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Figure 1: Considering the ellipsoidal shape prior of Gaussians, we propose leveraging expressive

superquadrics to build an efficient and powerful object-centric representation. Our QuadricFormer
achieves state-of-the-art performance with superior efficiency for 3D occupancy prediction.

Abstract

3D occupancy prediction is crucial for robust autonomous driving systems as it
enables comprehensive perception of environmental structures and semantics. Most
existing methods employ dense voxel-based scene representations, ignoring the
sparsity of driving scenes and resulting in inefficiency. Recent works explore
object-centric representations based on sparse Gaussians, but their ellipsoidal shape
prior limits the modeling of diverse structures. In real-world driving scenes, objects
exhibit rich geometries (e.g., cuboids, cylinders, and irregular shapes), necessitating
excessive ellipsoidal Gaussians densely packed for accurate modeling, which leads
to inefficient representations. To address this, we propose to use geometrically
expressive superquadrics as scene primitives, enabling efficient representation of
complex structures with fewer primitives through their inherent shape diversity.
We develop a probabilistic superquadric mixture model, which interprets each su-
perquadric as an occupancy probability distribution with a corresponding geometry
prior, and calculates semantics through probabilistic mixture. Building on this, we
present QuadricFormer, a superquadric-based model for efficient 3D occupancy
prediction, and introduce a pruning-and-splitting module to further enhance mod-
eling efficiency by concentrating superquadrics in occupied regions. Extensive
experiments on the nuScenes and KITTI-360 datasets demonstrate that Quadric-
Former achieves state-of-the-art performance while maintaining superior efficiency.
Code is available at https://github.com/zuosc19/QuadricFormer.
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1 Introduction

Vision-centric autonomous driving systems have gained much attention for their cost-effectiveness
over LiDAR-based solutions [4, 17, 50, 26, 23]. However, they struggle to perceive irregularly
shaped obstacles due to visual ambiguity, which compromises driving safety. Recent advances in 3D
semantic occupancy prediction address this by estimating voxel-level occupancy status and semantic
labels in 3D scenes [43, 44, 38, 39]. This provides a full understanding of scene structures and
semantics, which enables applications including self-supervised 3D scene understanding [0, 16], 4D
occupancy forecasting [51, 31, 41, 46], and end-to-end autonomous driving [ 14, 52].

Despite promising applications, 3D semantic occupancy prediction faces efficiency challenges due to
its dense 3D predictions [4, 38]. An efficient and expressive 3D representation is therefore essential.
While voxel-based methods [23, 44] use dense 3D grids to capture fine details, they ignore the
sparsity of driving scenes and suffer from high computational costs. Recent advances introduce
object-centric representations using 3D Gaussians [18, 55] to describe scenes sparsely. Each Gaussian
models the occupancy probability distribution of its local region via learnable attributes including
position, covariance, opacity, and semantics. However, Gaussian representations are fundamentally
limited. By their mathematical formulation, Gaussians describe the spatial occupancy probability
with an ellipsoidal decay pattern. This imposes a strong ellipsoidal shape prior to Gaussians and
severely constrains their capacity to model diverse geometries. Real-world driving scenarios contain
objects with rich structural variations, which cannot be accurately represented by a few ellipsoidal
Gaussian. Consequently, Gaussian-based models must aggregate numerous densely packed Gaussians
to approximate target shapes, causing significant efficiency degradation.

In this paper, we propose an efficient and expressive object-centric 3D representation using su-
perquadrics [1] as scene primitives. Superquadrics are a family of parameterized shapes with high
geometric expressiveness and compact shape parameters, offering great flexibility in modeling diverse
geometries. This allows superquadrics to model complex structures with sparse packing, enabling an
efficient and powerful representation [12]. We represent scenes with a set of learnable superquadrics,
each characterized by attributes including position, scale, rotation, opacity, semantics, and shape
exponents. For occupancy prediction, we adopt a probabilistic superquadric mixture model that
interprets each superquadric as a local occupancy probability distribution, and calculates seman-
tics through probabilistic mixture. Building on this representation, we introduce QuadricFormer,
a superquadric-based framework for efficient 3D semantic occupancy prediction. Moreover, we
design a pruning-and-splitting module that concentrates superquadrics on occupied regions to fur-
ther enhance modeling efficiency. Extensive experiments on the nuScenes and KITTI-360 dataset
demonstrate that our QuadricFormer achieves state-of-the-art performance with superior efficiency.

