
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPORTANCE CORRECTED NEURAL JKO SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

In order to sample from an unnormalized probability density function, we propose
to combine continuous normalizing flows (CNFs) with rejection-resampling steps
based on importance weights. We relate the iterative training of CNFs with regular-
ized velocity fields to a JKO scheme and prove convergence of the involved velocity
fields to the velocity field of the Wasserstein gradient flow (WGF). The alternation
of local flow steps and non-local rejection-resampling steps allows to overcome
local minima or slow convergence of the WGF for multimodal distributions. Since
the proposal of the rejection step is generated by the model itself, they do not suffer
from common drawbacks of classical rejection schemes. The arising model can be
trained iteratively, reduces the reverse Kullback-Leibler (KL) loss function in each
step, allows to generate iid samples and moreover allows for evaluations of the
generated underlying density. Numerical examples show that our method yields ac-
curate results on various test distributions including high-dimensional multimodal
targets and outperforms the state of the art in almost all cases significantly.

1 INTRODUCTION

We consider the problem of sampling from an unnormalized probability density function. That
is, we are given an integrable function g : Rd → R>0 and we aim to generate samples from the
probability distribution ν given by the density q(x) = g(x)/Zg, where the normalizing constant
Zg =

∫
Rd g(x)dx is unknown. Many classical sampling methods are based on Markov chain

Monte Carlo (MCMC) methods like the overdamped Langevin sampling, see, e.g., Welling & Teh
(2011). The generated probability path of the underlying stochastic differential equation follows
the Wasserstein-2 gradient flow of the reverse KL divergence F(µ) = KL(µ, ν). Over the last
years, generative models like normalizing flows (Rezende & Mohamed, 2015) or diffusion models
(Ho et al., 2020; Song et al., 2021) became more popular for sampling, see, e.g., Phillips et al.
(2024); Vargas et al. (2023a). Also these methods are based on the reverse KL divergence as a
loss function. While generative models have successfully been applied in data-driven setups, their
application to the problem of sampling from arbitrary unnormalized densities is not straightforward.
This difficulty arises from the significantly harder nature of the problem, even in moderate dimensions,
particularly when dealing with target distributions that exhibit phenomena such as concentration
effects, multimodalities, heavy tails, or other issues related to the curse of dimensionality.

In particular, the reverse KL is non-convex in the Wasserstein space as soon as the target density
ν is not log-concave which is for example the case when ν consists of multiple modes. In this
case generative models often collapse to one or a small number of modes. We observe that for
continuous normalizing flows (CNFs, Chen et al., 2018; Grathwohl et al., 2019) this can be prevented
by regularizing the L2-norm of the velocity field as proposed under the name OT-flow by Onken
et al. (2021). In particular, this regularization converts the objective functional into a convex one.
However, the minimizer of the regularized loss function is no longer given by the target measure ν
but by the Wasserstein proximal mapping of the objective function applied onto the latent distribution.
Considering that the Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al., 1998) iteratively applies
the Wasserstein proximal mapping and converges to the Wasserstein gradient flow, several papers
proposed to approximate the steps of the scheme by generative models, see Altekrüger et al. (2023);
Alvarez-Melis et al. (2022); Fan et al. (2022); Lambert et al. (2022); Mokrov et al. (2021); Vidal et al.
(2023); Xu et al. (2024). We will refer to this class of method by the name neural JKO. Even though
this approximates the same gradient flow of the Langevin dynamics these approaches have usually
the advantage of faster inference (once they are trained) and additional possibly allow for density
evaluations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Latent distribution

CNF

After Step 1

CNF

After Step 2

CNF

After Step 3

rejection
+

resampling

After Step 4

rejection
+

resampling

After Step 5

rejection
+

resampling

After Step 6

· · ·

Final Approximation

Figure 1: Iterative application of neural JKO steps and rejection steps for a shifted mixture target
distribution. The red samples are rejected in the next following rejection step and the green samples
are the resampled points. The latter approach enables for the correction of wrong mode weights
introduced by the underlying WGF. See Figure 2 for more steps.

However, already the time-continuous Wasserstein gradient flow suffers from the non-convexity of
the reverse KL loss function by getting stuck in local minima or by very slow convergence times.
In particular, it is well-known that Langevin-based sampling methods often do not distribute the
mass correctly onto multimodal target distributions. As a remedy, Neal (2001) proposed importance
sampling, i.e., to reweight the sample based on quotients of the target distribution and its current
approximation which leads to an unbiased estimator of the Monte Carlo integral. However, this
estimator may lead to highly imbalanced weights between these samples and the resulting estimator
might have a large variance. Moreover, the density of the current approximation has to be known up
to a possible multiplicative constant, which is not the case for many MCMC methods like Langevin
sampling or Hamiltonian Monte Carlo. In Del Moral et al. (2006) the authors propose a scheme for
alternating importance sampling steps with local Monte Carlo steps. However, as a downside this
strategy leads to samples which might not be iid.

Contributions In this paper, we propose a sampling method which combines neural JKO steps
based on CNFs with importance based rejection steps. While the CNFs adjust the position of the
generated samples locally, the rejection steps readjusts the inferred distribution non-locally based on
the quotient of generated and target distribution. Then, in each rejection step we resample the rejected
points based on the current constructed generative model. We illustrate this procedure in Figure 1.

Our methods generates independent samples and allows to evaluate the density of the generated
distribution. In our numerical examples, we apply our method to common test distributions up to the
dimension d = 1600 which are partially highly multimodal. We show that our importance corrected
neural JKO sampling (neural JKO IC) achieves significantly better results than the comparisons1.

From a theoretical side, we prove that the velocity fields from a sequence of neural JKO steps strongly
converges to the velocity field of the corresponding Wasserstein gradient flow and that the reverse KL
loss function decreases throughout the importance-based rejection steps.

Outline The paper is organized as follows. In Section 2, we recall the fundamental concepts
which will be required. Afterwards, we consider neural JKO schemes more detailed in Section 3.
We introduce our importance-based rejection steps in Section 4. Finally, we evaluate our model
numerically and compare it to existing methods in Section 5. Conclusions are drawn in Section 6.
Additionally, proofs, further numerical and technical details are presented in Appendix A- E.

RELATED WORK

MCMC Algorithms Common methods for sampling of unnormalized densities are often based
on Markov Chain Monte Carlo (MCMC) methods, see e.g. (Gilks et al., 1995). In particular first

1The code is available in the supplementary material.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

order based variants, such as the Hamiltonian Monte Carlo (HMC) (Betancourt, 2017; Hoffman &
Gelman, 2014) and the Metropolis Adjusted Langevin Algorithm (MALA Girolami & Calderhead,
2011; Rossky et al., 1978; Roberts & Tweedie, 1996) are heavily used in practice. The viewpoint
of these samplers as sample space description of gradient flows defined in a metricized probability
space then allows for extensions such as interacting particle systems (Chen et al., 2023; Eigel et al.,
2024; Garbuno-Inigo et al., 2020; Wang & Li, 2022). However, since these algorithms are based on
local transformations of the samples, they are unable to distribute the mass correctly among different
modes, which can partially be corrected by importance sampling (Neal, 2001) and sequential Monte
Carlo samplers (SMC) (Del Moral et al., 2006) as described above. In contrast to our model, SMC
approximates the density of the approximation by assigning “inverse Markov kernels” to certain
MCMC kernels, which might lead to propagating errors. Furthermore, the generation of additional
samples requires to rerun the whole procedure which can be very costly.

Generative Models In the last years, generative models became very popular, including VAEs
(Kingma & Welling, 2014), normalizing flows (Rezende & Mohamed, 2015), diffusion models (Ho
et al., 2020) or flow-matching (Lipman et al., 2022) which is also known as rectified flow (Liu
et al., 2022). In contrast to our setting, they initially consider the modeling task, i.e., they assume
that they are given samples from the target measure instead of an unnormalized density. However,
there are several papers, which adapt these algorithms for the sampling task. For normalizing flows,
this mostly amounts to changing the loss function (Hoffman et al., 2019; Marzouk et al., 2016;
Qiu & Wang, 2024). Very recently, there appeared also a flow-matching variant for the sampling
task (Woo & Ahn, 2024). For diffusion (and stochastic control) models this was done based on
variational approaches (Blessing et al., 2024; Phillips et al., 2024; Vargas et al., 2023a;b; Zhang
& Chen, 2021) or by computing the score by solving a PDE (Albergo & Vanden-Eijnden, 2024;
Richter & Berner, 2024; Sommer et al., 2024). These methods usually provide much faster sampling
times than MCMC methods and are often used in combination with some conditioning parameter for
inverse problems, where a (generative) prior is combined with a known likelihood term (Ardizzone
et al., 2019; Altekrüger & Hertrich, 2023; Andrle et al., 2021; Denker et al., 2024). Combinations
of generative models with stochastic sampling steps were considered in the literature for generative
modeling under the name stochastic normalizing flows (Hagemann et al., 2023; 2022; Noé et al.,
2019; Wu et al., 2020) and for sampling under the name annealed flow transport Monte Carlo (Arbel
et al., 2021; Matthews et al., 2022). Gabrié et al. (2022) use normalizing flows to learn proposal
distributions in an Metropolis-Hastings algorithm. Additionally, flow-based generative sampling
algorithms can be combined with one final importance sampling step, which is done in many of these
references.

Generative Models with Wasserstein Gradient Flows These generative models can be adapted to
follow a Wasserstein gradient flow, by mimicking a JKO scheme with generative models or directly
follow the velocity field of a kernel-based functional. Such approaches were proposed for generative
modeling (Fan et al., 2022; Hagemann et al., 2024; Hertrich et al., 2024; Liutkus et al., 2019; Vidal
et al., 2023; Xu et al., 2024), sampling (Fan et al., 2022; Lambert et al., 2022; Liu & Wang, 2016;
Mokrov et al., 2021) or other tasks (Altekrüger et al., 2023; Arbel et al., 2019; Alvarez-Melis et al.,
2022).

2 PRELIMINARIES

In this section, we provide a rough overview of the required concepts for this paper. To this end, we
first revisit the basic definitions of Wasserstein gradient flows, e.g., based on Ambrosio et al. (2005).
Afterwards we recall continuous normalizing flows with OT-regularizations.

2.1 WASSERSTEIN SPACES AND ABSOLUTELY CONTINUOUS CURVES

Wasserstein Distance Let P(Rd) be the space of probability measures on Rd and denote by
P2(Rd) := {µ ∈ P(Rd) :

∫
Rd ∥x∥2dx < ∞} the subspace of probability measures with finite second

moment. Let Pac
2 (Rd) be the subspace of absolutely continuous measures from P2(Rd). Moreover,

we denote for µ, ν ∈ P2(Rd) by Γ(µ, ν) := {π ∈ P2(Rd ×Rd) : π1#π = µ, π2#π = ν} the set of
all transport plans with marginals µ and ν, where πi : Rd × Rd → Rd defined by πi(x1, x2) = xi is
the projection onto the i-th component for i = 1, 2. Then, we equip P2(Rd) with the Wasserstein-2

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

metric defined by

W 2
2 (µ, ν) = inf

π∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y).

The minimum is attained, but not always unique. We denote the subset of minimizers by Γopt(µ, ν).
If µ ∈ Pac

2 (Rd), then the optimal transport plan is unique and is given by a so-called transport map.
Theorem 1 (Brenier (1987)). Let µ ∈ Pac

2 (Rd) and ν ∈ P2(Rd). Then there is a unique transport
plan π ∈ Γopt(µ, ν) which is induced by a unique measurable optimal transport map T : Rd → Rd,
i.e., π = (Id, T)#µ and

W 2
2 (µ, ν) = min

T : Rd→Rd

∫
Rd

∥T (x)− x∥22 dµ(x) subject to T#µ = ν.

Absolutely Continuous Curves A curve γ : I → P2(Rd) on the interval I ⊆ R is called absolutely
continuous if there exists a Borel velocity field v : Rd × I → Rd with

∫
I
∥v(·, t)∥L2(γ(t),Rd)dt < ∞

such that the continuity equation
∂tγ(t) +∇ · (v(·, t)γ(t)) = 0 (1)

is fulfilled on I × Rd in a weak sense. Then, any velocity field v solving the continuity equation (1)
for fixed γ characterizes γ as γ(t) = z(·, t)#γ(t0), where z is the solution of the ODE ż(x, t) =
v(z(x, t), t) with z(x, t0) = x and t0 ∈ I . It can be shown that for an absolutely continuous curve
there exists a unique solution of minimal norm which is equivalently characterized by the so-called
regular tangent space Tγ(t)P2(Rd), see Appendix A for details. An absolute continuous curve is a
geodesic if there exists some c > 0 such that W2(γ(s), γ(t)) = c|s− t|.
The following theorem formulates a dynamic version of the Wasserstein distance based minimal
energy curves in the Wasserstein space.
Theorem 2 (Benamou & Brenier (2000)). Assume that µ, ν ∈ Pac

2 (Rd). Then, it holds

W 2
2 (µ, ν) = inf

v : Rd×[0,1]→Rd,
ż(x,t)=v(z(x,t),t),

z(x,0)=x, z(·,1)#µ=ν

∫ 1

0

∫
Rd

∥v(z(x, t), t)∥2dµ(x)dt.

Moreover, there exists a unique minimizing velocity field v and the curve defined by γ(t) = z(·, t)#µ
with t ∈ [0, 1] and ż(x, t) = v(z(x, t), t), z(x, 0) = x is a geodesic which fulfills the continuity
equation ∂tγ(t) +∇ · (v(·, t)γ(t)) = 0.

Let τ > 0. Then, by substitution of t by t/τ and rescaling v in the time variable, this is equal to

W 2
2 (µ, ν) = inf

v : Rd×[0,τ]→Rd,
ż(x,t)=v(z(x,t),t),

z(x,0)=x, z(·,τ)#µ=ν

τ

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµ(x)dt.

Wasserstein Gradient Flows An absolutely continuous curve γ : (0,∞) → P2(Rd) with velocity
field vt ∈ Tγ(t)P2(Rd) is a Wasserstein gradient flow with respect to F : P2(Rd) → (−∞,∞] if

vt ∈ −∂F(γ(t)), for a.e. t > 0,

where ∂F(µ) denotes the reduced Fréchet subdiffential at µ, see Appendix A for a definition.

To compute Wasserstein gradient flows numerically, we can use the generalized minimizing move-
ments or Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al., 1998). To this end, we consider the
Wasserstein proximal mapping defined as

proxτF (µ̂) = argmin
µ∈P2(Rd)

{1
2
W 2

2 (µ, µ̂) + τF(µ)}.

Then, define as µk
τ for k ∈ N the steps of the minimizing movements scheme, i.e.,

µ0
τ = µ0, µk+1

τ = proxτF (µ
k
τ). (2)

We denote the piecewise constant interpolations γ̃τ : [0,∞) → P2(Rd) of the minimizing movement
scheme by

γ̃τ (kτ + tτ) = µk
τ , t ∈ [0, 1). (3)

Then, the following convergence result holds true.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 3. (Ambrosio et al., 2005, Thm 11.2.1) Let F : P2(Rd) → (−∞,+∞] be proper, lsc,
coercive, and λ-convex along generalized geodesics, and let µ0 ∈ domF . Then the curves γ̃τ defined
via the minimizing movement scheme (3) converge for τ → 0 locally uniformly to a locally Lipschitz
curve γ : (0,+∞) → P2(Rd) which is the unique Wasserstein gradient flow of F with γ(0+) = µ0.

