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Abstract001

The advent of Large Language Models (LLMs)002
has significantly eased the process of knowl-003
edge acquisition for users through interactive004
question answering. However, when con-005
fronted with domain-specific knowledge, users006
may struggle to formulate relevant questions007
aligned with the initial query. To address008
this challenge, in this paper, we introduce a009
novel task termed Knowledge-aware Follow-010
up Query Generation (KQG), which aims to011
generate a sequence of follow-up queries with012
diverse knowledge to aid users in progres-013
sive knowledge acquisition from LLMs. To014
facilitate this task, we first construct a new015
dataset tailored specifically for KQG, sourced016
from an online knowledge sharing commu-017
nity. Subsequently, we propose a novel end-018
to-end training framework for KQG, named019
ReSAG (Retrieval-then-Selecting Augmented020
Generation), which extends typical Retrieval-021
Augmented Generation (RAG) methods by in-022
corporating a selecting policy network. To023
be specific, ReSAG comprises three main024
components: a knowledge retriever, a select-025
ing policy network, and a T5-based question026
generator. To train our framework in an end-027
to-end manner, we introduce a novel variant028
of policy optimization that integrates neural029
dense retrieval and selecting into a T5-based030
sequence-to-sequence generation model, using031
only ground-truth target output. Finally, exten-032
sive experiments demonstrate that our approach033
significantly outperforms existing state-of-the-034
art methods, including generative models, RAG035
models, and LLM-based methods.036

1 Introduction037

Recent advancements in Large Language Models038

(LLMs), including OpenAI’s GPT-3.5 (Ouyang039

et al., 2022), GPT-4 (Achiam et al., 2023), Google’s040

PaLM (Chowdhery et al., 2023), ChatGLM (Zeng041

et al., 2022), and other benchmark models (Tou-042

vron et al., 2023; Taori et al., 2023; Chiang et al.,043

2023), have showcased remarkable capabilities in044

knowledge-oriented question answering. These 045

models greatly facilitate the knowledge-seeking 046

process for users through interactive question an- 047

swering. However, challenges arise when deal- 048

ing with domain-specific knowledge, as users may 049

struggle to pose relevant queries to acquire more 050

information. This difficulty often stems from a 051

lack of awareness regarding knowledge relations 052

and taxonomy. As illustrated in Figure 1, consider 053

the case of a student querying information about 054

singleton design pattern in C++. Despite the ini- 055

tial inquiry, the user may fail to acquire further 056

knowledge about related topics such as lazy initial- 057

ization and eager initialization, which are integral 058

to understanding the singleton design pattern. 059

To address the aforementioned challenges, one 060

seemingly straightforward approach is to prompt 061

LLMs directly to generate the follow-up queries. 062

Figure 1 illustrates an example where a LLM pro- 063

duces queries based on such a prompt. Although 064

each suggested query is relevant to the initial query, 065

they often lean towards superficial queries of the 066

“What”, “How”, and “Which” types, lacking depth 067

in knowledge exploration. This tendency over- 068

looks the intricate relationships within knowledge, 069

thereby limiting their effectiveness in aiding user 070

knowledge acquisition. The above phenomenon 071

can be attributed to two main reasons: Firstly, sim- 072

plistic prompt designs fail to elicit professional 073

and complex knowledge relations from LLMs, re- 074

sulting in discontented query generation. Secondly, 075

LLMs often exhibit limited performance in domain- 076

specific knowledge-oriented reasoning tasks (Wang 077

et al., 2023), as they struggle to capture the nu- 078

anced structure of knowledge during generation. 079

While fine-tuning and maintaining LLMs to inte- 080

grate domain-specific knowledge may alleviate this 081

issue to some extent, it can pose a significant finan- 082

cial burden for many institutions and researchers. 083

Additionally, the limited availability and confiden- 084

tiality of domain-specific data introduce risks of 085
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Figure 1: An illustrating example of follow-up query
generation for a LLM-based prompting method and our
ReSAG.