2 Related Work

3D Semantic Occupancy Prediction. 3D semantic occupancy prediction reconstructs fine-grained
3D scenes by labeling each voxel with geometric and semantic information, which is critical for
autonomous driving [4, 17, 38, 50, 51]. LiDAR and cameras are the two most commonly used sensors.
While LiDAR-based methods excel in depth accuracy [8, 7, 10, 20, 21, 28, 33, 36, 45,47, 48, 53, 54],
their limitations in adverse weather and long-range detection motivate the vision-centric approaches,
which reconstruct scenes from multi-view visual input [26, 44, 49, 4, 17]. Early approaches lifted
image features directly into dense voxel grids for 3D occupancy prediction [9, 23, 44, 30]. However,
given the sparsity of occupied voxels in driving scenes, subsequent works prioritized efficiency
through alternative representations. Planar representations like BEV [25] and TPV [17] compress
3D data into 2D feature maps for efficient processing, but sacrifice geometric fidelity. Object-centric
modeling preserves geometric fidelity by focusing computation on salient regions [18, 15, 29, 37,

], alleviating both the redundancy of uniform voxel grids and the information loss from planar
compression. However, these methods still struggle to balance efficiency and modeling capacity due
to the complexity of real-world structures. To address this, we propose a superquadric-based model
that achieves efficient and accurate representation of complex geometries.

Object-centric Scene Representation. Existing 3D scene representations primarily use voxel-based
frameworks for fine-grained volumetric modeling [44, 23], excelling in semantic prediction tasks.
However, their uniform processing of all voxels introduces spatial redundancy, particularly in sparse
environments. To address this, recent works explore object-centric representations [37, 29, 18, 15,
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Figure 2: Comparisons between different representations. (a) Quadric-based method represents the
same object with a smaller number of primitives and greater shape expressiveness. (b) Quadric-based
representation outperforms existing methods in both accuracy and speed with far fewer primitives.

One line of methods partitions dense grids into localized regions, preserving only detected object
areas [37, 29]. While efficient, non-empty regions may be falsely pruned, leading to irreversible loss
of critical geometry. Alternatively, point-based methods use sparse points as queries for iterative
refinement [34, 40]. However, points inherently lack spatial extent, limiting their ability to capture
contextual geometry. Recent advances adopt 3D semantic Gaussians [18, 15, 55], where probability
densities radiate from Gaussian centers to enable adaptive spatial coverage. While Gaussians
mitigate point rigidity through probability spread, complex geometries often require multiple densely
packed primitives, particularly for fine structures, leading to inefficient representations. In this
paper, we propose geometrically expressive superquadrics as compact scene primitives. Unlike
conventional object-centric methods, superquadrics natively parameterize diverse geometries (e.g.,
cuboids, cylinders) without dense packing, achieving superior reconstruction fidelity using fewer
primitives.

Superquarics. Superquadrics are parametric geometric primitives introduced by Barr et al. [1] to
model diverse shapes with compact parameterizations. A canonical superquadric is defined by five
parameters: three scale parameters along each of its semi-axes and two exponents that determine its
shape [19]. The scale and shape parameters of superquadrics allow for smooth interpolation between
different geometric shapes, such as cuboids, cylinders, and spheres. When combined with six pose
parameters for translation and rotation, a superquadric can represent a complete 3D object using only
11 parameters. Recent works employed superquadrics to decompose complex environments into
compact geometric primitives [12]. These methods demonstrate compelling reconstruction capability
and editing flexibility, while maintaining model efficiency. However, existing approaches operate
exclusively on point clouds and are limited to object-level reconstructions. Differently, we present
the first superquadric-based framework for holistic scene reconstruction directly from multi-view
images, delivering state-of-the-art performance with superior efficiency.

3 Proposed Approach

In this section, we present our method based on the superquadric representation for efficient 3D
semantic occupancy prediction. We first review the Gaussian-based object-centric representation and
analyze its limitations (Sec 3.1). We then introduce our superquadric representation and probabilistic
modeling approach for efficient occupancy prediction (Sec 3.2). Finally, we describe the overall
architecture of QuadricFormer for vision-centric 3D occupancy prediction.(Sec 3.3).

3.1 Object-Centric Representation

Vision-centric 3D semantic occupancy prediction aims to estimate the occupancy status and semantic
label of each voxel in 3D space based on visual inputs. Formally, given input images Z = {I;} ¥ ;



from N views, the model aims to predict voxel-level semantic labels O € CX*Y*Z of the 3D scene,
where C denotes the semantic classes and X x Y x Z represents the spatial shape of occupancy.

