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Abstract
Understanding and analyzing markets is crucial,
yet analytical equilibrium solutions remain largely
infeasible. Recent breakthroughs in equilibrium
computation rely on zeroth-order policy gradient
estimation. These approaches commonly suffer
from high variance and are computationally ex-
pensive. The use of fully differentiable simulators
would enable more efficient gradient estimation.
However, the discrete allocation of goods in eco-
nomic simulations is a non-differentiable oper-
ation. This renders the first-order Monte Carlo
gradient estimator inapplicable and the learning
feedback systematically misleading. We propose
a novel smoothing technique that creates a surro-
gate market game, in which first-order methods
can be applied. We provide theoretical bounds
on the resulting bias which justifies solving the
smoothed game instead. These bounds also al-
low choosing the smoothing strength a priori such
that the resulting estimate has low variance. Fur-
thermore, we validate our approach via numerous
empirical experiments. Our method theoretically
and empirically outperforms zeroth-order meth-
ods in approximation quality and computational
efficiency.

1. Introduction
Auctions are at the center of modern economic theory. Given
some private valuation of goods available for purchase, par-
ticipants must place bids on the market that maximize their
expected payoff while remaining unaware of the other par-
ticipants’ valuations. In the seminal paper (Vickrey, 1961)
the foundation for most auction theory results of today was
laid. It is crucial to understand the strategic behavior in

1School of Computation, Information and Technology, Tech-
nical University of Munich. Correspondence to: Nils Kohring
<nils.kohring@tum.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

various auction applications, ranging from treasury and in-
dustrial procurement auctions to spectrum sales. Depending
on the circumstances and behavioral assumptions, optimal
strategies may differ drastically, starting from strategies,
such as understating demand (bid-shading) (Krishna, 2009)
and overstating demand (overbidding) (Ott & Beck, 2013),
or much more convoluted strategies. However, computing
such equilibria and approximations a priori remains chal-
lenging. Analytical equilibria can only be derived under
strong assumptions such as in single-item auctions or the
independent private values model.

A recent approach based on policy optimization uses ran-
domized finite difference approximations of the gradient
(Bichler et al., 2021). They proposed an algorithm called
neural pseudogradient ascent (NPGA), which parametrizes
the bidding strategies using neural networks and follows
the approximate gradient dynamics of the game via simul-
taneous gradient ascent of all agents. The gradients are
computed via evolution strategies (ES) (Salimans et al.,
2017), which smoothen the objective by adding noise in
the parameter space, thereby treating the environment as a
black box. Compared with the well-known REINFORCE
algorithm, where the actions are perturbed, this also results
in zeroth-order gradient estimates with better precision and
lower variance but much higher computational cost.

Under the differentiable programming paradigm, there is a
growing interest in computing gradients for numerous re-
inforcement learning applications that allow for first-order
gradient estimates. It is possible to create a full compu-
tational graph for applications with a certain amount of
structure. First-order methods have the advantage of much
lower variance, which leads to faster convergence rates to
local minima of non-convex objective functions (Mohamed
et al., 2020). However, there are two common problems in
employing first-order methods. First, most reinforcement
learning environments are provided only as black boxes.
This implies that there is no explicit access to the underly-
ing state transition function and the gradient can only be
estimated by repeatedly evaluating the reward function. The
wide applicability of zeroth-order policy optimization, like
REINFORCE and more advanced actor-critic techniques
(Schulman et al., 2017), contributes to their popularity. Sec-
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ond, in some applications, such as the training of varia-
tional autoencoders, the computational path of the derivate
is blocked (i.e., repeatably applying the chain rule to calcu-
late the gradient of the reward with respect to the parameters
of the policy) because it consists of sampling a random vari-
able, which is a non-differentiable operation (Bangaru et al.,
2021).

The situation is similar in auction games. The allocation
of indivisible goods causes biased gradients of first-order
methods. Example 1.1 showcases this observation. It was
observed that the first-order Monte Carlo gradient estimate
does not converge to equilibrium and quickly causes con-
sistent zero-bidding (Bichler et al., 2021). From a mathe-
matical standpoint, the single-sample (ex post) utility has a
discontinuity. Thus, the sample mean of its exact gradients
is an inadequate estimate for its true (ex ante) utility gradient
(the expected utility over all possible valuations).

Example 1.1. Consider a first-price sealed-bid (FPSB)
single-item auction. Two bidders compete for a single good,
where the winner pays his or her bid. The derivative of the
utility with respect to the bid is zero for losing bids and
minus one for winning bids after a point of discontinuity.
Either the bidder loses and receives no feedback or wins and
could have won with an even smaller bid.

In this study, we propose transforming multi-agent auction
games such that their utility functions are sufficiently regu-
lar for applying efficient first-order gradient methods while
keeping the overall gradient dynamics close to the original
game. In contrast to the original allocations of indivisible
items, we use soft allocations instead. We effectively treat
the items as divisible and allocate the proportional fraction
of an item to the bidders based on their reported bids. An
additional adaption to the pricing rule eliminates the dis-
continuity at the threshold of winning and losing an object.
However, this comes at the expense of introducing a bias in
the utility function. For example, a losing bidder has zero
utility the original auction. However, in the smoothed auc-
tion, this bidder receives a small fraction of the good (and
pays a correspondingly small price), such that the gradient
indicates that a higher bid would have resulted in higher
utility. The feedback to bid lower when winning remains
of similar magnitude. Thus, there is always appropriate
feedback on the current bidding strategy in the smoothed
game. Figure 1 shows the utility function and its relaxed
version.

This approach is applicable widely to economic models and
general auction formats, such as sequential or simultane-
ous sales of multiple goods, as in combinatorial auctions
with item bidding. It is further independent of the number
of bidders, payment rule, risk preferences of the bidders,
or correlations among the bidders’ valuations. We demon-
strate that the choice of a smoothing parameter follows
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Figure 1. Ex post utility in the original FPSB single-item auction
(blue) and its smoothed version (red) for a temperature of λ = 0.01
and a highest opponent bid of 0.5. The utility in the original auction
is zero for losing bids and decreases linearly for winning bids.

a natural trade-off. Importantly, computing equilibria in
multi-agent games is not straightforward and many negative
results are known (Chasnov et al., 2020; Mazumdar et al.,
2020; Letcher, 2020). Therefore, changes to the game dy-
namics must be implemented with great caution, and we
can prove that an approximate equilibrium in the smoothed
game still constitutes an approximate equilibrium in the
original game.

Computational-wise, the smoothing only comes with the
cost of tracking the gradients of the individual operations,
upon which the game dynamics are built. Compared with
NPGA, learning in the smooth market (SM) via the first-
order estimator is more than ten times faster while yielding
better results. For example, an iteration of NPGA in a small
single-item auction with the default hyperparameters from
(Bichler et al., 2021) takes approximately 0.16 s, whereas
first-order policy gradients applied to the SM take an average
of 0.01 s.

Our contribution can be summarized as follows: We intro-
duce the SM and show that first-order methods provide an
unbiased estimator of the utility gradient of the SM game.
Furthermore, we provide theoretical guarantees showing
that policy improvements in the SM result in improvements
in the original game, and we provide theoretical and em-
pirical insights showing that the empirical variance can be
controlled. Finally, we demonstrate a substantial improve-
ment to previous methods in performance and computational
speed via multiple experiments.