potential data leaks.086

To enhance the performance of LLMs on087

domain-specific reasoning tasks, recent research088

efforts (Shi et al., 2023; Peng et al., 2023) have089

primarily focused on employing a held-out dense090

retriever to extract knowledge and then leverag-091

ing that knowledge for generating results. This092

approach, known as retrieval-augmented genera-093

tion (RAG), has demonstrated success in various094

knowledge-intensive tasks. However, these meth-095

ods often retrieve homogeneous knowledge with096

a high degree of similarity, posing a challenge for097

the model to differentiate between similar infor-098

mation (Shen et al., 2023). Consequently, this099

may lead to the inadvertent selection of inappro-100

priate retrieved evidences, failing to produce the101

diverse knowledge. Along this line, in this paper,102

we introduce a novel task called Knowledge-aware103

Follow-up Query Generation (KQG), aimed at pro-104

ducing a sequence of queries with diverse knowl-105

edge based on an initial query. These queries serve106

as a progressive means of knowledge acquisition107

from LLMs for users. To facilitate this, we con-108

struct a dataset specifically tailored for KQG from109

an online knowledge sharing community focusing110

on information technology. This dataset comprises111

a large collection of query and follow-up queries112

pairs characterized by high correlation, intended113

for academic research purposes.114

Building upon this dataset, we propose a novel115

end-to-end training framework for KQG, named116

ReSAG (Retrieval-then-Selecting Augmented117

Generation), which extends typical Retrieval-118

Augmented Generation (RAG) methods by incor-119

porating a selecting policy network. This network 120

connects the generation and retrieval processes, 121

learning an optimal policy to select the suitable 122

evidences from the retrieved passages so that it fa- 123

cilitates the generator in producing multiple queries 124

with associated knowledge, while also diversifying 125

the retrieved evidences to prevent the homogeneity 126

of generation results. The proposed ReSAG con- 127

sists of three main components: a knowledge re- 128

triever, a selecting policy network, and a T5-based 129

query generator. To train our framework in an 130

end-to-end manner, we introduce a novel variation 131

of policy optimization, which allows us to train 132

the initial retriever, policy networks, and generator 133

using only ground-truth target output. Our main 134

contributions are summarized as follows: 135

(1) We introduce a novel task and dataset, KQG, 136

designed to generate a sequence of associated 137

knowledge-aware follow-up queries based on the 138

initial query by retrieving evidence passages from 139

a knowledge base. This large-scale KQG dataset 140

comprises 1,677,513 document passages for ev- 141

idence retrieval and 210,531 (query, follow-up 142

queries) pairs for model training, validation, and 143

testing purposes 1. 144

(2) We propose an end-to-end training frame- 145

work for KQG, which integrates neural dense 146

retrieval and selecting process into a T5-based 147

sequence-to-sequence generation model without 148

the need for query-passage matching labels. 149

(3) Our approach achieves superior performance 150

compared to existing state-of-the-art methods, in- 151

cluding generative models, RAG models, and LLM- 152

based methods, by a significant margin. 153
2 Related Works 154
Incorporating external knowledge into paramet- 155

ric language models for text generation has be- 156

come a focal point for researchers. Leveraging 157

the effectiveness of the dual-encoder neural re- 158

triever (Karpukhin et al., 2020), the RAG frame- 159

work has seen extensive adoption in various text 160

generation tasks. This framework utilizes a dense 161

retriever to fetch passages from a document li- 162

brary, using the retrieved content as input for a 163

generator to formulate responses. Notable im- 164

plementations include RAG (Lewis et al., 2020), 165

which encodes each retrieved pasages alongside 166

the query and computes the probabilities of the 167

answer. FiD (Izacard and Grave, 2020b) adopts a 168

similar approach to RAG, encoding each retrieved 169

1The details of data collection and processing can be found
in Appendix A.1.
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evidence passages and amalgamating their hidden170