2.2 CONTINUOUS NORMALIZING FLOWS AND OT-FLOWS

The concept of normalizing flows first appeared in Rezende & Mohamed (2015). It follows the
basic idea to approximate a probability distribution ν by considering a simple latent distribution
µ0 (usually a standard Gaussian) and to construct a diffeomorphism Tθ : Rd → Rd depending on
some parameters θ such that ν ≈ Tθ#µ0. In practice, the diffeomorphism can be approximated by
coupling-based neural networks (Dinh et al., 2016; Kingma & Dhariwal, 2018), residual architectures
(Behrmann et al., 2019; Chen et al., 2019; Hertrich, 2023) or autoregressive flows (De Cao et al.,
2020; Durkan et al., 2019; Huang et al., 2018; Papamakarios et al., 2017). In this paper, we mainly
focus on continuous normalizing flows proposed by Chen et al. (2018); Grathwohl et al. (2019),
see also Ruthotto & Haber (2021) for an overview. Here the diffeomorphism Tθ is parameterized
as neural ODE. To this end let vθ : Rd × R → Rd be a neural network with parameters θ and let
zθ : Rd × [0, τ] → Rd for fixed τ > 0 be the solution of żθ = vθ, with initial condition zθ(x, 0) = x.
Then, we define Tθ via the solution zθ as Tθ(x) = zθ(x, τ).

The density pθ of Tθ#µ0 can be described by the change-of-variables formula

pθ(x) =
p0(x)

|det(∇Tθ(x))|
,

where p0 is the density of the latent distribution µ0. In the case of continuous normalizing flows, it
can be shown that the denominator can be computed as

log(|det(∇Tθ(x))|) = ℓθ(x, τ), ∂tℓθ(x, t) = trace(∇vθ(zθ(x, t), t)), ℓθ(·, 0) = 0.

In order to train a normalizing flow, one usually uses the Kullback-Leibler divergence. If ν is given
by a density q(x) = Zgg(x), where Zg is an unknown normalizing constant, then this amounts to the
reverse KL loss function

L(θ) = KL(Tθ#µ0, ν) = Ex∼µ0 [− log(q(Tθ(x))) + log(pθ(x))]

∝ Ex∼µ0 [− log(q(Tθ(x)))− ℓθ(x, τ)],

where ∝ indicates equality up to a constant.

In order to stabilize and accelerate the training, Onken et al. (2021) propose to regularize the velocity
field vθ by its expected squared norm. More precisely, they propose to add the regularizer

R(θ) = τ

∫ τ

0

∥vθ(zθ(x, t), t)∥2dt

to the loss function. This leads to straight trajectories in the ODE such that adaptive solvers
only require very few steps to solve them. Following Theorem 2, the authors of Onken et al.
(2021) note that for β > 0 the functional L(θ) + αR(θ) has the same minimizer as the functional
L(θ) + βW 2

2 (µ0, Tθ#µ0), which relates to the JKO scheme as pointed out by Vidal et al. (2023).

3 NEURAL JKO SCHEME

In the following, we learn the steps (2) of the JKO scheme by neural ODEs. While similar schemes
were already suggested in several papers (Altekrüger et al., 2023; Alvarez-Melis et al., 2022; Fan et al.,
2022; Lambert et al., 2022; Mokrov et al., 2021; Vidal et al., 2023; Xu et al., 2024), we are particularly
interested in the convergence properties of the corresponding velocity fields. In Subsection 3.1, we
introduce the general scheme and derive its properties. Afterwards, in Subsection 3.2, we describe
the corresponding neural network approximation.

Throughout this section, we consider the following assumptions on the objective functional F and
our initialization µ0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Assumption 4. Let F : P2(Rd) → R∪{∞} be proper, lower semi-continuous with respect to narrow
convergence, coercive, λ-convex along generalized geodesics and bounded from below. Moreover,
assume that dom(|∂F|) ⊆ Pac

2 (Rd) and that F has finite metric derivative |∂F|(µ0) < ∞ at the
initialization µ0 ∈ Pac

2 (Rd).

This assumption is fulfilled for many important divergences and loss functions F . We list some
examples in Appendix B.1. We will later pay particular attention to the reverse Kullback-Leibler
divergence F(µ) = KL(µ, ν) =

∫
p(x) log

(
p(x)
q(x)

)
dx, where ν is a fixed target measure and p and

q are the densities of µ and ν respectively. This functional fulfills Assumption 4 if q is λ-convex.

Additionally, (Ambrosio et al., 2005, Lem 9.2.7) states that the functional G(µ) = 1
2τW

2
2 (µ, µ

k
τ) +

F(µ) is (λ+ 1
τ)-convex along geodesics. In particular, for τ < 1

λ , the functional G is strongly convex
such that we expect that optimizing it with a generative model is much easier than optimizing F , see
also Appendix F.1 for a discussion how this can prevent mode collapse.

3.1 PIECEWISE GEODESIC INTERPOLATION

In order to represent the JKO scheme by neural ODEs, we first reformulate it based on Benamou-
Brenier (Theorem 2). To this end, we insert the dynamic formulation of the Wasserstein distance in
the Wasserstein proximal mapping defining the steps in (2). For any µ ∈ P(Rd) this leads to

1

2τ
W 2

2 (µ, µ
k
τ) + F(µ) = min

v : Rd×[0,τ]→Rd

ż(x,t)=v(z(x,t),t),

z(x,0)=x, z(·,τ)#µk
τ=µ

1

2

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµk
τ (x)dt+ F(µ).

Hence from a minimizer perspective, we obtain that µk+1
τ = zkτ (·, T)#µk

τ , where

(vτ,k, zτ,k) ∈ argmin
v : Rd×[0,τ]→Rd

ż(x,t)=v(z(x,t),t), z(x,0)=x

{
1

2

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµk
τ (x)dt+ F(z(·, τ)#µk

τ)

}
.

(4)
Finally, we concatenate the velocity fields of all steps and obtain the ODE

vτ |(kτ,(k+1)τ] = vτ,k, żτ (x, t) = vτ (zτ (x, t), t), zτ (x, 0) = x.

As a straightforward observation, we obtain that the curve defined by the velocity field vτ is the
geodesic interpolation between the points from JKO scheme (2). We state a proof in Appendix B.2.
Corollary 5. Under Assumption 4 the following holds true.

(i) It holds that W 2
2 (µ

k
τ , µ

k+1
τ) = τ

∫ τ

0

∫
Rd ∥vτ,k(zτ,k(x, t), t)∥2dµk

τ (x)dt, i.e., vτ,k is the
optimal velocity field from the theorem of Benamou-Brenier.

(ii) The curve γτ (t) := z(·, t)#µ0 fulfills γτ (kτ + tτ) = ((1− t)I + tT k
τ)#µ

k
τ for t ∈ [0, 1],

where T k
τ is the optimal transport map between µk

τ and µk+1
τ .

(iii) vτ and γτ solve the continuity equation ∂tγτ (t) +∇ · (vτ (·, t)γ(t)) = 0.

Analogously to Theorem 3 one can show that also the curves γτ are converging locally uniformly
to the unique Wasserstein gradient flow (see, e.g., the proof of Ambrosio et al., 2005, Thm 11.1.6).
In the next subsection, we will approximate the velocity fields vτ,k by neural networks. In order to
retain the stability of the resulting scheme, the next theorem states that also the velocity fields vτ
converge strongly towards the velocity field from the Wasserstein gradient flow. The proof is given in
Appendix B.3.
Theorem 6. Suppose that Assumption 4 is fulfilled and let (τl)l ⊆ (0,∞) with τl → 0. Then, (vτl)l
converges strongly to the velocity field v̂ ∈ L2(γ,Rd × [0, T]) of the Wasserstein gradient flow
γ : (0,∞) → P2(Rd) of F starting in µ0.

In some cases the limit velocity field v can be stated explicitly, even though its direct computation is
intractable. For details, we refer to Appendix B.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2 NEURAL JKO SAMPLING

In the following, we learn the velocity fields vτ,k as neural ODEs in order to sample from a target mea-
sure ν given by the density q(x) = 1

Zg
g(x) with unknown normalization constant Zg =

∫
Rd g(x)dx.

To this end, we consider the Wasserstein gradient flow with respect to the reverse KL loss function
F(µ) = KL(µ, ν) which has the unique minimizer µ = ν.

Then, due to (4) the loss function from the JKO steps for the training of the velocity field vθ reads as

L(θ) = 1

2

∫ τ

0

∫
Rd

∥vθ(zθ(x, t), t)∥2dµk
τ (x)dt+ F(zθ(·, τ)#µk

τ),

where zθ is the solution of żθ(x, t) = vθ(zθ(x, t), t) with zθ(x, 0) = x. Now, following the
derivations of continuous normalizing flows, cf. Section 2.2, the second term of L can be rewritten
(up to an additive constant) as

F(zθ(·, τ)#µk
τ) ∝ Ex∼µk

τ
[− log(g(zθ(x, τ)))− ℓθ(x, τ)],

where ℓθ is the solution of ℓ̇θ(x, t) = trace(∇vθ(zθ(x, t), t)) with ℓθ(·, 0) = 0. Moreover, we can
rewrite the first term of L based on∫ τ

0

∫
Rd

∥vθ(zθ(x, t), t)∥2dµk
τ (x)dt = Ex∼µk

τ
[

∫ τ

0

∥vθ(zθ(x, t), t)∥2dt] = Ex∼µk
τ
[ωθ(x, τ)],

where ωθ is the solution of ω̇θ(x, t) = ∥vθ(zθ(x, t), t)∥2. Hence, we can represent L up to an additive
constant as

L(θ) = Ex∼µk
τ
[− log(g(zθ(x, τ)))− ℓθ(x, τ) + ωθ(x, τ)], (5)

where (zθ, ℓθ, ωθ) solves the ODE system żθ(x, t)

ℓ̇θ(x, t)
ω̇θ(x, t)

 =

 vθ(x, t)
trace(∇vθ(zθ(x, t), t))

∥vθ(zθ(x, t), t)∥2

 ,

(
zθ(x, 0)
ℓθ(x, 0)
ωθ(x, 0)

)
=

(
x
0
0

)
. (6)

In particular, the loss function L can be evaluated and differentiated based on samples from µk
τ .

Once the parameters θ are optimized, we can evaluate the JKO steps in the same way as standard
continuous normalizing flows. We summarize training and evaluation of the JKO steps in Algorithm 2
and 3 in Appendix D.1. In practice, the density values are computed and stored in log-space for
numerical stability. Additionally, note that the continuous normalizing flows can be replaced by other
normalizing flow architectures, see Appendix F.2 and Remark 19 for details.

4 IMPORTANCE-BASED REJECTION STEPS

While a large number of existing sampling methods rely on Wasserstein gradient flows with respect to
some divergences, it is well known that these loss functions are non-convex. This leads to very slow
divergence speeds or convergence to suboptimal local minima. In particular, if the target distribution
is multimodal the modes often do not have the right mass assigned.

Annealed Importance Sampling As a remedy, Neal (2001) proposed to use annealed importance
sampling. Here, we assign to each generated sample xi an importance weight wi =

q(xi)
p(xi)

, where p is
some proposal density and q is the density of the target distribution ν. Then, for any ν-integrable
function f : Rd → R it holds that

∑N
i=1 wif(xi) is an unbiased estimator of

∫
Rd f(x)dν(x). Note

that annealed importance sampling is very sensitive with respect to the proposal p which needs to be
designed carefully and problem adapted.

Rejection Steps Inspired by annealed importance sampling, we propose to use importance-based
rejection steps. More precisely, let µ be a proposal distribution where we can sample from with
density p(x) = f(x)/Zf and denote by ν the target distribution with density q(x) = g(x)/Zg. In
the following, we assume that we have access to the unnormalized densities f and g, but not to the
normalization constants Zf and Zg Then, for a random variable X ∼ µ, we now generate a new
random variable X̃ by the following procedure: First, we compute the importance based acceptance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

probability α(X) = min
{
1, q(X)

c̃p(X)

}
= min

{
1, g(X)

cf(X)

}
, where c > 0 is a positive hyperparameter

and c̃ = cZf/Zg . Then, we set X̃ = X with probability α(X) and choose X̃ = X ′ otherwise, where
X ′ ∼ µ and X are independent, see Algorithm 5 for a summary.
Remark 7. This is a one-step approximation of the classical rejection sampling scheme (Von Neu-
mann, 1951), see also (Andrieu et al., 2003) for an overview. More precisely, we arrive at the
classical rejection sampling scheme by choosing c̃ > supx q(x)/p(x) and redo the procedure when
X is rejected instead of choosing X̃ = X ′.

Similarly to importance sampling, the rejection sampling algorithm is highly sensitive towards the
proposal distribution p. In particular, if p is chosen as a standard normal distribution, it suffers from
the curse of dimensionality. We will tackle this problem later in the section by choosing p already
close to the target density q.

The following proposition describes the density of the distribution µ̃ of X̃ . Moreover, it ensures that
the KL divergence to the target distribution decreases. We include the proof in Appendix C.1
Proposition 8. Let µ̃ be the distribution of X̃ . Then, the following holds true.

(i) µ̃ admits the density p̃ given by p̃(x) = p(x)(α(x) + 1− E[α(X)]). In particular, we have
p̃(x) = f̃(x)/Zf̃ with f̃(x) = f(x)(α(x) + 1− E[α(X)]).

(ii) It holds that KL(µ̃, ν) ≤ KL(µ, ν).

Note that the value E[α(X)] can easily be estimated based on samples during the training phase.
Indeed, given N iid copies X1, ..., XN of X , we obtain that E[α(X)] ≈ 1

N

∑N
i=1 α(XN) is an

unbiased estimator fulfilling the error estimate from the following corollary. The proof is a direct
consequence of Hoeffding’s inequality and given in Appendix C.2.
Corollary 9. Let X1, ..., XN be iid copies of X . Then, it holds

E

[∣∣∣∣∣E[α(X)]− 1

N

N∑
i=1

α(XN)

∣∣∣∣∣
]
≤

√
2π√
N

∈ O

(
1√
N

)
.

Remark 10 (Choice of c). We choose the hyperparameter c such that a constant ration r > 0 of the
samples will be resampled, i.e., that E[α(X)] ≈ 1 − r. To this end, we assume that we are given
samples x1, ..., xN from X and approximate

E[α(X)] ≈ 1

N

N∑
i=1

α(xi) =
1

N

N∑
i=1

min

{
1,

g(x)

cp(x)

}
.

Note that the right side of this formula depends monotonically on c such that we can find c > 0 such
that E[α(X)] = 1− r by a bisection search. In our numerical experiments, we set r = 0.2.

We summarize the parameter selection and application of a rejection step we in the Algorithms 4 and
5 in Appendix D.1.