2. Related Work
The theory of learning in games largely considers complete-
information finite games, hence, traditional techniques rely
on discretization. However, it is unclear how well a dis-
cretized strategy performs in the original continuous game
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in general (Waugh et al., 2009) and it suffers from the curse
of dimensionality. The first attempts to compute equilibria
in imperfect-information auction games followed such an
approach (Athey, 2001) or expressed the game as a limit
of a sequence of complete-information games (Armantier
et al., 2008). In larger combinatorial auctions equilibria
were first computed with an algorithm that computes point-
wise best responses in a discretization of the strategy space
via Monte Carlo integration (Bosshard et al., 2020). Besides
the aforementioned NPGA, an approach that similarly learns
continuous-action strategies was proposed (Li & Wellman,
2021). Both algorithms learn bid functions via zeroth-order
gradient estimates that are used during simultaneous gradi-
ent ascent in self-play. Our method considers a continuous
surrogate game and enables the use of first-order gradient
methods.

The idea of analytically smoothing markets is conceptually
similar to that of differentiable physics simulations. Smooth
approximations of the underlying dynamics were used in
these simulations (Huang et al., 2021). Zeroth- and first-
order methods were compared and the pros and cons of both
when available were discussed (Suh et al., 2022). Further-
more, they demonstrated that the presence of discontinuities
in the objective causes the first-order estimator to be bi-
ased, whereas the zeroth-order estimator remains unbiased.
Smooth markets transfer these ideas to auctions.

3. Preliminaries
We restrict the formulations to the case of single-item auc-
tions for brevity in the presentation. The extension to auc-
tions of multiple independent items is straightforward and
we present some experimental results for both cases.

3.1. Auctions as Bayesian Games

A Bayesian auction game is defined as a quintuple G =
(I,A,V, F, u). I = {1, . . . , n} describes the set of bidders
participating in the game. The set of possible bid profiles is
given as A = A1 × · · · × An, where Ai is the set of bids
available to agent i ∈ I. Whereas V = V1 × · · · × Vn is
the set of valuation profiles. F : V → [0, 1] defines the joint
prior probability distribution over valuation profiles, which
is assumed to be common knowledge among all agents
and atomless. Fi denotes agent i’s marginal distribution of
valuations. In this study, the index -i denotes a profile of
valuations, bids, or strategies for all bidders, except bidder i.

At the beginning of the game, nature draws a valuation
profile v ∼ F , and each agent i is informed of his or her
valuation vi ∈ Vi. We denote by Fi the marginal distribution
of bidder i and by F-i|i the conditional distribution of the
opponents given vi. Based on the drawn valuation vi, each
agent submits a bid bi according to the strategy, policy, or

bid function βi: Vi → Ai. We denote the resulting strategy
space of bidder i as Σi ⊆ AVi

i and the space of possible
joint strategies as Σ =

∏
i Σi.

As part of the environment, the auctioneer collects these
bids and applies an auction mechanism that determines al-
locations xi ∈ {0, 1} for each bidder i, such that the item
is allocated to at most one bidder. Also, it determines pay-
ments p(b) ∈ Rn

≥0 according to a payment rule p, which the
agents must pay to the auctioneer. We will consider bidders
with risk-neutral utility functions given by ui: Vi ×A → R,

ui(vi, b) = vi xi(b)− pi(b) (1)

=

{
vi − pi(b) bi > max b-i,

0 else,
(2)

i.e., the players’ utility is given by how much they value the
good allocated to them minus the price to be paid. We will
also write ui(vi, bi, b-i) = ui(vi, b) with a slight abuse of
notation. Thus, the bidders’ utilities depend on all bidders’
actions but only on their own valuations. They aim to maxi-
mize their utility ui. We omit bidders with risk aversion or
other forms of utility and valuation correlations for brevity.
Notwithstanding, our treatment of equilibrium computation
also extends to these settings. We will differentiate between
the ex ante state of the game, where bidders know only the
prior F , the interim state, where bidders additionally know
their valuation vi ∼ Fi, and the ex post state, where all bids
have been submitted; thus, ui(vi, b) can be evaluated.

3.2. Equilibria

Nash equilibria (NE) are often regarded as the central so-
lution concept in game theory. Informally, given the equi-
librium strategy of the opponents in an NE, no agent has
an incentive to unilaterally deviate. Bayesian Nash equi-
libria (BNE) extend this concept to games of incomplete
information. Here, the expected utility over the distribution
of opponent valuations is calculated instead. For a private
valuation vi ∈ Vi, bid bi ∈ Ai, and opponent strategies
β-i ∈ Σ-i, we denote the interim utility of bidder i as

ui(vi, bi, β-i) = Ev-i|vi [ui(vi, bi, β-i(v-i))], (3)

where v-i|vi denotes the expectation over the opponent’s
conditional prior distribution given the valuation vi. We
also denote the interim utility loss of bid bi incurred by not
playing a best response, given vi and β-i by:

ℓi(vi, bi, β-i) = sup
b′i∈Ai

ui(vi, b
′
i, β-i)− ui(vi, bi, β-i). (4)

An ε-Bayes Nash equilibrium (ε-BNE) with ε ≥ 0 is a
strategy profile β∗ = (β∗

1 , . . . , β
∗
n) ∈ Σ, such that no bidder

can improve his or her interim expected utility more than ε
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by deviating. Therefore, in an ε-BNE for all i ∈ I, it holds
that

sup
vi∈Vi

ℓi(vi, β
∗
i (vi), β

∗
-i) ≤ ε. (5)

A 0-BNE is simply called a BNE. In a BNE, every bidder’s
strategy maximizes his or her expected interim utility across
his or her valuation space, given the opponents’ strategies.
While BNEs are often defined at the interim stage of the
game, we also consider ex ante equilibria as strategy profiles
that concurrently maximize each bidder’s ex ante utility

ũi(βi, β-i) = Evi [ui(vi, βi(vi), β-i)]. (6)

To estimate the worst-case interim utility loss ℓmax, we
choose an equidistant grid of ngrid alternative actions rang-
ing from zero to the maximum valuation for all dimensions
and calculate approximate best responses based on the aver-
age utility over a sample of nbatch prior distributions. Taking
the maximum over all valuations and bidders then gives
an estimate of ℓmax, bounding ε for the ex ante case from
above.

As a second metric, we additionally report the probability-
weighted root mean squared error of the learned strategy
βi to the exact BNE strategy β∗

i for those settings where
an analytical BNE is known. For a sample from the prior
valuation of size nbatch, this approximates the L2 distance
∥βi − β∗

i ∥Σi of these two functions as

L2(βi) =

(
1

nbatch

∑
vi

(βi(vi)− β∗
i (vi))

2

)1/2

. (7)

Unlike ℓmax, this metric is much easier to compute and does
not suffer the drawback that a strategy with a negatable
small loss may still be arbitrarily distant from the actual
BNE. However, it is only computable when an analytical
BNE is available and may need multiple evaluations when
there are multiple BNE.

