

DEAGLE: TOKEN TREE WITH DYNAMIC DEPTH WILL FURTHER BENEFIT THE SPECULATIVE DECODING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities in text generation, but they also suffer from high token-by-token latency due to the nature of autoregressive decoding. Speculative decoding (SD) mitigates this by using the draft-then-verify framework, making it possible to generate multiple tokens in a single LLM forward pass. However, existing state-of-the-art SD frameworks typically generate token trees with a fixed depth, which brings unnecessary computation and suboptimal speedup across diverse datasets. In this work, we introduce DEAGLE, a lightweight and training-free extension to EAGLE-3 that enables adaptive-depth speculative decoding through context-aware token-tree monitoring. We provide the first formal proof that draft model confidence serves as an unbiased estimator of token-level acceptance, generalizing empirical observations from prior EAGLE-2 work to EAGLE-3. Furthermore, we show that the product of draft confidences along a token path, the survival probability, can be a good heuristic for full-branch acceptance. Based on this insight, DEAGLE introduces a voting-based early stopping mechanism that monitors the survival probability sum of the top- k leaves, survival momentum, and the expected accept length for the whole token tree (estimated via survival probability expectation). These factors are jointly used to determine when to stop tree expansion. DEAGLE can be integrated into EAGLE-3 without retraining or architectural changes. Experiments on Vicuna 13b, Llama3-8b, and Llama3-70b demonstrate that DEAGLE achieves further speedup over EAGLE-3 and enables more robust acceleration across different datasets and token tree depths.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance in a variety of natural language processing (NLP) tasks OpenAI (2023). However, their practical use is limited by inference latency. This latency originates from the nature of Auto-Regressive decoding, which requires generating n tokens through n sequential forward passes. The resulting sequential computation reduces the effectiveness of parallel hardware and leads to memory-bandwidth constraints that drive up computational costs Leviathan et al. (2023).

To address this challenge, a range of acceleration strategies have been developed to improve the efficiency of computational resources. Given that the inference latency of large models is constrained by memory bandwidth rather than arithmetic computation Leviathan et al. (2023), speculative decoding (SD) has emerged as a compelling approach. SD utilizes a smaller model (the "draft model") to propose multiple tokens (draft tokens) with small overhead, then the original larger "target model" verifies those proposed draft tokens in parallel in batches with a single forward pass. By this parallel token verification process, speculative decoding significantly increases the inference speed while preserving the exact distribution and quality of model outputs.

Recent developments in speculative decoding frameworks have improved efficiency by shifting from single-sequence drafts to multi-branch speculative trees, as seen in architectures such as Medusa Cai et al. (2024) and SpecInfer Miao et al. (2024). These models introduced the "tree attention" mechanisms that apply topology-aware causal masks to enforce strict parent-child attention within each candidate tree, which prevents interference across branches. As a result, the verification process extends from a single sequence to multiple speculative branches. This method increases the Mean

Accepted Token (MAT), which measures the average number of draft tokens successfully verified per decoding step, and reduces GPU memory bandwidth consumption by increasing the computational density of each forward pass.

Among recent methods, the Eagle models (Eagle-1 Li et al. (2024a), Eagle-2 Li et al. (2024b), Eagle-3 Li et al. (2025)) greatly improved speculative decoding on the draft tokens’ acceptance rates, and thus became the current state-of-the-art SD model. Eagle 1 introduced the notion of feature-level auto regression and created the basic structure used in later Eagle models. Eagle-2 extended this approach with an empirical finding that the token tree confidence scores from the draft model show a positive relation with token acceptance rates from the LLM. With that finding, Eagle-2 introduced a Dynamic Token Tree Expansion mechanism, making the token tree branches vary based on the context. Eagle-3 further refined the framework by removing the feature loss component and retaining only the classification loss. This modification was specifically designed to eliminate the constraint brought by the feature loss and make the scaling law achieve, resulting in a tighter bound compared to Eagle-2 on the correlation between token tree confidence scores and acceptance rates (shown in Section 3).

Despite these improvements, one major limitation remains. Eagle-2 sets a fixed depth token tree for speculative decoding, which inevitably introduces suboptimal tuning and compromises efficiency across various application scenarios. A more optimal token tree depth needs to be adaptive and context-aware. The fixed depth approach cannot balance the gain from longer accepted token sequences and therefore wastes extra draft model forward passes. The fixed-depth token tree might severely under-utilize the speculative potential of the draft model for simple sentences, whereas drafting for complex sentences might suffer unnecessary computations from short acceptance length.

In this paper, we introduce **DEAGLE** (Dynamic EAGLE), a speculative decoding framework based on EAGLE-3 using the depth-adaptive token tree. Unlike earlier methods that use a fixed depth hyperparameter, DEAGLE dynamically adjusts the tree depth for each inference run based on a voting mechanism. We first give a formal proof for the positive correlation between confidence scores and acceptance rates initially observed in Eagle-2 in Section 3.1. In Section 3.2, we extend this proof to Eagle-3 (as formalized in Equation 19), confirming that the architectural modification (i.e., the removal of feature loss) results in a smaller bound and a more robust correlation, thereby validating the theoretical consistency across the Eagle lineage. This forms the basis for our training-free prediction of the optimal dynamic depth for Eagle-3 with minimal additional overhead.

