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ABSTRACT

Test-time adaptation (TTA) has been widely explored to prevent performance
degradation when test data differ from the training distribution. However, fully
leveraging the rich representations of large pretrained models with minimal param-
eter updates remains underexplored. In this paper, we propose a novel approach,
Intrinsic Mixture of Spectral Experts (IMSE), that leverages the spectral experts
inherently embedded in Vision Transformers. We decompose each linear layer via
singular value decomposition (SVD) and adapt only the singular values, referring to
each decomposed rank-1 component as a spectral expert while keeping the singular
vectors fixed. We further identify a key limitation of entropy minimization in TTA:
it often reduces feature variance, causing the model to rely on domain-specific cues
rather than class-discriminative features. To address this, we propose a diversity
maximization loss based on singular vector–input alignment, which maximizing
the diversity of the response pattern. In the continual test-time adaptation (CTTA)
scenario, beyond preserving pretrained knowledge, it is crucial to retain and reuse
knowledge from previously observed domains. We introduce Domain-Aware Spec-
tral Code Retrieval, which estimates input distributions to detect domain shifts, and
retrieves adapted singular values for rapid adaptation. Extensive experiments show
that our method achieves state-of-the-art performance on ImageNet-C/R/A under
single-domain TTA. In CTTA, it improves accuracy by 3.4pp with 2,000× fewer
trainable parameters.

1 INTRODUCTION

Real-world data often deviates from the training distribution, leading to performance degradation in
deployed models. Test-time adaptation (TTA) mitigates this distribution shift by adapting a source-
pretrained model to unseen target domains in an online manner, without access to the source data. The
concept of TTA has naturally expanded to continual test-time adaptation (CTTA), which addresses
scenarios where test data distributions evolve over time.

Approaches for adapting models to test domains can be broadly divided into three families, distin-
guished by the choice of parameters to fine-tune and the extent of architectural modification: (1)
normalization-based approaches that update BatchNorm statistics or affine parameters (Wang et al.,
2020; Niu et al., 2022), (2) full or partial model fine-tuning (Wang et al., 2022; Yu et al., 2024),
and (3) architecture-modifying methods that introduce prompts or adapters (Tang et al., 2024; Liu
et al.). While normalization-based methods are stable and efficient, they lack adaptation capacity. Full
model tuning enhances flexibility but suffers from error accumulation and catastrophic forgetting.
Architectural modifications offer a compromise but often require specific backbone structures and
introduce additional inference-time overhead.

Although existing methods have proposed various adaptation strategies, they have not fully exploited
the rich representational capabilities already embedded in large pretrained models. To fully leverage
pretrained models while enhancing adaptation ability, several key challenges must be addressed.
Updating the entire weight matrix introduces a large number of trainable parameters and can abruptly
alter the behavior of the pretrained model. Second, in label-free TTA scenarios, entropy minimization
loss often leads the model to exploit domain-specific features that dominate the test data rather than
class-discriminative features, reducing the diversity of the output of the last Transformer block and
thereby degrading performance. Third, in CTTA settings, it is crucial not only to preserve pretrained
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knowledge but also to retain information from previously encountered domains. Forgetting the past
domains requires redundant re-adaptation for the model when similar domains reappear.

In this paper, we propose Intrinsic Mixture of Spectral Experts (IMSE), a method that addresses
the above challenges through three key components: (1) Intrinsic mixture of spectral experts: We use
SVD to decompose each linear layer into rank-1 components with distinct roles, which we refer to as
spectral experts. We then adapt only their singular values while keeping the orthogonal bases fixed,
effectively leveraging the pretrained feature extractors. (2) Diversity maximization loss: maximizing
diversity of response pattern of spectral experts, ensuring that the model does not over-extract domain-
specific features during adaptation, even in the absence of labels. (3) Domain-aware spectral code
retrieval: we explicitly preserve and reuse domain knowledge by storing adapted singular values
together with domain descriptors in a domain bank, thereby mitigating domain knowledge forgetting
in CTTA. Our method achieves state-of-the-art performance in both TTA and CTTA scenarios. We
further validate its effectiveness through experiments on various pretrained models, including MAE
and CLIP under the TTA setting. In CTTA, IMSE further outperforms existing approaches while
using approximately 2000× fewer trainable parameters.

Our main contributions are summarized as follows:

• We propose IMSE, a TTA framework that reinterprets linear layers of pretrained models as spectral
experts. By fine-tuning only singular values, IMSE enables parameter-efficient adaptation while
preserving the pretrained subspace.

• We introduce a diversity maximization loss that compensates for reducing feature diversity under
entropy minimization, ensuring that pretrained experts are effectively utilized even in the absence
of labels.

• We design a domain-aware spectral code retrieval mechanism to mitigate domain knowledge
forgetting and enabling rapid adaptation in continual test-time adaptation.

• IMSE achieves state-of-the-art performance in both TTA and CTTA and is further validated on
diverse pretrained models, including MAE and CLIP, under the TTA setting.

2 RELATED WORK

Test-time adaptation. To preserve the class-discriminative capability of pretrained models during
adaptation in classification tasks, various methods optimize different sets of parameters and conse-
quently adopt different objective functions. Early approaches based on entropy minimization avoid
data augmentation and use only the predictions on the current test data to define the loss. TENT (Wang
et al., 2020) fine-tunes only the modulation parameters of the BatchNorm layer to minimize prediction
entropy. Building on this idea, EATA (Niu et al., 2022) improves stability by filtering out unreliable
high-entropy samples, while SAR (Niu et al., 2023) incorporates sharpness-aware optimization for
more stable adaptation. Other works introduce pseudo-label refinement techniques that leverage the
average of predictions obtained from multiple data augmentations and use an Exponential Moving Av-
erage (EMA) updated teacher model to further stabilize training. This strategy is typically employed
in approaches closer to full parameter fine-tuning, such as CoTTA (Wang et al., 2022) and ViDA (Liu
et al.). Other lines of research (Tang et al., 2024; Lee et al., 2024) keep most of the backbone intact
while introducing architectural modifications, for example by inserting lightweight modules such as
adapters or domain-specific tokens.

Singular Value Fine-tuning. Recent studies exploit singular-value fine-tuning for parameter-
efficient fine-tuning of large models, such as SVFT (Lingam et al., 2024) and SVDiff (Han et al.,
2023), which update only the singular values of decomposed layers of Large Language Model (LLM)
and Diffusion Model, respectively. Other works, including PiSSA (Meng et al., 2024) and MiLoRA
(Wang et al., 2025), leverage singular value decomposition (SVD) to improve LoRA initialization for
LLM fine-tuning.

Our method not only fine-tunes the singular values of linear layers for test-time adaptation, but also
maximizing feature diversity using singular vectors, and introduces a retrieval mechanism that reuses
the adapted singular values for continual test-time adaptation.
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Figure 1: IMSE-Retrieval with domain bank. When adapting to a new domain, we select initial
singular values based on domain similarity using the domain descriptor, then fine-tune the σ com-
ponents within linear layers. The adapted spectral code S is stored in the Domain Bank, and this
process repeats for subsequent domains. Note that domain descriptors are designed to estimate the
distribution of test data.