Neural JKO Sampling with Importance Correction Finally, we combine the neural JKO scheme
from the previous section with our rejection steps to obtain a sampling algorithm. More precisely, we
start with a simple latent random variable X0 following the probability distribution µ0 with known
density and where we can sample from. In our numerical experiments this will be a standard Gaussian
distribution. Now, we iteratively generate random variables Xk following the distribution µk, k =
1, ...,K by applying either neural JKO steps as described in Algorithm 2 and 3 or importance-based
rejection steps as described in Algorithm 4 and 5. We call the resulting Markov chain (X0, ..., XK)
an importance corrected neural JKO model. During the sampling process we can maintain the density
values pk(x) of the density pk of µk for the generated samples by the Algorithms 3 and 5. Vice versa,
we can also use Proposition 8 to evaluate the density pk at some arbitrary point x ∈ Rd. We outline
this density evaluation process in Appendix D.2.
Remark 11 (Runtime Limitations). The sampling time of our importance corrected neural JKO
sampling depends exponentially on the number of rejection steps since in each rejection step we
resample a constant fraction of the samples. However, due to the moderate base of 1 + r we will
see in the numerical part that we are able to perform a significant number of rejection steps in a
tractable time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 Importance corrected neural JKO sampling scheme

Input:


• target measure ν = Z−1

g gdλ with unnormalized density g,

• initial measure µ0 with density p0,
• Number N ∈ N of samples during for learning phase,
• Number K ∈ N of total steps.

Output: Sample generator {xi}Ni=1 ∼ ν̂ ≈ ν.
Let density p0 be the density of µ0 with samples x0

1, . . . , x
0
N .

for k = 1, . . . ,K do
Define µk with a density pk either as

• push forward of µk−1 via a CNF as described in Section 3 with parameters
learned via Algorithm 2 based on samples xk−1

1 , . . . xk−1
N or

• via importance based rejection with pk determined by Proposition 8 using
Algorithm 4 to learn the parameter c as discussed in Remark 10.

Generate samples xk
1 , . . . , x

k
N ∼ µk and densities pk(xk

1 ,) . . . , p
k(xk

N) using
Algorithm 3 or 5 depending on the choice of the propagation layers respectively.

end for
Set ν̂ = µK with density pK .

As discussed in Algorithm 1 the final sampling model structure is determined by the sub-sequential
choice of a CNF layer or an importance-based rejection step. In practice, we first utilize CNF layers
only, then use several blocks consisting of a single CNF layer composed with 3 rejection steps. In our
numerics, we choose an initial step size τ0 > 0 as a hyper-parameter and then increase the step size
exponentially by τk+1 = 4τk. Note that one could alternatively use adaptive step sizes similar to Xu
et al. (2024). However, for our setting, we found that the simple step size rule is sufficient.

5 NUMERICAL RESULTS

We compare our method with classical Monte Carlo samplers like a Metropolis adjusted Langevin
sampling (MALA) and Hamiltonian Monte Carlo (HMC), see e.g., Betancourt (2017); Roberts &
Tweedie (1996). Additionally, we compare with two recent deep-learning based sampling algorithms,
namely denoising diffusion samplers (DDS, Vargas et al., 2023a) and continual repeated annealed
flow transport Monte Carlo (CRAFT, Matthews et al., 2022). We evaluate all methods on a set of
common test distributions which is described in detail in Appendix E.1. Moreover, we report the
error measures for our importance corrected neural JKO sampler (neural JKO IC), see Appendix E.4
for implementation details. Additionally, we emphasize the importance of the rejection steps by
reporting values for the same a neural JKO scheme without rejection steps (neural JKO).

For evaluating the quality of our results, we use two different metrics. First, we evaluate the energy
distance (Székely, 2002). It is a kernel metrics which can be evaluated purely based on two sets
of samples from the model and the ground truth. Moreover it encodes the geometry of the space
such that a slight perturbation of the samples only leads to a slight change in the energy distance.
Second, we estimate the log-normalizing constant which is equivalent to approximating the reverse
KL loss of the model. A higher estimate of the log-normalizing constant corresponds to a smaller KL
divergence between generated and target distribution and therefore to a higher similarity of the two
measures. Since this requires the density of the model, this approach is not applicable for MALA
and HMC. The results are given in Table 1 and 2. We can see, that importance corrected neural
JKO sampling significantly outperforms the comparison for all test distributions. In particular, we
observe that for shifted 8 modes, shifted 8 peaky and GMM-d the energy distance between neural
JKO IC and ground truth samples is in the same order of magnitude as the energy distance between to
different sets of ground truth samples. This implies that the distribution generated by neural JKO IC
is indistinguishable from the target distribution in the energy distance. For these examples, the log(Z)
esitmate is sometimes slightly larger than the ground truth, which can be explained by numerical
effects, see Remark 16 for a detailed discussion. We point out to a precise description of the metrics,
the implementation details and additional experiments and figures in Appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Energy distance. We run each method 5 times and state the average value and corresponding
standard deviations. The rightmost column shows the reference sampling error, i.e., the lower bound
magnitude of the average energy distance between two different sets of samples drawn from the
ground truth. A smaller energy distance indicates a better result.

Sampler

Distribution MALA HMC DDS CRAFT Neural JKO Neural JKO IC (ours) Sampling Error

Mustache 4.6× 10−2 ± 1.6× 10−3 1.7× 10−2 ± 4.3× 10−4 6.9× 10−2 ± 1.8× 10−3 9.2× 10−2 ± 9.9× 10−3 1.8× 10−2 ± 2.0× 10−3 2.9× 10−3 ± 4.4× 10−4 8.6× 10−5

shifted 8 Modes 5.3× 10−3 ± 4.9× 10−4 4.1× 10−5 ± 3.3× 10−5 1.2× 10−2 ± 4.1× 10−3 5.2× 10−2 ± 1.1× 10−2 1.3× 10−1 ± 3.8× 10−3 1.2× 10−5 ± 5.1× 10−6 2.6× 10−5

shifted 8 Peaky 1.3× 10−1 ± 3.2× 10−3 1.2× 10−1 ± 2.4× 10−3 1.1× 10−2 ± 3.4× 10−3 5.2× 10−2 ± 2.2× 10−2 1.3× 10−1 ± 2.2× 10−3 3.4× 10−5 ± 8.2× 10−6 2.4× 10−5

Funnel 1.2× 10−1 ± 3.1× 10−3 3.1× 10−3 ± 3.2× 10−4 2.6× 10−1 ± 2.6× 10−2 7.4× 10−2 ± 2.8× 10−3 4.6× 10−2 ± 1.6× 10−3 1.4× 10−2 ± 8.2× 10−4 3.4× 10−4

GMM-10 1.2× 10−2 ± 5.5× 10−3 1.2× 10−2 ± 5.2× 10−3 3.7× 10−3 ± 1.6× 10−3 1.8× 10−1 ± 6.6× 10−2 1.1× 10−2 ± 5.6× 10−3 5.3× 10−5 ± 1.7× 10−5 4.6× 10−5

GMM-20 9.1× 10−3 ± 2.8× 10−3 9.1× 10−3 ± 2.7× 10−3 5.0× 10−3 ± 1.5× 10−3 5.4× 10−1 ± 1.4× 10−1 1.0× 10−2 ± 2.8× 10−3 1.1× 10−4 ± 3.4× 10−5 6.4× 10−5

GMM-50 2.4× 10−2 ± 7.5× 10−3 2.4× 10−2 ± 7.5× 10−3 2.3× 10−2 ± 1.1× 10−2 1.8× 100 ± 1.7× 10−1 2.7× 10−2 ± 7.8× 10−3 1.0× 10−4 ± 4.6× 10−5 1.1× 10−4

GMM-100 3.6× 10−2 ± 1.6× 10−2 3.7× 10−2 ± 1.7× 10−2 3.9× 10−2 ± 2.1× 10−2 2.8× 10+1 ± 1.0× 10−1 4.7× 10−2 ± 2.2× 10−2 6.0× 10−4 ± 3.4× 10−4 1.5× 10−4

GMM-200 6.4× 10−2 ± 2.1× 10−2 6.6× 10−2 ± 1.9× 10−2 9.8× 10−2 ± 3.1× 10−2 3.9× 100 ± 1.6× 10−1 8.9× 10−2 ± 2.7× 10−2 3.3× 10−3 ± 1.9× 10−3 2.0× 10−4

Table 2: Estimated log(Z). We run each method 5 times and state the average value and corresponding
standard deviations. The DDS values for LGCP are taken from Vargas et al. (2023a). Higher values
of log(Z) estimates correspond to better results.

Sampler

Distribution DDS CRAFT Neural JKO Neural JKO IC (ours) Ground Truth

Mustache −1.5× 10−1 ± 2.7× 10−2 −6.5× 10−2 ± 5.5× 10−2 −3.0× 10−2 ± 2.6× 10−3 −7.3× 10−3 ± 8.2× 10−4 0
shifted 8 Modes −5.7× 10−2 ± 2.0× 10−2 −1.2× 10−2 ± 1.4× 10−3 −3.4× 10−1 ± 3.1× 10−3 +5.1× 10−6 ± 2.4× 10−3 0
shifted 8 Peaky −1.2× 10−1 ± 2.2× 10−2 −1.8× 10−3 ± 2.6× 10−3 −3.5× 10−1 ± 3.1× 10−3 −2.1× 10−3 ± 3.2× 10−3 0

Funnel −1.8× 10−1 ± 6.8× 10−2 −1.2× 10−1 ± 7.9× 10−3 −1.4× 10−1 ± 1.6× 10−3 −7.1× 10−3 ± 1.9× 10−3 0
GMM-10 −2.3× 10−1 ± 1.0× 10−1 −8.5× 10−1 ± 1.7× 10−1 −4.3× 10−1 ± 5.1× 10−2 +3.5× 10−3 ± 2.0× 10−3 0
GMM-20 −5.1× 10−1 ± 6.0× 10−2 −1.5× 100 ± 1.7× 10−1 −6.3× 10−1 ± 2.7× 10−2 +6.4× 10−3 ± 3.8× 10−3 0
GMM-50 −1.3× 100 ± 3.3× 10−1 −2.3× 100 ± 1.5× 10−3 −9.3× 10−1 ± 4.6× 10−2 +1.1× 10−2 ± 3.9× 10−3 0
GMM-100 −3.0× 100 ± 7.3× 10−1 −2.3× 100 ± 8.6× 10−2 −1.8× 100 ± 9.6× 10−2 −3.9× 10−2 ± 7.8× 10−3 0
GMM-200 −9.4× 100 ± 7.2× 10−1 −6.3× 100 ± 1.5× 10−1 −5.2× 100 ± 2.5× 10−1 −5.6× 10−2 ± 1.3× 10−2 0

LGCP 503.0± 7.7× 10−1 507.6± 3.2× 10−1 499.9± 1.7× 10−1 508.2± 1.0× 10−1 not available

6 CONCLUSIONS

Methodology We proposed a novel and expressive generative method that enables the efficient and
accurate sampling from a prescribed unnormalized target density which is empirically confirmed in
numerical examples. To this end, we combine local sampling steps, relying on piecewise geodesic
interpolations of the JKO scheme realized by CNFs, and non-local rejection and resampling steps
based on importance weights. Since the proposal of the rejection step is generated by the model
itself, they do not suffer from the curse of dimensionality as opposed to classical variants of rejection
sampling. The proposed approach provides the advantage that we can draw independent samples
while correcting imbalanced mode weights, iteratively refine the current approximation and evaluate
the density of the generated distribution. The latter property is a consequence of the density value
propagation through CNFs and Proposition 8 and enables possible further post-processing steps that
require density evaluations of the approximated sample process.

Outlook Our method allows for the pointwise access to the approximated target density and
the log normalization constant. These quantities can be used for the error monitoring during the
training and hence provide guidelines for the adaptive design of the emulator in terms of CNF -or
rejection/resampling steps and provide a straightforward stopping criterion.

Limitations In the situation, when the emulator is realized through a stack of underlying rejec-
tion/resampling steps, the sample generation process time is negatively affected, see Remark 11. In
order to resolve the drawback we plan to utilize diffusion models for the sample generation. This
is part of ongoing and future work by the authors. Finally, the use of continuous normalizing flows
comes with computational challenges, which we discuss in detail in Appendix F.2.

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. arXiv
preprint arXiv:2410.02711, 2024.

F. Altekrüger and J. Hertrich. WPPNets and WPPFlows: The power of Wasserstein patch priors for
superresolution. SIAM Journal on Imaging Sciences, 16(3):1033–1067, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

F. Altekrüger, J. Hertrich, and G. Steidl. Neural Wasserstein gradient flows for maximum mean
discrepancies with Riesz kernels. In International Conference on Machine Learning, pp. 664–690.
PMLR, 2023.

D. Alvarez-Melis, Y. Schiff, and Y. Mroueh. Optimizing functionals on the space of probabilities
with input convex neural networks. Transactions on Machine Learning Research, 2022. ISSN
2835-8856.

L. Ambrosio, N. Gigli, and G. Savare. Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2005.

C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for machine
learning. Machine Learning, 50:5–43, 2003.

A. Andrle, N. Farchmin, P. Hagemann, S. Heidenreich, V. Soltwisch, and G. Steidl. Invertible
neural networks versus mcmc for posterior reconstruction in grazing incidence x-ray fluorescence.
In International Conference on Scale Space and Variational Methods in Computer Vision, pp.
528–539. Springer, 2021.

M. Arbel, A. Korba, A. Salim, and A. Gretton. Maximum mean discrepancy gradient flow. Advances
in Neural Information Processing Systems, 32, 2019.

M. Arbel, A. Matthews, and A. Doucet. Annealed flow transport Monte Carlo. In International
Conference on Machine Learning, pp. 318–330. PMLR, 2021.

L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein,
C. Rother, and U. Köthe. Analyzing inverse problems with invertible neural networks. In
International Conference on Learning Representations, 2019.

J. Behrmann, W. Grathwohl, R. T. Q. Chen, D. Duvenaud, and J.-H. Jacobsen. Invertible residual
networks. In International Conference on Machine Learning, pp. 573–582. PMLR, 2019.

J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich
mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint
arXiv:1701.02434, 2017.

D. Blessing, X. Jia, J. Esslinger, F. Vargas, and G. Neumann. Beyond ELBOs: A large-scale
evaluation of variational methods for sampling. In International Conference on Machine Learning,
2024.

Y. Brenier. Décomposition polaire et réarrangement monotone des champs de vecteurs. Comptes
Rendus de l’Académie des Sciences Paris Series I Mathematics, 305(19):805–808, 1987.

R. T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/torchdiffeq.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. Advances in Neural Information Processing Systems, 31, 2018.

R. T. Q. Chen, J. Behrmann, D. K. Duvenaud, and J.-H. Jacobsen. Residual flows for invertible
generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

Y. Chen, D. Z. Huang, J. Huang, S. Reich, and A. M. Stuart. Sampling via gradient flows in the space
of probability measures. arXiv preprint arXiv:2310.03597, 2023.

N. De Cao, I. Titov, and W. Aziz. Block neural autoregressive flow. In Uncertainty in Artificial
Intelligence, pp. 1263–1273. PMLR, 2020.

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

11

https://github.com/rtqichen/torchdiffeq

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A. Denker, F. Vargas, S. Padhy, K. Didi, S. Mathis, V. Dutordoir, R. Barbano, E. Mathieu, U. J.
Komorowska, and P. Lio. DEFT: Efficient finetuning of conditional diffusion models by learning
the generalised h-transform. arXiv preprint arXiv:2406.01781, 2024.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In International
Conference on Learning Representations, 2016.