3.3. Gradient Optimization Methods

Policy gradient methods are concerned with learning a pa-
rameterized policy βθi that selects actions based on the
current observations (Sutton & Barto, 2018). To maximize
utility, bidder i updates the parameters θi according to gradi-
ent ascent. This process is intended to compute approximate
ex ante BNEs, that is, to find mutual best responses of the
bidders for all possible valuations. The exact gradient up-
date for valuation vi in iteration t is

θti = θt−1
i + η · ∇θt−1

i
ui(vi, βθt−1

i
(vi), βθt−1

-i
). (8)

This must be approximated in practice. Two common meth-
ods are zeroth- and first-order gradient approximations. The
former solely relies on evaluating the objective function ui,
whereas the gradient ∇θiui can be evaluated in the latter.

As stated in the introduction, the discontinuous nature of
the ex post utility function stems from the sampling of the
opponents’ priors and their corresponding actions. We en-
counter ui from Equation 2 and its derivative (in general) is
discontinuous in bi. The observation of this inapplicability
persists for all pricing regimes and behavioral assumptions
that are commonly considered in auctions. Thus, an unbi-
ased gradient estimate of the interim utility function cannot
be derived by sampling the ex post gradient. Specifically,
interchanging taking an expectation and differentiating is
invalid:

∇θi Ev-i|vi [ui] ̸= Ev-i|vi [∇θi ui]. (9)

We supply the mathematical details in Appendix A. There-
fore, the naive application of backpropagating the accumu-
lated exact ex post gradients may not be expected to provide
a meaningful estimate of the ex ante gradient. This study es-
tablishes a path towards valid first-order gradient estimates
in auction games.

3.4. Zeroth-Order Approximation Methods

(Bichler et al., 2021) employed ES to circumvent the in-
terchange of differentiation and integration. ES rely on a
randomized finite difference approximation of the gradi-
ent based on perturbations in the parameter space of the
neural networks which can be computed after averaging
over the priors (Salimans et al., 2017). This is an alterna-
tive zeroth-order method to the REINFORCE algorithm.
Unlike ES, REINFORCE relies on perturbations in the ac-
tion space by using mixed strategies (typically Gaussian
distributions) such that the gradient of the action probabil-
ity density can be approximated. (Salimans et al., 2017)
compared these estimates for RL applications and argued
that the variance of the ES estimate can be significantly
lower. We overload the notation for the ease of readabil-
ity and write ui(θi, v-i) = ui(vi, βθi(vi), βθ-i(v-i)). For a
hyperparameter σ > 0, the ES estimator can be derived
from

∇θi Ev-i|vi [ui(θi, v-i)]

≈ ∇θi Eϵ∼N (0,I)Ev-i|vi [ui(θi + σϵ, v-i)] (10)

= Eϵ∼N (0,I)Ev-i|vi

[ ϵ
σ
ui(θi + σϵ, v-i)

]
. (11)

The last term can now be approximated via sampling. How-
ever, the ES gradient estimate comes at massive computa-
tional costs. It requires a large number of additional envi-
ronment evaluations for the sampled population values of ϵ.
Parallelization is essentially unavailable, because it would
reduce the number of samples from the prior when consider-
ing a fixed amount of memory. Latter of which is the main
limiting factor in getting precise estimates of the expected
utility in auction games. Thus, (Bichler et al., 2021) kept
a large batch size and computed the ES sequentially using
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a default population size of 64. Based on the variance of
the estimate, (Salimans et al., 2017) argued that ES are an
attractive choice if the number of episodes is large, which is
not the case for single-round auctions.

4. Smoothing Single-Item Auctions
This section proposes the market-specific approach.

4.1. Allocation and Price Smoothing

The allocation of indivisible objects in auction games is
typically modeled as a binary vector, with a one indicating
that the item is allocated to the corresponding buyer. The
set of legitimate allocations is defined as

X =
{
x ∈ {0, 1}n

∣∣∣ n∑
i=1

xi ≤ 1
}
. (12)

For all commonly considered auctions, the allocations label
the bids as winning or losing to maximize the auctioneer’s
revenue. They are calculated according to

x(b) = argmax
x′ ∈X

n∑
i=1

bix
′
i. (13)

Typical auction mechanisms only differ in their payment
rules. Two noteworthy examples are the first-price mecha-
nism, where bidders pay what they bid and the celebrated
VCG mechanism (second-price), where they pay for the
harm they cause others by competing (Krishna, 2009).

These allocations result in the utilities not being continu-
ous. Therefore, we propose relaxing the calculation of the
allocations using the softmax function as a surrogate for the
argmax operation:

x
SM(λ)
i (b) =

exp
(
bi
λ

)∑n
j=1 exp

(
bj
λ

) , i = 1, . . . n. (14)

The temperature λ > 0 denotes the smoothing strength.
This can be interpreted as dividing the item among all bid-
ders according to their proportional bid magnitudes, where∑

i x
SM(λ)
i (b) = 1 remains valid. The softmax asymptot-

ically recovers the true argmax as λ approaches zero. As
we are interested in a continuous utility surface, the discon-
tinuity in the prices (only the winners pay) must also be
considered. An obvious choice is to calculate the original
prices of the good and then distribute the price according to
the fractional allocations xSM(λ):

pSM(b) =

n∑
j=1

pj(b). (15)

Hence, the ex post utility in the relaxed game takes the form

u
SM(λ)
i (vi, b) =

(
vi − pSM(b)

)
x

SM(λ)
i (b). (16)

By definition, we have almost everywhere (a.e.) pointwise
convergence of xSM(λ)

i (vi, bi, β-i( · )) to xi(vi, bi, β-i( · )) as
functions of v-i, except at bi = max b-i. Furthermore, the
fractional prices pSM(λ)(bi, β-i( · )) also converge a.e. point-
wise to pi(bi, β-i( · )). Thus, the ex post utilities are re-
covered (a.e.) for ever smaller temperature. The resulting
utilities are visualized for the special case of an FPSB auc-
tion (Figure 1). Throughout the rest of the article, we make
the following regularity assumptions.

Assumption 4.1. Consider a Bayesian auction game G and
assume:

1. The action Ai and valuation spaces Vi are compact
intervals.

2. F is an atomless prior.

3. The bidding and pricing functions are measurable.

We regain continuity of the ex post utility and its gradient
by this smoothing of allocations and payments. Specifically,
we have the following theorem:

Theorem 4.2. Let the conditions of Assumption 4.1 hold
and assume the pricing function pSM, the marginal den-
sity functions {f-i|i}vi∈Vi,i∈I , and strategies {βi}i∈I to be
Lipschitz continuous. Then, the estimator on the smooth
interim utility’s gradient by sampling from the smoothed ex
post utilities’ gradients is unbiased, i.e.,

∇θi u
SM
i (vi, bi) = Ev-i|vi [∇θiu

SM
i (vi, bi, β-i(v-i))], (17)

for all i ∈ I, vi ∈ Vi, and bi ∈ Ai.

We refer to Appendix A for the proof. Importantly, this
relaxation technique is applicable to general markets with
different payment rules, utility functions, or correlated pri-
ors. Compared with the ES gradient estimate, where the
parameter space is perturbed, the SM gradient estimate per-
turbs the utility function. Thus, the origin of bias is different
and can be controlled by σ for ES and by λ for SM.

4.2. Approximation Quality

We check the validity of the smoothing intervention by
ensuring that the error to the original game dynamics can be
controlled by choosing a sufficiently small value of λ. This
ensures that conducting policy optimization in the smoothed
game can be expected to result in policy improvements in
the original game. Furthermore, this will clarify the question
of an optimal choice of the temperature value.