3 INTRINSIC MIXTURE OF SPECTRAL EXPERTS

We propose Intrinsic Mixture of Spectral Experts (IMSE) that adapts pretrained models to the current
domain while preserving the independent base extractors intrinsically obtained during pretraining. To
compensate for the reduction of feature diversity caused by entropy minimization, we introduce a
diversity maximization loss that makes the feature extractor to respond to data in more diverse patterns.
In addition, we introduce Domain-Aware Spectral Code Retrieval, a mechanism that preserves and
reuses domain-specific adapted singular values. This retrieval process enables a stable and faster
adaptation process using the most relevant spectral code.

3.1 INTRINSIC MIXTURE OF SPECTRAL EXPERTS

Spectral experts and spectral code. We adapt the model by applying SVD to each linear layer,
thereby adjusting the degree of contribution of diverse pretrained feature extractors to the final output.
Given a linear transformation W(l) ∈ Rd

(l)
out ×d

(l)
in in the l-th layer, where d

(l)
out and d

(l)
in denote the

output and input dimensions respectively, SVD factorizes a r-rank matrix W(l) into a left singular
vector matrix U(l) ∈ Rd

(l)
out ×r(l) , a diagonal matrix of singular values Σ(l) ∈ Rr(l)×r(l) , and a right

singular vector matrix V(l) ∈ Rd
(l)
in ×r(l) . This decomposition is formally expressed as:

W(l) = U(l)ΣV(l)⊤ =

r∑
i=1

σ
(l)
i u

(l)
i v

(l)
i

⊤
, (1)

where each rank-1 component is defined by orthonormal basis vectors u(l)
i and v

(l)
i , and scaled by

the singular value σ
(l)
i , which is non-negative and sorted in non-increasing order.

We refer to the set of these rank-1 components uiσiv
⊤
i as a i-th spectral expert and define the spectral

code as the set of singular values across all L layers, represented as follows:

S = {σ(l)}
L

l=1 (2)

An input vector x(l) is projected by each spectral expert through orthogonal bases u(l)
i and v

(l)
i . Since

the singular vectors are mutually orthogonal, the outputs from different experts are also orthogonal,
i.e., (u(l)

i v
(l)⊤
i x(l))⊤(u

(l)
j v

(l)⊤
j x(l)) = 0 for i ̸= j.

We regard the linear layer as a mixture of r(l) spectral experts that generate orthogonal outputs given
the same input. Based on the interpretation that singular values determine each spectral expert’s
contribution weight, we adapt the model to new domains by updating only the singular values while
freezing the singular vectors. Fine-tuning singular values not only allows learning while preserving
the subspace of W(l), but also leverages the rich feature extractors that pretrained models have
already acquired from diverse training data.

Expert alignment statistics. To quantify alignment between the test data and the model’s pretrained
spectrum, we define each spectral expert’s response as the cosine similarity of the inputs with the
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right singular vectors. In other words, alignment statistics capture how strongly input features project
onto the directions spanned by the spectral experts. The output direction of each spectral expert is
determined by the fixed left singular vector u(l)

(i), while its response strength to an input x(l)
n is given

by the scalar µ(l)
(i) v

(l)⊤
(i) x

(l)
n .

Given B samples with T tokens in a batch, yielding N = B × T input vectors, let the alignment of

n-th input vector x(l)
n ∈ Rd

(l)
in with each right singular vector v(l))

i as a(l)n,i =
v
(l)⊤
i x(l)

n

∥x(l)
n ∥2

.

We then define two alignment-based statistics per expert:

ϕ̄
(l)
i =

1

N

N∑
n=1

a
(l)
n,i, Std(l)i =

1

N

N∑
n=1

(
a
(l)
n,i − ϕ̄

(l)
i

)2

. (3)

Here, ϕ̄(l)
i measures the mean of the i-th expert across input tokens, while Std(l)i quantifies the

activation diversity, indicating how differently the expert responds to different tokens. A low value of
Std(l)i suggests that the expert consistently captures domain-specific patterns shared within the batch
and token-level.

Diversity Maximization Loss. We propose a diversity maximization loss that encourages the
model to generate diverse features by maximizing STD.

Ldm = −
∑
l∈Λdm

1

r(l)

r(l)∑
i=1

Std(l)i , (4)

where the set of layers Λdm consists of selected layers, and r(l) is the number of experts in layer l. We
chose the latter layers as the elements of Λdm since the diversity pattern tends to decrease in layers
closer to the classification head.

Optimization. We optimize the spectral code S using an entropy minimization objective Lentmin
incorporating entropy-based sample filtering as in SAR (Niu et al., 2023).

The objective aims to minimize the prediction entropy H(ŷ) = −
∑

c p(ŷc) log p(ŷc), where x is an
input sample of the test domain, ŷ = f(x) is the model prediction, and p(ŷc) denotes the predicted
probability of class c. The full entropy minimization loss is defined as Lentmin(x) = I{x∈S(x)}H(ŷ),
where S(x) is the sample selection function that identifies reliable samples, such as low-entropy
samples. The indicator function I(·) masks out uncertain samples.

We jointly use the entropy minimization and diversity maximization objectives as follows:

LIMSE = Lentmin + λdm · Ldm. (5)

We also adopt Sharpness-Aware Minimization (Foret et al.) following SAR (Niu et al., 2023) to
enhance stability, following SAR (Niu et al., 2023). Further details are provided in Appendix A.

3.2 DOMAIN-AWARE SPECTRAL CODE RETRIEVAL

Fine-tuning only the singular values yields a compact spectral code that succinctly captures domain-
specific knowledge. We exploit compactness of the spectral code in IMSE-Retrieval, which retrieves
stored spectral codes from past domains to enable fast adaptation to new test-time domains in
CTTA. To represent the input distribution, we employ a lightweight domain descriptor by extracting
patch tokens after the patch and position embedding stage and computing their channel-wise mean
and variance ϕ = {µ,V ar} across batch and token dimension. At the t-th adaptation step, the
descriptor ϕ′

t for each input is accumulated as ϕ(t), using an exponential moving average (EMA),
where ϕ(t) = αϕ(t−1) + (1− α)ϕ′

t. In the following, we detail the initialization and update of the
domain bank, and the retrieval process during CTTA, as illustrated in Figure 1.
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Domain Bank. The domain bank is a memory module that stores pairs of domain descriptors
and their corresponding spectral codes, i.e., [Sk, ϕk] for each encountered domain k. It serves as a
repository of domain-specific knowledge from previously encountered domains during CTTA that
can be retrieved to initialize model adaptation whenever a new domain is detected. Prior to continual
test-time adaptation, we initialize the domain bank using information from the source domain. The
original singular values Spre are stored in the domain bank together with the aggregated domain
descriptors ϕ as [S1, ϕ1]. This source entry serves as the initial anchor point for adaptation. At the
beginning of continual test-time adaptation, we initialize S using Spre. Once the first domain shift is
detected during adaptation, we store the adapted spectral code and the updated EMA descriptor as
the second entry in the domain bank as [S2, ϕ2].