To achieve this, voxel-based methods [44, 50] adopt dense voxel features to model 3D scenes,
resulting in extremely high computational complexity of O(XY Z). This inefficiency stems from
their uniform processing of all voxels in space, which ignores the inherent sparsity of real-world
scenes. Considering this, recent works [ 18, 15] explore object-centric representations based on 3D
Gaussians to focus computational resources on salient regions for efficient scene modeling. Gaussian-
based method [15] typically employs a set of P semantic 3D Gaussian primitives G = {G;}1;
to represent 3D scenes sparsely. Each Gaussian G; models a flexible local region with its explicit
mean m;, scale s;, rotation r;, opacity a;, and semantic probability c;. For a point x in 3D space, its
geometric occupancy probability associated with the Gaussian G is:

a(x;G) = exp( — %(xfm)TEfl(xfm)), (D

> = RSSTR”, S =diag(s), R = q2r(r), )

where x denotes the point position, and 3, R, S represent the covariance matrix, the rotation matrix
constructed from the quaternion r, and the diagonal scale matrix from the scale s. Furthermore,
a probabilistic Gaussian mixture model is used to aggregate multiple Gaussians for predicting the
structure and semantics of the scene. As each Gaussian represents a flexible region of the scene, the
Gaussian-based representation enables adaptive allocation of resources and efficient modeling.

Although 3D Gaussian representation is more efficient than dense voxels (e.g., 6400 Gaussians vs.
200 x 200 x 16 voxels per scene), it still exhibits limitations that prevent an optimal efficiency-
performance balance. Our key insight is that Gaussians inherently impose an ellipsoidal shape prior,
which limits their ability to model diverse structures. As shown in Eq. 1, the occupancy probability
distribution of the Gaussian G can be viewed as a set of iso-probability surfaces defined by:

06 = 5 (P (DR () =k G)

Sz

where x = (z, y, z)T denotes the point position, k£ denotes the hyperparameter of the surface family,

and s = (s, Sy, sz)T represents the Gaussian’s scales along three axes. The rotation and mean of the
Gaussian are omitted for simplicity in Eq. 3, which describes a standard ellipsoid. Each Gaussian then
models occupancy probability with an ellipsoidal decay in 3D space. But real-world objects often
have diverse shapes, such as cuboids, cylinders, and irregular shapes, which cannot be accurately
represented by a few ellipsoidal Gaussians. This forces the model to use numerous densely packed
Gaussians to approximate complex structures, leading to inefficient scene representations. In contrast,
our method employs expressive superquadrics as scene primitives, enabling efficient and compact
modeling of complex structures with only a few sparsely packed superquadrics.

3.2 Scene as Superquadrics

We introduce an object-centric scene representation leveraging superquadric primitives for their
efficiency and expressive power. Superquadrics are a parametric shape family with strong geometric
expressiveness, defined as follows:

(@ @) G e
x Yy z

where x = (z,y, z)T denotes the point position, and k£ denotes the hyperparameter of the surface
family. Compared to the ellipsoids in Eq. 3, superquadrics introduce only two additional shape-
defining exponents €1, €2 yet can represent a much wider variety of shapes. As shown in Fig. 2a,
superquadrics allow for continuous and diverse shape variations as the shape parameters change. This
inherent parameter efficiency and geometric expressiveness enable superquadrics to model diverse
shapes without being densely packed. Consequently, only a small number of superquadrics are needed
to represent complex scene structures, achieving an efficient yet powerful scene representation.

We thus utilize a set of P parameterized superquadrics @ = {Q;}_; to represent the 3D scene.
Each superquadric is characterized by its scale s and shape exponents €1, €2 to define its geometry.
To extend the representation to the global coordinate system, each primitive is also assigned a
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Figure 3: Overall Framework of QuadricFormer. We use several quadric-encoder blocks to update
superquadrics, and employ a pruning-and-splitting module to further enhance modeling efficiency.

position x and rotation r. Beyond geometric attributes, each superquadric is further equipped with
an opacity a and a semantic probability c to incorporate semantic information. In summary, our
superquadric-based representation can be formulated as:

&)

We now explore obtaining 3D occupancy prediction from the superquadric representation. Existing
methods [12] typically treat superquadrics as deterministic surfaces, fitting them to object parts for
point cloud reconstruction. However, these surface-based approaches face key limitations in vision-
centric occupancy prediction. A primary challenge is supervision. While point cloud reconstruction
directly optimizes the distance between points and the superquadric surfaces, occupancy prediction
requires fine-grained scene understanding, which lacks clear surface-based constraints. Furthermore,
surface-based methods rely on the explicit structure from point cloud inputs, whereas visual inputs
introduce structural uncertainty, making deterministic modeling unstable. Lastly, surface-based
methods focus on object-level reconstruction with simple spatial relationships. But real-world driving
scenes involve far more complex surface interactions, posing significant modeling difficulties.