Specifically, **DEAGLE** makes the following major contributions:

- **Confidence-acceptance equivalence:** We formally prove that the draft confidence scores c_t and the token acceptance probabilities α_t are bounded in Eagle-2 and Eagle-3 structures (Section 3.2).
- **Token Tree Expectation as heuristic:** We introduce the notion of using survival probability expectation as an estimation for the average acceptance length of the given token tree, which becomes a good heuristic for the draft model to stop building the token tree (Section 3.3).
- **Voting-based depth control:** DEAGLE predicts the tree depth based on evaluation of three factors: (i) top- k survival probability sum S_d , (ii) survival momentum ρ_d , and (iii) expected acceptance length E_d triggers early termination when expansion efficiency drops (Section 3.4). We performed extensive experiments and compared the speedup ratio of our DEAGLE and EAGLE-3 across different models, temperatures, and datasets to verify the effectiveness of this approach in Section 4.

2 RELATED WORKS

LLM Inference Acceleration and Speculative Decoding Foundations. Large-language-model inference acceleration has been approached through quantization Frantar et al. (2023); Dettmers et al. (2022), pruning Ma et al. (2023), and knowledge distillation Hinton et al. (2014). As these methods often trade model quality for speed, speculative decoding emerged as a lossless acceleration technique: Stern et al. introduced blockwise parallel decoding Stern et al. (2018); Leviathan et al. and Chen et al. later formalized the *draft-then-verify* paradigm with rigorous distribution-preservation guarantees Leviathan et al. (2023); Chen et al. (2023). Most of these meth-

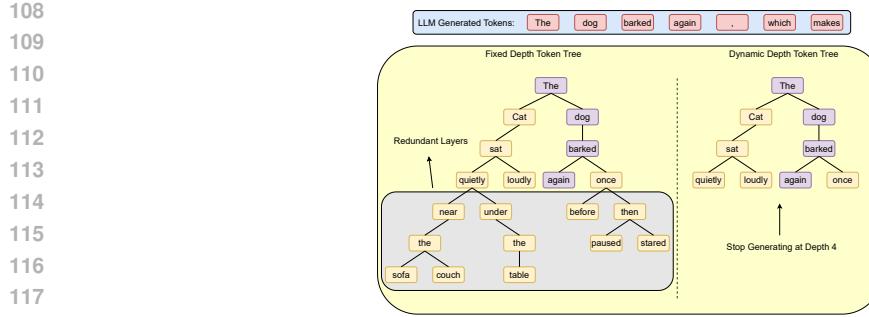


Figure 1: Fixed Depth Token Tree vs. Dynamic Depth Token Tree. The red tokens are the ground truth tokens from LLM for verification, and the purple tokens are the correct token sequence generated by the draft model. In the token tree with a dynamic depth control mechanism, there will be three fewer draft model forward passes than the regular fixed depth token tree.

ods perform a strict greedy sampling, choosing only the most probable draft token, and greatly limit the potential of the draft model. A more flexible tree-based approach was then proposed.

Tree-Based Speculation and Feature-Level Innovations. SpecInfer pioneered token-tree verification and achieved 57–97% higher verification success Miao et al. (2024). Medusa adopted multi-head prediction to generate future tokens in parallel Cai et al. (2024), while Hydra introduced sequentially-dependent draft heads Ankner et al. (2024). The Eagle architectures made feature-level breakthroughs: Eagle-1 employed feature autoregression for higher quality draft token generation Li et al. (2024a), Eagle-2 built dynamic draft trees with draft model confidence score to select more valuable draft sequence for verification Li et al. (2024b), and Eagle-3 removed the feature loss to eliminate the scaling law constraint and integrate features from more decoder layers to further improve the draft token quality Li et al. (2025).

Adaptive Control and Depth Limitations. Other than EAGLE-2, several recent works have attempted to improve speculative decoding by adaptively controlling draft depth or candidate length. Brown et al. (2024) adjusts draft depth at each step according to confidence heuristics, but it relies on simple rule-based thresholds without theoretical guarantees. Lu et al. (2024) uses MLPs to decide whether to build the next depth of a fork-shaped token tree, which incurs too much overhead and can't achieve similar acceleration as EAGLE. Wang et al. (2025) design OPT-Tree that prunes branches dynamically with fixed depths. Mamou et al. (2024); Huang et al. (2025); Liu et al. (2025) can only be used to predict the single sequence length and cannot be used to predict the depth of the token tree. However, all of those methods are either failed to beat the speedup brought by or were not compatible with EAGLE-2, which has a fixed-depth token tree. Usually, a fixed-depth token tree might keep generating tokens until the maximum depth, even when draft tokens' quality is low and unlikely to be accepted (Fig 1). This produces redundant branches that do not help the final output. These extra layers waste computation and requires more memory operations, which slows decoding and reduces the overall efficiency. Although Eagle-3 is the current state-of-the-art in speculative decoding fields, it still wastes computation by sticking to a fixed depth token tree that blindly expands unnecessary branches.