Spectral Code Retrieval. We detect new domains and reuse the adapted singular values guided by
the current domain descriptor. To identify a domain shift, we compare the current input-level descriptor
ϕ with the accumulated descriptor ϕ(t) using a symmetric Kullback–Leibler (KL) divergence across
C channels:

D(ϕ1, ϕ2) =
1
C

C∑
i=1

[
KL(ϕ1,i ∥ϕ2,i) +KL(ϕ2,i ∥ϕ1,i)

]
. (6)

A domain shift is detected when D(ϕ′
t, ϕ(t)) exceeds a predefined threshold τ . The stabilized de-

scriptor ϕ(t) and its corresponding adapted spectral code S(t) are then stored in the domain bank to
represent the corresponding domain. We retrieve the most similar previously encountered domain by
comparing the current descriptor ϕ′

t with the stored set {ϕk}Kk=1, where K is the number of recorded
domains, and select k∗ = argmink D(ϕ′

t, ϕk). The singular values associated with the matched
domain k∗ initialize adaptation for the current input, and are further refined during subsequent updates.
This retrieval and initialization process is triggered automatically whenever a new domain is detected.

4 EXPERIMENTS

4.1 SETUP

Datasets. We evaluate our method on ImageNet-C, which includes 15 corruption types categorized
into Noise, Blur, Weather, and Digital. Additionally, we use ImageNet-R (renditions) and ImageNet-A
(adversarial examples) to test robustness against different distribution shift types. Implementation
details are provided in the Appendix A.

Single domain test-time adaptation. We use the full validation set (50,000 images) from ImageNet-
C, where each corruption type is evaluated independently. Unless otherwise specified, we use a
standard ViT model (Dosovitskiy et al.) fine-tuned on ImageNet-1k as the default backbone. To assess
the generalizability of our method under different pretraining strategies, we use Vision Transformers
pretrained via MAE (He et al., 2022) and CLIP (Radford et al., 2021). For the CLIP-pretrained variant,
we utilize the fine-tuning model from (Cherti et al., 2023), which is finetuned on ImageNet-12k
and subsequently on ImageNet-1k. Beyond standard corruptions, we assess adaptation performance
under different distribution shift types using ImageNet-R and ImageNet-A, which contain artistic
rendering images and naturally occurring adversarial samples, respectively. These datasets present
fundamentally different challenges compared to ImageNet-C.

Continual test-time adaptation. Following ViDA (Liu et al.), we use 5,000 images from the
ImageNet-C validation set provided by RobustBench (Croce et al., 2021). The model continuously
adapts to the incoming test data stream without access to domain boundary information.

Gradual continual test-time adaptation. To assess whether IMSE can detect and adapt to subtle
distribution changes, we construct a gradual-shift evaluation scenario using ImageNet-C. Following
the corruption order used in our main CTTA experiments (e.g., Gaussian Noise → Shot Noise →
Impulse Noise → Defocus Blur → · · · → JPEG Compression), we generate a continuous sequence
in which the severity level of each corruption smoothly varies as: 1 → 2 → 3 → 4 → 5 → 4 → 3 →
2 → 1 Repeating this process for all 15 corruption types results in 135 sequential test domains.
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Table 1: Test-time adaptation on ImageNet-C (50k). Accuracy(%)(↑) over 15 corruptions at severity
level 5 using ViT-Base models with different pretraining strategies. The best is bolded and the second
best is underlined. Results with * are reproduced by us.

Pretrain Method Noise Blur Weather Digital Avg.(↑)
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG

Supervised

Source 46.9 47.6 46.9 42.7 34.2 50.5 44.7 56.9 52.6 56.5 76.1 31.8 46.7 65.5 66.0 51.0
T3A 16.6 11.8 16.4 29.9 24.3 34.5 28.5 15.9 27.0 49.1 56.1 44.8 33.3 45.1 49.4 32.2
CoTTA 40.3 31.8 39.6 35.5 33.1 46.9 37.3 2.9 46.4 59.1 71.7 55.5 46.4 59.4 59.0 44.4
DDA 52.5 54.0 52.1 33.8 40.6 33.3 30.2 29.7 35.0 5.0 48.6 2.7 50.0 60.0 58.8 39.1
MEMO 58.1 59.1 58.5 51.6 41.2 57.1 52.4 64.1 59.0 62.7 80.3 44.6 52.8 72.2 72.1 59.1
AdaContrast 54.4 55.8 55.8 52.5 42.2 58.7 54.3 64.6 60.1 66.4 76.8 53.7 61.7 71.9 69.6 59.9
CFA 56.9 58.0 58.1 54.4 48.9 59.9 56.6 66.4 64.1 67.7 79.0 58.8 64.3 71.7 70.2 62.4
TENT 57.6 58.9 58.9 57.6 54.3 61.0 57.5 65.7 54.1 69.1 78.7 62.4 62.5 72.5 70.6 62.8
DePT-G 53.7 55.7 55.8 58.2 56.0 61.8 57.1 69.2 66.6 72.2 76.3 63.2 67.9 71.8 68.2 63.6
SAR 58.0 59.2 59.0 58.0 54.7 61.2 57.9 66.1 64.4 68.6 78.7 62.4 62.9 72.5 70.5 63.6
EATA 54.8 55.3 55.6 58.0 59.1 63.4 61.5 67.7 66.2 73.2 77.9 68.0 68.4 73.1 70.3 64.8
DPAL 59.8 61.7 61.0 59.1 60.5 64.9 63.8 70.2 68.9 72.6 79.7 62.6 70.9 75.6 73.1 67.0
IMSE w.o Ldm 60.6 62.5 61.7 60.6 61.0 66.1 66.0 70.8 69.0 72.8 79.6 66.1 71.6 76.0 73.3 67.8
IMSE 61.9 63.9 63.4 61.8 62.5 67.5 68.1 71.9 70.2 74.4 79.8 67.6 72.9 76.2 73.5 69.0

MAE

Source 56.8 56.8 57.5 46.9 35.6 53.1 44.8 62.2 62.6 65.7 77.7 32.6 46.0 67.0 67.6 55.5
TENT* 60.2 61.4 61.8 59.1 56.7 63.5 59.0 59.0 64.1 3.3 79.2 67.6 60.9 72.9 70.6 60.0
SAR* 59.2 60.3 60.7 57.4 55.8 61.7 57.6 66.0 63.7 66.1 78.7 64.5 62.3 72.4 70.1 63.8
DPAL* 61.6 63.2 63.4 59.4 59.7 64.6 61.5 63.0 70.4 63.7 79.0 60.9 69.1 74.9 72.6 65.9
IMSE w.o Ldm 59.0 62.4 61.7 59.5 59.9 66.0 65.2 70.4 68.1 72.0 79.6 67.2 70.9 75.2 73.1 67.4
IMSE 61.9 63.8 63.4 61.3 61.2 66.7 65.6 71.2 68.4 72.9 80.2 68.4 70.8 75.7 73.4 68.3

