from the palm of the hand

to the door handle
37 z positional difference from the palm of the hand

to the door handle
38 1 if the door is open, otherwise -1

Goal:
Open the door as wide as possible

LLM Prompt - Example 2 (Keep the door closed)

Env:
A 28 degree of freedom system which consists of a 24

degrees of freedom ShadowHand and a 4 degree of freedom
arm. The latch has significant dry friction and a bias
torque that forces the door to stay closed.

Observation:
0 Angular position of the vertical arm joint
1 Angular position of the horizontal arm joint
2 Roll angular value of the arm
3 Angular position of the horizontal wrist joint
...
38 1 if the door is open, otherwise -1

Goal:
Keep the door closed

19

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

LLM Prompt - Example 3 (Grasp the handle)

Env:
A 28 degree of freedom system which consists of a 24

degrees of freedom ShadowHand and a 4 degree of freedom
arm. The latch has significant dry friction and a bias
torque that forces the door to stay closed.

Observation:
0 Angular position of the vertical arm joint
1 Angular position of the horizontal arm joint
2 Roll angular value of the arm
3 Angular position of the horizontal wrist joint
...
38 1 if the door is open, otherwise -1

Goal:
Grasp the handle

G LIMITATIONS

Our framework also comes with limitations. First, an energy function describing the goal (1) needs
to be given. While we used human-defined function for the goals in this work, it could also be a
neural network like a classifier (Dhariwal & Nichol, 2021). Future work should consider removing
the method’s dependence on humans. Another limitation is that DOG may fail to achieve a goal that
cannot be accomplished by composing the existing state transitions in the training dataset. We argue
that this is also highly challenging for a human, e.g., a normal person cannot make a helicopter, since
an ability demands an accurate world model and extremely high computation power (Deisenroth &
Rasmussen, 2011). Generalizability to a wider range of goals requires higher diversity in the offline
dataset used for training. Nonetheless, we have demonstrated various training-free controllability
such as speed and height regularization of moving robots using the D4RL dataset (Fu et al., 2020)
which was not created for our purpose. Last but not least, future work should compromise multi-
modalities including vision, audition, olfaction, tactile sensation, and text.

20

	Introduction
	Preliminaries
	Markov decision process
	Diffusion models and classifier guidance

	Open-ended task goals for embodied AI
	Methods
	Objectives and Challenges
	Training stage: understanding world dynamics by diffusion model
	Testing stage: open-ended goal-conditioned planning
	Plan Executing

	Results
	Maze Navigation in Open-Ended Scenarios
	Mujoco performance by reward as metric
	Robotic movement control
	Robot arm planning
	Goal of interacting with object
	Formulating Goal Functions with LLMs

	Related Works
	Related Work: diffusion models for decision making
	Task open-endedness in embodied AI
	Model-based planning
	Goal-conditioned decision-making

	Conclusions and Discussions
	Acknowledgements
	Implementation Details
	Model Structure
	Goal Function Design Summary

	Environment Information
	Mujoco Baselines
	Algorithm Summary
	List of possible executor implementations
	GPT Prompt Demonstrations
	Limitations