Q= {Qz}zp;l = {(XiaSi,rhai’el;i’elivcia )}f:l

To achieve robust 3D semantic occupancy prediction, we design a probabilistic modeling mechanism
that converts superquadrics into occupancy probabilities. Inspired by GaussianFormer-2 [15], we
adopt a probabilistic superquadric mixture model, where each superquadric defines the occupancy
probability distribution in its local neighborhood. To compute the probability of a 3D point x being
occupied by the superquadric Q, we first transform x into Q’s local coordinate system, defined by its
position m and rotation r: 6)

where xq denotes the local coordinate of x, and R denotes the rotation matrix constructed from the
rotation r. The occupancy probability of x associated with Q is then computed as:

Po(x;G) = exp( — f(xq)) = exp ((?) N + (};Q) 2) + (qu) N . (N
x y 2z

T T o .
where xq = (2q, yqQ,2qQ) ands = (sS4, V., 2s)  are the position and scale parameters, respectively,
and €7, €2 are the shape exponents of the superquadric Q. Assuming conditional independence of
occupancy among different superquadrics, the final occupancy probability at x is computed as:

xq = R(x —m),

P

Po(x) =1 =[] (1 = po(x;Qy)).

=1

®)



Semantic predictions are subsequently inferred by a weighted aggregation of semantic probabilities
from all contributing superquadrics, where weights correspond to their occupancy influence at x:

Zle Po(X|Qi)aic;
Yl Po(x]Q))a;

The key to this probabilistic modeling is incorporating the superquadric geometry as shape priors
within the probability distribution, realized as iso-probability surfaces conforming to its geometry in
Eq. 4. Leveraging the geometrically expressive power of superquadrics, our model can efficiently
represent complex 3D structures using a sparse set of primitives without dense packing, achieving
an efficient yet powerful scene representation. Moreover, this probabilistic framework effectively
models structural uncertainties arising from visual ambiguities, significantly improving the model’s
robustness and generalization capabilities.

De (X) = ©)

3.3 QuadricFormer

We present the overall framework of QuadricFormer in Fig. 3. Starting from the image inputs of N
views Z = {I;}¥ ,, we first employ an image backbone Ef to extract multi-scale image features Fy:

F1 = Ei(Z), (10)

Due to the lack of any structural prior of the scene, we randomly initialize a few superquadrics Q¢
in 3D space, and use B quadric-encoder blocks F'g to predict the final superquadrics from images.
In each block, we first encode current superquadrics Q; into features Fq via a quadric encoder Fq:

Fq = Eq(Qi). (11)

We then use 3D sparse convolution E.,,, for superquadric feature self-encoding and deformable
attention F 44, for interaction between superquadric and image features:

FQ = Econv(FvaQ)vFQ = Eattn(FanQa FI)7 (12)

where xq denotes the explicit position of the superquadric Q, serving as auxiliary information to
guide feature encoding. Finally, a quadric decoder Dq is used to predict the update of superquadric
attributes AQ, which are combined with the original attributes Q via residual addition:

AQ =Dq(Fq),Qiy1 = Qi + AQ. (13)

After B blocks update, we get the final superquadric prediction Q, and the 3D semantic occupancy
prediction O € CX*Y *Z can be inferred through the probabilistic modeling mechanism:

O = Prob(Q). (14)
For optimization, we adopt the cross entropy loss and the lovaszsoftmax [2] loss for training.

Due to the lack of structural priors, superquadrics are uniformly initialized in 3D space. As a result,
some superquadrics in empty regions are optimized to small scales and contribute little to scene
modeling, which leads to inefficiency. To address this, we introduce a pruning-splitting module after
initial training. Small-scale superquadrics (likely in empty regions) are pruned, while large-scale
ones (likely in occupied regions) are split for finer modeling. We keep the number of superquadrics
unchanged and use two additional blocks to further refine their properties. Notably, this lightweight
module improves superquadric utilization for more efficient scene representation without introducing
significant computational overhead.