CLIP

Source 35.2 36.6 38.7 31.8 25.6 43.9 36.2 51.6 50.3 46.9 76.6 21.6 34.3 51.7 60.8 42.8
TENT* 55.4 57.6 57.6 50.7 51.9 59.5 54.2 64.6 57.5 68.5 80.1 63.0 6.8 72.3 70.0 58.0
SAR* 54.9 57.0 57.1 50.5 53.4 59.7 55.3 64.5 60.6 67.7 78.2 62.3 63.1 71.6 69.4 61.7
DPAL* 55.0 57.3 57.0 51.4 54.0 60.0 50.9 65.9 62.7 69.2 79.7 62.8 64.8 72.8 70.7 62.3
IMSE w.o Ldm 54.6 57.1 57.1 54.8 57.6 64.8 64.4 68.4 65.1 71.5 79.9 63.8 69.9 73.7 71.3 65.0
IMSE 55.5 57.7 57.6 55.3 58.2 65.5 65.4 69.1 65.7 71.8 79.9 64.6 70.3 74.1 71.4 65.5

4.2 BASELINES

Single Domain TTA. We adopt the baselines used in DPAL (Tang et al., 2024), including T3A (Iwa-
sawa & Matsuo, 2021), CoTTA (Wang et al., 2022), DDA (Gao et al., 2023), MEMO (Zhang et al.,
2022), AdaContrast (Chen et al., 2022), CFA (Kojima et al., 2022), TENT (Wang et al., 2020),
DePT-G (Gao et al., 2022), SAR (Niu et al., 2023), and EATA (Niu et al., 2022).

Continual TTA. We primarily compare with TENT (Wang et al., 2020), CoTTA (Wang et al.,
2022), and ViDA (Liu et al.), the most widely adopted baselines with public implementations for
continual TTA on ImageNet-C. For fair comparison, we adopt standard ViT normalization (mean =
[0.5, 0.5, 0.5], std = [0.5, 0.5, 0.5]) in our main experiments, noting that some methods like ViDA
don’t use normalization in their official implementations.

4.3 EXPERIMENTS ON VARIOUS TTA SETTINGS

We analyze the effectiveness of IMSE through single-domain test-time adaptation experiments on the
ImageNet-C dataset. To assess the role of the diversity loss, we additionally experiment on a variant,
IMSE w.o Ldm, which only use Lentmin. In Table 1, our method shows state-of-the-art performance
across all three pretraining strategies. The performance gap becomes more emphasized with MAE
pretraining; IMSE outperforms DPAL by 3.4 percentage points (pp). Under CLIP pretraining, DPAL
showing the second-best performance with a 2.7 pp margin. Moreover, even only fine-tuning the
singular values, IMSE w.o Ldm achieves superior performance over other methods across diverse
pretraining models. When combined with the proposed diversity loss Ldm, it provides additional
performance gains, demonstrating that jointly leveraging spectral-expert contribution control and the
diversity loss further enhances the model’s adaptability.

We further evaluate the robustness of our method under different types of distribution shift by using
ImageNet-R and A. In Table 2, our method demonstrates strong adaptation performance on both
datasets. Specifically, our method outperforms DPAL (Tang et al., 2024) by 5.0 pp on ImageNet-R and
by 4.9 pp on ImageNet-A. These results support the claim that adapting singular values offers a more
stable and generalizable solution than previous approaches. Furthermore, we evaluate IMSE under
more challenging domain shifts (ImageNet-3DCC, ImageNet-V2, Imagenet-Sketch, OfficeHome,
and DomainNet) in Appendix I.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Test-time adaptation on
ImageNet-R/A. Accuracy (%)(↑) on
two different datasets using supervised
pretrained ViT-Base model. The best is
bolded and the second best is underlined.

Method ImageNet-R ImageNet-A

Source 57.2 31.1
TENT 61.3 44.5
SAR 62.0 45.3
DPAL 64.8 49.9
IMSE 69.8 54.8

Table 3: Comparison of performance, number of
trainable parameters, and average runtime across
different CTTA methods. Results with * are repro-
duced by us.The best is bolded and the second best is
underlined.

Method Acc (%)(↑) Params.(↓) Runtime (sec / batch)(↓)

TENT* 52.8 38.4K 0.31
CoTTA* 50.7 86.4M 2.52
VIDA* 57.7 14.2M 3.49
IMSE-Retrieval 64.4 36.8K 0.99

Table 4: Continual test-time adaptation on ImageNet-C (5k). Accuracy(%)(↑) over 15 corruptions
at severity level 5 using a supervised ViT-Base model. Results with * are reproduced by us.

Noise Blur Weather Digital

ImageNet-C (5k) Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG Avg.(↑)

Source 46.8 46.7 46.7 44.1 31.1 48.6 44.5 54.3 50.4 54.9 75.3 31.3 45.2 65.8 66.1 50.1
TENT* 48.0 50.2 51.2 45.5 34.0 51.4 46.9 57.3 54.6 56.9 76.3 39.5 46.4 66.9 66.7 52.8
CoTTA* 47.0 47.1 47.3 44.7 31.6 49.0 45.2 54.8 51.0 55.5 75.9 32.0 45.9 66.1 66.7 50.7
ViDA* 50.5 56.3 56.5 50.8 42.6 56.5 52.2 61.6 58.3 63.0 77.1 55.2 49.8 67.1 68.0 57.7
IMSE w.o Ldm 52.9 58.0 58.0 52.8 47.4 57.0 55.0 61.3 60.7 62.9 76.9 56.9 55.4 68.3 68.4 59.4
IMSE 57.1 60.8 59.8 56.6 54.3 59.5 60.4 61.9 62.8 64.6 76.9 57.6 63.1 70.0 67.1 62.2
IMSE Retrieval 57.3 60.4 59.7 58.0 57.8 60.7 60.8 68.2 66.3 68.5 78.2 59.9 67.1 74.1 69.6 64.4

4.4 CONTINUAL TEST-TIME ADAPTATION

We perform experiments on three variants of our approach—IMSE w.o Ldm, IMSE, IMSE-Retrieval.
This comparison allows us to examine how each proposed component contributes to CTTA. Table 4
compares the variants of our method with existing CTTA baselines. These variants significantly
outperform the prior method, and IMSE-Retrieval shows the best performance. First, IMSE w.o Ldm
achieves strong performance despite using only a simple regularization loss, outperforming methods
such as CoTTA (Wang et al., 2022) and ViDA (Liu et al.), which rely on pseudo-label refinement
via data augmentation and EMA teacher models. Second, the proposed diversity maximization loss
enhances the stability in the CTTA scenario. It alleviates the accumulation of prediction errors,
allowing the model to maintain its class-discrimination ability even when the test domain changes
continuously. Third, IMSE-Retrieval further improves performance by leveraging domain-specific
spectral codes stored in the Domain Bank. This approach outperforms all other methods, including
variants of our methods. For example, it improves over IMSE by 3.5 pp on Glass Blur and 6.3 pp on
Snow, showing the benefit of domain-aware retrieval in the CTTA scenario.