states in the decoder. FiD-KD (Izacard and Grave,171

2020a) and EMDR2 (Singh et al., 2021) are vari-172

ations based on FiD, differing in retriever train-173

ing methods: FiD-KD utilizes knowledge distilla-174

tion, whereas EMDR2 leverages marginal likeli-175

hood. REPLUG (Shi et al., 2023) extends RAG176

to large language models but updates only the re-177

triever during training. Unlike KQG, these RAG178

methods primarily retrieve homogeneous informa-179

tion for single-target generation. Re2G (Glass et al.,180

2022) bears the closest resemblance to our work,181

focusing on retrieving and reranking for sequence-182

to-sequence generation. However, its initial re-183

trieval and reranking phases necessitate the use of184

provenance ground truth, which is not feasible for185

our KQG. Departing from the conventional rank-186

ing paradigm, ReSAG views the ranking process187

as a sequential decision-making process, enabling188

consideration of both knowledge relevance and di-189

versity within our KQG framework.190

3 Task Definition191

In this section, we formally define the task192

of KQG and introduce the necessary notation.193

KQG aims to predict a list of follow-up queries, de-194

noted as Y = [Y1, Y2, ...], based on the given initial195

query X (X and Y are from the training corpus D).196

This process serves to facilitate progressive knowl-197

edge acquisition from a Large Language Model198

(LLM) denoted as Flm. Directly generating follow-199

up queries from the initial query X proves chal-200

lenging due to limited information within X 2. Ad-201

ditionally, we introduce a document-based knowl-202

edge base Z , comprising a large-scale collection203

of document passages for evidence retrieval to sup-204

port the knowledge-oriented query generation. It is205

worth noting that the sets D and Z are non-parallel,206

indicating that each X is associated with a specific207

Y . However, the relationship between a document208

Z in Z and the tuple (X , Y ) is not explicitly de-209

fined. In addition, our KQG differs from typical210

RAG tasks in several ways. While RAG tasks uti-211

lize the input query to retrieve text documents for212

additional context during target sequence genera-213

tion, our KQG differs in two fundamental aspects:214

(1) Unlike RAG tasks, which focus on a single215

target sequence, KQG is tailored for the generation216

of multiple target sequences.217

2Actually, we utilize Flm to produce the response based
on X and concatenate X with its response as the final input
for the subsequent retrieval and generation process.

(2) RAG tasks typically retrieve multiple homo- 218

geneous documents as evidences to facilitate the 219

generation of a single target sequence. In contrast, 220

KQG selects diverse evidences to support the gen- 221

eration of varied queries with diverse knowledge. 222

4 Methodology 223
In this section, we present our proposed framework, 224

i.e., ReSAG, designed to address the KQG task. 225

An overview architecture of the model is presented 226

in Figure 2. ReSAG comprises three pivotal com- 227

ponents: 1) a dense knowledge retriever, 2) a query 228

generator, and 3) a selecting policy network. Dif- 229

ferent from the RAG framework, we incorporate 230

an additional selecting policy network to bridge the 231

gap between the generation and retrieval processes. 232

This integration enhances the awareness of associ- 233

ated knowledge in the process of query generation 234

while also promoting diversity in the retrieved ev- 235

idences, thus mitigating the risk of homogeneous 236

generation results. Specifically, the retriever Pη 237

retrieves the top-N passages Z̃ = {Z1, · · · , ZN} 238

based on Z and X . Then, the selecting policy net- 239

work Pϕ learns to select the optimal K evidences 240

to obtain top-K passages Ẑ = {Z1, ..., zK} by se- 241

quential decision learning, where K ≤ N . It is 242

worth noting that we use a larger evidence space 243

N to explore more potential evidences beneficial 244

for query generation. Finally, the generator Pθ pro- 245

duces the target query sequence based on the top-K 246

selected passages and the query X . In reference to 247

the objective of RAG outlined in Equation 18, we 248

formulate ReSAG as follows: 249

L(η, ϕ, θ) = −log
∑
Zi∈Ẑ

Pθ(Y |X,Zi)Pϕ(Ẑ|Z̃)Pη(Z̃|X),

(1) 250

where η, ϕ and θ are the parameters of the retriever, 251

the selector and the generator, respectively. 252

Within this framework, we introduce a novel 253

variation of policy optimization, which allows us 254

to train the retriever Pη, policy network Pϕ, and 255

generator Pθ using only ground-truth target output 256

Y . In the subsequent sections, we formally intro- 257

duce three modules and elucidate the joint training 258

procedure. 259

4.1 Knowledge Retriever 260

Let the set of evidence passages be represented by 261

Z = {Z1, Z2, ..., Z|Z|}. Given a queryX , the objec- 262

tive of the retriever module is to identify a subset of 263

evidence passages Z ∈ Z as additional context that 264

can effectively facilitate the corresponding follow- 265

up query generation. The retrieval module, denoted 266
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Figure 2: The overview architecture of our ReSAG.