C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. Advances in Neural
Information Processing Systems, 2019.

M. Eigel, R. Gruhlke, and D. Sommer. Less interaction with forward models in langevin dynamics:
Enrichment and homotopy. SIAM Journal on Applied Dynamical Systems, 23(3):1870–1908, 2024.

J. Fan, Q. Zhang, A. Taghvaei, and Y. Chen. Variational Wasserstein gradient flow. In International
Conference on Machine Learning, pp. 6185–6215. PMLR, 2022.

R. Flamary, N. Courty, A. Gramfort, M. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
K. Fatras, N. Fournier, et al. POT: Python optimal transport. Journal of Machine Learning
Research, 22(78):1–8, 2021.

M. Gabrié, G. Rotskoff, and E. Vanden-Eijnden. Adaptive monte carlo augmented with normalizing
flows. Proceedings of the National Academy of Sciences, 119(10):e2109420119, 2022.

A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting langevin dynamics for
bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.

W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in practice. CRC press,
1995.

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011.

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. Ffjord: Free-form
continuous dynamics for scalable reversible generative models. In International Conference on
Learning Representations, 2019.

P. Hagemann, J. Hertrich, and G. Steidl. Stochastic normalizing flows for inverse problems: a Markov
chains viewpoint. SIAM/ASA Journal on Uncertainty Quantification, 10(3):1162–1190, 2022.

P. Hagemann, J. Hertrich, and G. Steidl. Generalized normalizing flows via Markov chains. Cambridge
University Press, 2023.

P. Hagemann, J. Hertrich, F. Altekrüger, R. Beinert, J. Chemseddine, and G. Steidl. Posterior sampling
based on gradient flows of the MMD with negative distance kernel. In International Conference
on Learning Representations, 2024.

J. Hertrich. Proximal residual flows for Bayesian inverse problems. In International Conference on
Scale Space and Variational Methods in Computer Vision, pp. 210–222. Springer, 2023.

J. Hertrich, C. Wald, F. Altekrüger, and P. Hagemann. Generative sliced MMD flows with Riesz
kernels. In International Conference on Learning Representations, 2024.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

M. Hoffman, P. Sountsov, J. Dillon, I. Langmore, D. Tran, and S. Vasudevan. Neutra-lizing bad
geometry in hamiltonian monte carlo using neural transport. arXiv preprint arXiv:1903.03704,
2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

M. D. Hoffman and A. Gelman. The no-u-turn sampler: adaptively setting path lengths in hamiltonian
monte carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In International
Conference on Machine Learning, pp. 2078–2087. PMLR, 2018.

M. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation.
SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. Advances in
Neural Information Processing Systems, 31, 2018.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

M. Lambert, S. Chewi, F. Bach, S. Bonnabel, and P. Rigollet. Variational inference via Wasserstein
gradient flows. Advances in Neural Information Processing Systems, 35:14434–14447, 2022.

Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

Q. Liu and D. Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. Advances in Neural Information Processing Systems, 29, 2016.

X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. arXiv preprint arXiv:2209.03003, 2022.

A. Liutkus, U. Simsekli, S. Majewski, A. Durmus, and F.-R. Stöter. Sliced-wasserstein flows: Non-
parametric generative modeling via optimal transport and diffusions. In International Conference
on Machine Learning, pp. 4104–4113. PMLR, 2019.

Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini. Sampling via measure transport: An introduction.
Handbook of uncertainty quantification, 1:2, 2016.

A. Matthews, M. Arbel, D. J. Rezende, and A. Doucet. Continual repeated annealed flow transport
Monte Carlo. In International Conference on Machine Learning, pp. 15196–15219. PMLR, 2022.

P. Mokrov, A. Korotin, L. Li, A. Genevay, J. M. Solomon, and E. Burnaev. Large-scale Wasserstein
gradient flows. Advances in Neural Information Processing Systems, 34:15243–15256, 2021.

J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log gaussian cox processes. Scandinavian
Journal of Statistics, 25(3):451–482, 1998.

R. M. Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

R. M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–767, 2003.

F. Noé, S. Olsson, J. Köhler, and H. Wu. Boltzmann generators: Sampling equilibrium states of
many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

D. Onken, S. W. Fung, X. Li, and L. Ruthotto. OT-flow: Fast and accurate continuous normalizing
flows via optimal transport. In AAAI Conference on Artificial Intelligence, volume 35, pp. 9223–
9232, 2021.

G. Papamakarios, T. Pavlakou, , and I. Murray. Masked autoregressive flow for density estimation.
Advances in Neural Information Processing Systems, pp. 2338–2347, 2017.

G. Peyré and M. Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A. Phillips, H.-D. Dau, M. J. Hutchinson, V. De Bortoli, G. Deligiannidis, and A. Doucet. Particle
denoising diffusion sampler. In International Conference on Machine Learning, 2024.

Y. Qiu and X. Wang. Efficient multimodal sampling via tempered distribution flow. Journal of the
American Statistical Association, 119(546):1446–1460, 2024.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, pp. 1530–1538. PMLR, 2015.

L. Richter and J. Berner. Improved sampling via learned diffusions. In International Conference on
Learning Representations, 2024.

G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their
discrete approximations. Bernoulli, 2(4):341–363, 1996.

P. J. Rossky, J. D. Doll, and H. L. Friedman. Brownian dynamics as smart monte carlo simulation.
The Journal of Chemical Physics, 69(10):4628–4633, 1978. doi: 10.1063/1.436415.

L. Ruthotto and E. Haber. An introduction to deep generative modeling. GAMM-Mitteilungen, 44(2):
e202100008, 2021.

F. Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94, 2015.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of distance-based and
RKHS-based statistics in hypothesis testing. The Annals of Statistics, 41(5):2263 – 2291, 2013.

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, and C. Schillings. Generative modelling with tensor
train approximations of Hamilton–Jacobi–Bellman equations. arXiv preprint arXiv:2402.15285,
2024.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. In International Conference on Learning
Representations, 2021.

G. Székely. E-statistics: The energy of statistical samples. Techical Report, Bowling Green University,
2002.

F. Vargas, W. Grathwohl, and A. Doucet. Denoising diffusion samplers. International Conference on
Learning Representations, 2023a.

F. Vargas, S. Padhy, D. Blessing, and N. Nüsken. Transport meets variational inference: Controlled
Monte Carlo diffusions. arXiv preprint arXiv:2307.01050, 2023b.

A. Vidal, S. Wu Fung, L. Tenorio, S. Osher, and L. Nurbekyan. Taming hyperparameter tuning in
continuous normalizing flows using the JKO scheme. Scientific Reports, 13(1):4501, 2023.

J. Von Neumann. Various techniques used in connection with random digits. Applied Math Series, 12
(36-38):1, 1951.

Y. Wang and W. Li. Accelerated information gradient flow. Journal of Scientific Computing, 90:1–47,
2022.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
International Conference on Machine Learning, pp. 681–688, 2011.

D. Woo and S. Ahn. Iterated energy-based flow matching for sampling from boltzmann densities.
arXiv preprint arXiv:2408.16249, 2024.

H. Wu, J. Köhler, and F. Noé. Stochastic normalizing flows. Advances in Neural Information
Processing Systems, 33:5933–5944, 2020.

C. Xu, X. Cheng, and Y. Xie. Normalizing flow neural networks by JKO scheme. Advances in Neural
Information Processing Systems, 36, 2024.

Q. Zhang and Y. Chen. Path integral sampler: a stochastic control approach for sampling. arXiv
preprint arXiv:2111.15141, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A BACKGROUND ON WASSERSTEIN SPACES

We give some more backgrounds on Wasserstein gradient flows extending Section 2. In what follows
we refer to L2(µ) := L2(µ,Rd) as the set of square integrable measurable functions on Rd with
respect to a given measure µ ∈ P(Rd).

For an absolutely continuous curve γ, there exists a unique minimal norm solution vt of the continuity
equation (1) in the sense that any solution ṽ of (1) fulfills ∥ṽ(·, t)∥L2(γ(t)) ≥ ∥v(·, t)∥L2(γ(t)) for
almost every t. This is the unique solution of (1) such that v(·, t) is contained in the regular tangent
space

TµP2(Rd) := {λ(T − Id) : (Id, T)#µ ∈ Γopt(µ, T#µ), λ > 0}
L2(µ)

.

An absolutely continuous curve γ : (0,∞) → P2(Rd) with velocity field vt ∈ Tγ(t)P2(Rd) is a
Wasserstein gradient flow with respect to F : P2(Rd) → (−∞,∞] if

vt ∈ −∂F(γ(t)), for a.e. t > 0,

where ∂F(µ) denotes the reduced Fréchet subdiffential at µ defined as

∂F(µ) :=

ξ ∈ L2(µ) : F(ν) − F(µ) ≥ inf
π∈Γopt(µ,ν)

∫
Rd×Rd

⟨ξ(x), y − x⟩ dπ(x, y) + o(W2(µ, ν)) ∀ν ∈ P2(Rd
)

 .

The norm ∥vt∥L2(γ(t)) of the velocity field of a Wasserstein gradient flow coincides for almost every
t with the metric derivative

|∂F|(µ) = inf
ν→µ

F(µ)−F(ν)

W2(µ, ν)
.

For the convergence result from Theorem 3, we need two more definitions. First, we need some
convexity assumption. For λ ∈ R, F : P2(Rd) → R ∪ {+∞} is called λ-convex along geodesics
if, for every µ, ν ∈ domF := {µ ∈ P2(Rd) : F(µ) < ∞}, there exists at least one geodesics
γ : [0, 1] → P2(Rd) between µ and ν such that

F(γ(t)) ≤ (1− t)F(µ) + tF(ν)− λ
2 t(1− t)W 2

2 (µ, ν), t ∈ [0, 1].

To ensure uniqueness and convergence of the JKO scheme, a slightly stronger condition, namely
being λ-convex along generalized geodesics will be in general needed. Based on the set of three-plans
with base σ ∈ P2(Rd) given by

Γσ(µ, ν) :=
{
α ∈ P2(Rd × Rd × Rd) : (π1)#α = σ, (π2)#α = µ, (π3)#α = ν

}
,

the so-called generalized geodesics γ : [0, ϵ] → P2(Rd) joining µ and ν (with base σ) is defined as
γ(t) :=

(
(1− t

ϵ)π2 +
t
ϵπ3

)
#
α, t ∈ [0, ϵ], (7)

where α ∈ Γσ(µ, ν) with (π1,2)#α ∈ Γopt(σ, µ) and (π1,3)#α ∈ Γopt(σ, ν), see Definition 9.2.2
in Ambrosio et al. (2005). The plan α may be interpreted as transport from µ to ν via σ. Then a
function F : P2(Rd) → (−∞,∞] is called λ-convex along generalized geodesics (see Ambrosio
et al., 2005, Definition 9.2.4), if for every σ, µ, ν ∈ domF , there exists at least one generalized
geodesics γ : [0, 1] → P2(Rd) related to some α in (7) such that

F(γ(t)) ≤ (1− t)F(µ) + tF(ν)− λ
2 t(1− t)W 2

α(µ, ν), t ∈ [0, 1],

where
W 2

α(µ, ν) :=

∫
Rd×Rd×Rd

∥y − z∥22 dα(x, y, z).

Every function being λ-convex along generalized geodesics is also λ-convex along geodesics since
generalized geodesics with base σ = µ are actual geodesics. Second, a λ-convex functional
F : P2(Rd) → R ∪ {+∞} is called coercive, if there exists some r > 0 such that

inf{F(µ) : µ ∈ P2(Rd),

∫
Rd

∥x∥2dµ(x) ≤ r} > −∞,

see (Ambrosio et al., 2005, eq. (11.2.1b)). In particular, any functional which is bounded from below
is coercive.

If F is proper, lower semicontinuous, coercive and λ-convex along generalized geodesics, one can
show that the proxτF (µ) is non-empty and unique for τ small enough (see Ambrosio et al., 2005,
page 295).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PROOFS AND EXAMPLES FROM SECTION 3

B.1 EXAMPLES FULFILLING ASSUMPTION 4

Assumption 4 is fulfilled for many important divergences and loss functions F . We list some examples
below. While it is straightforward to check that they are proper, lower semicontinuous, coercive
and bounded from below, the convexity is non-trivial. However, the conditions under which these
functionals are λ-convex along generalized geodesics are well investigated in (Ambrosio et al., 2005,
Section 9.3). In the following we denote the Lebesque measure as λ. For a measure µ ∈ Pac(Rd),
we denote by dµ/dλ the Lebesque density of µ if it exists.

- Let ν ∈ Pac
2 (Rd) with Lebesque density q and define the forward Kullback-Leibler (KL)

loss function

F(µ) = KL(ν, µ) :=

{∫
Rd q(x) log

(
q(x)
p(x)

)
dx, if ∃dµ/dλ = p and dν/dλ = q,

+∞ otherwise.

By (Ambrosio et al., 2005, Proposition 9.3.9), we obtain that F fulfills Assumption 4.

- We can also derive a functional, be reversing the arguments in the KL divergence. Then, we
arrive at the reverse KL loss function given by

F(µ) = KL(µ, ν) :=

{∫
Rd p(x) log

(
p(x)
q(x)

)
dx, if ∃dµ/dλ = p and dν/dλ = q,

+∞ otherwise.

Given that q is λ-convex, we obtain that F fulfills Assumption 4, see (Ambrosio et al., 2005,
Proposition 9.3.2).

- Finally, we can define F based on the Jensen-Shannon divergence. This results into the
function

F(µ) = JS(µ, ν) :=
1

2

[
KL
(
µ, 1

2 (µ+ ν)
)
+KL

(
ν, 1

2 (µ+ ν)
)]

.

Assume µ and ν admit Lebesque densities p and q respectively. Then, combining the two
previous statements, this fulfills Assumption 4 whenever p and q are λ-convex.

All of these functionals are integrals of a smooth Lagrangian functional, i.e., there exists some smooth
F : Rd × R× Rd → R such that

F(µ) =

{∫
Rd F (x, p(x),∇p(x))dx, if ∃dµ/dλ = p,

∞ otherwise.

In this case, the limit velocity field from Theorem 3 (which appears as a limit in Theorem 6) can be
expressed analytically as the gradient of the so-called variational derivative of F , which is given by

δF
δγ(t)

(x) = −∇ · ∂3F (x, p(x),∇p(x)) + ∂2F (x, p(x),∇p(x))

where ∂iF is the derivative of F with respect to the i-th argument and γ is the Wasserstein gradient
flow, see (Ambrosio et al., 2005, Example 11.1.2). For the above divergence functionals, computing
these terms lead to a (weighted) difference of the Stein scores of the input measure γ(t) and the target
measure ν which is a nice link to score-based methods. More precisely, denoting the density of γ(t)
by pt, we obtain the following limiting velocity fields.