Generally, analytically computing equilibria of the SM game
is infeasible. Instead, we focus on comparing the expected
interim and ex ante utilities in the original and SM game. A
small error implies similar utility surfaces and gradient dy-
namics. Note that the ex post utilities can be quite different.
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Suppose multiple bidders compete for a single commodity
and bidder i has approximately the same bid magnitude as
the strongest opponent. The smoothed allocation is close
to one-half, whereas the true allocation is either zero or
one. This would result in a significant difference in the ex
post utility driven by the magnitude of the utility disconti-
nuity in the original auction. The probability of such large
errors decreases with smaller smoothing factors; however,
this event cannot be completely ruled out. We verify in the
following theorem, that the error in expected interim and ex
ante utility approaches zero under mild assumptions on the
auction format.

Theorem 4.3. Let the conditions of Assumption 4.1 hold
and suppose the payment rule p is bounded. Then, for
bidder i, we have convergence in interim and ex ante utility:

1. Let vi ∈ Vi and bi ∈ Ai, then

lim
λ→0

u
SM(λ)
i (vi, bi, β-i) = ui(vi, bi, β-i). (18)

2. Further assume βi to be measurable. Then,

lim
λ→0

ũ
SM(λ)
i (βi, β-i) = ũi(βi, β-i). (19)

The proof is delegated to Appendix B. Theorem 4.3 ensures
that for ever smaller λ, the bias in the expected utilities van-
ishes compared with the utilities in the original game. This
implies that the smoothed gradients converge, thus justifying
gradient-based learning in the perturbed game. Although
Theorem 4.3 ensures convergence, it does not state how
fast the error approaches zero. However, this information is
crucial for practical applications. Therefore, we make the
following additional assumptions on the auction format.

Assumption 4.4. For all i ∈ I assume:

1. βi is strictly increasing and Lipschitz continuous.

2. β−1
i is Lipschitz continuous.

3. There exists a uniform bound for all marginal condi-
tional prior density functions fi| · .

4. pi is bounded.

Note that assuming Lipschitz continuous strategies is sat-
isfied by common function approximations, e.g., neural
networks. With these stronger assumptions, we can present
a worst-case convergence rate of the interim and ex ante
utility errors.

Proposition 4.5. Consider an auction with n bidders that
satisfies Assumptions 4.1 and 4.4. Then, the absolute interim
and ex ante utility errors are of order O(λ).

Proof Sketch. Use substitution on the opponents’ bidding
strategies, followed by iterated use of Hölder’s inequality.
The details of the proof can be found in Appendix C.

Note that Restrictions 1 and 4 in Assumption 4.4 are stan-
dard in the literature (Krishna, 2009). Restriction 2 is
slightly stronger by demanding that strategy βi cannot be-
come infinitely flat (e.g., a saddle-point would not be al-
lowed). However, this restriction can be somewhat lifted
resulting in a worse convergence rate. Details on this can
be found in Appendix C. Finally, Restriction 3 holds for
all commonly used prior distributions, however, it rules out
perfect correlation. Based on the previous result, we can
characterize how a learned ε-BNE of the SM game translates
to an approximate BNE the original game:

Theorem 4.6. In an auction with n bidders that satisfies
Assumptions 4.1 and 4.4, let β∗ be an ex ante ε-BNE in the
smoothed game with smoothing parameter λ. Then β∗ is an
ex ante ε+O(λ)-BNE of the original game.

The proof can be found in Appendix D. The derived bounds
in the previous results consider worst-case scenarios. How-
ever, we observed that the error may be significantly lower
in practice. To rationalize this observation, we compare the
worst-case bound to the exact error in a restricted setting.
Consider an FPSB auction with two bidders, independent
uniform priors, and a linear bidding function of the sec-
ond bidder, β2(v2) = sv2 + t. Then, the bound derived in
Proposition 4.5 translates to∣∣∣ũSM(λ)

1 (β1, β2)− ũ1(β1, β2)
∣∣∣ ≤ ln(2) + 1

s
λ. (20)

In Figure 2, we compare this bound (for bidder 2’s BNE
strategy with s = 0.5 and t = 0) to the exact interim utility
error, which can be derived for this restricted setting (see
Appendix E). The convergence rate of the interim utilities
depends on the specific prior sample v1 and bid b1. The ex
ante utilities converge more rapidly than predicted by the
worst-case bound. We conjecture that this often holds in
practice, resulting in better learning behavior than suggested
by Proposition 4.5.

4.3. Choosing the Smoothing Temperature

Let us consider the question of an optimal smoothing
strength. There is an incentive to keep temperature val-
ues as low as possible, such that the original game dynamics
are distorted as little as possible. On the other hand, one
does not want to decrease λ too low, as this causes numeri-
cal problems. The magnitude of the gradient goes towards
infinity at the former discontinuity as λ decreases. There-
fore, with finite sample size, the first-order gradient estimate
might have a high empirical variance (Suh et al., 2022).
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Figure 2. Comparison of the absolute utility errors. (i) The linear
ex ante bound that holds for all valuations (gray dashed line) from
Equation 20. (ii) Exact interim utility errors when both bidders act
according to the BNE for some exemplary valuations (colorized
lines) and their sampled mean values ± standard deviation (shaded
areas). (iii) The approximate ex ante error (black dotted line).

We propose to use the utility sampling precision as a nat-
ural way to choose the temperature. For the special case
presented in Figure 2 and the default batch size of 218, one
can see that the sample precision is reached at about 10-4.
That is, for a drawn batch, the Monte Carlo estimation of
ex ante utilities has a precision of about 10-4, and we can
no longer distinguish between the smoothed and original
utilities. Therefore, one can use Proposition 4.5 to derive
a lower bound for λ for a given sampling precision. As
discussed at the end of Section 4.2, the true ex ante utility
error is usually lower, so that one can choose a higher λ
without losing any performance.

The empirical sampling precision is affected by several fac-
tors, such as the valuation and bidding ranges, the number
of bidders, prior distributions, and complexity of bidding
functions. Some of these influences can be standardized,
e.g., by normalizing the bidding ranges. Ultimately, a suf-
ficiently high batch size can overcome any bias introduced
by aforementioned factors, such that it should be chosen
as high as computationally possible to achieve an optimal
sampling precision.