as Pη(Z|X), is constructed based on the conven-267

tional dense passage retriever (DPR) (Karpukhin268

et al., 2020). DPR employs a dual encoder architec-269

ture (Yih et al., 2011) wherein one encoder, fq, en-270

codes the initial query, and another, fd, encodes the271

evidence passage into a vector. We leverage trans-272

former encoders for fq and fd, employing an archi-273

tecture similar to BERT (Kenton and Toutanova,274

2019) with 12 layers and a hidden size of 768. The275

ultimate representation of the initial token (i.e., the276

standard [CLS] token from BERT’s tokenization)277

serves as our query and passage embedding. It’s278

worth noting that initializing fq and fd with a pre-279

trained BERT weights and then pretraining with280

contrastive learning in the SimCSE model [9] have281

been proven to avoid cold-starting, resulting in nor-282

mal retrieval accuracy.283

fq(X) = BERTq(X)

fd(Z) = BERTd(Z)

score(X,Z) = fq(X)T fd(Z)

Pη(Z|X) ∝ exp(score(X,Z))

(2)284

where fq(X) denotes a query representation gen-285

erated by a dedicated query encoder, while fd(Z)286

represents a dense passage representation produced287

by a passage encoder. The retrieval score, denoted288

as score(·, ·), is determined by the dot product be-289

tween the two resultant vectors.290

For the computation of top-N passages, top-291

N (Pη(Z|X)), where N passages Z̃ exhibit the292

highest prior probability Pη(Z|X), poses a Max-293

imum Inner Product Search (MIPS) (Shrivastava294

and Li, 2014) challenge. This problem can be effec-295

tively addressed through an approximate solution296

in sub-linear time. To achieve this, the passage em-297

bedding vectors are pre-calculated and organized298

into an index using Locality Sensitivity Hashing299

(LSH) (Datar et al., 2004). This indexing allows300

the query vector to be hashed to a cluster contain-301

ing passages that are relatively pertinent. While302

this search strategy is approximate, it demonstrates303

compelling empirical search results, particularly 304

when dealing with extensive passage sets. We de- 305

note the set of retrieved passages as Z̃ = {Z1, · · · , 306

ZN}. 307

4.2 Selecting Policy Network 308

The retriever’s tendency to retrieve homogeneous 309

evidence poses a challenge for generating effec- 310

tive follow-up queries. To overcome this limita- 311

tion, we elaborately devise a selecting policy net- 312

work, which is designed to learn an optimal pol- 313

icy for the evidence selection, enabling the genera- 314

tion of follow-up queries with diverse knowledge. 315

Thus, this process is conceptualized as a sequen- 316

tial decision-making process. The selecting policy 317

network mainly consists of three modules. Based 318

on the retrieved top-N evidence passages [fd(Z1), 319

fd(Z2), ..., fd(ZN )], a context module first cap- 320

tures contextual-aware information for the retrieved 321

passages. Subsequently, an aggregation module 322

enhances the query representation by incorporat- 323

ing this contextual-aware information, enabling the 324

capture of correlations between the query and the 325

retrieved passages. Finally, a evidence selection 326

module is employed to learn and select these pas- 327

sages, obtaining the optimal top-K evidences to 328

maximize the evaluation metrics of the generated 329

queries. 330

Context module. It is evident that the retrieved 331

passages are contextually dependent, prompting 332

the application of a multi-layer Transformer net- 333

work to encode contextual-aware information for 334

the evidence passages. Formally, 335
[HZ1 , ..., HZN ] = Transformer([fd(Z1), ..., fd(ZN )]) (3) 336

where fd(Zi) denotes the representation of the i-th 337

passage obtained from the retriever in Eq. 2, and 338

HZi represents the corresponding context-aware 339

passage representation. 340

Aggregation module. This module serves 341

to amalgamate the original query representations 342

within the evidence passages, yielding an aggre- 343

gated query representation. An attention network 344

is applied in this module, defined as follows: 345

HX =

N∑
i=0

αi ∗HZi

αi =
exp(MLP([fq(X);HZi ])∑N
j=0 exp(MLP([fq(X);HZj ])