3 APPROACH

3.1 FEATURE-LEVEL ALIGNMENT AND BOUNDED KL DIVERGENCE IN EAGLE

In speculative decoding frameworks, the draft model must generate token proposals whose distributions closely match those of the LLM. That draft-LLM feature alignment become even more important for models like EAGLE-1 and EAGLE-2, which generate and reuse hidden features in an autoregressive way to improve the draft feature quality. EAGLE models ensure tight alignment via a feature regression loss f_{reg} and a Token Classification Loss f_{cls} :

$$\begin{aligned}
 L_{reg} &= \text{Smooth-L1}(f_{i+1}, \hat{f}_{i+1}) \\
 L_{cls} &= \text{CrossEntropy}(p_{i+1}, \hat{p}_{i+1}) \\
 L &= L_{reg} + w_{cls} L_{cls}
 \end{aligned} \tag{1}$$

162 Here, f_{i+1} is the hidden feature from the LLM for token $i + 1$, and \hat{f}_{i+1} is the predicted feature
 163 via autoregressive draft model with input of the previous draft hidden feature \hat{f}_{i+1} and draft token
 164 embedding \hat{e}_i . The classification loss further aligns the LLM token logits distribution p_{i+1} and draft
 165 token logits \hat{p}_{i+1} after the shared LLM head with weight W_{out} by minimizing their cross-entropy.
 166 The final L integrated both losses with the term w_{cls} to balance the effect of L_{cls}
 167

168 **Feature Alignment Implies Logit Closeness.** Based on equation (1), during the training, Eagle
 169 is trying to minimize the smooth L1 loss between the draft feature and the LLM feature. Therefore,
 170 the draft feature \hat{f}_t is trained to approximate the target feature of LLM f_t . Formally,

$$\|f_t - \hat{f}_t\| \leq \epsilon_f \quad (2)$$

173 holds for each autoregressive step t , where ϵ_f represents the feature-level error bewteen the draft
 174 feature and the LLM feature. Since W_{out} is reused for both models, the corresponding draft and
 175 LLM logits satisfy:

$$\|\ell_t^{(\text{llm})} - \ell_t^{(d)}\| = \|W_{\text{out}}(\hat{f}_t - f_t)\| \leq \|W_{\text{out}}\| \cdot \epsilon_f \quad (3)$$

177 Given the Lipschitz continuity of softmax and standard KL upper bounds in terms of logit differ-
 178 ences, we have:

$$\text{KL}(p_t^{(\text{llm})} \| p_t^{(d)}) \leq \frac{1}{2} \|W_{\text{out}}\|^2 \epsilon_f^2 \quad (4)$$

181 In addition, the classification loss:

$$L_{\text{cls}} = \text{CE}(p_t^{(\text{llm})}, p_t^{(d)}) = H(p_t^{(\text{llm})}) + \text{KL}(p_t^{(\text{llm})} \| p_t^{(d)}) \quad (5)$$

184 provides explicit supervision over the token-level output distributions. Since L_{cls} minimizes the KL
 185 divergence, its effect indirectly complements the KL term from (4). Then, the actual divergence may
 186 be further tightened:

$$\text{KL}(p_t^{(\text{llm})} \| p_t^{(d)}) \leq \max(0, \frac{1}{2} \|W_{\text{out}}\|^2 \epsilon_f^2 - \delta_{\text{cls}}), \quad (6)$$

188 where $\delta_{\text{cls}} \propto w_{\text{cls}} L_{\text{cls}}$.

190 As a result, at each draft step t , the divergence between the draft and LLM token distributions is
 191 deterministically bounded.

192 **Autoregressive Prefix Drift and Cumulative Bound.** EAGLE expands tokens autoregressively:
 193 each draft token affects the next prefix and hence the next feature prediction. However, because
 194 $f_t \approx \hat{f}_t$ at each step, the prefix mismatch grows slowly. By invoking feature regression at every
 195 step, we maintain:

$$\|\delta_t\| := \|p_{<t}^{(\text{llm})} - p_{<t}^{(d)}\| \text{ grows at most linearly with } t, \quad (7)$$

198 where δ_t represents the logits-level difference at time t . As a result, the cumulative logit- and
 199 distribution-level divergence remains bounded, scaling sub-quadratically with depth. Empirically,
 200 the difference between draft and LLM predictions remains small even for trees of depth up to 8.

201 Through repeated application of feature-level regression and a shared LM head, EAGLE’s draft
 202 model maintains a bounded gap to the LLM logits at every step, and therefore, the KL divergence
 203 between draft and LLM token distributions is provably bounded.

205 3.2 CONFIDENCE SCORE AS A HEURISTIC FOR ACCEPTANCE PROBABILITY

207 Building upon the bounded divergence established in Section 3.1, we now formalize why the draft
 208 confidence score can reliably estimate the probability that a draft token is accepted by the LLM.

210 **Definitions.** Let the draft model output token \hat{y} and confidence score c at step t be

$$\hat{y}_t = \arg \max_y p_t^{(d)}(y), \quad c_t = p_t^{(d)}(\hat{y}_t) \quad (8)$$

213 and define the acceptance indicator as

$$a_t := \mathbb{I} \left[\hat{y}_t = \arg \max_y p_t^{(\text{llm})}(y) \right], \quad a_t \in \{0, 1\}, \quad (9)$$

216 where y is a variable for choosing logits from the logits distribution p for both the draft model
 217 and LLM. Then, the acceptance probability is given by the expectation over the indicator random
 218 variable a_t :

$$\alpha_t := \mathbb{E}[a_t] \quad (10)$$

221 **Bounding the Acceptance Gap.** From Section 3.1, the KL divergence between the draft and LLM
 222 distributions is bounded by:

$$D_{\text{KL}}(p_t^{(llm)} \parallel p_t^{(d)}) \leq \max(0, \frac{1}{2}M^2\epsilon_f^2 - \delta_{\text{cls}}), \quad (11)$$