4 Experiments

4.1 Datasets and Metrics

nuScenes [3] comprises 1,000 urban driving sequences collected in Boston and Singapore. The
dataset is officially split into 700 sequences for training, 150 for validation, and 150 for testing. Each
sequence spans a duration of 20 seconds with RGB images captured by 6 surrounding cameras, and
the key frames are annotated at a 2 Hz frequency. For supervision and evaluation, we leverage the
dense semantic occupancy annotations from SurroundOcc. The annotated voxel grid extends from



Table 1: 3D semantic occupancy prediction results on nuScenes. * means supervised by dense
occupancy annotations as opposed to original LiDAR segmentation labels. Sq. denotes the number
of Superquadrics in our model. Our method achieves state-of-the-art performance.
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Method IoU mloU | u | n u | n |
MonoScene [5] 2396 7.31|4.03 035 8.00 804 290 028 1.16 0.67 4.01 435 2772 520 15.13 11.29 9.03 14.86
Atlas [32] 28.66 15.00|10.64 5.68 19.66 24.94 890 8.84 6.47 3.28 10.42 16.21 34.86 15.46 21.89 20.95 11.21 20.54
BEVFormer [25] 30.50 16.75[14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21
TPVFormer [17] 11.51 11.66|16.14 7.17 22.63 17.13 8.83 11.39 10.46 8.23 9.43 17.02 8.07 13.64 13.85 10.34 490 7.37
TPVFormer* [17] 30.86 17.10(15.96 5.31 23.86 27.32 9.79 874 7.09 520 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81
OccFormer [50] 31.39 19.03|18.65 10.41 23.92 30.29 10.31 14.19 13.59 10.13 12.49 20.77 38.78 19.79 24.19 22.21 13.48 21.35
SurroundOcc [44] 31.49 20.30|20.59 11.68 28.06 30.86 10.70 15.14 14.09 12.06 14.38 22.26 37.29 23.70 24.49 22.77 14.89 21.86
GaussianFormer [ 18] 29.83 19.10]19.52 11.26 26.11 29.78 10.47 13.83 12.58 8.67 12.74 21.57 39.63 23.28 24.46 22.99 9.59 19.12
GaussianFormer-2 [15] 31.74 20.82|21.39 13.44 28.49 30.82 10.92 15.84 13.55 10.53 14.04 22.92 40.61 24.36 26.08 24.27 13.83 21.98

QuadricFormer (1600 Sq.) [31.22 20.12|19.58 13.11 27.27 29.64 11.25 16.26 12.65 9.15 12.51 21.24 40.20 24.34 25.69 24.24 12.95 21.86
QuadricFormer (12800 Sq.)|32.13 21.11|21.38 13.41 28.40 31.01 11.32 17.10 13.94 11.28 14.75 22.66 40.81 24.71 26.51 25.22 13.54 21.78

Table 2: Monocular 3D semantic occupancy prediction results on SSCBench-KITTI-360. Num of
Prims. denotes the number of primitives in the model. Our method achieves comparable performance
to GaussianFormer-2 [15] with much fewer primitives.
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LMSCNet [33] L - 47.53[13.65(2091 0 0 026 0 0 62951351 33.51 0.2 43.67 0.33 40.01 26.80 0 0 3.63
SSCNet [35] ‘L‘ - ‘53.58‘ 16495‘3195 0 0.17 10.29 0.58 0.07 65.7 17.33 41.24 3.22 44.41 6.77 43.72 28.87 0.78 0.75 8.60 0.67
MonoScene [5] C[262144|37.87(12.31[19.34 0.43 0.58 8.02 2.03 0.86 48.35 11.38 28.13 3.22 32.89 3.53 26.15 16.75 6.92 5.67 4.20 3.09
Voxformer [24] C|262144|38.76(11.91|17.84 1.16 0.89 4.56 2.06 1.63 47.01 9.67 27.21 2.89 31.18 4.97 28.99 14.69 6.51 6.92 3.79 2.43
TPVFormer [17] C| 81920 [40.22|13.64|21.56 1.09 1.37 8.06 2.57 2.38 52.99 11.99 31.07 3.78 34.83 4.80 30.08 17.51 7.46 5.86 5.48 2.70
OccFormer [50] C|262144140.27|13.81|22.58 0.66 0.26 9.89 3.82 2.77 54.30 13.44 31.53 3.55 36.42 4.80 31.00 19.51 7.77 8.51 6.95 4.60
GaussianFormer [18] |C| 38400 [35.38(12.92(18.93 1.02 4.62 18.07 7.59 3.35 45.47 10.89 25.03 5.32 28.44 5.68 29.54 8.62 2.99 2.32 9.51 5.14
GaussianFormer-2 [15]| C | 38400 [38.37(13.90(21.08 2.55 4.21 12.41 5.73 1.59 54.12 11.04 32.31 3.34 32.01 4.98 28.94 17.33 3.57 5.48 5.88 3.54
QuadricFormer \C\ 12800 \38.89\ 13463\18.80 1.31 4.43 16.57 8.57 3.44 45.49 13.77 25.92 5.25 29.73 6.73 31.95 9.13 4.47 4.02 10.88 4.88