(4) 346

where HX represents the aggregated query repre- 347

sentation. The term MLP(·) signifies a two-layer 348

fully connected network utilizing the rectified lin- 349

ear unit as the activation function. The notation 350

[·;·] denotes the concatenation of two vectors. 351
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Evidence selection module. This module se-352

quentially assigns labels of 1 (indicating relevance353

to a target output) or 0 (otherwise) to each evidence354

passage. Implemented with a LSTM (Hochreiter355

and Schmidhuber, 1997) network and a softmax356

layer, the module takes the passage HZi and the357

query HX as input at time ti and makes a binary358

prediction, conditioned on contextual-aware evi-359

dence passage representation and the previously360

labeled passages. This process discerns both lo-361

cally and globally important passages, thereby sup-362

porting diverse query generation. The passages are363

selected based on P (Ai = 1|Zi), the confidence364

scores assigned by the softmax layer of the policy365

network.366

Pϕ(Ai|X,Zi) = softmax(LSTM(HZi , HX)). (5)367

The learning process involves selecting passages368

through training our network within a reinforce-369

ment learning framework. This entails the direct370

optimization of final evaluation metrics, specifi-371

cally ROUGE (ROUGE, 2004) and BLEU (Pap-372

ineni et al., 2002) in our query generation.373

4.3 Query Generator374

After the evidence selection, we obtain the top-K375

passages Ẑ . The query generator takes a query376

X and Ẑ as input to produce the target queries Y .377

In our KQG setting, we encourage the retriever378

to recall diverse passages, facilitating the genera-379

tion of a variety of target queries. Consequently,380

following prior RAG tasks, we employ Fusion-in-381

Decoder model (Izacard and Grave, 2020b) as the382

generator, which can fuse pertinent information383

from the top-K retrieved passages. Specifically,384

the query generator is built on top of T5 (Raffel385

et al., 2020), a pre-trained sequence-to-sequence386

transformer featuring an encoder ge and a decoder387

gd. For the encoder’s input, each retrieved passage388

Zk ∈ Ẑ is initially appended with the query:389

Ik = [CLS]X [SEP ]Zk [SEP ], (6)390

where “[CLS]” marks the beginning of a passage,391

and “[SEP]” serves as a separator for distinct parts392

of the passage as well as the final token. Each Ik is393

then independently fed as input to the T5 encoder394

ge. The resulting representations corresponding to395

all retrieved passages are concatenated as follows:396

I1∼K = [ge(I1), ..., ge(IK)] ∈ RT×K×D (7)397

where T represents the number of tokens in each Ik,398

and D is the hidden size of the T5 encoder ge. Sub-399

sequently, I1∼K serves as input to the T5 decoder400

gd. Similar to the paradigm of text generation, dur- 401

ing the generation of a target token, the decoder 402

generate each token in the target output with both 403

causal attention and cross-attention. In other words, 404

it produce current token by incorporating both pre- 405

viously generated token and the tokens encoded in 406

I1∼K . Since I1∼K encompasses information from 407

multiple passages, the decoder can aggregate valu- 408

able information from various sources and engage 409

in joint reasoning. 410

Finally, we define the probability of the gener- 411

ated queries as: 412

P (Y |X, Z̃; θ) =

l∏
t=1

Pθ(yt|y<t, X, Ẑ;ϕ), (8) 413

where θ denotes the generator parameters and l is 414

the number of generated query tokens. The gener- 415

ation of query tokens continues until the decoder 416

outputs a special [EOS] token or the generated 417

queries reaches a pre-specified maximum length. 418

4.4 Training via Reinforcement Learning 419

In this section, we extend the application of re- 420

inforcement learning to bridge the retrieval and 421

generation processes. Specifically, we formulate 422

an objective function, or reward function, to assess 423

how effectively the retrieved passages contribute 424

to the generation of the target queries. This re- 425

ward function is utilized to globally optimize the 426