- For the forward KL loss function we have that F (x, y, z) = q(x) log
(

q(x)
y

)
. Thus, we have

that δF
δµ (x) = − q(x)

p(x) . Hence, the velocity field v(·, t) = ∇ δF
δγ(t) is given by

v(x, t) =
q(x)

pt(x)

∇pt(x)

pt(x)
− q(x)

pt(x)

∇q(x)

q(x)
=

q(x)

pt(x)
(∇ log(pt(x))−∇ log(q(x))) .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

- For the reverse KL loss function the Lagrangian is given by F (x, y, z) = y log
(

y
q(x)

)
.

Thus, we have that δF
δµ (x) = log

(
p(x)
q(x)

)
+ 1 = log(p(x)) − log(q(x)) + 1. Hence, the

velocity field v(·, t) = ∇ δF
δγ(t) is given by

v(x, t) = ∇(log(pt)(x))−∇(log(q)(x)).

- For the Jensen-Shannon divergence the Lagrangian is given by F (x, y, z) =
1
2

(
y log

(
2y

y+q(x)

)
+ q(x)

(
2q(x)
y+q(x)

))
. Thus, we have that δF

δµ (x) = 1
2 log

(
p(x)

p(x)+q(x)

)
.

Hence, the velocity field v(·, t) = ∇ δF
δγ(t) is given by

v(x, t) =
1

2

pt(x) + q(x)

pt(x)

∇pt(x)(pt(x) + q(x))− pt(x)(∇pt(x) +∇q(x))

(pt(x) + q(x))2

=
1

2

∇pt(x)q(x)− pt(x)∇q(x)

(pt(x) + q(x))pt(x)

=
q(x)

2(pt(x) + q(x))

[
∇pt(x)

pt(x)
− ∇q(x)

q(x)

]
=

q(x)

2(pt(x) + q(x))
[∇(log(pt)(x))−∇(log(q)(x))] .

Note that computing the score ∇ log(pt) of the current approximation is usually intractable, such
that these limits cannot be inserted into a neural ODE directly.

B.2 PROOF OF COROLLARY 5

Using similar arguments as in Altekrüger et al. (2023); Mokrov et al. (2021); Onken et al. (2021); Xu
et al. (2024), let v : Rd × [0, τ] → Rd such that the solution of

ż(x, t) = v(z(x, t), t), z(x, 0) = x,

fulfills z(·, τ)#µk
τ = µk+1

τ . Since (vτ,k, zτ,k) is a minimizer of (4), we obtain that

1

2

∫ τ

0

∫
Rd

∥vτ,k(zτ,k(x, t), t)∥2dµk
τ (x)dt+ F(zτ,k(·, τ)#µk

τ)

≤ 1

2

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµk
τ (x)dt+ F(z(·, τ)#µk

τ).

Observing that F(zτ,k(·, τ)#µk
τ) = F(z(·, τ)#µk

τ) = F(µk+1
τ), we obtain that

τ

∫ τ

0

∫
Rd

∥vτ,k(zτ,k(x, t), t)∥2dµk
τ (x) ≤ τ

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµk
τ (x)dt.

Since v was chose arbitrary, we obtain that vτ,k is the optimal velocity field from the theorem of
Benamou-Brenier, which now directly implies part (ii) and (iii). □

B.3 PROOF OF THEOREM 6

In order to prove convergence of the velocity fields vτ , we first introduce some notations. To this
end, let T k

τ be the optimal transport maps between µk
τ and µk+1

τ and define by vkτ = (T k
τ − I)/τ the

corresponding discrete velocity fields. Then, the velocity fields vτ can be expressed as

vτ (x, kτ + tτ) = vkτ (((1− t)I + tT k
τ)−1(x)). (8)

Further, we denote the piece-wise constant concatenation of the discrete velocity fields by

ṽτ (x, kτ + tτ) = vkτ , t ∈ (0, 1).

Note that for any τ it holds that vτ ∈ L2(γτ ,Rd × [0, T]) and ṽτ ∈ L2(γ̃τ ,Rd × [0, T]). To derive
limits of these velocity fields, we recall the notion of convergence from (Ambrosio et al., 2005,
Definition 5.4.3) allowing that the iterates are not defined on the same space. In this paper, we stick
to square integrable measurable functions defined on finite dimensional domains, which slightly
simplifies the definition.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Definition 12. Let Ω ⊆ Rd be a measurable domain, assume that µk ∈ P2(Ω) converges weakly to
µ ∈ P2(Ω) and let fk ∈ L2(µk,Ω) and f ∈ L2(µ,Ω). Then, we say that fk converges weakly to f ,
if ∫

Ω

⟨ϕ(x), fk(x)⟩dµk(x) →
∫
Ω

⟨ϕ(x), f(x)⟩dµ(x), as k → ∞

for all test functions ϕ ∈ C∞
c (Ω). We say that fk converges strongly to f if

lim sup
k→∞

∥fk∥L2(µk,Ω) ≤ ∥f∥L2(µ,Ω). (9)

Note that (Ambrosio et al., 2005, Theorem 5.4.4 (iii)) implies that formula (9) is fulfilled with
equality for any strongly convergent sequence fk to f . Moreover it is known from the literature that
subsequences of the piece-wise constant velocity admit weak limits.

Theorem 13 (Ambrosio et al., 2005, Theorem 11.1.6). Suppose that Assumption 4 is fulfilled for
F . Then, for any µ0 ∈ dom(F) and any sequence (τl)l ⊂ (0,∞), there exists a subsequence (again
denoted by (τl)l) such that

- The piece-wise constant curve γ̃τl(t) narrowly converges to some limit curve γ̂(t) for all
t ∈ [0,∞).

- The velocity field ṽτl ∈ L2(γ̃τl(t),Rd × [0, T]) weakly converges to some limit v̂ ∈
L2(γ̂(t),Rd × [0, T]) according to Definition 12 for any T > 0.

- The limit v̂ fulfills the continuity equation with respect to γ̂, i.e.,

∂tγ̂(t) +∇ · (v̂τl(·, t)γ̂(t)) = 0.

In order to show the desired result, there remain the following questions, which we answer in the rest
of this section:

- Does Theorem 13 also hold for the velocity fields vτl defined in (8) belonging to the geodesic
interpolations?

- Can we show strong convergence for the whole sequence vτl?

- Does the limit v̂ have the norm-minimizing property that ∥v̂(·, t)∥L2(γ̂(t)) = |∂F|(γ̂(t))?

To address the first of these questions, we show that weak limits of ṽτ and vτ coincide. The proof
is a straightforward computation. A similar statement in a slightly different setting was proven in
(Santambrogio, 2015, Section 8.3).

Lemma 14. Suppose that Assumption 4 is fulfilled and let (τl)l ⊆ (0,∞) be a sequence with τl → 0
as l → ∞ such that ṽτl ∈ L2(γ̃τl ,Rd × [0, T]) converges weakly to some v̂ ∈ L2(γ̂,Rd × [0, T]).
Then, also vτl ∈ L2(γτl ,Rd × [0, T]) converges weakly to v̂.

Proof. Let ϕ ∈ C∞
c (Rd × [0, T]). In particular, ϕ is Lipschitz continuous with some Lipschitz

constant L < ∞. Then, it holds that∣∣∣∣∣
∫
Rd×[0,T]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T]

⟨ϕ, v⟩dγ̂

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Rd×[0,T]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T]

⟨ϕ, ṽτl⟩dγ̃τl

∣∣∣∣∣+
∣∣∣∣∣
∫
Rd×[0,T]

⟨ϕ, ṽτl⟩dγ̃τl −
∫
Rd×[0,T]

⟨ϕ, v⟩dγ̂

∣∣∣∣∣ .
Since ṽτl converges weakly to v̂, the second term converges to zero as l → ∞. Thus in order to show
that also vτl converges weakly to v̂, it remains to show that also the first term converges to zero. By

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

using the notations Tl = min{kτl : kτl ≥ T, k ∈ Z≥0} and Kl = ⌈ T
τl
⌉ = Tl

τl
, we can estimate∣∣∣∣∣

∫
Rd×[0,T]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T]

⟨ϕ, ṽτl⟩dγ̃τl

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

(∫
Rd

⟨ϕ(x, t), vτl(x, t)⟩dγτl(t)(x)−
∫
Rd

⟨ϕ(x, t), ṽτl(x, t)⟩dγ̃τl(t)(x)
)
dt

∣∣∣∣∣
≤
∫ Tl

0

∣∣∣∣∫
Rd

⟨ϕ(x, t), vτl(x, t)⟩dγτl(t)(x)−
∫
Rd

⟨ϕ(x, t), ṽτl(x, t)⟩dγ̃τl(t)(x)
∣∣∣∣dt

≤
Kl−1∑
k=0

∫ (k+1)τl

kτl

∣∣∣∣∫
Rd

⟨ϕ(x, t), vτl(x, t)⟩dγτl(t)(x)−
∫
Rd

⟨ϕ(x, t), ṽτl(x, t)⟩dγ̃τl(t)(x)
∣∣∣∣dt

= τl

Kl−1∑
k=0

∫ 1

0

∣∣∣∣∫
Rd

⟨ϕ(x, kτl + tτl), vτl(x, kτl + tτl)⟩dγτl(kτl + tτl)(x)

−
∫
Rd

⟨ϕ(x, kτl + tτl), ṽτl(x, kτl + tτl)⟩dγ̃τl(kτl + tτl)(x)

∣∣∣∣ dt.
By denoting with T k

τl
the optimal transport map from µk

τl
to µk+1

τl
, we have for t ∈ (0, 1) that

γτl(kτl + tτl) = ((1− t)I + tT k
τl
)#µ

k
τl
, γ̃τl(kτl + tτl) = µk

τl
,

and the velocity fields satisfy
vτl(x, kτl + tτl) = vkτl(((1− t)I + tT k

τl
)−1(x)), ṽτl(x, kτl + tτl) = vkτl(x).

Then, the above term becomes

τl

Kl−1∑
k=0

∫ 1

0

∣∣∣∣∫
Rd

⟨ϕ(x, kτl + tτl), v
k
τl
(((1− t)I + tT k

τl
)−1(x))⟩d((1− t)I + tT k

τl
)#µ

k
τl
(x)

−
∫
Rd

⟨ϕ(x, kτl + tτl), v
k
τl
(x)⟩dµk

τl
(x)

∣∣∣∣dt
= τl

Kl−1∑
k=0

∫ 1

0

∣∣∣∣∫
Rd

⟨ϕ((1− t)x+ tT k
τl
(x)), kτl + tτl), v

k
τl
(x)⟩dµk

τl
(x)

−
∫
Rd

⟨ϕ(x, kτl + tτl), v
k
τl
(x)⟩dµk

τl
(x)

∣∣∣∣ dt
≤ τl

Kl−1∑
k=0

∫ 1

0

∫
Rd

∣∣⟨ϕ((1− t)x+ tT k
τl
(x)), kτl + tτl)− ϕ(x, kτl + tτl), v

k
τl
(x)⟩

∣∣dµk
τl
(x)dt.

Using Hölders’ inequality and we obtain that this is smaller or equal than

τl

Kl−1∑
k=0

∫ 1

0

(∫
Rd

∥ϕ((1 − t)x + tT k
τl
(x)), kτl + tτl) − ϕ(x, kτl + tτl)∥2

dµ
k
τl
(x)

∫
Rd

∥vk
τl
(x)∥2

dµ
k
τl
(x)

)1/2

dt

By the Lipschitz continuity of ϕ and inserting the definition of vkτl =
T k
τl
−I

τl
this is smaller or equal

than

τl

Kl−1∑
k=0

∫ 1

0

(
t2
L2

τ2l

∫
Rd

∥T k
τl
(x)− x∥2dµk

τl
(x)

∫
Rd

∥T k
τl
(x)− x∥2dµk

τl
(x)

)1/2

dt

= L

Kl−1∑
k=0

(∫ 1

0

tdt

)(∫
Rd

∥T k
τl
(x)− x∥2dµk

τl
(x)

)

=
L

2

Kl−1∑
k=0

W 2
2 (µ

k
τl
, µk+1

τl
)

≤ L

2

∞∑
k=0

W 2
2 (µ

k
τl
, µk+1

τl
)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Finally, we have by the definition of the minimizing movements scheme that
1

2τl
W 2

2 (µ
k
τl
, µk+1

τl
) ≤ F(µk

τl
)−F(µk+1

τl
).

Summing up for k = 0, 1, ... we finally arrive at the bound∣∣∣∣∣
∫
Rd×[0,T]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T]

⟨ϕ, v⟩dγ̂

∣∣∣∣∣ ≤ τlL

(
F(µ0)− inf

µ∈P2(Rd)
F(µ)

)
.

Since F is bounded from below the upper bound converges to zero as l → ∞. This concludes the
proof.

Finally, we employ the previous results to show Theorem 6 from the main part of the paper. That is,
we show that for any (τl)l ⊆ (0,∞) with τl → 0 the whole vτl converges strongly to v.
Theorem 15 (Theorem 6). Suppose that Assumption 4 is fulfilled and let (τl)l ⊆ (0,∞) with τl → 0.
Then, (vτl)l converges strongly to the velocity field v̂ ∈ L2(γ,Rd× [0, T]) of the Wasserstein gradient
flow γ : (0,∞) → P2(Rd) of F starting in µ0.

Proof. We show that any subsequence of τl admits a subsequence converging strongly to v̂. Using
the sub-subsequence criterion this yields the claim.

By Theorem 13 and Lemma 14 we know that any subsequence of τl admits a weakly convergent
subsequence. In an abuse of notations, we denote it again by τl and its limit by ṽ. Then, we prove
that the convergence is indeed strong and that ṽ = v̂.

Step 1: Bounding lim sup
l→∞

∫ T

0
∥vτl(·, t)∥2L2(γτl

(t),Rd)dt from above. Since λ-convexity with λ ≥ 0

implies λ-convexity with λ = −1, we can assume without loss of generality that λ < 0. Then, by
(Ambrosio et al., 2005, Lemma 9.2.7, Theorem 4.0.9), we know that for any τ > 0 it holds

W2(γ̃τ (t), γ(t)) ≤ τC(τ, t), C(τ, t) =
(1 + 2|λ|tτ)|∂F|(µ0)√

2(1 + λτ)
exp

(
− log(1 + λτ)

τ
t

)
,

where tτ = min{kτ : kτ ≥ t, k ∈ N0}. For simplicity, we use the notations τmax = max{τl : l ∈
N0}, Kl = ⌈ T

τl
⌉ and Tmax = T + τmax. Since λ < 0, we have that C(τ, t) ≤ C(τ, Tmax) =: C(τ)

for all t ∈ [0, Tmax]. Moreover, we have that C(τ) → (1+2|λ|Tmax|∂F|(µ0)√
2

exp(−λTmax) as τ → 0,
such that the sequence (C(τl))l is bounded. In particular, there exists a C > 0 such that

W2(γ̃τl(t), γ(t)) ≤ τlC, for all t ∈ [0, Tmax].

Inserting t = kτl for k = 0, ...,Kl gives

W2(µ
k
τl
, γ(kτl)) ≤ τlC, for all k = 0, ...,Kl. (10)

Now, we can conclude by the theorem of Benamou-Brenier that∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt ≤

∫ Klτl

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt

=

Kl−1∑
k=0

∫ (k+1)τl

kτl

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt

=

Kl−1∑
k=1

W 2
2 (µ

k
τl
, µk+1

τl
).