225 where $M = \|W_{\text{out}}\|$ is the norm of the shared output projection, and ϵ_f is the feature alignment
 226 error. By applying Pinsker’s inequality Cover & Thomas (2006), this leads to a total variation TV
 227 bound:

$$\|p_t^{(llm)} - p_t^{(d)}\|_{\text{TV}} \leq \sqrt{\frac{1}{2}D_{\text{KL}}} \leq \sqrt{\max(0, \frac{1}{2}M^2\epsilon_f^2 - \delta_{\text{cls}})} \quad (12)$$

230 **Relating Confidence to Acceptance.** By coupling arguments, for any token y :

$$|p_t^{(llm)}(y) - p_t^{(d)}(y)| \leq \|p_t^{(d)} - p_t^{(llm)}\|_{\text{TV}} \quad (13)$$

233 —so in particular, if y is the most probable token \hat{y}_t ,

$$|p_t^{(llm)}(\hat{y}_t) - c_t| \leq \sqrt{\max(0, \frac{1}{2}M^2\epsilon_f^2 - \delta_{\text{cls}})} \quad (14)$$

237 Although \hat{y}_t is not guaranteed to be the top-1 token under $p_t^{(llm)}$, the fact that $p_t^{(d)}$ is close to $p_t^{(llm)}$
 238 implies that \hat{y}_t is still likely to receive relatively high probability under the LLM. In particular, when
 239 both distributions are sharp—as is typical under low-temperature decoding— $p_t^{(llm)}(\hat{y}_t)$ serves as a
 240 soft estimator for the acceptance probability α_t .

$$|\alpha_t - c_t| \leq \sqrt{\max(0, \frac{1}{2}M^2\epsilon_f^2 - \delta_{\text{cls}})}, \quad \alpha_t \approx p_t^{(llm)}(\hat{y}_t) \quad (15)$$

244 Hence, the draft confidence score c_t will give a close approximation when the draft model and LLM
 245 distributions are well-aligned.

247 **Consistency with Prior Work.** EAGLE-2 empirically demonstrated that the draft confidence
 248 score c_t aligns well with the true acceptance probability α_t . Now, we provide a theoretical jus-
 249 tification for this phenomenon based on its feature-level alignment mechanism and the resulting
 250 bounded divergence between the draft and LLM distributions.

251 Under the bounded KL divergence regime, the LLM-assigned probability $p_t^{(llm)}(\hat{y}_t)$ for the draft-
 252 selected token serves as a soft estimator for the acceptance probability $\alpha_t = \mathbb{E}[a_t]$. And now, we
 253 have the guaranteed lower bound under the low-temperature scenario:

$$|\alpha_t - c_t| \leq \sqrt{\max(0, \frac{1}{2}M^2\epsilon_f^2 - \delta_{\text{cls}})} \quad (16)$$

257 Since EAGLE-3 removes the feature loss, we measure the discrepancy at only the logits distribution
 258 level. Let

$$\epsilon_t := \|p_t^{(llm)} - p_t^{(d)}\|_{\text{TV}} \quad (17)$$

261 By Pinsker’s inequality and (5),

$$\epsilon_t \leq \sqrt{\frac{1}{2}D_{\text{KL}}} = \sqrt{\frac{1}{2}(L_{\text{cls}} - H(p_t^{(llm)}))} \quad (18)$$

264 Therefore, the gap between the draft confidence and the acceptance probability is bounded without
 265 involving any projection norm:

$$|c_t - \alpha_t| \leq \epsilon_t \leq \sqrt{\frac{1}{2}(L_{\text{cls}} - H(p_t^{(llm)}))} \quad (19)$$

269 which shows that c_t becomes an even more accurate soft estimator for α_t as the loss no longer
 amplified by the projection and the quadratic term from softmax.

270 3.3 SURVIVAL PROBABILITY AND EXPECTED ACCEPTANCE LENGTH
271

272 Having shown in Section 3.2 that draft confidence c_t closely estimates the acceptance probability
273 α_t , we now extend this to the token sequence. Specifically, we justify the use of cumulative
274 survival probability as a heuristic for the probability that a whole branch is accepted as EAGLE-2 did,
275 which makes it possible to evaluate speculative decoding trees and estimate the expected number of
276 accepted tokens.

277 **Survival Probability over a Token Branch.** Let a token branch of depth L be represented as a
278 sequence $\hat{y}_{1:L}$, where $\hat{y}_t = \arg \max_y p_t^{(d)}(y)$. Define the survival probability at depth t as:

$$281 \quad s_t := \prod_{i=1}^t c_i \quad (20)$$

284 Since each $c_i \approx \alpha_i$, this product approximates the joint probability that all draft tokens along the
285 branch until depth t are accepted by the LLM. That is:

$$286 \quad \Pr[\text{branch } \hat{y}_{1:t} \text{ is accepted}] \approx s_t \quad (21)$$

288 **Tail-Sum Trick for Expected Acceptance Length.** Let A denote the random variable for the
289 number of consecutively accepted tokens in the branch. Then the expectation of A can be computed
290 via:

$$291 \quad \mathbb{E}[A] = \sum_{t=1}^L \Pr[A \geq t] \approx \sum_{t=1}^L s_t \quad (22)$$

294 This is a standard identity known as the "tail-sum formula" Ross (2018). Since each s_t captures the
295 marginal likelihood that the branch survives until step t , the total sum gives the expected acceptance
296 length over the full branch.