evaluation metrics of query generation, namely 427

ROUGE (ROUGE, 2004) and BLEU (Papineni 428

et al., 2002), through policy gradient reinforcement 429

learning. Our training algorithm facilitates explo- 430

ration within the space of potential evidence, sup- 431

porting follow-up query generation with diverse 432

knowledge. Consequently, reinforcement learning 433

contributes to KQG in two key ways: (a) by di- 434

rectly optimizing the evaluation metrics instead 435

of maximizing the likelihood of reference target 436

queries and (b) by enhancing our model’s ability to 437

discriminate among evidence passages. A passage 438

is selected if it effectively supports the generator in 439

producing high-scoring target queries. 440

Training procedure. We train a policy πψ with 441

parametersψ to predict binary labels, whereψ = {η, 442

ϕ}. Given the retrieved top-N passages Z̃ = [Z1, 443

Z2, ..., ZN ], the policy πψ generates a binary prob- 444

ability distribution for each Zi in Ẑ . We denote the 445

collection of these distributions for all passages in 446

Z̃ as πψ(∗|X, Z̃). The probability πψ(A|X, Z̃) of 447

an action sequence A can be formulated as follows: 448

449πψ(A|X, Z̃) =
∏
i

Pϕ(Ai|X,Zi) (9) 450
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where πψ(A|X, Z̃) represents the probability of451

including a passage Zi when Ai = 1 or excluding it452

when Ai = 0. When selecting evidences using πψ,453

we choose the label with the higher score for each454

passage:455

Ab = [argmax
Ai

πψ(Ai|X,Zi) for Zi ∈ Z̃] (10)456

We employ a policy gradient technique (Sut-457

ton et al., 1999) to train our model. Unlike con-458

ventional sequential reinforcement learning setups,459

our πψ takes only one action for a given input,460

promptly receiving the corresponding reward with-461

out transitioning through other intermediate states.462

In essence, a single action corresponds to a spe-463

cific label sequence A = (A1, A2, ..., AN ) ∈ {0,464

1}). However, in our scenario, the policy generally465

has the flexibility to access rewards for multiple466

potential actions through sampling.467

The training objective aims to maximize the468

expected reward assigned to a predicted label se-469

quence A given a set of input retrieved passages Z̃ ,470

as computed by the reward function R:471

J (ψ) = E[R(Z̃, A)]. (11)472

Then, according to he policy gradient theo-473

rem (Sutton et al., 1999), the gradient of this expec-474

tation can be expressed as follows:475

∇ψJ (ψ) = ∇ψE[R(Z̃, A)logπψ(A|X, Z̃)] (12)476

Given the intractability of computing this expec-477

tation for a large dataset and the corresponding478

action space, the gradient is estimated through sam-479

pling:480

∇ψJ (ψ) = ∇ψr
slogπψ(As|X, Z̃)] (13)481

where As ∼ πψ(·|X, Z̃) represents a sample from482

the current policy at a given step, comprising binary483

passage labels As = (As1, A
s
2, ..., A

s
N ), and rs =484

R(Z̃, As).485

In line with common practice in policy gradients,486

we introduce a baseline subtraction from the re-487

ward to reduce variance. We define the baseline as488

rb = R(Z̃, Ab), representing the reward assigned489

to the most likely label sequenceA according to the490

current policy. The resulting gradient is expressed491

as:492

∇ψJ (ψ) = ∇ψ(r
s − rb)logπψ(As|X, Z̃)] (14)493

Consequently, our model is trained by minimiz-494

ing the following loss function:495

Lψ = (rb − rs)logπψ(As|X, Z̃)]. (15)496

The incorporation of the baseline rb facilitates497

an intuitive interpretation: a sample As is encour-498

aged if its reward surpasses the current policy’s499

prediction (i.e., when the factor rb−rs is negative), 500

and discouraged otherwise. 501

Reward Function. The reward function is in- 502

tended to ensure the connection of retriever and 503

generation process. The selecting policy network 504

perform the action to select K evidence passages 505

from Z̃ . Then, the generator produce the corre- 506

sponding queries Ŷ based on the selected K pas- 507

sages. We use evaluation metrics, namely ROUGE- 508

1, ROUGE-2, ROUGE-L and BLEU-4 to calculate 509

reward as follows: 510

R(Z̃, A) = λ1 ∗ ROUGE-1(Y, Ŷ ) + λ2 ∗ ROUGE-2(Y, Ŷ )