5. Empirical Results
We provide experimental evaluation of the new technique
and compare the results with those of NPGA and REIN-
FORCE by measuring how closely they approximate the
analytical BNE. Results for settings with risk aversion or
correlated valuations are similar and omitted for simplicity.
Furthermore, we provide some insights and guidance on ap-

Table 1. Learning results in FPSB and SPSB auctions with differ-
ent numbers m of items. We report the mean values of the L2 and
ℓmax losses (smaller is better) and the time per iteration across five
runs. We also report the standard deviation in parentheses for the
losses.

m Algorithm L2 ℓmax t/iter

FP
SB

1
NPGA 0.011 (0.005) 0.005 (0.002) 0.155
REINFORCE 0.021 (0.008) 0.003 (0.000) 0.009
SM 0.005 (0.003) 0.004 (0.002) 0.009

2
NPGA 0.013 (0.005) 0.010 (0.002) 0.150
REINFORCE 0.041 (0.020) 0.016 (0.010) 0.009
SM 0.008 (0.002) 0.006 (0.003) 0.009

4
NPGA 0.028 (0.002) 0.021 (0.003) 0.148
REINFORCE 0.064 (0.018) 0.039 (0.012) 0.009
SM 0.015 (0.004) 0.011 (0.004) 0.009

8
NPGA 0.104 (0.054) 0.127 (0.109) 0.206
REINFORCE 0.187 (0.073) 0.331 (0.169) 0.012
SM 0.036 (0.003) 0.034 (0.009) 0.012

SP
SB

1
NPGA 0.012 (0.001) 0.002 (0.000) 0.170
REINFORCE 0.028 (0.005) 0.002 (0.000) 0.009
SM 0.004 (0.001) 0.001 (0.000) 0.011

2
NPGA 0.018 (0.002) 0.003 (0.000) 0.264
REINFORCE 0.082 (0.020) 0.009 (0.002) 0.011
SM 0.007 (0.001) 0.002 (0.000) 0.015

4
NPGA 0.043 (0.002) 0.011 (0.003) 0.457
REINFORCE 0.140 (0.045) 0.028 (0.018) 0.017
SM 0.029 (0.003) 0.006 (0.002) 0.024

8
NPGA 0.214 (0.112) 0.299 (0.238) 0.869
REINFORCE 0.320 (0.128) 0.262 (0.174) 0.031
SM 0.074 (0.002) 0.020 (0.002) 0.043

propriate choices of λ and verify that our gradient estimate’s
variance is sufficiently small. We list all hyperparameters
and details on the network architecture in Appendix G.

5.1. Single-Item Auctions

For the two common payment rules of FPSB and second-
price sealed-bid (SPSB) and a uniform prior on [0, 1], we
can measure the distance in action space to the unique BNE,
as described in Equation 7 and compute an estimate of ex-
ploitability in the form of Equation 5. Table 1 shows the re-
sults. The losses are computed after training 2,000 iterations
with each algorithm. The time per iteration, t/iter, decreases
notably when comparing NPGA to SM across both payment
rules, while also achieving a better approximation quality.
Since the estimation of ℓmax relies on a discretization of the
action space and an exhaustive search thereon, L2 detects
smaller deviations, ceteris paribus. Although REINFORCE
has a low iteration time, it is unable to learn high quality
strategies due to its high variance (Section 5.3). We found
that results for auctions with interdependent prior valuations
or risk-aversion are quantitatively consistent with the results
presented here.
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Figure 3. Empirical variance of the NPGA and REINFORCE
zeroth-order and the SM first-order gradient estimates. Both zeroth-
order methods are run in the original auction game. The mean
values ± standard deviations over five runs each are depicted. Left:
Comparing the variance throughout the learning procedure. Right:
Comparing the variance for different smoothing temperatures (av-
eraged over complete training runs).

5.2. Large Simultaneous Auctions

Furthermore, we study the separate sales of up to m = 8
distinctive goods and an increase in the number of bidders
of up to n = 4. For simplicity, we do not consider any
synergy effects on the items (this would include cases such
as those where a bidder only values the bundle of two items
but not either one of them individually), such that the BNE
simplifies to the single-item strategy profile for each item
separately. There are multiple motivations for these auctions.
They can be considered as the base case of combinatorial
auctions with item bidding and as a simple and practical
alternative to full combinatorial auctions. Furthermore, com-
binatorial auctions with item bidding are being deployed,
e.g., a bidder who is interested in a bundle of objects in par-
allel online display ad auctions or on a consumer shopping
website is implicitly partaking in these auctions. Finally,
asking a bidder to submit bids on all possible combina-
tions of bundles (2m − 1) is practically infeasible and there
are positive results on the welfare properties of limiting
the action space in this way (Bhawalkar & Roughgarden,
2011). Again, we draw i.i.d. uniform valuations on [0, 1]
and consider the FPSB and SPSB auctions. Learning in the
SM game outperforms both previous approaches (Table 1).
Since first-order methods are generally faster, we assume
that the strong results in these settings will scale to even
larger ones.

5.3. Empirical Variance

As stated in Section 4.3, there is a trade-off between low
and high values of λ. Here, we consider the base setting of
two bidders competing in a single-item FPSB auction. We

0.00 0.01 0.02 0.03 0.04 0.05
temperature 

0.00

0.01

0.02

0.03

0.04

0.05

L 2

n = 2 n = 3 n = 4

Figure 4. Action space distance for learned strategies to the BNE
for different numbers of bidders and temperature values λ. The
mean values ± standard deviations over five runs each are depicted.

decrease the batch size to 216 as the single-sample gradients
require more memory. Considering NPGA that is based
on a sample of 64 evaluations of the objective by default,
the empirical variance of the SM estimate is lower for all
λ > 0.002 (compare intersection of Figure 3, right plot).
Even after increasing NPGA’s population size by a factor
of two (which scales the run time in the same way), SM’s
variance remains lower for most choices, as can be seen
in the left figure. The empirical variance of REINFORCE
rapidly increases as the mixed-strategies get closer to the
pure-strategy BNE. This degradation is to be expected when
the learned variance of the Gaussian distributed actions
decreases, see Exercise 13.4 of (Sutton & Barto, 2018).

Results for markets of different sizes are depicted in Fig-
ure 4. Keeping everything else fixed, the highest achievable
performance decreases for larger markets, as is expected
in multi-agent learning. The optimal smoothing strength
is only affected indirectly via the bid magnitudes. At last,
we note that the performance boost of larger batch sizes
diminishes and best results are achieved for similar values
of λ just below 0.01, indicating that the variance of the gra-
dient estimate counteracts the lower bias. The results are
presented in Appendix F.

6. Conclusion and Future Work
How can first-order gradient estimation methods be success-
fully applied to learning in auctions? We showed that our
proposed smooth game formulation of strategic interactions
in auctions provides a strong answer to this question. We
established theoretical bounds on the bias caused by the
smoothing, and an empirical evaluation verified that the
variance of the gradient estimate can be controlled, leading

8
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to low computational costs and high precision. Overall, we
verified that equilibrium computation in smooth markets via
fist-order gradient estimation is more efficient than previous
learning methods.
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A. Proof of Theorem 4.2
The Leibniz integral rule states conditions for which the operator interchange of taking the limit and integrating is valid. Let
us recall its measure theory variant using the notation of our application. For a rigorous treatment of the assumptions and
different variants, we refer to the work of Talvila (2001), see Corollaries 5 and 8. We reformulate Condition 1 in our version
using Fubini’s Theorem.

Theorem A.1 (Leibniz integral rule). Let [a, b] ⊂ R and Ω with µ be a probability space. Suppose f : [a, b] × Ω → R
satisfies the conditions:

1. f(x, ω) is a measurable function in x and ω, and is integrable over ω ∈ Ω, for almost all x ∈ [a, b].

2. For almost all ω ∈ Ω, f(x, ω) is absolutely continuous in x.

3. For all compact intervals [c, d] ⊂ [a, b]: ∫ d

c

∫
Ω

∣∣∣∣ ∂∂xf(x, ω)
∣∣∣∣dµ(ω)dx < ∞. (21)

Then
∂

∂x

∫
Ω

f(x, ω) dµ(ω) =

∫
Ω

∂

∂x
f(x, ω) dµ(ω) a.e. (22)

Equation 22 is assumed to hold for backpropagation. It is needed for the approximation of ex ante gradients based the
sample mean of ex post gradients (compare Equation 9 from main text). We are now ready to prove Theorem 4.2.