-50m to 50m along both the X and Y axes, and from -5m to 3m along the Z axis, with a spatial
resolution of 200 x 200 x 16. Each voxel is classified into one of the 18 categories(16 semantics, 1
empty and 1 unknown).

KITTI-360 [27] comprises over 320k images collected in suburban driving scenes with comprehen-
sive 360° sensory coverage, including two perspective cameras, two fisheye cameras, a Velodyne
LiDAR, and a laser scanner. In our experiments, we use the RGB images from the left perspective
camera of the ego vehicle as model input. For supervision and evaluation, we adopt the semantic oc-
cupancy annotations provided by SSCBench-KITTI-360 [22]. The official split contains 7 sequences
for training, 1 for validation, and 1 for testing, corresponding to 8487, 1812, and 2566 key frames,
respectively. The annotated voxel grid covers a region of 51.2 x 51.2 x 6.4 m? in front of the ego
vehicle, with a spatial resolution of 256 x 256 x 32. Each voxel is categorized into one of 19 classes
(18 semantic classes and 1 empty).

The evaluation metrics adhere to common practice, namely mean Intersection-over-Union (mloU)
and Intersection-over-Union (IoU):

TP

1
ToU = —
mio \C’|;TH+FPi+FNZ-’

15)

_ TPy,
a TPyey + Py, +FN7500,

Where C’, ¢y, TP, FP, and FN represent the non-empty classes, the empty class, and the number of
true positive, false positive, and false negative predictions, respectively.

IoU (16)

4.2 TImplementation Details

The input images are at resolutions of 900x 1600 for nuScenes and 376 x 1408 for KITTI-360 [27]
with random flipping and photometric distortion augmentations. We employ ResNet101-DCN [13]
with FCOS3D checkpoint [42] for nuScenes [3], and ResNet50 [13] pretrained on ImageNet [1 1]



Table 3: Performance and efficiency comparison with Gaussian-based methods. The latency and
memory are tested on an NVIDIA 4090 GPU with batch size one during inference, in accordance

with Gaussian-based methods [18, 15]. Our method achieves better performance-efficiency trade-off.

Method \ Number of Primitives ~ Latency (ms)  Memory (MB) \ mloU ToU

GaussianFormer [1] 25600 227 4850 16.00  28.72
a 144000 372 6229 19.10  29.83

1600 341 3075 18.73  28.99

GaussianFormer-2 [15] 3200 355 3076 18.75 29.64

(Depth Initialized) 6400 395 3652 19.55  30.37

12800 451 4535 19.69  30.43

1600 162 2554 20.04  30.71

QuadricFormer 3200 164 2556 2035  31.62

(Ours) 6400 165 2560 20.79  31.89

12800 179 2563 2111 3213

for KITTI-360 [27]. The numbers of Superquarics are set to 1600 in our main results for nuScenes
and KITTI-360. For optimization, we train our model using AdamW with weight decay of 0.01, and
maximum learning rate of 4 x 10~%, which decays with a cosine schedule. We train our model for 20
epochs on nuScenes and KITTI-360 with a batch of 8.

4.3 Main Results

3D Semantic Occupancy Prediction. We report the performance of our QuadricFormer on nuScenes
dataset [3] in Table 1. Compared to other methods, our approach achieves state-of-the-art performance.
Specifically, QuadricFormer outperforms other methods on categories such as bicycle, motorcycle,
truck and various ground-related classes (drivable surface, sidewalk, terrain, etc.), demonstrating
superior capability in modeling both small and structural objects. Moreover, our method significantly
surpasses GaussianFormer-2 [15] while using substantially fewer superquadrics (1600 vs. 12800),
further validating its efficiency and effectiveness. Furthermore, We report the results for monocular
3D semantic occupancy prediction on SSCBench-KITTI-360 [22] in Table 2. Our method achieves
comparable mloU performance to GaussianFormer-2 [15], demonstrating the effectiveness of our
approach for monocular 3D semantic occupancy prediction.