Now applying the triangular inequality for any k = 1, . . . ,Kl − 1

W 2
2 (µ

k
τl
, µk+1

τl
) ≤

(
W2(µ

k
τl
, γ(τlk)) +W2(γ(τlk), γ(τl(k + 1)) +W2(γ(τl(k + 1)), µk+1

τl
)
)2

and the estimate from (10) yields∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt ≤

Kl−1∑
k=0

(2τC +W2(γ(τlk), γ(τl(k + 1)))
2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

By Jensens’ inequality the right hand side can be bounded from above by

4Klτ
2C2 + 2τKlC

(
Kl−1∑
k=0

1

Kl
W 2

2 (γ(τlk), γ(τl(k + 1)))

)1/2

+

Kl−1∑
k=0

W 2
2 (γ(τlk), γ(τl(k + 1)))

Finally, again Benamou-Brenier gives that W 2
2 (γ(τlk), γ(τl(k + 1))) ≤

∫ (k+1)τl
kτl

∥v̂(·, t)∥2L2(γ(t))
dt

such that the above formula is smaller or equal than

4Klτ
2
l C

2 + 2τl
√
KlC

(∫ Klτl

0

∥v̂(·, t)∥2L2(γ(t))
dt

)1/2

+

∫ Klτl

0

∥v̂(·, t)∥2L2(γ(t))
dt.

Since Klτl → T and τl → 0 as l → ∞ this converges to
∫ T

0
∥v̂(·, t)∥2L2(γ(t))

dt such that we can
conclude

lim sup
l→∞

∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt ≤

∫ T

0

∥v̂(·, t)∥2L2(γ(t))
dt.

Step 2: Strong convergence. By (Ambrosio et al., 2005, Theorem 8.3.1, Proposition 8.4.5) we know
that for any v fulfilling the continuity equation

∂tγ(t) +∇ · (v(·, t)γ(t)) = 0,

it holds that ∥v(·, t)∥L2(γ(t),Rd ≥ ∥v̂(·, t)∥L2(γ(t),Rd . Since ṽ fulfills the continuity equation by
Theorem 13, this implies that∫ T

0

∥ṽ(·, t)∥2L2(γ(t),Rddt ≥
∫ T

0

∥v̂(·, t)∥2L2(γ(t),Rddt = lim sup
l→∞

∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt.

In particular, vτl ∈ L2(γτl ,Rd × [0, T]) converges strongly to ṽ such that by (Ambrosio et al., 2005,
Theorem 5.4.4 (iii)) it holds equality in the above equation, i.e.,∫ T

0

∥ṽ(·, t)∥2L2(γ(t),Rddt =

∫ T

0

∥v̂(·, t)∥2L2(γ(t),Rddt

Using again (Ambrosio et al., 2005, Theorem 8.3.1, Proposition 8.4.5) this implies that ṽ = v̂.

C PROOFS FROM SECTION 4

C.1 PROOF OF PROPOSITION 8

(i) By the law of total probability, we have

p̃(x) = P (X̃ = x) = P (X̃ = x and X was accepted) + P (X̃ = x and X was rejected).

Since it holds X̃ = X if X and X̃ = X ′ if X is rejected this can be reformulated as

P (X = x and X was accepted) + P (X ′ = x and X was rejected)

= P (X = x)P (X was accepted|X = x) + P (X ′ = x)P (X was rejected), (11)

where we used the definition of conditional probabilities and the fact that X and X ′ are
independent. Because X,X ′ ∼ µ, we now have P (X = x) = P (X ′ = x) = p(x) and, by
definition, that P (X was accepted|X = x) = α(x). Finally, it holds that

P (X was rejected) =
∫
Rd

P (X was rejected|X = x)p(x)dx

=

∫
Rd

(1− α(x))p(x)dx = 1− E[α(X)].

Inserting these terms in (11) yields the claim.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(ii) Note, since X ∼ p, we have∫
Rd

p(x)α(x)

E[α(X)]
dx =

∫
Rd

p(x)α(x)∫
Rd p(y)α(y)dy

dx = 1,

in particular p(x)α(x)
E[α(X)] defines a density. Now let η ∈ P2(Rd) be the corresponding proba-

bility measure. Then, it holds by part (i) that µ̃ = E[α(X)]η + (1− E[α(X)])µ. We will
show that KL(η, ν) ≤ KL(µ, ν). Due to the convexity of the KL divergence in the linear
space of measures this implies the claim.

We denote Z = E[α(X)] =
∫
Rd min(p(x), q(x)

c̃)dx. Then it holds

KL(η, ν) =

∫
Rd

p(x)α(x)

Z
log

(
p(x)α(x)

Zq(x)

)
dx

=

∫
Rd

min(p(x), q(x)
c̃)

Z
log

(
c̃p(x)α(x)

q(x)

)
dx− log(Zc̃)

∫
Rd

min(p(x), q(x)
c̃)

Z
dx

=

∫
Rd

min(p(x), q(x)
c̃)

Z
log

(
min

(
c̃p(x)

q(x)
, 1

))
dx− log(Z)− log(c̃)

=

∫
Rd

min

(
min(p(x), q(x)

c̃)

Z
log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(Z)− log(c̃).

Since log
(

c̃p(x)
q(x)

)
≤ 0 if and only if p(x) ≤ q(x)/c̃ this can be reformulated as∫
Rd

min

(
p(x)

Z
log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(Z)− log(c̃)

≤
∫
Rd

min

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(Z)− log(c̃), (12)

where the inequality comes from the fact that Z = E[α(X)] ∈ [0, 1]. Moreover, it holds by
Jensen’s inequality that

− log(Z) = − log(E[α(X)]) = − log

(∫
Rd

p(x)min

(
q(x)

c̃p(x)
, 1

)
dx

)
≤ −

∫
Rd

p(x) log

(
min

(
q(x)

c̃p(x)
, 1

))
dx

= −
∫
Rd

p(x)min

(
log

(
q(x)

c̃p(x)

)
, 0

)
dx

=

∫
Rd

p(x)max

(
log

(
c̃p(x)

q(x)

)
, 0

)
dx

=

∫
Rd

max

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx.

Thus, we obtain that (12) can be bounded from above by∫
Rd

min

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx+

∫
Rd

max

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(c̃)

which equals∫
Rd

p(x) log

(
c̃p(x)

q(x)

)
dx− log(c̃) =

∫
Rd

p(x) log

(
p(x)

q(x)

)
dx = KL(µ, ν).

In summary, we have KL(η, ν) ≤ KL(µ, ν), which implies the assertion.

□

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.2 PROOF OF COROLLARY 9

Let Y =
∣∣∣E[α(X)] − 1

N

∑N
i=1 α(XN)

∣∣∣ denote the random variable representing the error. Since

α(XN) ∈ [0, 1], Hoeffding’s inequality Hoeffding (1963) yields that P (Y > t) ≤ 2 exp(−Nt2

2).
Consequently, we have that

E[Y] =

∫ ∞

0

P (Y > t)dt ≤ 2

∫ ∞

0

exp

(
−Nt2

2

)
dt =

√
2π√
N

.

□

D ALGORITHMS

D.1 TRAINING AND EVALUATION ALGORITHMS

We summarize the training and evaluation procedures for the neural JKO steps in Algorithm 2 and 3
and for the importance-based rejection steps in Algorithm 4 and 5.

D.2 DENSITY EVALUATION OF IMPORTANCE CORRECTED NEURAL JKO MODELS

Let (X0, ..., XK) be an importance corrected neural JKO model. We aim to evaluate the density pK

of XK at some given point x ∈ Rd. Using Proposition 8, this can be done recursively by Algorithm 6.
Note that the algorithm always terminates since K is reduced by one in each call.

E ADDITIONAL NUMERICAL RESULTS AND IMPLEMENTATION DETAILS

E.1 TEST DISTRIBUTIONS

We evaluate our method on the following test distributions.

- Mustache: The two-dimensional log-density is given as logN (0,Σ) ◦ T with Σ =
[1, σ;σ, 1] and T (x1, x2) = (x1, (x2 − (x2

1 − 1)2)). Note that det(∇T (x)) = 1 for
all x. In particular, we obtain directly by the transformation formula that the normalization
constant is one. Depending on σ ∈ [0, 1) close to 1, this probability distribution has very
long and narrow tails making it hard for classical MCMC methods to sample them. In our
experiments we use σ = 0.9.

- Shifted 8 Modes: A two-dimensional Gaussian mixture model with 8 equal weighted modes
and covariance matrix 1× 10−2I . The modes are placed in a circle with radius 1 and center
(−1, 0). Due to the shifted center classical MCMC methods have difficulties to distribute
the mass correctly onto the modes.

- Shifted 8 Peaky: This is the same distribution as the shifted 8 Modes with the difference
that we reduce the width of the modes to the covariance matrix 5× 10−3I . Since the modes
are disconnected, it becomes harder to sample from them.

- Funnel: We consider the (normalized) probability density function given by q(x) =
N (x1|0, σ2

f)N (x2:10|0, exp(x1)I), where σ2
f = 9. This example was introduced by Neal

(2003). Similarly to the mustache example, this distribution has a narrow funnel for small
values x1 which can be hard to sample.

- GMM-d: A d-dimensional Gaussian mixture model with 10 equal weighted modes with
covariance matrix 1× 10−2I and means drawn randomly from a uniform distribution on
[−1, 1]d. This leads to a peaky high-dimensional and multimodal probability distribution
which is hard to sample from.

- LGCP: This is a high dimensional standard example taken from Arbel et al. (2021);
Matthews et al. (2022); Vargas et al. (2023a). It describes a Log-Gaussian Cox process
on a 40 × 40 grid as arising from spatial statistics Møller et al. (1998). This leads to a
1600-dimensional probability distribution with the unnormalized density function q(x) ∝
N (x|µ,K)

∏
i∈{1,...,40}2 exp(xiyi − a exp(xi)), where µ and K are a fixed mean and

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 2 Training of neural JKO steps
Input: Samples xk

1 , ..., x
k
N of µk.

Minimize the loss function θ 7→ L(θ) from (5) using the Adam optimizer.
Output: Parameters θ.

Algorithm 3 Sampling and density propagation for neural JKO steps

Input:
{

- Samples xk
1 , ..., x

k
N of µk,

- Density values pk(xk
1), ..., p

k(xk
N).

for i = 1, ..., N do
1. Solve the ODE (6) for x = xk

i .
2. Set xk+1

i = zθ(x
k
i , τ).

3. Set pk+1(xk+1
i) =

pk(xk
i)

exp(ℓθ(xk
i ,τ))

.
end for

Output:
{

- Samples xk
1 , ..., x

k
N of µk+1,

- Density values pk+1(xk+1
1), ..., pk+1(xk+1

N).

Algorithm 4 Parameter selection for important-based rejection steps

Input:
{

- Samples xk
1 , ..., x

k
N of µk with corresponding densities

- desired rejection rate r, unnormalized target density g

Choose c by bisection search such that

1− r =
1

N

N∑
i=1

αk(x
k
i), αk(x) = min

{
1,

g(x)

cpk(x)

}
.

Output: Rejection parameter c and estimate of E[α(Xk
τ)] ≈ 1− r.

Algorithm 5 Sampling and density propagation for important-based rejection steps
Input: - Samples xk

1 , ..., x
k
N of µk

Assume:
{

- we are able to generate samples from µk with corresponding density pk

- we can evaluate the unnormalized target density g

for i = 1, ..., N do
1. Compute acceptance probability αk(x

k
i) = min

{
1,

g(xk
i)

cpk(xk
i)

}
.

2. Draw u uniformly from [0, 1] and x′ from µk
τ .

3. Set xk+1
i =

{
xk
i , if u ≤ α(xk

i),

x′ if u > α(xk
i).

4. Compute αk(x
k+1
i) = min

{
1,

g(xk+1
i)

cpk(xk+1
i)

}
.

5. Set pk+1(xk+1
i) = pk(xk+1

i)(αk(x
k+1
i) + 1− E[αk(Xk)]).

end for

Output:
{

- Samples xk+1
1 , ..., xk+1

N of µk+1
τ .

- Density values pk+1(xk+1
1), ..., pk+1

τ (xk+1
N).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 6 Density Evaluation of Importance Corrected Neural JKO Models
Input: x ∈ Rd, model (X0, ..., XK)

if K = 0 then
Return latent density p0(x).

else if the last step is a rejection step then
1. Evaluate pK−1(x) by applying this algorithm for (X0, ..., XK−1).
2. Return pK(x) = pK−1(αk(x) + 1− E[αk(Xk−1)])

else ▷ last step is a neural JKO step
1. Solve the ODE system (with vθ from the neural JKO step)(

żθ(x, t)

ℓ̇θ(x, t)

)
=

(
vθ(x, t)

trace(∇vθ(zθ(x, t), t))

)
,

(
zθ(x, τ)
ℓθ(x, τ)

)
=

(
x
0

)
.

2. Set x̃ = zθ(x, 0).
3. Evaluate pK−1(x̃) by applying this algorithm for (X0, ..., XK−1).
4. Return pK(x) = pK−1(x̃) exp(ℓθ(x, 0)).

end if
Output: Density pK(x)

covariance kernel, yi is some data and a is a hyperparameter. For details on this example
and the specific parameter choice we refer to Matthews et al. (2022).

E.2 ERROR MEASURES

We use the following error measures.

- The energy distance was proposed by Székely (2002) and is defined by

D(µ, ν) = −1

2

∫
Rd

∫
Rd

∥x− y∥d(µ− ν)(x)d(µ− ν)(y).

It is the maximum mean discrepancy with the negative distance kernel K(x, y) = −∥x− y∥
(see Sejdinovic et al., 2013) and can be estimated from below and above by the Wasserstein-1
distance (see Hertrich et al., 2024). It is a metric on the space of probability measures.
Consequently, a smaller energy distance indicates a higher similarity of the input distri-
butions. By discretizing the integrals it can be easily evaluated based on N ∈ N samples
x = (xi)i ∼ µ⊗N , y = (yi)i ∼ ν⊗N as

D(x,y) =

N∑
i,j=1

∥xi − yj∥ −
1

2

N∑
i,j=1

∥xi − xj∥ −
1

2

N∑
i,j=1

∥yi − yj∥.

We use N = 50000 samples in Table 1.
- We also evaluate the squared Wasserstein-2 distance which is defined in Section 2. To this

end, we use the Python Optimal Transport package (POT, Flamary et al., 2021). Note that
computing the Wasserstein distance has complexity O(n3) where n is the number of points.
Hence, we evaluate the Wasserstein distance based on less samples compared to the case of
other metrics. We use N = 5000 samples in Table 3. In addition, we want to highlight that
the expected Wasserstein distance evaluated on empirical measures instead of its continuous
counterpart suffers from the curse of dimensionality. In particular, its sample complexity
scales as O(n−1/d) (Peyré & Cuturi, 2019, Chapter 8.4.1). Consequently, the sample-based
Wasserstein distance in high dimensions can differ significantly from the true Wasserstein
distance of the continuous distributions. Indeed, we can see in Table 3 that the sampling
error has often the same order of magnitude as the reported errors. Overall we can draw
similar conclusions from this evaluation as for the energy distance in Table 1.