4.5 GRADUAL CONTINUAL TEST-TIME ADAPTATION

Table 5 reports the average accuracy under the gradual-shift setting. IMSE-Retrieval achieves the
highest performance (74.9%), outperforming CTTA baselines such as TENT, CoTTA, and ViDA.
We additionally investigate the influence of the domain-change threshold τ to understand its role
in controlling segmentation granularity and retrieval frequency. A margin of one step around each
transition point is allowed when measuring detection quality to account for the smooth nature of the
shifts. When the threshold is increased to a more tolerant value (τ = 0.02→ 0.04), the F1 score of
domain-change detection decreases (F1: 0.77 → 0.28), while the overall adaptation performance
increases (accuracy: 74.9% → 75.6%). This trade-off indicates that highly sensitive domain-change
detection is not always advantageous, and that choosing a moderate threshold helps achieve strong
performance while keeping the Domain Bank compact.
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Table 5: Gradual continual test-time adaptation on ImageNet-C. Results with * are reproduced by
us.The best is bolded and the second best is underlined.

Method Avg Acc. (%)(↑)
Source 67.3
TENT* 70.7
CoTTA* 69.5
ViDA* 72.5
IMSE-Retrieval 74.9
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Figure 2: (a) Comparison of top-R% vs. bottom-R% singular value selection. (b) Impact of the
threshold τ on domain shift detection and adaptation performance. (c) Feature diversity across various
training methods. (d) Adaptation performance across various training methods.

5 ANALYSIS

Effect of Singular Value Selection Strategy. To further understand the contribution of different
spectral components in TTA, we selectively fine-tune subsets of singular values. While our main
approach updates all singular values in each linear layer, this experiment investigates the performance
impact of tuning only the top-R% or bottom-R% singular values, keeping the rest fixed.

As shown in Figure 4a, tuning the top 50–90% of singular values achieves comparable or even
slightly better performance than updating all singular values. In contrast, tuning only the bottom-R%
consistently leads to notable performance degradation. For example, at R = 80, updating the top
80% yields the best accuracy (69.1%), while tuning the bottom 80% results in lower performance
(68.4%). As R decreases, the difference between the top and bottom components becomes more
pronounced. When only 20% of the singular values are tunable, the top components still maintain
reasonable performance (67.7%), whereas the bottom components drop sharply to 64.7%. These
results demonstrate that spectral experts associated with high-magnitude singular values are more
informative and play a dominant role in adaptation under distribution shift.

The Role of Diversity Maximization Loss. In this section, we examine how feature diversity
in the ViT’s last-block output correlates with adaptation performance. Feature diversity, plotted in
Figure 4c, is defined as variation in representations across samples and tokens and is computed by
the dimension-wise standard deviation. Figure 2d shows the corresponding adaptation performance
under Gaussian noise corruption at severity level 5. Supervised adaptation with cross-entropy loss
(Lce) shows a steady increase in diversity and achieves higher adaptation performance, suggesting the
model learned class-discriminative features for the current domain. When the model is adapted in
an unsupervised manner using entropy minimization (Ltta), the diversity of the last block gradually
decreases, and the accuracy drops to 60.2%. This diversity collapse under unsupervised training arises
because entropy minimization loss enforces high confidence even for uncertain samples, prompting
the model to exploit domain-specific patterns common across the incoming test data. As a result,
the last-block representation captures domain-related rather than class-discriminative information,
yielding sub-optimal performance.

We assess the effect of the diversity-maximization loss combined with entropy minimization, as
defined in Equation (5), which explicitly encourages feature diversity during adaptation. As shown in
Figure 4c, maximizing the proposed objective function effectively prevents the collapse of feature
diversity and simultaneously boosts adaptation accuracy to 61.9%, while maintaining a diversity

8
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Table 6: Continual test-time adaptation on ImageNet-C (5k). Accuracy (↑) over 15 corruptions
with severity level 5 using supervised pretrained ViT-Base model. The best is bolded.

Noise Blur Weather Digital
ImageNet-C (5k) Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG Avg.(↑)
Source 46.8 46.7 46.7 44.1 31.1 48.6 44.5 54.3 50.4 54.9 75.3 31.3 45.2 65.8 66.1 50.1
IMSE 57.1 60.8 59.8 56.6 54.3 59.5 60.4 61.9 62.8 64.6 76.9 57.6 63.1 70.0 67.1 62.2
IMSE-Retrieval (Mean) 57.3 60.4 59.7 58.0 57.8 60.7 60.8 65.6 65.3 67.0 77.1 52.5 64.1 72.4 67.2 63.1
IMSE-Retrieval (Var) 57.3 60.4 59.7 58.0 57.8 60.7 60.8 65.6 61.1 64.3 78.6 51.7 67.1 74.1 71.0 63.2
IMSE-Retrieval 57.3 60.4 59.7 58.0 57.8 60.7 60.8 68.2 66.3 68.5 78.2 59.9 67.1 74.1 69.6 64.4

trend close to that of the supervised setting. Further analysis of the diversity of alignment across
different transformer block depths is provided in Appendix D.

Domain Shift Detection Quality. To understand the relationship between domain shift detection
quality and adaptation performance, we measure the hyperparameter sensitivity of the domain shift
detection threshold τ , which controls the sensitivity of domain shift detection. Figure 4b reports
classification accuracy and F1 score for domain shift detection quality at various τ values. Figure 4b
show that higher F1 score generally leads to higher classification performance. Overall, our method
maintains competitive accuracy despite reduced domain-shift detection quality and achieves better
performance compared to other methods. To further explain this behavior, we analyze two extremes
as follows. When τ is too low, minor fluctuations trigger frequent shift detections, increasing the
number of entries in the domain bank. However, because our method reuses previously stored
spectral codes, these redundant entries cause less performance degradation. When τ is too high, the
change of test domain is undetected, leading to suboptimal adaptation and forgetting of previously
encountered domains, leading to a performance drop. These findings emphasize that accurate domain
shift detection is crucial not for merely maximizing classification accuracy, but for maintaining an
efficient and meaningful domain bank.

Efficiency of IMSE-Retrieval. We summarize the efficiency of IMSE-Retrieval in Table 3 across
three aspects: trainable parameters, runtime, and additional storage. The runtime is measured on
a single A6000 GPU using batch size 64. First, IMSE-Retrieval achieves the highest performance
(64.4%) while requiring only 36.8K trainable parameters, which corresponds to 0.05% of the pa-
rameters updated by CoTTA and about 0.26% relative to ViDA. Second, the measured runtime
shows that IMSE-Retrieval is 3.5 times faster than ViDA and 2.5 times faster than CoTTA. This
efficiency primarily stems from the low computational cost of SVD. The SVD of all linear layers
is performed only once as an offline preprocessing step before adaptation, taking approximately
5.0 seconds. During adaptation, reconstructing weights via W = UΣV ⊤ adds an overhead of 0.07
seconds per batch, which is marginal relative to the 0.99 seconds required for the full adaptation
pass (only about 7% of the total adaptation time). Although IMSE-Retrieval is slower than TENT,
our approach achieves much higher accuracy. Third, the storage required for the Domain Bank is
approximately 0.33 MB per domain, which is negligible relative to the ViT-Base backbone size
(330.23 MB). These results demonstrate that IMSE-Retrieval not only provides strong adaptation
performance for CTTA but also maintains high efficiency across all measured aspects.