Performance and Efficiency Comparison with Gaussian-based Methods. We report the perfor-
mance and efficiency comparison for QuadricFormer with Gaussian-based methods on nuScenes
in Table 3. QuadricFormer consistently outperforms prior methods in both 3D semantic occupancy
prediction and computational efficiency. Specifically, our method achieves the highest mIoU (up
to 21.11) and IoU (up to 32.13), surpassing all Gaussian-based approaches. In terms of efficiency,
QuadricFormer significantly reduces both latency and memory usage. For similar or even fewer
primitives (e.g., 1600 or 3200), our method achieves a latency as low as 162 ms and 2554 MB
memory consumption, which are substantially lower than others. Notably, even when increasing the
number of primitives in QuadricFormer to 12800, both latency and memory usage remain lower than
those of Gaussian-based methods using only 1600 primitives. This further highlights the superior
efficiency of our approach for the complex structures in real-world applications.

4.4 Ablation Study

Effect of the ¢ Range. We conduct ablation study on the range of the superquadric exponent
parameters € in Eq. 4, as reported in Table 4. We set the number of superquadrics to 12800 for these
experiments. The table explores the effect of different e ranges on 3D semantic occupancy prediction
performance. We observe that setting the range of (0.1, 2) yields the best results, achieving the
highest mIoU (20.51) and IoU (31.25).

Effect of the Pruning-splitting Module. We conduct ablation studies on the effect of the pruning-
splitting module, as shown in Table 5. The results demonstrate that increasing the crop & split number
consistently improves performance. This confirms that reallocating primitives from low to high
occupancy regions effectively enhances the accuracy and efficiency of our 3D scene representation.
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Figure 4: 3D Superquadrics and occupancy visualizations on nuScenes. Our model is able to
predict high-fidelity shapes and achieves comprehensive occupancy results.

Table 4: Effect of the € range. Table 5: Effect of the pruning-splitting module.
Rangeofe |  mloU IoU Crop & Split Number | mloU ToU
(0.01,2) 20.39 31.13 0 19.41 39.77
(0.01,5) 20.25 30.63 200 19.65 30.35
(0.1,2) 20.51 31.25 400 19.90 30.67
(0.1,5) 19.86 30.65 800 20.12 31.22

4.5 Visualizations

We present visualizations of the predicted superquadrics and occupancy results in Figure 4. Our model
is able to predict high-fidelity shapes using superquadrics and achieves comprehensive occupancy
results. Further, we compare our method against GaussianFormer-2 [15] in Figure 5, showing that our
predicted superquadrics offer more adaptive shapes than Gaussians. Moreover, our method achieves
high-quality performance using only 1600 superquadrics, compared to 6400 Gaussians. Figure 6
shows a sample for 3D semantic occupancy prediction on the nuScenes [3] validation set. Compared
to GaussianFormer-2 [15], our QuadricFormer exhibits enhanced modeling capability for complex
objects and road surfaces.

5 Conclusion

In this paper, we have proposed a superquadric-based object-centric representation for efficient
3D semantic occupancy prediction. Specifically, we leverage the geometric expressiveness of su-
perquadrics to model complex structures with far fewer sparsely packed primitives. We formulate a
probabilistic superquadric mixture model, where each superquadric encodes an occupancy probability
distribution with a corresponding geometry prior, and semantics are inferred via probabilistic mixture.
Furthermore, we introduce a pruning-and-splitting module that adaptively concentrates superquadrics
in occupied regions to further enhance modeling efficiency. Our proposed QuadricFormer demon-
strates state-of-the-art performance and superior efficiency on the nuScenes benchmark, providing an
effective and compact solution for scene understanding in vision-centric autonomous driving systems.

Limitations. With random initialization, QuadricFormer cannot fully learn accurate superquadric
positions, leaving some superquadrics in empty regions and reducing representation efficiency.
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Figure 5: Qualitative comparisons. QuadrlcFormer predicts more flexible and adaptlve shapes.

Figure 6: Visualizations of the proposed QuadricFormer compared to GaussianFormer-2 [15]
for 3D semantic occupancy prediction on the nuScenes [3] validation set. We visualize the
six surrounding camera inputs, the corresponding occupancy prediction results, and the primitive
representations. The upper row shows the predicted occupancy (left) and the primitive representation
(right) by GaussianFormer-2. The lower row shows the prediction results of QuadricFormer.