297 Then, the expectation with tail-sum of s_t can serve as a reliable heuristic for the expected number
298 of tokens accepted by the LLM.

$$300 \quad \mathbb{E}[A] \approx \sum_{t=1}^L \prod_{i=1}^t c_i \quad (23)$$

303 3.4 TREE DEPTH CONTROL VIA VOTING ON SURVIVAL SIGNALS
304

305 Having defined the survival scores s_t and the expected acceptance length in Sections 3.2–3.3, we
306 now describe how DEAGLE uses three complementary factors to dynamically control token tree
307 expansion:

309 **Probability Sum of Top- k Leaves.** At each depth d , consider the set \mathcal{L}_d of current leaf nodes. We
310 compute:

$$312 \quad S_d := \sum_{i=1}^k s_d^{(i)} \quad (24)$$

314 where $s_d^{(1)} \geq \dots \geq s_d^{(k)}$ are the top- k survival probabilities. A low S_d indicates that most branches
315 are unlikely to survive, which means that draft tokens from further expansions are unlikely to be
316 accepted.

318 **Survival Momentum** (ρ_d). We track the relative drop in top- k survival probability between
319 depths:

$$321 \quad \rho_d := \frac{S_{d-1}}{S_d} \quad (25)$$

323 More than one sharp decline ($\rho_d \ll 0.6$) indicates that branches are rapidly "dying off," so deepening
further is unlikely to yield accepted paths.

324 **Expected Accept Length Bound.** From Section 3.3, the expected number of accepted tokens in a
 325 token tree can be estimated by aggregating the joint survival probabilities of all active leaf nodes at
 326 depth d :

$$327 \quad E_d := \sum_{\ell \in \text{Leaf}(d)} s_\ell \quad (26)$$

330 Let $D_{\max} := \lceil E_d \rceil$ denote the expected acceptance length horizon. Once the tree reaches depth
 331 $d \geq D_{\max}$, we assume the draft sequence has likely reached the maximal number of LLM-approved
 332 tokens, and further depth expansions are unnecessary.

334 **Combined Voting System (“DEAGLE”).** To determine whether to continue expanding the token
 335 tree at depth d , we introduce a three-component voting mechanism. The expansion stops if at least
 336 two out of the following three conditions are satisfied:

- 338 • **Low Probability:** $S_d < \tau_S$, where S_d denotes the total survival probability of top- k leaf
 339 nodes at depth d .
- 340 • **Sharp Momentum Decay:** $\rho_d < \tau_\rho$ for two times, where $\rho_d := \frac{S_d}{S_{d-1}}$ reflects the rate of
 341 survival mass decay compared to the previous depth.
- 343 • **Acceptance Length Saturation:** $d \geq \lceil E_d \rceil$, where E_d is the expected number of tokens
 344 accepted by the LLM, as estimated in Section 3.3.

345 or the token tree reached the maximum depth.

347 4 EXPERIMENTS

350 Depth	MT-Bench		Human Eval		Gsm8k		Alpaca	
	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE
Temperature=0								
352 6	4.12x	4.20x	4.63x	4.67x	4.39x	4.44x	4.18x	4.25x
353 8	4.37x	4.41x	5.13x	5.13x	4.55x	4.66x	4.37x	4.45x
354 10	4.37x	4.52x	5.37x	5.41x	4.47x	4.58x	4.32x	4.48x
355 12	4.30x	4.56x	5.42x	5.60x	4.27x	4.46x	4.14x	4.46x
356 14	4.16x	4.54x	5.33x	5.61x	4.03x	4.30x	4.00x	4.44x
357 16	3.99x	4.53x	5.15x	5.58x	3.82x	4.23x	3.74x	4.34x
358 18	3.78x	4.45x	5.01x	5.61x	3.60x	4.20x	3.52x	4.38x
Temperature=1								
359 6	3.62x	3.59x	4.11x	4.20x	3.71x	3.69x	3.65x	3.74x
360 8	3.69x	3.69x	4.36x	4.34x	3.67x	3.78x	3.57x	3.75x
361 10	3.56x	3.77x	4.52x	4.33x	3.57x	3.63x	3.57x	3.66x
362 12	3.39x	3.65x	4.16x	4.42x	3.19x	3.53x	3.31x	3.61x
363 14	3.35x	3.66x	4.17x	4.41x	3.08x	3.50x	3.07x	3.47x
364 16	3.12x	3.71x	3.60x	4.39x	2.97x	3.39x	2.82x	3.54x
365 18	3.07x	3.58x	3.72x	4.50x	2.77x	3.47x	2.76x	3.49x

361 Table 1: Speedup comparison between EAGLE-3 and DEAGLE on **Vicuna-13B** across varying tree
 362 depths and decoding temperatures. DEAGLE consistently matches or exceeds the performance of
 363 EAGLE-3 under both greedy decoding ($T = 0$) and high-entropy sampling ($T = 1$) on all four
 364 benchmarks. Results are averaged over 80 prompts per task.

366 Depth	MT-Bench		Human Eval		Gsm8k		Alpaca	
	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE
Temperature=0								
368 6	3.73x	3.75x	4.02x	3.91x	3.91x	3.89x	3.87x	3.86x
369 8	3.85x	3.95x	4.28x	4.30x	4.01x	4.01x	4.11x	4.13x
370 10	3.80x	3.96x	4.31x	4.52x	3.84x	4.06x	4.01x	4.13x
371 12	3.53x	3.92x	4.19x	4.41x	3.62x	3.90x	3.85x	4.17x
372 14	3.40x	3.90x	3.89x	4.37x	3.39x	3.86x	3.55x	4.14x
373 16	3.16x	3.89x	3.71x	4.36x	3.18x	3.91x	3.30x	4.08x
374 18	3.01x	3.94x	3.57x	4.38x	3.01x	3.88x	3.20x	4.08x
Temperature=1								
375 6	2.68x	2.67x	3.36x	3.44x	3.29x	3.24x	3.24x	3.27x
376 8	2.62x	2.77x	3.41x	3.50x	3.27x	3.22x	3.19x	3.26x
377 10	2.48x	2.65x	3.45x	3.55x	3.01x	3.27x	3.07x	3.21x
378 12	2.31x	2.79x	3.29x	3.52x	2.88x	3.05x	2.86x	3.04x
379 14	2.31x	2.76x	3.22x	3.55x	2.60x	3.09x	2.71x	3.08x
380 16	2.07x	2.65x	2.89x	3.52x	2.44x	3.13x	2.58x	3.05x
381 18	1.98x	2.67x	2.82x	3.52x	2.35x	3.15x	2.34x	3.10x