Proof. We show that under the assumptions made in Theorem 4.2, the Leibniz integral rule as formulated in Theorem A.1
holds. We proceed to show that the smooth ex post utilities uSM(λ)

i are Lipschitz continuous, which essentially ensures all
three conditions hold. So, for i ∈ I, recall the smoothed ex post utility for some vi ∈ Vi and λ > 0:

u
SM(λ)
i (vi, bi, β-i(v-i)) =

(
vi − pSM(bi, β-i(v-i))

)
x

SM(λ)
i (bi, β-i(v-i)). (23)

As the smooth pricing function pSM is a sum over Lipschitz continuous functions, it is Lipschitz continuous. As β-i and
x

SM(λ)
i are Lipschitz continuous, so is x

SM(λ)
i (bi, β-i( · )). Finally, as both pSM and x

SM(λ)
i are bounded and Lipschitz

continuous, their product is Lipschitz continuous as well. Therefore, uSM(λ)
i is Lipschitz continuous in bi and v-i.

The Lipschitz continuity of uSM
i ensures measurability, as well as integrability over V-i for all bi ∈ Ai. Hence, Condition 1

holds. As Lipschitz continuity is stronger than absolute continuity, Condition 2 holds as well. Finally, note that due to
Lipschitz continuity, there exists an L such that

∣∣∣ ∂
∂bi

u
SM(λ)
i (vi, bi, β-i(v-i))

∣∣∣ ≤ L for all bi ∈ Ai. This bound ensures that
Condition 3 holds also.

In the case of conditional priors, consider the function u
SM(λ)
i f-i| · . This function is again Lipschitz continuous as product of

bounded Lipschitz continuous functions. Repeating the steps above for this function finishes the proof.

Remark A.2. The original non-smooth ex post utility function ui does not satisfy the conditions of Theorem A.1. For
example, ui is not even continuous in bi, so that the second condition is violated.

B. Proof of Theorem 4.3
Proof. Let us start with the first statement. For the interim utility of bidder i in the original game, we have

ui(vi, bi, β-i) = Ev-i|vi [ui(vi, bi, β-i(v-i))] (24)

with the ex post utility from Equation 1 in the main text rewritten as

ui(vi, bi, b-i) = (vi − pi(bi, b-i))xi(bi, b-i). (25)

10
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In the smoothed auction, we have

u
SM(λ)
i (vi, bi, β-i) = Ev-i|vi

[
u

SM(λ)
i (vi, bi, β-i(v-i))

]
(26)

with u
SM(λ)
i as defined in Equation 16 in the main text. Note that uSM(λ)

i is integrable as composition of integrable functions.
We first have a.e. pointwise convergence of uSM(λ)

i (vi, bi, β-i(v-i)) to ui(vi, bi, β-i(v-i)) as λ approaches zero. That is, for
all v-i, except for bi = β-i(v-i), the smaller λ gets the closer the allocations and the closer the utilities get.

Second, it is easy to see that |uSM(λ)
i (vi, bi, β-i(v-i))| is bounded via

|uSM(λ)
i (vi, bi, β-i(v-i))| ≤ |vi − pSM(bi, β-i(v-i))|

and noting that this is a composition of bounded functions. With these two conditions satisfied, we can apply the dominated
convergence theorem in its a.e. version (see, e.g., Bogachev (2007), Theorem 2.8.1) on the terms from Equations 24 and 26
which proofs the first statement.

Let us now consider the ex ante utilities. From the interim convergence, we know that the expected interim utility
u

SM(λ)
i (vi, bi, β-i) converges pointwise to ui(vi, bi, β-i) for all vi and bi. Again applying the dominated convergence

theorem ensures equality of the expected utility in the ex ante state of the game.

Remark B.1. Technically, a tie-breaking rule should be specified for xi at the nullset bi = β-i(v-i), but that is exactly the
point which we neglect.

C. Proof of Proposition 4.5
The following section provides a linear bound on the error in interim and ex ante utility. For clarity, we restate all major
assumptions.

Assumption C.1. Consider a Bayesian auction game G and assume:

1. The action Ai and valuation spaces Vi are compact intervals.

2. F is an atomless prior.

3. The bidding and pricing functions are measurable.

Assumption C.2. For all i ∈ I assume:

1. βi is strictly increasing and Lipschitz continuous.

2. β−1
i is Lipschitz continuous.

3. There exists a uniform bound for all marginal conditional prior density functions fi| · .

4. pi is bounded.

Proof. We use the Hölder inequality throughout the proof, which we denote by (H). Whenever we use a specific assumption,
we denote it by the corresponding number. We begin with the interim utility error, i.e., we aim to bound the following term
for all i ∈ I, vi ∈ Vi, and λ > 0:

εi(vi, bi, β-i, λ) :=

∣∣∣∣∫
V-i

ui (vi, bi, β-i(v-i))− u
SM(λ)
i (vi, bi, β-i(v-i)) dF-i|i(v-i)

∣∣∣∣ . (27)

So, let i ∈ I, vi ∈ Vi, bi ∈ Ai, and λ > 0 be arbitrary. By splitting up the integral into the individual opponents, we get

εi(vi, bi, β-i, λ) =

∣∣∣∣∣
∫
V1

· · ·
∫
Vi−1

∫
Vi+1

· · ·
∫
Vn

ui (vi, bi, β-i(v-i))− u
SM(λ)
i (vi, bi, β-i(v-i))

11
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dFn|-n(vn) . . . dFi+1|(1,...,i)(vi+1)dFi−1|(1,...,i−2,i)(vi−1) . . . dF1|i(v1)

∣∣∣∣∣ (28)

(H),(A1.2),(A2.3)

≤
∏
j ̸=i

∥fj∥∞
∫
V-i

∣∣∣ui (vi, bi, β-i(v-i))− u
SM(λ)
i (vi, bi, β-i(v-i))

∣∣∣ dv-i =: (∗1). (29)

We use ∥fj∥∞ to denote the uniform bound for any marginal conditional prior density function fj |· of bidder j. Next, we
perform a change of variables (Katz, 1982) through the inverse of the opponents’ strategies

(∗1)
(A2.1),(A2.2)

=
∏
j ̸=i

∥fj∥∞
∫
β-i(V-i)

∣∣∣(ui (vi, bi, b-i)− u
SM(λ)
i (vi, bi, b-i)

)∣∣∣ · ∣∣detDβ−1
-i (b-i)

∣∣db-i (30)

(H),(A1.1)

≤
∏
j ̸=i

∥fj∥∞ ·
∥∥∥(β−1

j

)′∥∥∥
∞

∫
β-i(V-i)

∣∣∣ui (vi, bi, b-i)− u
SM(λ)
i (vi, bi, b-i)

∣∣∣ db-i. (31)

Note that detDβ−1
-i (b-i) is a diagonal matrix, as βj only depends on vj for every j ∈ I, so that the determinate is given by

the product of the individual inverse functions’ derivatives. We continue with bounding the remaining integral. For this,
define the set

Abi =
{
v-i ∈ V-i

∣∣∣ max
-i

β-i(v-i) ≥ bi

}
, (32)

which includes all valuations of bidder i’s opponents such that the item is not allocated to bidder i in the original game. The
integral can then be split up in the following way∫