Broader impact. Our work on autonomous driving has the potential to improve traffic efficiency in
the future, but it may also contribute to job displacement for drivers.
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Figure 7: Superquadrics of different shape parameters. The figure illustrates how varying €; and
€2 produces a wide range of shapes, from star-like and rounded shapes to square-like structures. Such
diversity enables superquadrics to flexibly model complex object geometries in 3D scenes.

A Additional Superquadric Details

Superquadrics are a powerful family of parameterized surfaces that can represent various geometric
shapes. With just a few parameters, superquadrics can generate shapes ranging from basic ellipsoids,
cuboids, and cylinders to more complex shapes with rounded corners, star-like profiles, and smooth
transitions between them. This geometric flexibility makes superquadrics ideal for efficiently model-
ing diverse objects in autonomous driving scenes. The shape of a superquadric is mainly controlled
by two groups of parameters. The first group consists of scaling factors (s, sy, 5> ), which define the
superquadric’s dimensions or "radii" along its three principal axes, determining the object’s overall
size and aspect ratio. The second group includes two key shape parameters (€1, €2) that determine
the degree of "squareness" or "roundness" of the object. €; primarily controls the object’s profile in
planes containing the z-axis (such as the xz- or yz-plane): smaller values (close to 0.1) create sharper
profiles, e; = 1.0 produces elliptical outlines, and larger values (up to 2.0) result in flatter contours.
Similarly, €5 controls the shape of the cross-section in the xy-plane. A small e, yields a star-shaped
cross-section, e2=1.0 gives a circular outline, and large €5 values produce square-like shapes. As
shown in Fig 7, varying €; and e, of superquadrics results in a wide range of shapes. By combining
these scaling and shape parameters, superquadrics can efficiently represent diverse object geometries
in autonomous driving scenes. This capability allows them to capture complex structures with signifi-
cantly fewer primitives than traditional representations (like ellipsoidal Gaussians), highlighting their
superior modeling efficiency and expressive power for 3D scene understanding tasks.

B Additional Experiments

We visualize the position distributions of scene primitives using 1600 superquadrics versus 6400
Gaussians in Figure 8. Gaussian-based methods require a dense arrangement of Gaussians throughout
the entire 3D space to model the scene, leading to numerous redundant Gaussians and low modeling
efficiency. In contrast, our superquadric-based method learns well-structured spatial arrangements,
enabling it to effectively model the scene structure with significantly fewer primitives.
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Figure 8: Visualizations of primitive position distributions learned by different methods. Our
approach produces well-structured spatial arrangements while using significantly fewer primitives.

C Additional Implementation Details

We provide implementation details of the prunning-and-splitting module. To clarify, we take the
QuadricFormer with N superquadrics as an example and describe the process as follows:

Initial Training: We first train a QuadricFormer with B=4 quadric-encoder blocks and without the
prunning-and-splitting module. The model starts from N randomly initialized superquadrics Q;y+
and predicts adjusted superquadrics Q.

Prunning-and-Splitting Module: During experiments, we observed that some superquadrics in Q
contribute little to scene modeling, which are usually located in empty regions with very small scales.
To address this, we introduce the prunning-and-splitting module:

* We divide all superquadrics in Q into two groups based on the product of their scales: the
Nerop superquadrics C' with the smallest scales and the remaining /V,q1,4 superquadrics V', where
N = Nyatiqa + Ncrop-

* We discard the smaller superquadrics C' as they are most likely to contribute little to scene modeling.

* We randomly sample N, superquadrics from V' to form S . The features of S remain unchanged,
and only their positions are slightly adjusted.

Further Refinement: Finally, S and V' are passed through two additional quadric-encoder blocks to
further refine their attributes, resulting in the final superquadrics @ finq1 . At this stage, we load the
pretrained model parameters and continue training for 10 more epochs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim a superquadric-based representation for efficient 3D semantic
occupancy. These claims have been justified by the experimental results in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in the Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include details about our experiments in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code and instructions to reproduce our results on public datasets are provided
in the supplementary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided all details in Section 4 and in the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: It is not a conventional procedure to report error bars in this field. However,
the results do not fluctuate much through differen runs from our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .
Justification: All details have been provided in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics because authors have
read and followed it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impact is discussed in Section 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Only existing datasets and models have been used in this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Authors of used code libraries, models and data have been cited and version
details have been provided in our code package.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our code contains instructions how to run experiments and text comments.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Crowdsourcing has not been used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Crowdsourcing has not been used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Authors did not use LLMs for core method development or any components.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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