377 Table 2: Speedup comparison between EAGLE-3 and DEAGLE on **Llama3-8B**

378
379

4.1 4.1 EXPERIMENT SETUP

380 Following the setup of EAGLE-3, We perform experiments with DEAGLE on **Vicuna-13B** Chiang
 381 et al. (2023), **LLaMA3-8B**, and **LLaMA3-70B** Grattafiori et al. (2024) with their pre-trained eagle
 382 weights. We conducted experiments on four widely used benchmarks to assess decoding efficiency
 383 and robustness across various generation tasks. **MT-Bench** Zheng et al. (2023) is a multi-turn dia-
 384 logue benchmark designed to evaluate alignment and conversation ability. **HumanEval** Chen et al.
 385 (2021) is a Python code generation benchmark. **GSM8K** Cobbe et al. (2021) is a grade-school
 386 math reasoning benchmark requiring step-by-step numeric generation. **Alpaca** Taori et al. (2023)
 387 consists of general instruction-following prompts derived from self-instruct methods and covers a
 388 broad range of open-ended tasks. For each benchmark, similar to the EAGLE setup, we randomly
 389 choose 80 prompts during evaluation and experimented with them for both EAGLE and DEAGLE
 390 under identical hyperparameter settings to ensure a fair comparison. Experiments for Vicuna-13B
 391 and Llama3-8B were conducted on a single NVIDIA A100 GPU, and the experiment on Llama3-
 392 70B was conducted on two A100 GPUs. We calculated the average wall time of 80 prompts as our
 393 final results. DEAGLE uses the same token tree structure as EAGLE-3, with adaptive tree depth
 394 control based on the voting strategy described in Section 3.4. The threshold of survival probability
 395 sum and survival momentum decay ratio is set to $\tau_S = 0.15$ and $\tau_p = 0.6$ for all models, decoding
 396 temperatures, and benchmarks.

397
398
399
400
401
402
403
404
405
406
407

Depth	MT-Bench		Human Eval		Gsm8k		Alpaca	
	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE	EAGLE-3	DEAGLE
Temperature=0								
6	4.07x	4.08x	4.56x	4.58x	4.42x	4.41x	4.25x	4.27x
8	4.32x	4.33x	5.20x	5.23x	4.79x	4.78x	4.68x	4.72x
10	4.37x	4.45x	5.43x	5.48x	4.80x	4.85x	4.78x	4.85x
12	4.28x	4.42x	5.37x	5.49x	4.70x	4.82x	4.76x	4.87x
14	4.20x	4.44x	5.26x	5.45x	4.59x	4.78x	4.64x	4.83x
16	4.09x	4.40x	5.12x	5.44x	4.47x	4.77x	4.53x	4.82x
18	3.99x	4.41x	4.99x	5.43x	4.36x	4.78x	4.38x	4.83x
Temperature=1								
6	3.78x	3.80x	4.17x	4.25x	4.14x	4.15x	4.17x	4.17x
8	3.99x	4.05x	4.71x	4.68x	4.42x	4.45x	4.49x	4.62x
10	3.99x	4.09x	4.82x	4.91x	4.44x	4.47x	4.58x	4.67x
12	4.01x	4.11x	4.82x	4.87x	4.41x	4.49x	4.53x	4.61x
14	3.82x	4.06x	4.71x	4.90x	4.23x	4.40x	4.43x	4.56x
16	3.78x	4.04x	4.50x	4.77x	4.15x	4.41x	4.24x	4.57x
18	3.71x	3.99x	4.43x	4.85x	3.99x	4.38x	4.13x	4.58x

Table 3: Speedup comparison between EAGLE-3 and DEAGLE on **Llama3-70B**408
409
410

4.2 4.2 EFFECTIVENESS OF DEPTH CONTROL MECHANISM

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

We compare the speedup performance of DEAGLE and EAGLE-3 across different tree depths, de-
 coding temperatures, and base models. Results are summarized in Tables 1, 2, and 3, where the
 acceleration of the original baseline LLM is set to $1\times$ to compare with. DEAGLE consistently
 achieves equal or higher speedup than EAGLE-3 across almost all settings and successfully main-
 tains the speedup ratio as we increase the maximum depth. On **Vicuna-13B**, DEAGLE outperforms
 EAGLE-3 on all four benchmarks. Under greedy decoding setting($T = 0$), DEAGLE reaches up
 to **5.61x** speedup on HumanEval at depth 14, compared to EAGLE-3’s 5.33x. For GSM8K and
 MT-Bench, DEAGLE’s speedup ratio remains ahead across all depths and is not affected by the
 increasing tree depth. Under high-temperature decoding ($T = 1$), both architectures yield lower
 speedups due to flatter logits distribution. In that scenario, EAGLE-3 shows a higher decreasing
 rate of speedup with the increase of tree depth. The dynamic depth control scheme here shows
 its value as the DEAGLE speedup ratio remains stable with varying depths. On **LLaMA3-8B** and
LLaMA3-70B, DEAGLE shows its superiority in the greedy sampling scenario. The speedup ratio
 becomes stable after depth 12 with a small amount of change for all benchmarks. A similar trend is
 also shown under high temperature setting, where DEAGLE’s adaptive stopping mechanism avoids
 over-expanding low-quality branches to make the overall draft-then-verify process more efficient.
 Unlike EAGLE-3, the depth control trick in DEAGLE makes the tree depth no longer a sensitive
 hyperparameter that remains unknown when running the model on a new dataset.