6 ABLATION STUDY

Effect of Domain Descriptors. Using both mean and variance to compute distributional similarity
via KL divergence is theoretically well-founded, as these first- and second-order statistics jointly
capture the essential characteristics of a distribution. As shown in Table 6, IMSE-Retrieval (Mean)
and IMSE-Retrieval (Var) denote the variants of our method that retrieve spectral codes based
on the mean and variance statistics, respectively. Retrieval with variance performs slightly better
than IMSE-Retrieval (Mean), highlighting their complementary roles. This result highlights the
complementary roles of mean and variance. The information about the mean is particularly helpful
for Frost corruption, whereas variance is more effective under JPEG compression.

Finetuning different layers. To understand which ViT modules benefit most from fine-tuning
singular values, we perform an ablation study in the TTA setting. As shown in Table 7, adapting
the second MLP module (MLP.fc2) slightly outperforms the attention projection module (Attn.proj).

9
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Figure 3: Hyperparameter sensitivity of λdm.

Table 7: Ablation on target modules for singu-
lar value adaptation. ✓indicates the component
is used.

Attn.qkv Attn.proj MLP.fc1 MLP.fc2 Accuracy (%)

- - - - 51.0
✓ - - - 66.2
- ✓ - - 66.8
- - ✓ - 65.8
- - - ✓ 67.2
- ✓ - ✓ 68.6
✓ ✓ - ✓ 68.9
✓ ✓ ✓ ✓ 69.0

Adapting both yields a further gain, indicating their complementary relationship. The best performance
is achieved when all linear layers are adapted. For efficiency, adapting only the attention projection
and MLP output layers provides a favorable trade-off.

Hyperparameter sensitivity of λdm. We conduct an ablation study on the weight of the diversity
maximization loss in the TTA setting. Using a supervised ViT-Base model, we change the weight over
[1, 3, 10, 20, 30, 50, 100, 200] and measure the average accuracy across the 15 common corruptions
of ImageNet-C. As shown in Figure 3, we obtain the best performance of 69.0% when the weight is
set to 50, and higher weights reduce accuracy. Notably, the method remains robust even as the scale
of λdm varies widely from 1 to 200, and a weight of 200 still achieves around 68% accuracy.

7 CONCLUSION

In this paper, we present Intrinsic Mixture of Spectral Experts (IMSE), a test-time adaptation method
that fully leverages the knowledge in pretrained networks. By decomposing the linear layers of
pretrained networks via SVD and adjusting the contributions of their spectral experts, our approach
effectively adapts to test domains. This enables efficient adaptation with minimal parameter updates.
In addition, we introduce a Diversity Maximization Loss to maintain diverse alignment patterns
during adaptation. For continual test-time adaptation, we introduce Domain-Aware Spectral Code
Retrieval, which reuses adapted singular values based on domain similarity. Extensive experiments
on ImageNet-C/R/A show that IMSE consistently improves performance across different pretraining
strategies, achieving strong results with up to 2000× fewer trainable parameters. Future work includes
extending our method to broader architectures and more scalable domain matching strategies.

Limitations. While our method requires far fewer trainable parameters than existing approaches, it
introduces some additional memory usage due to storing decomposed singular vectors alongside the
original weights. In addition, the domain bank stores both the domain descriptors and the domain-
specific adapted singular values, which requires extra storage in CTTA.

Broader impact. Our method enables efficient, robust adaptation of vision models under distribu-
tion shift, making it broadly applicable to real-world scenarios where test distribution differs from
training distribution. However, care is needed when deploying adaptive systems without control over
domain changes or failure detection.

REPRODUCIBILITY STATEMENT

All experiments are conducted on publicly available datasets (e.g., ImageNet-C) without private data.
Implementation builds on the publicly released DPAL and ViDA codebases, and all modifications
necessary to reproduce our method are described in the manuscript. 4.1 and Appendix A include
model architectures, hyper-parameters, optimization settings, and data-processing steps.
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A IMPLEMENTATION DETAILS

Single-domain test-time adaptation (TTA). We use a batch size of 64 for all experiments. We
employ Adam as an optimizer with Sharpness-Aware Minimization (SAM) (Foret et al.). We apply
a learning rate of 3e-3 for ImageNet-C and ImageNet-R, and 4e-3 for ImageNet-R. Results of
Supervised ViT-Base are taken from the DPAL (Tang et al., 2024). We exclude the final three
transformer blocks of ViT from training, following the protocol established by SAR and DPAL.
For experiments with MAE, CLIP, and ViT-Large, we run all baseline methods and perform a
hyperparameter search to determine the best learning rate for each setting. Table 8 presents the
optimal learning rates.

Table 8: Learning rates for each method across different pretrained models.

Method MAE CLIP ViT-Large

TENT 1e-3 1e-3 3e-4
SAR 1e-3 3e-3 1e-3
DPAL 4e-3 3e-3 4e-3
IMSE 1e-3 3e-3 4e-3

Continual test-time adaptation (CTTA). We use the same batch size of 64 and adopt Adam as
optimizer with SAM. We implement all baseline methods using their default configurations, following
ViDA (Liu et al.). In our method, we exclude the final three transformer blocks of ViT from training.
We use a learning rate of 7e-3 for (e.g., IMSE-Retrieval). The EMA coefficient used for updating the
domain descriptor, α, is set to 0.8.

Entropy-based sample filtering. We follow EATA (Niu et al., 2022)’s entropy filtering strategy in
both scenarios, using the threshold τ = 0.4 · log(# of classes) to exclude unreliable samples during
adaptation.

B EXTENSION TO VIT-LARGE

In addition to the results in Section 4.3.1, we further evaluate our method on a larger architecture, ViT-
Large, to examine its scalability and generalization. ViT-Large provides a significantly greater capacity
for representation and is expected to leverage richer pretrained knowledge more effectively during
the adaptation process. In Table 9, IMSE shows state-of-the-art performance compared to baseline
methods. Our method outperforms SAR, the second-best performing approach, by approximately 4.1
pp. It demonstrates the substantial benefits of our spectral expert adaptation when applied to larger
model architectures. These findings align with the core philosophy of our work—that our spectral
expert adaptation method scales effectively with model capacity, enabling better utilization of the
rich knowledge contained in more powerful pretrained models.