β-i(V-i)

∣∣∣ui (vi, bi, b-i)− u
SM(λ)
i (vi, bi, b-i)

∣∣∣db-i (33)

=

∫
β-i(V-i\Abi)

∣∣∣ui (vi, bi, b-i)− u
SM(λ)
i (vi, bi, b-i)

∣∣∣db-i (=: (#1)) (34)

+

∫
β-i(Abi)

∣∣∣ui (vi, bi, b-i)− u
SM(λ)
i (vi, bi, b-i)

∣∣∣db-i (=: (#2)) . (35)

It remains to bound the integrals (#1) and (#2). We proceed with (#2), i.e., the integral over the set, where the item is not
allocated to bidder i. We get

(#2) =
∫
β-i(Abi)

∣∣∣uSM(λ)
i (vi, bi, b-i)

∣∣∣ db-i =

∫
β-i(Abi)

∣∣∣(vi − pSM(bi, b-i)
)
x

SM(λ)
i (bi, b-i)

∣∣∣db-i (36)

(H),(A2.4),(A1.1)

≤
∥∥vi − pSM(bi, · )

∥∥
∞

|β-i(Abi)
·
∫
β-i(Abi)

∣∣∣xSM(λ)
i (bi, b-i)

∣∣∣db-i. (37)

The additional subscript of the supremum norm indicates that the domain is limited to β-i(Abi). This step reduced the
problem for (#2) to finding a bound for the integral over the soft-allocation function. Note that the softmax function is
strictly positive and strictly decreasing in all components of b-i. If Abi = ∅, the integral is zero and any positive number
is an upper bound. Otherwise, there exists a j ̸= i such that βj(vj) ≥ bi for all (v1, . . . , vi−1, vi+1, . . . , vj , . . . vn) ∈ Abi .
Therefore, we can bound the integral by∫

β-i(Abi)

∣∣∣xSM(λ)
i (bi, b-i)

∣∣∣ db-i =

∫
β-i(Abi)

1

1 +
∑

j ̸=i exp
(

bj−bi
λ

)db-i (38)

≤
∫
{bj≥bi}

1

1 + exp
(

bj−bi
λ

)dbj (39)

≤ lim
M→∞

∫ M

bj=bi

1

1 + exp
(

bj−bi
λ

)dbj (40)
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= lim
M→∞

[
bj − λ ln

(
exp

(
bj
λ

)
+ exp

(
bi
λ

))]M
bj=bi

(41)

= lim
M→∞

M − λ ln

(
exp

(
M

λ

)
+ exp

(
bi
λ

))
− bi + λ ln

(
2 exp

(
bi
λ

))
(42)

≤ lim
M→∞

M − λ ln

(
exp

(
M

λ

))
− bi + λ ln (2) + λ ln

(
exp

(
bi
λ

))
(43)

= λ ln(2), (44)

which finishes the bound for part (#2).

We perform similar steps for the integral (#1), that is taken over the opponents’ valuations where bidder i gets the item.
Using the definition of the smooth pricing function pSM over this set, we get

(#1) =
∫
β-i(V-i\Abi)

∣∣∣vi − pi(bi, b-i)−
(
vi − pSM(bi, b-i)

)
x

SM(λ)
i (bi, b-i)

∣∣∣db-i (45)

=

∫
β-i(V-i\Abi)

∣∣∣(vi − pi(bi, b-i))
(
1− x

SM(λ)
i (bi, b-i)

)∣∣∣db-i (46)

(H),(A2.4)

≤ ∥vi − pi(bi, · )∥∞
|β-i(V-i\Abi)

·
∫
β-i(V-i\Abi)

∣∣∣1− x
SM(λ)
i (bi, b-i)

∣∣∣db-i. (47)

It remains to bound the integral of h(b-i) := 1− x
SM(λ)
i (bi, b-i) over the set where bidder i wins the item. Note that h is

strictly positive and strictly increasing in all variables b-i. If the set V-i \ Abi is empty, we are done. Otherwise, we can
bound the integral in the following way:∫

β-i(V-i\Abi)
h(b-i) db-i =

∫
β-i(V-i\Abi)

1− 1

1 +
∑

j ̸=i exp
(

bj−bi
λ

) db-i (48)

=

∫
β-i(V-i\Abi)

∑
j ̸=i exp

(
bj−bi

λ

)
1 +

∑
j ̸=i exp

(
bj−bi

λ

) db-i (49)

≤ lim
M→−∞

∫ bi

M

· · ·
∫ bi

M

∑
j ̸=i exp

(
bj−bi

λ

)
1 +

∑
j ̸=i exp

(
bj−bi

λ

)db1 . . . dbi−1dbi+1 . . . dbn (50)

≤ lim
M→−∞

∫ bi

M

· · ·
∫ bi

M

∑
j ̸=i

exp

(
bj − bi

λ

)
db1 . . . dbi−1dbi+1 . . . dbn (51)

= lim
M→−∞

∑
j ̸=i

∫ bi

M

exp

(
bj − bi

λ

)
dbj (52)

= lim
M→−∞

∑
j ̸=i

λ

[
exp

(
bj − bi

λ

)]bi
bj=M

(53)

= (n− 1)λ. (54)

Combining the derived statements, the interim utility error is bounded by

εi(vi, bi, β-i, λ) ≤ K(vi, bi, β-i) · λ, (55)

where

K(vi, bi, β-i) =

∏
j ̸=i

(
∥fj∥∞ ·

∥∥∥(β−1
j

)′∥∥∥
∞

)
13
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·

(
ln(2)

∥∥vi − pSM(bi, · )
∥∥
∞

|β-i(Abi)
+ ∥vi − p(bi, · )∥∞

|β-i(V-i\Abi)
(n− 1)

)
. (56)

Consequently, we can bound the ex ante utility error by performing similar steps as above by

ε̃i (βi, β-i) :=

∣∣∣∣∫
Vi

ui (vi, βi(vi), β-i)− u
SM(λ)
i (vi, βi(vi), β-i) dFi(vi)

∣∣∣∣ (57)

≤ λ

∫
Vi

K(vi, βi(vi), β-i) dFi(vi) (58)

(H),(A2.3),(A2.1),(A2.2)

≤ K̃ · λ, (59)

where

K̃ = µ (βi (Vi))

∏
j∈I

∥fj∥∞ ·
∥∥∥(β−1

j

)′∥∥∥
∞

(ln(2) ∥∥gSM
i

∥∥
∞ + (n− 1) ∥gi∥∞

)
, (60)

where µ denotes the Borel-measure and for the functions

gSM
i (bi, β

−1
i (bi)) =

∥∥β−1
i (bi)− pSM(bi, · )

∥∥
∞

|β-i(Abi)
, (61)

gi(bi, β
−1
i (bi)) =

∥∥β−1
i (bi)− pi(bi, · )

∥∥
∞

|β-i(V-i\Abi)
. (62)

Remark C.3. The proof uses the infinity norm of the Hölder inequality (∥fg∥1 ≤ ∥f∥1 ∥g∥∞), so that one needs Condition 2
of Assumption 4.4. One can use the ∥·∥2-norm in the inequality (∥fg∥1 ≤ ∥f∥2 ∥g∥2), so that one can weaken the

assumption to
∥∥∥(β−1

i

)′∥∥∥
2
< ∞. However, this leads to a worse convergence rate of the form O(

√
λ).