429
430

4.3 4.3 ANALYSIS ON REDUCED DRAFT MODEL FORWARD PASSES

431

We quantify the benefit brought by the dynamic depth control algorithm by comparing the extra
 forward passes of the draft model for both EAGLE-3 and DEAGLE at $T = 0$ with Llama3-8B.

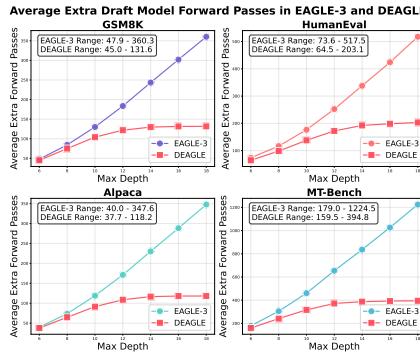


Figure 2: We use the comparison of draft model extra forward passes between EAGLE-3 and DEAGLE to better quantify the effect of our proposed method. As shown in the graph, the proposed algorithm effectively controls the excessive forward passes as we increase the maximum depth.

Figure 2 presents the average number of draft model forward passes across different tree depths on four benchmarks. DEAGLE consistently gives fewer extra forward passes than EAGLE-3, especially as the maximum depth increases. On **GSM8K**, DEAGLE reduces the forward pass count from 360.3 (EAGLE-3) to 131.6 at depth 18, a **63% reduction**. Similarly, on **HumanEval**, the peak forward pass count drops from 517.5 to 203.1. The benefit is even more pronounced on **MT-Bench**, where EAGLE-3 performs up to 1224.5 forward passes per prompt at depth 18, while DEAGLE caps out at just 394.8—nearly a **3x reduction**. This shows that DEAGLE successfully identified and stopped exploration of low-confidence branches early, especially in conversational tasks with longer, more diverse responses. Across all tasks, DEAGLE maintains tight control of the tree growth without introducing too much overhead to sacrifice the overall speedup.

4.4 ABLATION STUDY ON STOPPING HEURISTICS

To understand the effectiveness of DEAGLE’s voting-based stopping mechanism, we did an ablation study on its three heuristics: expectation, momentum ratio, and survival probability. We evaluate each of them independently as the sole stopping condition, and compare them to the full voting system. Table 4 reports the decoding speedup of each variant on MT-Bench using LLaMA3-8B across different tree depths at $T = 1$.

Depth	MT-Bench			
	Exp	Momentum	Prob	Voting
6	3.73x	3.59x	3.56x	3.75x
8	3.85x	3.77x	3.76x	3.95x
10	3.84x	3.77x	3.78x	3.96x
12	3.90x	3.69x	3.78x	3.92x
14	3.88x	3.69x	3.75x	3.90x
16	3.87x	3.63x	3.75x	3.89x
18	3.88x	3.65x	3.77x	3.94x

Table 4: Speedup comparison of DEAGLE with different stopping strategies on LLaMA3-8B (MT-Bench, $T = 0$). The full voting strategy yields the highest efficiency across all tree depths.

5 CONCLUSION

In this work, we introduced DEAGLE, an enhanced speculative decoding framework that improves upon EAGLE-3 by adaptively controlling tree depth via a voting-based branch stopping mechanism. Unlike prior approaches that rely on fixed-depth trees, DEAGLE leverages three complementary factors: survival probability, momentum ratio, and expected acceptance length to decide when to stop tree expansion. Extensive experiments on Vicuna-13B, LLaMA3-8B, and LLaMA3-70B demonstrate that DEAGLE consistently outperforms EAGLE-3 in decoding speed across diverse benchmarks and decoding temperatures.

486 REFERENCES
487

488 Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan
489 Ragan-Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa
490 decoding. In *Proceedings of the Conference on Language Model Systems (COLM 2024)*, 2024.
491 URL <https://openreview.net/forum?id=FbhjirzvJG>.

492 Oscar Brown, Zhengjie Wang, Andrea Do, Nikhil Mathew, and Cheng Yu. Dynamic depth decod-
493 ing: Faster speculative decoding for llms, 2024. URL <https://arxiv.org/abs/2409.00142>.

494

495 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
496 Medusa: Simple llm inference acceleration framework with multiple decoding heads. In *Proceed-
497 ings of the 41st International Conference on Machine Learning (ICML 2024)*, volume 235 of *Pro-
498 ceedings of Machine Learning Research*, pp. 5209–5235, Vienna, Austria, Jul 2024. PMLR. doi:
499 10.5555/3692070.3692273. URL <https://proceedings.mlr.press/v235/cai24b.html>.

500

501 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
502 Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
503 <https://arxiv.org/abs/2302.01318>.