- We estimate the log normalizing constant (short log(Z) estimation) which is used as a
benchmark standard in various references (e.g., in Arbel et al., 2021; Matthews et al., 2022;

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 3: We report the expected squared empirical Wasserstein-2 distance (W 2
2) and its standard

deviation between generated and ground truth samples of size N = 5000 for the different methods
and for all examples where the ground truth model is known. A smaller value of W 2

2 indicates a
better result. Note that the curse of dimensionality present in the sample complexity, might limit the
reliability of the results for the high-dimensional examples. In particular for the funnel distribution,
we observe that the expected empirical Wasserstein-2 distance between two independent sets of
ground truth samples is higher than the observed W 2

2 values.

Sampler

Distribution MALA HMC DDS CRAFT Neural JKO Neural JKO IC (ours) Sampling Error

Mustache 4.7× 10+1 ± 1.3× 10+1 2.8× 10+1 ± 4.2× 100 5.2× 10+1 ± 2.0× 100 5.4× 10+1 ± 1.2× 10+1 3.0× 10+1 ± 1.3× 10+1 1.7× 10+1 ± 6.0× 100 1.2× 10+1

shifted 8 Modes 5.5× 10−2 ± 6.9× 10−3 4.7× 10−3 ± 3.6× 10−3 8.7× 10−2 ± 3.1× 10−2 2.4× 10−1 ± 2.4× 10−3 5.6× 10−1 ± 1.6× 10−2 6.5× 10−3 ± 2.1× 10−3 7.4× 10−3

shifted 8 Peaky 5.8× 10−2 ± 2.4× 10−2 5.6× 10−1 ± 1.4× 10−2 1.0× 10−1 ± 2.5× 10−2 2.5× 10−1 ± 1.1× 10−1 5.9× 10−1 ± 1.7× 10−2 7.2× 10−3 ± 1.3× 10−3 5.6× 10−3

Funnel 5.5× 10+2 ± 1.2× 10+2 7.4× 10+2 ± 5.6× 10+2 5.3× 10+2 ± 7.5× 10+1 7.9× 10+2 ± 4.4× 10+2 9.4× 10+2 ± 9.3× 10+2 8.5× 10+2 ± 3.9× 10+2 1.0× 10+3

GMM-10 3.8× 100 ± 4.2× 10−1 3.8× 100 ± 3.9× 10−1 3.8× 10−1 ± 1.1× 10−1 2.4× 100 ± 1.0× 100 6.3× 10−1 ± 1.4× 10−1 1.4× 10−1 ± 2.3× 10−2 1.4× 10−1

GMM-20 8.9× 100 ± 4.0× 10−1 9.0× 100 ± 3.9× 10−1 8.8× 10−1 ± 1.0× 10−1 7.9× 100 ± 1.5× 100 1.2× 100 ± 2.0× 10−1 3.7× 10−1 ± 5.0× 10−2 3.7× 10−1

GMM-50 2.7× 10+1 ± 1.0× 100 2.7× 10+1 ± 9.8× 10−1 3.6× 100 ± 8.9× 10−1 2.6× 10+1 ± 2.6× 100 4.4× 100 ± 7.9× 10−1 1.2× 100 ± 1.3× 10−1 1.2× 100

GMM-100 5.7× 10+1 ± 1.2× 100 5.7× 10+1 ± 1.3× 100 9.9× 100 ± 2.9× 100 5.6× 10+1 ± 1.1× 100 1.1× 10+1 ± 2.7× 100 2.9× 100 ± 4.7× 10−1 2.8× 100

GMM-200 1.2× 10+2 ± 2.8× 100 1.2× 10+2 ± 2.8× 100 2.4× 10+1 ± 4.0× 10+1 1.1× 10+2 ± 3.0× 100 2.4× 10+1 ± 3.9× 100 7.8× 100 ± 6.9× 10−1 5.9× 100

Table 4: We report the mode MSEs for the different methods for all examples which can be represented
as mixture model. A smaller mode MSE indicates a better result.

Sampler

Distribution MALA HMC DDS CRAFT Neural JKO Neural JKO IC (ours)

shifted 8 Modes 3.2× 10−3 ± 1.3× 10−4 1.9× 10−5 ± 1.1× 10−5 8.8× 10−3 ± 2.2× 10−3 3.2× 10−2 ± 6.1× 10−3 8.3× 10−2 ± 1.0× 10−3 1.3× 10−5 ± 4.4× 10−6

shifted 8 Peaky 8.3× 10−2 ± 3.7× 10−4 7.8× 10−2 ± 9.9× 10−4 7.9× 10−3 ± 2.2× 10−3 3.3× 10−2 ± 1.3× 10−2 8.4× 10−2 ± 6.7× 10−4 1.5× 10−5 ± 3.2× 10−6

GMM-10 1.2× 10−2 ± 5.5× 10−3 1.0× 10−2 ± 5.8× 10−3 3.6× 10−3 ± 1.9× 10−3 1.4× 10−1 ± 4.7× 10−2 1.1× 10−2 ± 5.6× 10−3 2.1× 10−5 ± 3.0× 10−6

GMM-20 6.6× 10−3 ± 2.2× 10−3 6.6× 10−3 ± 2.4× 10−3 3.6× 10−3 ± 1.5× 10−3 3.8× 10−1 ± 3.9× 10−2 7.3× 10−3 ± 2.8× 10−3 2.4× 10−5 ± 9.8× 10−6

GMM-50 1.0× 10−2 ± 3.8× 10−3 9.8× 10−3 ± 3.6× 10−3 9.6× 10−3 ± 4.9× 10−3 9.0× 10−1 ± 6.4× 10−5 1.2× 10−2 ± 4.4× 10−3 2.6× 10−5 ± 6.0× 10−6

GMM-100 1.1× 10−2 ± 5.4× 10−3 1.1× 10−2 ± 5.4× 10−3 1.1× 10−2 ± 5.8× 10−3 9.0× 10−1 ± 4.8× 10−8 1.4× 10−2 ± 7.0× 10−3 1.5× 10−4 ± 8.5× 10−5

GMM-200 1.4× 10−2 ± 5.1× 10−3 1.4× 10−2 ± 4.6× 10−3 2.2× 10−2 ± 8.6× 10−3 9.0× 10−1 ± 5.8× 10−8 1.9× 10−2 ± 6.3× 10−3 6.8× 10−4 ± 4.0× 10−4

Phillips et al., 2024; Vargas et al., 2023a). More precisely, for the generated distribution µ
with normalized density p and target measure ν with density q(x) = g(x)/Zg we evaluate
the term

Ex∼µ

[
log

(
g(x)

p(x)

)]
= log(Zg)− Ex∼µ

[
log

(
p(x)

q(x)

)]
= log(Zg)−KL(µ, ν).

Due to the properties of the KL divergence, a higher log(Z) estimate implies a lower
KL divergence between µ and ν and therefore a higher similarity of generated and target
distribution. In our experiments we compute the log(Z) estimate based on N = 50000
samples. The results are given in Table 2.

- To quantify how well the mass is distributed on different modes for the mixture model
examples (shifted 8 Modes, shifted 8 Peaky, GMM-d), we compute the mode weights. That
is, we generate N = 50000 samples and assign each generated samples to the closest mode
of the GMM. Afterwards, we compute for each mode the fraction of samples which is
assigned to each mode. To evaluate this distribution quantitatively, we compute the mean
square error (MSE) between the mode weights of the generated samples and the ground
truth weights from the GMM. We call this error metric the mode MSE, give the results are
in Table 4.

Remark 16 (Bias in log(Z) Computation). In the cases, where the importance corrected neural JKO
sampling fits the target distribution almost perfectly, we sometimes report in Table 2 log(Z) estimates
which are slightly larger than the ground truth. This can be explained by the fact that the density
evaluation of the continuous normalizing flows uses the Hutchinson trace estimator for evaluating
the divergence and a numerical method for solving the ODE. Therefore, we have a small error in
the density propagation of the neural JKO steps. This error is amplified by the rejection steps since
samples with underestimated density are more likely to be rejected than samples with overestimated
density.

We would like to emphasize that this effect only appears for examples, where the energy distance
between generated and ground truth samples is in the same order of magnitude like the average
distance between two different sets of ground truth samples (see Table 1). This means that in the
terms of the energy distance the generated and ground truth distribution are indistinguishable. At the
same time the bias in the log(Z) estimate appears at the third or fourth relevant digit meaning that it
is likely to be negligible.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.3 ADDITIONAL FIGURES AND EVALUATIONS

Additionally to the results from the main part of the paper, we provide the following evaluations.

Visualization of the Rejection Steps In Figure 1 and with involved steps in Figure 2, we visualize
the different steps of our importance corrected neural JKO model on the shifted 8 Peaky example.
Due to the shift of the modes, the modes on the right attract initially more mass than the ones on the
left. In the rejection layers, we can see that samples are mainly rejected in oversampled regions such
that the mode weights are equalized over time. This can also be seen in Figure 3, where we plot the
weights of the different modes over time. We observe, that these weights are quite imbalanced for the
latent distribution but are equalized over the rejection steps until they reach the ground truth value.

(Marginal) Plots of Generated Samples Despite the quantitative comparison of the methods in
the Tables 1, 2 and 4, we also plot the first to coordinates of generated samples for the different test
distributions for all methods for a visual comparison.

In Figure 4, we plot samples of the shifted 8 Modes example. We can see that all methods roughly
cover the ground truth distribution even though CRAFT and DDS have slight and the uncorrected
neural JKO scheme has a severe imbalance in the assigned mass for the different modes.

For the shifted 8 Peaky example in Figure 5, we see that this imbalance increases drastically for
CRAFT, HMC, MALA and the uncorrected neural JKO. Also DDS has has a slight imbalance, while
the importance corrected neural JKO scheme fits the ground truth almost perfectly.

The Funnel distribution in Figure 6 has two difficult parts, namely the narrow but high-density funnel
on the left and the wide moderate density fan on the right. We can see that DDS does cover none
of them very well. Also MALA, CRAFT and the uncorrected neural JKO do not cover the end of
the funnel correctly and have also difficulties to cover the fan. HMC covers the fan well, but not the
funnel. Only our importance corrected neural JKO scheme covers both parts in a reasonable way.

For the Mustache distribution in Figure 7, the critical parts are the two heavy but narrow tails.
We observe that CRAFT and DDS are not able to cover them at all, while HMC and MALA and
uncorrected neural JKO only cover them only partially. The importance corrected neural JKO covers
them well.

Finally, for the GMM-d example we consider the dimensions d = 10 and d = 200 in the Figures 8
and 9. We can see that CRAFT mode collapses, i.e., for d = 10 it already finds some of the modes
and for d = 200 it only finds one mode. DDS, HMC, MALA and the uncorrected neural JKO find all
modes but do not distribute the mass correctly onto all modes. While this already appears for d = 10
it is more severe for d = 200. The importance corrected neural JKO sampler finds all modes and
distributes the mass accurately.

Development of Error Measures over the Steps We plot how the quantities of interest decrease
over the application of the steps of our model. The results are given in the Figure 10. It can be
observed that the different steps may optimize different metrics. While the rejection steps improve
the log(Z) estimate more significantly, the JKO steps focus more on the minimization of the energy
distance. Overall, we see that in all figures the errors decrease over time.

E.4 IMPLEMENTATION DETAILS

To build our importance corrected neural JKO model, we first apply n1 ∈ N JKO steps followed by
n2 ∈ N blocks consisting out of a JKO step and three importance-based rejection steps. The velocity
fields of the normalizing flows are parameterized by a dense three-layer feed-forward neural network.
For the JKO steps, we choose an initial step size τ0 > 0 and then increase the step size exponentially
by τk+1 = 4τk. The choices of n1, n2, τ0 and the number of hidden neurons from the networks is
given in Table 5 together with the execution times for training and sampling. For evaluating the density
propagation through the CNFs, we use the Hutchinson trace estimator with 5 Rademacher distributed
random vectors whenever d > 5 and the exact trace evaluation otherwise. For implementing the
CNFs, we use the code from Ffjord (Grathwohl et al., 2019) and the torchdiffeq library by Chen
(2018). We provide the code in the supplementary material.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 5: Parameters, training and sampling times for the different examples. For the sampling time
we draw N = 50000 samples once the method is trained. The execution times are measured on a
single NVIDIA RTX 4090 GPU with 24 GB memory.

Distribution

Parameter Mustache shifted 8 Modes shifted 8 Peaky Funnel GMM-10 GMM-20 GMM-50 GMM-100 GMM-200 LGCP

Dimension 2 2 2 10 10 20 50 100 200 1600
Number n1 of flow steps 6 2 2 6 4 4 4 4 5 3

Number n2 of rejection blocks 6 4 4 6 6 6 7 8 8 6
Initial step size τ0 0.05 0.01 0.01 5 0.0025 0.0025 0.0025 0.0025 0.001 5
Hidden neurons 54 54 54 256 70 90 150 250 512 1024

batch size 5000 5000 5000 5000 5000 5000 5000 5000 2000 500
Required GPU memory 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 6 GB 11 GB

Training time (min) 38 20 21 107 33 34 44 53 80 163
Sampling time (sec) 15 2 3 79 22 23 72 129 473 535

For the MALA and HMC we run an independent chain for each generated samples and perform
50000 steps of the algorithm. For HMC we use 5 momentum steps and set the step size to 0.1 for
8Modes and Funnel and step size 0.01 for mustache. To stabilize the first iterations of MALA and
HMC we run the first iterations with smaller step sizes (0.01 times the final step size in the first 1000
iterations and 0.1 times the final step size for the second 1000 iterations). For MALA we use step
size 0.001 for all examples. For DDS and CRAFT we use the official implementations. In particular
for the test distributions such as Funnel and LGCP we use the hyperparameters suggested by the
original authors. For the other examples we optimized them via grid search.

F COMPUTATIONAL ASPECTS OF NORMALIZING FLOWS

In this appendix, we give some more details about the computational aspects of the normalizing flows
in our model. First, we discuss the relation between multimodal target distributions, mode collapse
and non-convex loss functions of normalizing flows. Afterwards, we discuss some computational
aspects of continuous normalizing flows like ODE discretizations and density evaluations with trace
estimators. Finally, we run some standard normalizing flow networks on our numerical example
distributions and compare them with our importance corrected neural JKO sampling.

F.1 MULTIMODALITIES, MODE COLLAPSE AND NON-CONVEX LOSS FUNCTIONS

For the sampling application, normalizing flows are usually trained with the reverse KL loss function
F(µ) = KL(µ, ν), see, e.g., Marzouk et al. (2016). More precisely, a normalizing flow aims to learn
the parameters θ of a family of diffeomorphisms Tθ such that Tθ#µ0 ≈ ν by minimizing F(Tθ#µ0).
In the case that ν is multimodal it can be observed that this training mode collapses. That is, the
approximation T#µ0 covers not all of the modes of ν but instead neglects some of them. Examples
of this phenomenon can be seen in the numerical comparison in Appendix F.3. One reason for this
effect is that the functional F is convex if and only if ν is log-concave and therefore unimodal, see
(Ambrosio et al., 2005, Prop. 9.3.2). In particular, for multimodal ν, the functional F is non-convex.
In the latter case of, then the mode collapses can correspond to the convergence to a local minimum,
as the following example shows.
Example 17. We consider the case d = 1 and the target distribution

ν = 1
2N (− 1

2 , 0.05
2) + 1

2N (12 , 0.05
2).