Remark C.4. The result also holds for a special case of risk-averse bidders. Assume the ex post utility functions additionally
depend on a risk parameter ρ ∈ (0, 1]:

ui(vi, b, ρ) = (vi xi(b)− pi(b))
ρ (63)

u
SM(λ)
i (vi, b, ρ) =

((
vi − pSM(b)

)
x

SM(λ)
i (b)

)ρ
. (64)

By using Jensen’s inequality for the concave mapping x 7→ xρ, one can derive a convergence rate of O(λρ) by performing
analogous steps as in the proof above.

D. Proof of Theorem 4.6
Let us now prove that an ε-equilibrium in the smoothed game translates to an ε+O(λ)-equilibrium in the original auction.

Proof. We know there exists a constant K such that |ũSM(λ)
i (β) − ũi(β)| ≤ Kλ due to Proposition 4.5. Therefore, the

following holds for an ε-BNE in the smoothed game β∗ and any strategy βi:

ũi(βi, β
∗
−i)− ũi(β

∗
i , β

∗
−i) = ũi(βi, β

∗
−i)− ũ

SM(λ)
i (βi, β

∗
−i) + ũ

SM(λ)
i (βi, β

∗
−i)

− ũ
SM(λ)
i (β∗

i , β
∗
−i) + ũ

SM(λ)
i (β∗

i , β
∗
−i)− ũi(β

∗
i , β

∗
−i) (65)

≤ Kλ+ ε+Kλ = ε+ 2Kλ. (66)

This is equivalent to

ℓ̃i(β
∗
i , β

∗
−i) ≤ ε+ 2Kλ. (67)

14



Enabling First-Order Gradient-Based Learning for Equilibrium Computation in Markets

E. A Special Case: Exact Errors
Consider the single-item FPSB auction with two bidders having uniform priors on the unit interval. Suppose that bidder 2
has a linear strategy β2(v2) = s v2 with s ∈ (0, 1]. Then we can derive an error rate for bidder 1’s absolute interim utility
difference ελ = |u1 − uSM

1 | and for valuation v1 and bid b1 ≤ s.

For the interim utility of bidder 1 in the original game, we have

u1(v1, b1) =

∫ b1
s

v2=0

(v1 − b1) dv2 =
v1 − b1

s
b1. (68)

In the smoothed auction, we have

uSM
1 (v1, b1) =

∫ 1

v2=0

(v1 −max{b1, s v2})xSM
1 (b1, s v2) dv2. (69)

When splitting the domain of the integral at b1 = s v2, the first integral evaluates to

−b1 − v1
s

(
λ ln

(
e

b
λ + 1

)
− λ ln

(
2e

b1
λ

)
+ b1

)
and the second to

1

2s

[
2sλv2 ln

(
e

sv2
λ − b1

λ + 1
)
+ 2λ2 Li2

(
−e

sv2
λ − b1

λ

)
− 2v1λ ln

(
e

sv2
λ + e

b1
λ

)
− s2v22 + 2v1sv2

]1
v2=

b1
s

=
1

s

(
λ(s ln(es/λ−b1/λ + 1)− b1 ln(2)) + λ2(Li2(−e(s−b1)/λ) +

1

12
π2)

+ v1λ(ln(2) + b1/λ− ln(es/λ + eb1/λ)) +
1

2
(b21 − s2) + v1(s− b1)

)
.

Combining these results, we arrive at an exact interim error of

ελ(v1, b1) =
λ

s

(
− s ln

(
e

s−b1
λ + 1

)
− λ

(
Li2

(
−e

s−b1
λ

)
+

1

12
π2

)
+ v1 ln(e

s/λ + eb1/λ) +
1

λ

(
s2 − b21

2
− v1s

)
+ (b1 − v1)

(
ln(e−b1/λ + 1)

))
. (70)

Here, Li2 is the dilogarithm. This result shows vastly different convergence rates across the valuation and action space. Let
us assume both bidders are playing according to their BNE strategy, βi(vi) = 0.5vi. Now, for the extreme case of v1 = 1,
ελ tends towards a linear function. At the other end of the spectrum, for v1 = 0.5, ελ tends towards being constantly zero.
In summary, the higher the valuation is the slower the convergence rate, with a linear rate in the worst case. Figure 2 in the
main paper shows the convergence rates for smaller temperatures. We depict a selection of three valuations.

Again assuming that both bidders are playing according to their BNE strategy, the ex ante error

ε̃λ(β1) :=

∫ 1

v1=0

ελ(v1, β1(v1)) dv1 (71)

can be approximated by taking the sample mean of Equation 70. The expression goes towards zero quickly for ever smaller
temperatures and is depicted in Figure 2 in the main paper.

F. Impact of Batch Size
We have run experiments for different batch sizes. The performance increase for ever larger batch sizes diminishes and
optimal results are reached for temperature values just below 0.01 as can be seen in Table 2.
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Batch size minL2 λ

210 = 1,024 0.0177 0.0239
214 = 16,384 0.0044 0.0119
218 = 262,144 0.0044 0.0089
222 = 4,194,304 0.0042 0.0089

Table 2. Results for a selection of different batch sizes in the FPSB base setting. We report λ for which the L2 loss is minimized. 218 is
the default value used during training and 222 the maximal value possible on the GPU used.

G. Reproducibility and Hyperparameters
We have implemented all auctions and algorithms in the PyTorch framework. The code is available at GitHub via
github.com/heidekrueger/bnelearn.

G.1. Learning

We use common hyperparameters across all settings except where noted otherwise. The feed-forward neural networks are
fully connected with two hidden layers of ten nodes each with SeLU activations, as well as ReLU activations applied to the
output layer. We model all bidders by a shared policy because the auctions considered are symmetric. Hence, learning is
stabilized but limited to finding symmetric BNE. Furthermore, we perform supervised pretraining of 50 iterations towards
truthful strategies to prevent degenerate initializations. All experiments are run on a single Nvidia GeForce 2080Ti GPU
with 11 GB of memory and a batch size of 218 for learning. Each experiment was repeated five times with 2,000 iterations.
Furthermore, the following algorithm specific settings were used:

• For NPGA, we choose a population size of 64 and a variance of 1 for the normal distribution from which we draw
population samples in parameter space. The variance is then scaled by the model size as is done in (Bichler et al.,
2021).

• In the case of REINFORCE, the output dimension is increased by a factor of two because for each bid, a normal
distribution (with its two parameters) is learned instead.

• For the smoothed game, we choose a temperature of 0.01.

G.2. Evaluating

A batch size of 222 was used for the calculation of the L2 loss. The choice of batch sizes was mainly driven by maxing out
the GPU memory. Learning requires more memory than evaluating L2, so the latter was possible to conduct with larger
batch sizes. For the utility loss ε, we decreased the number of prior samples from the player currently under evaluation to
nown-batch = 210. For each of these valuations, his or her best response — with possible actions from an equidistant grid of
size ngird = 210 — is approximated over a sample of nopponent-batch = 220 opponent valuations. A higher batch size for the
opponents is necessary for reaching the required precision in estimating the utilities. In total, the calculation of ε requires
nown-batch · ngird · nopponent-batch = 240 > 1 trillion game evaluations.
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