504

505 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
506 Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
507 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
508 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
509 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
510 tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
511 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
512 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
513 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
514 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
515 large language models trained on code, July 2021. URL <https://arxiv.org/abs/2107.03374>. arXiv preprint CoRR (cs.LG).

516

517 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
518 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
519 An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. <https://lmsys.org/blog/2023-03-30-vicuna/>, March 2023.

520

521 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Łukasz Kaiser,
522 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
523 Schulman. Training verifiers to solve math word problems, October 2021. URL <https://arxiv.org/abs/2110.14168>. arXiv preprint CoRR (cs.LG), initial version Oct272021;
524 version2 posted Nov182021.

525

526 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons
527 (Wiley-Interscience), 2nd edition, July 2006. Second edition.

528

529 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3.int8(): 8-bit matrix
530 multiplication for transformers at scale. In *Advances in Neural Information Processing Systems*,
531 pp. 30318–30332, 2022.

532

533 Elias Frantar, Torsten Hoefer Saleh Ashkboos, and Dan Alistarh. Optq: Accurate post-training
534 quantization for generative pre-trained transformers. In *Proceedings of the International Confer-
535 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=tcbBPnfwxS>. ICLR 2023 (formerly arXiv:2210.17323).

536

537 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
538 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal,
539 Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, ..., and Llama Team AI @ Meta. The llama3 herd of models, July 2024.

540 URL <https://arxiv.org/abs/2407.21783>. arXiv preprint arXiv:2407.21783v3 (last
541 revised Nov232024).

542

543 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. Pre-
544 sented at NIPS 2014 Deep Learning Workshop, 2014. URL <https://arxiv.org/abs/1503.02531>. Workshop version; later released as arXiv preprint arXiv:1503.02531.

545

546 Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
547 adaptive candidate lengths, 2025. URL <https://arxiv.org/abs/2405.19715>.

548

549 Yossi Leviathan, Maayan Kalman, and Yossi Matias. Fast inference from transformers via spec-
550 ulative decoding. In *Proceedings of the 40th International Conference on Machine Learning*,
551 volume 202 of *Proceedings of Machine Learning Research*, pp. 19155–19169, 2023. URL
552 <https://proceedings.mlr.press/v202/leviathan23a.html>.

553

554 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
555 rethinking feature uncertainty. In *Proceedings of the 41st International Conference on Machine*
556 *Learning (ICML 2024)*, volume 235 of *Proceedings of Machine Learning Research*, pp. 28935–
557 28948, Vienna, Austria, Jul 2024a. PMLR. doi: 10.5555/3692070.3693232.

558

559 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of lan-
560 guage models with dynamic draft trees. In *Proceedings of the 2024 Conference on Empirical*
561 *Methods in Natural Language Processing*, pp. 7421–7432, Miami, Florida, USA, Nov 2024b.
562 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.422. URL
563 <https://aclanthology.org/2024.emnlp-main.422>.

564

565 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference accel-
566 eration of large language models via training-time test. *arXiv preprint arXiv:2503.01840*, Mar
567 2025. URL <https://arxiv.org/abs/2503.01840>. Only available as arXiv preprint as
568 of March 2025.

569

570 Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, Winston Hu, and Xiao Sun. Pearl: Parallel
571 speculative decoding with adaptive draft length, 2025. URL <https://arxiv.org/abs/2408.11850>.

572

573 Xiaofan Lu, Yixiao Zeng, Feiyang Ma, Zixu Yu, and Marco Levorato. Improving multi-candidate
574 speculative decoding, 2024. URL <https://arxiv.org/abs/2409.10644>.

575

576 Xiaohan Ma, Guang Fang, and Xiaoya Wang. Llm-pruner: On the structural pruning of large lan-
577 guage models. In *Advances in Neural Information Processing Systems*, 2023.

578

579 Jonathan Mamou, Oren Pereg, Daniel Korat, Moshe Berchansky, Nadav Timor, Moshe Wasserblat,
580 and Roy Schwartz. Dynamic speculation lookahead accelerates speculative decoding of large
581 language models, 2024. URL <https://arxiv.org/abs/2405.04304>.

582

583 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
584 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunyan Shi, Zhuoming Chen, Daiyaan
585 Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serving
586 with tree-based speculative inference and verification. In *Proceedings of the 29th ACM Interna-
587 tional Conference on Architectural Support for Programming Languages and Operating Systems,
588 Volume 3, ASPLOS '24*, pp. 932–949. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
589 <http://dx.doi.org/10.1145/3620666.3651335>.

590

591 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
592 URL <https://doi.org/10.48550/arXiv.2303.08774>. Preprint arXiv:2303.08774
593 (v6 updated March 4, 2024).

594

595 Sheldon M. Ross. *A First Course in Probability*. Pearson Education, Boston, MA, 10th edition,
596 2018. Copyright ©2019 U.S. edition; global edition ©2020.

597

598 Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
599 gressive models. In *Advances in Neural Information Processing Systems*, 2018.

594 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
595 Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model.
596 https://github.com/tatsu-lab/stanford_alpaca, March 2023. GitHub reposi-
597 tory; code and instruction-tuning data release by Stanford CRFM / Tatsu-Lab.

598 Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, and Min
599 Zhang. Opt-tree: Speculative decoding with adaptive draft tree structure, 2025. URL <https://arxiv.org/abs/2406.17276>.

600 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
601 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
602 Judging llm-as-a-judge with mt-bench and chatbot arena. In *Proceedings of the 37th International*
603 *Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023.
604 Curran Associates Inc.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647