As latent distribution µ0 we choose a standard Gaussian. Then, we parametrize the normalizing flow
Tθ = (1− θ)T0 + θT1 for θ ∈ [0, 1], where T0 is the optimal transport map between µ0 and ν and T1
is the optimal transport map between µ0 and N (12 , 0.05

2). In particular, Tθ#µ0 perfectly recovers
the target distribution for θ = 0 and produces a mode collapsed version of it for θ = 1. Now, we plot
the reverse KL loss function L(θ) = KL(Tθ#µ0, ν) and the densities of the generated distributions
Tθ#µ0 in Figure 11. We observe that it has two local minima for θ = 0 and θ = 1 (for θ outside
of [0, 1], T is no longer invertible), where θ = 0 is the perfectly learned parameter and θ = 1 is
the mode collapsed version. At the same time, we note that the curve θ 7→ Tθ#µ0 is a geodesic in
the Wasserstein space. In particular, the non-convexity of L is a direct consequence of the fact that
F(µ) = KL(µ, ν) is geodesically non-convex.
Remark 18 (Motivation of Wasserstein Regularization). This connection between the non-convexity
of the loss function F and mode collapse also motivates the Wasserstein regularization from Section 3.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

By considering the loss function G(µ) = F(µ) + 1
2τW

2
2 (µ, µ

k
τ) for τ > 0 small enough instead of F ,

we obtain a loss function which is convex in the Wasserstein space, see (Ambrosio et al., 2005, Lem.
9.2.7). Even though this does not imply that the map θ 7→ G(Tθ#µ0) is convex, we can expect that
the training does not get stuck in local minima as long as the architecture of Tθ is expressive enough.

Theoretically, we need for λ-convex F that τ ≤ 1
λ to ensure that G is geodesically convex. However, if

µk is already close to a minimum of F , then it can be sufficient that the functional G is convex locally
around µk. In this case, the distribution generated by the CNF will stay in this neighborhood. Note
that in practice the constant λ is unknown such that we start with a small step size τ0 and increase it
over time as outlined at the end of Section 4 and in Appendix E.4.

F.2 COMPUTATIONAL LIMITATIONS OF (CONTINUOUS) NORMALIZING FLOWS

Similar to the literature on neural JKO schemes (Vidal et al., 2023; Xu et al., 2024), our implemen-
tation of the neural JKO scheme relies on continuous normalizing flows (Chen et al., 2018). This
comes with some limitations and challenges, which were extensively discussed in (Chen et al., 2018).
Since they are relevant for our method, we give a synopsis below.

Derivatives of ODE Solutions For the training phase we need the derivative of the solution of
an ODE. For this, we use the torchdiffeq package (Chen, 2018). In particular, this package
does not rely backpropagation through the steps from the forward solver. Instead, it overwrites the
backward pass of the ODE by solving an adjoint ODE. This avoids expensive tracing in the automatic
differentiation process within the forward pass and keeps the memory consumption low. Moreover,
the quadratic regularization of the velocity field leads to straight paths such that the adaptive solvers
only require a few steps for solving the ODE, see (Onken et al., 2021) for a detailed discussion.
Indeed, we use in our numerical examples the dopri5 solver from torchdiffeq, which is an
adaptive Runge-Kutta method. However, we still have to solve two ODEs during the training time.
This still can be computational costly, in particular when the underlying model is large.

Trace Estimation for Density Computations In order to evaluate the (log-)density of our model,
we have to compute the divergence div vθ = trace(∇vθ(zθ(x, t), t)) of the learned vector field vθ
(and integrate it over time), see (6). Computing the trace of the Jacobian of vθ becomes computational
costly in high dimensions. As a remedy, we consider the Hutchinson trace estimator (Hutchinson,
1989), which states that for any matrix A and a random vector z with mean zero and identity
covariance matrix it holds that E[zTAz] = trace(A). Applying this estimator to the divergence,
we obtain that the divergence coincides with E[zT∇vθ(zθ(x, t), t)z]. The integrand is now again
a Jacobian-vector product which can be computed efficiently. Finally, we estimate the trace by
empirically discretizing the expectation by finitely many realizations of z.

In our numerics, we choose z to be Rademacher random vectors, i.e. each entry is with probability
1
2 either −1 or 1. For the training of the continuous normalizing flow, an unbiased low-precision
estimator is sufficient, such that we discretize the expectation with one realization of z. During
evaluation, we require a higher precision and use 5 realizations instead.

Initialization In order to find a stable initialization of the model, we initialize the last layer of the
velocity field vθ with zeros such that it holds vθ(x, t) = 0 for all x ∈ Rd, t ∈ [0, τ]. In this case, the
solution zθ of the ODE żθ = vθ with initial condition zθ(x, 0) = x is given by zθ(x, t) = x for all
t. In particular, we have that the transport map Tθ = zθ(x, τ) is the identity such that the generated
distribution Tθ#µ0 coincides with the latent distribution for the initial parameters.
Remark 19 (Other Normalizing Flow Architectures). In general any architecture Tθ of normalizing
flows can be considered in the neural JKO scheme. To this end, we can replace the velocity field
regularization in (4) by the penalizer

∫
Rd ∥Tθ(x)−x∥2dµk

τ . By Breniers’ theorem (Brenier, 1987) this
is again equivalent to minimizing the Wasserstein distance. However, while discrete-time normalizing
flows like coupling-based networks (Dinh et al., 2016; Kingma & Dhariwal, 2018) and autoregressive
flows (De Cao et al., 2020; Durkan et al., 2019; Huang et al., 2018; Papamakarios et al., 2017) are
often faster than CNFs, this is not generally true in our setting, since their evaluation time does not
benefit from the OT-regularization. Additionally, we observed numerically that the expressiveness
of discrete-time architectures scale much worse to high dimensions and are less stable to train.
Nevertheless, the evaluation can be cheaper and the density evaluation since these architectures

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 6: Comparison of neural JKO IC with normalizing flows trained with the reverse KL loss
function. We evaluate the energy distance (smaller values are better), the log(Z)-estimation (larger
values are better) and the expected squared empirical Wasserstein distance (smaller values are better).

Energy distance log(Z)-estimation squared Wasserstein-2

Distribution continuous NF coupling NF neural JKO IC continuous NF coupling NF neural JKO IC continuous NF coupling NF neural JKO IC

Mustache 2.1× 10−2 4.9× 10−3 2.9× 10−3 −7.1× 10−2 −2.2× 10−2 −7.3× 10−3 3.8× 10+1 3.1× 10+1 1.7× 10+1

shifted 8 Modes 4.1× 10−1 4.1× 10−2 1.2× 10−5 −1.4× 100 −4.3× 10−1 +5.1× 10−6 1.4× 100 2.2× 10−1 6.5× 10−3

shifted 8 Peaky 5.7× 10−1 5.8× 10−1 3.4× 10−5 −2.1× 100 −2.1× 100 −2.1× 10−3 1.8× 100 1.8× 100 7.2× 10−3

Funnel 1.9× 10−1 2.2× 10−3 1.4× 10−2 −9.4× 10−1 −2.8× 10−2 −7.1× 10−3 3.8× 10+2 8.1× 10+2 8.5× 10+2

GMM-10 5.4× 10−1 5.3× 10−1 5.2× 10−5 −2.3× 100 −2.3× 100 +3.5× 10−3 3.4× 100 3.5× 100 1.4× 10−1

GMM-20 1.1× 100 1.1× 100 1.1× 10−4 −2.4× 100 −2.3× 100 +6.4× 10−3 9.5× 100 9.4× 100 3.7× 10−1

do not have to deal with trace estimators. Residual architectures (Behrmann et al., 2019; Chen
et al., 2019) is at least similar to continuous normalizing flows, but they are very expansive to train
and evaluate, and additionally rely on trace estimators for computing the density of the generated
samples.

F.3 NUMERICAL COMPARISON

Finally, we compare our neural JKO IC scheme with standard normalizing flows trained with the
reverse KL loss function as proposed in Marzouk et al. (2016). In particular, we aim to demonstrate
the benefits of our neural JKO IC scheme to avoid mode collapse.

To this end, we train two architectures of normalizing flows for our examples using the reverse KL
loss function as proposed in Marzouk et al. (2016). First, we use a continuous normalizing flow with
the same architecture as used in the neural JKO (IC). That is, we parameterize the velocity field vθ
by a dense neural network with three hidden layers and the same hidden dimensions as in Table 5.
Second, we compare with a coupling network with 5 Glow-coupling blocks (Kingma & Dhariwal,
2018), where the coupling blocks have two hidden layers with three times the hidden dimension
as in Table 5. We found numerically that choosing larger architectures does not bring significant
advantages.

We plot some generated distributions of the continuous and coupling normalizing flows as well as
the neural JKO IC scheme in Figure 12. As we have already seen in the previous examples, the
neural JKO IC scheme is able to recover multimodal distributions almost perfectly. On the other
side, the normalizing flow architectures always collapse to one or a small number of modes. We
additionally report the error measures in Table 6. We can see that neural JKO IC performs always
better than the normalizing flow architectures (note that for the Funnel distribution all W 2

2 -values are
below the sampling error reported in Table 3). For multimodal distributions, the normalizing flow
approximations are by several orders of magnitude worse than neural JKO IC, while they work quite
well for unimodal distributions (Mustache and Funnel).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 2: Visualization of the steps of the importance corrected neural JKO model for the shifted 8
Peaky example. We start at the top left with the latent distribution and apply in each image one step
from the model. The red color indicates samples which are rejected in the next step and the green
color marks the resampled points.

0 2 4 6 8 10 12 14 16 18
layer

0.05

0.10

0.15

0.20

0.25

0.30

we
ig

ht
 m

as
s

Mode weight convergence - 8 Peaky
mode 1
mode 2
mode 3
mode 4
mode 5
mode 6
mode 7
mode 8
rejection layer
normalizing flow layer
truth = 0.125

Figure 3: Plot of the mode weights for the 8 Peaky example over the different layers of the importance
corrected neural JKO model. We observe that the weights are mainly changed by the rejection steps
and not by the neural JKO steps.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 4: Sample generation with various methods for shifted 8 Modes example with ground truth
samples and generated samples for each associated method. While most methods recover the
distribution well, we can see a imbalance in the modes for the uncorrected neural JKO, CRAFT and
DDS.

Figure 5: Sample generation with various methods for shifted 8 Peaky mixtures with ground truth
samples and generated samples for each associated method. We can see a severe imbalance among
the modes for HMC, MALA, CRAFT and neural JKO. Also DDS has a slight imbalance between the
modes. 32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 6: Marginalized sample generation with various methods for the d = 10 funnel distribution
with ground truth samples and generated samples for each associated method. We observe that only
the importance corrected neural JKO covers the thin part of the funnel well.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 7: Sample generation with various methods for the d = 2 mustache distribution with ground
truth samples and generated samples for each associated method. We can see that MALA, CRAFT
and DDS have difficulties to model the long tails of the distribution properly.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 8: Marginalized sample generation with various methods for the GMM-10 distribution with
ground truth samples and generated samples for each associated method. We observe that CRAFT
mode collapses and that only the importance corrected neural JKO model distributes the mass
correctly onto the modes.

Figure 9: Marginalized sample generation with various methods for the GMM-200 distribution
with ground truth samples and generated samples for each associated method. We observe that
CRAFT mode collapses and that only the importance corrected neural JKO model distributes the
mass correctly onto the modes.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Mustache

0 5 10 15 20 25 30
layer

10 2

10 1
rejection layer
normalizing flow layer
energy distance

0 5 10 15 20 25 30
layer

10 2

10 1

100

101

102 rejection layer
normalizing flow layer
log Z estimation error

shifted 8 Modes

0 2 4 6 8 10 12 14 16 18
layer

10 4

10 3

10 2

10 1 rejection layer
normalizing flow layer
energy distance

0 2 4 6 8 10 12 14 16 18
layer

10 2

10 1

100

101
rejection layer
normalizing flow layer
log Z estimation error

shifted 8 Peaky

0 2 4 6 8 10 12 14 16 18
layer

10 5

10 4

10 3

10 2

10 1 rejection layer
normalizing flow layer
energy distance

0 2 4 6 8 10 12 14 16 18
layer

10 2

10 1

100

101

102
rejection layer
normalizing flow layer
log Z estimation error

Funnel

0 5 10 15 20 25 30
layer

10 2

10 1

rejection layer
normalizing flow layer
energy distance

0 5 10 15 20 25 30
layer

10 2

10 1

100

rejection layer
normalizing flow layer
log Z estimation error

GMM-10

0 5 10 15 20 25
layer

10 4

10 3

10 2

10 1
rejection layer
normalizing flow layer
energy distance

0 5 10 15 20 25
layer

10 4

10 3

10 2

10 1

100

101

102 rejection layer
normalizing flow layer
log Z estimation error

Figure 10: We plot the energy distance (left) and log(Z) estimate (right) over the steps of our
importance corrected neural JKO method for different examples. We observe that the error measures
decrease in the beginning and then saturate at some value.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Non-convex loss function L(θ) = KL(Tθ#µ0, ν)

0.0 0.2 0.4 0.6 0.8 1.0
parameter

0

5

10

15

20

Lo
ss

 fu
nc

tio
n

KL
(T

#
0,

)

Density of Tθ#µ0 for different values of θ

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

8

θ = 0

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

8

θ = 1
3

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

8

θ = 2
3

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

8

θ = 1

Figure 11: Illustration of the loss function [0, 1] ∋ θ 7→ L(θ) = KL(Tθ#µ0, ν) and the densities of
the generated distributions Tθ#µ0 from Example 17. Both values θ = 0 and θ = 1 correspond to
local minima (note that L(1) > 0 = L(0)). In particular θ = 1 corresponds to the case of mode
collapse.

8 Modes 8 Peaky GMM-10 GMM-20

Figure 12: Marginalized sample generation for a single normalizing flow compared with neural JKO
IC for different example distributions with ground truth samples and generated samples for each
associated method. We observe that the standard normalizing flow architectures always collapse to
one or few modes while neural JKO IC recovers all modes correctly.

37

	Introduction
	Preliminaries
	Wasserstein Spaces and Absolutely Continuous Curves
	Continuous Normalizing Flows and OT-Flows

	Neural JKO Scheme
	Piecewise Geodesic Interpolation
	Neural JKO Sampling

	Importance-Based Rejection Steps
	Numerical Results
	Conclusions
	Background on Wasserstein Spaces
	Proofs and Examples from Section 3
	Examples fulfilling Assumption 4
	Proof of Corollary 5
	Proof of Theorem 6

	Proofs from Section 4
	Proof of Proposition 8
	Proof of Corollary 9

	Algorithms
	Training and Evaluation Algorithms
	Density Evaluation of Importance Corrected Neural JKO Models

	Additional Numerical Results and Implementation Details
	Test Distributions
	Error Measures
	Additional Figures and Evaluations
	Implementation Details

	Computational Aspects of Normalizing Flows
	Multimodalities, Mode Collapse and Non-Convex Loss Functions
	Computational Limitations of (Continuous) Normalizing Flows
	Numerical Comparison