C ADDITIONAL ABLATION ON MODULE COMBINATION

We extend the ablation study Section 6 of the main paper to a broader set of module combinations.
We decompose the qkv projection in the Attention module into three separate linear layers for q,
k, and v. In Table 10, Attn.q, Attn.k, and Attn.v denote the individually separated components. As
shown in Table 10, attention value (Attn.v), attention projection (Attn.proj), and second layer of MLP
block (MLP.fc2) contribute substantially to adaptation performance. Notably, we find that explicitly
separating the q, k, and v projections leads to further performance improvements, achieving a 0.2 pp.
gain compared to using the combined qkv projection.

D DIVERSITY ANALYSIS ACROSS TRANSFORMER BLOCKS

We analyze how the diversity of alignment statistics varies across network depth. Specifically, we
measure the diversity at the second layer of the MLP block (MLP.fc2) within the 3rd, 6th, and 9th
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Table 9: Test-time adaptation on ImageNet-C (50k). Accuracy (↑) over 15 corruptions at severity
level 5 using supervised pretrained ViT-Large model. The best is bolded and the second best is
underlined.

Noise Blur Weather Digital
ImageNet-C (50k) Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG Avg.(↑)
Source 62.5 62.0 63.3 52.9 45.3 60.7 55.2 66.0 62.4 62.6 79.9 40.1 56.2 74.3 72.8 61.1
TENT* 65.2 66.0 66.1 60.8 54.4 64.1 60.4 68.2 63.7 65.9 80.4 58.0 60.3 75.9 73.6 65.5
SAR* 67.4 68.3 69.3 55.8 59.6 66.1 64.2 68.8 68.1 70.5 81.6 59.0 69.7 78.0 75.8 68.1
DPAL* 66.6 68.4 68.1 62.5 63.8 67.9 65.7 72.0 64.4 69.5 81.5 56.5 71.3 73.6 75.7 68.5
IMSE w.o Ldm 68.7 70.1 69.5 66.7 66.4 69.6 70.2 74.3 72.6 74.6 82.2 65.9 74.8 79.6 77.5 72.2
IMSE 70.1 71.0 71.0 68.1 68.5 71.8 71.7 75.8 74.0 76.3 82.7 68.5 76.0 80.4 78.3 73.6

Table 10: Ablation study on target modules. The best is bolded and the second best is underlined.

Attn.q Attn.k Attn.v Attn.proj MLP.fc1 MLP.fc2 Acc (↑)

- - - - - - 51.0
✓ - - - - 59.6
- ✓ - - - - 61.8
- - ✓ - - - 66.6
- - - ✓ - - 67.4
✓ ✓ ✓ ✓ - - 68.4
✓ ✓ ✓ ✓ ✓ - 68.6
✓ ✓ ✓ ✓ ✓ - 69.0
✓ ✓ ✓ ✓ ✓ ✓ 69.2

Transformer blocks. Figure 4 compares three settings: entropy–minimization loss (Lentmin), our full
objective (LIMSE), and cross-entropy loss (LCE).

The results show that when only Lentmin is applied, the diversity of spectral-expert responses decreases
more severely in deeper layers and appears noisier in the early layers. We assume that early layers are
relatively less affected by the entropy-minimization loss and focus on extracting domain-related fea-
tures rather than utilizing them. Based on these observations, we compute the diversity-maximization
loss on the deeper Transformer blocks to better preserve feature diversity during adaptation.

E DOMAIN DESCRIPTOR SIMILARITY ANALYSIS

To better understand the behavior of domain descriptors across different test domains, we measure
the pairwise distance between descriptors. In Figure 5, domains belonging to the noise category (e.g.,
Gaussian noise, Impulse noise, Shot noise) exhibit highly similar descriptors due to their shared
low-level statistical characteristics. In contrast, the Contrast corruption shows significantly larger
distances from all other domains in the descriptor space. This indicates that it possesses unique
distributional properties.

F THE USAGE OF LARGE LANGUAGE MODELS

We utilize large language models (LLMs) as auxiliary tools during our experiments. We employ
LLMs for debugging and writing repetitive code, and they were used for basic grammar correction
during writing our manuscript. The research ideas, experimental design, and all scientific conclusions
are our own work.
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Figure 4: (a) Diversity of alignment patterns in 3rd Transformer Block. (b) Diversity of alignment
patterns in 6th Transformer Block. (c) Diversity of alignment patterns in 9th Transformer Block.
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Figure 5: Domain distance matrix. Pairwise distance matrix among 15 domain descriptors.
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Table 11: Test-time adaptation ablation
study on loss components using ImageNet-
C. ✓indicates the component is used.

Lentmin Ldm Avg. Acc. (%)(↑)
✓ - 67.8
- ✓ 32.7
✓ ✓ 69.1

Table 12: Continual test-time adaptation abla-
tion study on components using ImageNet-C.
✓indicates the component is used.

Lentmin Ldm Domain Bank Avg. Acc. (%)(↑)

✓ - - 59.4
✓ ✓ - 62.2
✓ - ✓ 62.8
✓ ✓ ✓ 64.4

Table 13: Test-time adaptation on ImageNet-C under non-i.i.d. setting. Average accuracy (%)
across 15 corruption domains for different concentration factors α.

Method α=1.0 (Mild) α=0.5 (Moderate) α=0.1 (Severe) α=0.05 (More severe)

IMSE w/o Ldm 67.79 67.78 67.64 67.33
IMSE 68.92 68.88 68.62 68.41
Improvement +1.13 +1.10 +0.98 +1.08

G COMPONENT ABLATION STUDIES

We conduct two complementary ablation studies that separately analyze (1) the role of entropy
minimization and diversity maximization under TTA setting, and (2) the impact of the diversity loss
and Domain Bank under CTTA setting, when entropy minimization is fixed.

Impact of Entropy Minimization Loss. We estimate the individual contributions of entropy
minimization and diversity maximization. As shown in Table 11, Lentmin provides the essential
adaptation signal, while Ldm prevents representation collapse during adaptation. This observation
indicates that the two losses play complementary roles in TTA.

Impact of Diversity Maximization Loss and Domain Bank. Next, we fix Lentmin and further ablate
the remaining two components: the diversity maximization loss Ldm and the Domain Bank–based
retrieval mechanism. As shown in Table 12, incorporating all three components yields the highest
performance, indicating that they play complementary roles in continual test-time adaptation.

H ROBUSTNESS OF DIVERSITY MAXIMIZATION IN NON-I.I.D. SETTINGS

We further assess whether diversity maximization could unintentionally suppress class-discriminative
information under extreme label imbalance. Following DELTA (Zhao et al.), we adopt the Dirichlet
non-i.i.d. setting, where the concentration factor α controls the degree of label imbalance within
batch. We vary α from 1.0 to 0.05, where smaller α indicates a more severe imbalance. As shown
in Table 13, incorporating Ldm consistently improves adaptation accuracy by approximately 1.1%
across all levels of non-i.i.d. shifts. Notably, even under the most severe class imbalance (α = 0.05),
using the diversity maximization loss boosts performance from 67.33% to 68.41%. This stable
improvement confirms that diversity maximization effectively complements entropy minimization,
maintaining robust representations even when the input distribution is extremely skewed.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 14: Test-time adaptation on ImageNet-V2 and ImageNet-Sketch.. Accuracy(%)(↑) using
supervised pretraining ViT-Base. The best is bolded and the second best is underlined. Results with *
are reproduced by us.

Method ImageNet-V2 ImageNet-Sketch

Source* 73.83 43.00
TENT* 74.28 50.13
SAR* 74.35 52.10
DPAL* 74.40 52.25
IMSE 74.48 53.58

Table 15: Test-time adaptation on ImageNet-3DCC (50k). Accuracy(%)(↑) over 11 corruptions
at severity level 5 using supervised pretraining ViT-Base. The best is bolded and the second best is
underlined. Results with * are reproduced by us.

Method bit error color quantization far focus flash fog h265 abr h265 crf iso noise low light near focus xy motion blur z motion blur Avg.(↑)

Source* 20.3 53.1 61.7 47.3 39.4 52.8 57.3 59.1 56.3 70.5 43.2 47.4 50.7
TENT* 1.2 64.1 68.2 52.1 7.5 56.1 60.7 65.6 70.3 76.2 56.4 61.2 53.3
SAR* 13.8 64.7 68.7 54.3 41.4 57.1 61.4 66.3 70.8 76.4 57.8 62.5 57.9
DPAL* 13.1 64.2 68.3 53.7 43.4 57.0 61.2 65.8 70.0 75.8 56.6 61.7 57.6
IMSE 15.5 65.0 70.1 55.2 44.5 58.1 62.2 67.3 71.6 77.1 58.9 63.9 59.1

I ADDITIONAL RESULTS

Challenging benchmarks. We further evaluate IMSE under more challenging domain-shift bench-
marks. Specifically, we use ImageNet-V2 (Recht et al., 2019) for distribution shift, ImageNet-
Sketch (Wang et al., 2019) for texture shift, and ImageNet-3DCC for geometry-aware real-world
corruptions. All experiments are conducted in a test-time adaptation setting using a supervised
pretrained ViT-Base model. Compared to standard 2D common corruptions (Hendrycks & Dietterich,
2019), ImageNet-3DCC (Kar et al., 2022) is more challenging as its corruptions are generated using
3D scene geometry, resulting in more realistic and real-world–plausible distribution shifts. As shown
in Table 14 and Table 15, IMSE achieves consistently strong performance across all benchmarks,
demonstrating its effectiveness under challenging domain-shift benchmarks.

Domain Adaptation Benchmarks. We additionally evaluate our method on the domain adaptation
benchmarks, Office-Home (Venkateswara et al., 2017) and DomainNet (Peng et al., 2019) under
single test-time adaptation setting (using supervised pretrained ViT-Base). In our experiments, we
use 126 categories from DomainNet, selecting Real, Clipart, Painting, and Sketch as the evaluation
domains following MME (Saito et al., 2019). For OfficeHome, we use all 65 categories and include
Real World, Art, Clipart, and Product as domains. Domain adaptation benchmarks differ from
corruption-based benchmarks because they require additional supervised training and exhibit different
class distributions across domains. Despite these differences, IMSE achieves consistently strong
performance on both benchmarks in Table 16, Table 17 outperforming existing TTA baselines. This
demonstrates that IMSE is effective not only on corruption-based TTA benchmarks but also on
domain adaptation benchmarks.

J LONG-TERM CONTINUAL TEST-TIME ADAPTATION

We evaluate the long-term stability and scalability of IMSE-Retrieval. To simulate long-term continual
test-time adaptation setting where the same domain reappears multiple times, we split each ImageNet-
C corruption (all at severity 5) into 10 domains of different 5,000 images. This setup reflects realistic
deployment scenarios where the same domain recurs multiple times with different samples. As shown
in Table 18, the proposed method maintains strong and stable performance across all rounds and
consistently outperforms prior approaches. These results demonstrate that IMSE-Retrieval is robust
under repeated re-occurrence of the same domain.
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Table 16: Test-time adaptation on OfficeHome. Accuracy(%)(↑) over 12 source–target domain pairs
and average performance. The best is bolded and the second best is underlined. Results with * are
reproduced by us.

Method R→A R→C R→P A→R A→C A→P C→R C→A C→P P→R P→A P→C Avg.(↑)

Source* 79.68 56.05 88.35 87.46 58.55 82.90 84.66 78.37 84.29 87.74 75.32 55.69 76.58
TENT* 79.68 56.08 88.91 88.01 59.61 83.10 85.42 79.68 85.01 87.90 75.48 55.71 77.05
SAR* 79.72 56.72 88.37 87.62 61.42 83.03 85.40 79.48 84.61 87.81 76.02 56.26 77.20
DPAL* 79.93 55.57 86.52 87.14 59.17 82.61 85.33 79.02 84.09 86.68 75.85 55.25 76.43
IMSE 81.04 56.35 88.91 88.13 60.36 83.44 85.74 79.39 84.88 88.04 76.14 56.28 77.39

Table 17: Test-time adaptation on DomainNet. Accuracy(%)(↑) over 12 source–target domain pairs
and average performance. The best is bolded and the second best is underlined. Results with * are
reproduced by us.

Method R→C R→P R→S C→R C→P C→S P→R P→C P→S S→R S→C S→P Avg.(↑)

Source* 66.84 76.14 59.44 80.46 69.85 65.93 86.72 69.04 59.95 82.19 72.95 73.62 71.93
TENT* 68.25 76.45 60.36 81.91 72.32 67.01 87.60 69.97 59.21 82.76 73.05 73.11 72.67
SAR* 69.64 77.78 64.23 81.91 72.83 67.73 86.72 70.77 59.41 82.77 73.53 73.41 73.39
DPAL* 68.14 77.54 60.86 81.78 72.79 66.07 84.93 70.16 58.86 81.61 72.54 70.11 72.12
IMSE 69.33 77.78 62.40 82.45 73.23 67.57 87.85 70.42 59.72 83.10 73.73 73.55 73.43

Table 18: Continual test-time adaptation on ImageNet-C under the domain-recurring setting.
Average accuracy (%) for each round (R1–R10) and the average over all rounds. The best is bolded
and the second best is underlined. Results with * are reproduced by us.

Name R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Avg.(↑)

Source* 49.2 50.2 50.4 50.0 49.8 50.4 50.7 49.8 50.4 50.0 50.1
TENT* 53.3 56.9 57.8 57.8 57.5 58.7 59.2 57.9 57.9 58.1 57.5
CoTTA* 49.7 52.1 53.1 53.1 53.2 54.0 54.6 53.5 54.0 54.0 53.1
ViDA* 53.7 57.2 59.3 58.7 59.1 59.5 59.4 59.7 59.6 59.8 58.6
IMSE-Retrieval 63.7 65.1 65.8 65.2 64.8 65.9 65.0 65.4 65.1 65.3 65.1
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