+ λ3 ∗ ROUGE-L(Y, Ŷ ) + λ4 ∗ BLEU-4(Y, Ŷ )
(16)

511

where the evaluation scores ROUGE-∗(Y , Ŷ ) and 512

BLEU-4(Y , Ŷ ) quantify the performance of the 513

model. The weights λ1, λ2, λ3, and λ4 serve as 514

hyperparameters for each metric, and it is important 515

to note that λ1 + λ2 + λ3 + λ4 equals 1.0. Within 516

this reward function, ROUGE-1 and ROUGE-2 517

measure unigram and bigram overlap, providing an 518

assessment of informativeness, while the longest 519

common subsequence (ROUGE-L) is employed to 520

evaluate fluency. BLEU-4 is used to evaluate the 521

similarity between a generated text and a reference 522

text. The whole training process for ReSAG is 523

shown in Algorithm 1 in Appendix A.7. 524

5 Experiments 525

5.1 Evaluation Metrics 526
In contrast to previous works (Du et al., 2017; 527

Yao et al., 2018) on query generation evaluation 528

that measure the quality of a generated query with 529

respect to a single reference query using widely 530

adopted similarity metrics such as BLEU (Pap- 531

ineni et al., 2002) and ROUGE (ROUGE, 2004), 532

our ReSAG generates a list of queries, and there 533

are multiple gold reference queries. To maintain 534

consistency with single-target evaluation, we con- 535

catenate all generated queries and the gold refer- 536

ence queries separately. Subsequently, we em- 537

ploy metrics, including BLEU-4, ROUGE, and 538

BERTScore (Zhang et al., 2019) and Diversity (Li 539

et al., 2015), to conduct evaluations from the per- 540

spectives of lexical match, contextual embedding 541

semantics and knowledge diversity. The detailed 542

description for these mertics can be found in Ap- 543

pendix A.4. 544

5.2 Baseline Methods 545
To verify the effectiveness of our ReSAG, we 546

select several baselines, including generative ap- 547

proaches (i.e., GPT2 and T5), large language model 548
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Table 1: Main results on validation and testing datasets.

Approaches Validation Dataset Testing Dataset

ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 BERTScore ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 BERTScore
GPT2 13.482 2.052 10.348 1.488 0.589 13.439 2.037 10.287 1.485 0.590
T5 22.406 6.686 17.406 2.187 0.674 22.300 6.761 17.234 2.183 0.672
Prompt4LLM 15.126 2.694 11.516 1.193 0.613 14.999 2.673 11.396 1.178 0.611
ICL 16.585 3.36 12.649 1.551 0.622 16.120 3.037 12.374 1.34 0.620
P-Tuning 20.86 5.48 13.9 1.520 0.610 20.410 5.46 13.41 1.433 0.608
LoraFtuneLLM 21.464 6.015 16.340 2.025 0.639 21.751 6.158 16.553 2.062 0.661
FID-KD 23.902 7.232 18.504 3.103 0.681 23.827 7.139 18.334 3.005 0.679
RetGen 24.632 8.038 19.267 3.955 0.692 24.428 7.933 19.142 3.904 0.681

ReSAG 28.633 13.555 22.332 7.843 0.706 28.701 13.568 22.167 7.728 0.706

- w/ DQN 26.595 11.156 20.49 6.132 0.664 26.613 11.239 20.444 6.214 0.668
- w/o SPN 21.663 6.843 16.579 2.773 0.425 21.974 6.904 16.619 2.811 0.432
- w/o DPR-P 25.009 10.37 19.383 5.132 0.554 25.182 10.281 19.258 5.091 0.532

based approaches (i.e., P-Tuning, LoraFtuneLLM,549

Prompt4LLM and ICL) and typical RAG method550

(i.e., FID-KD). The detailed description for these551

baselines can be found in Appendix A.3.552

In our baselines, for LoraFtuneLLM,553

Prompt4LLM and ICL, we select554

Baichun2 (Baichuan, 2023) as our testing555

LLM. In addition, we also introduce some variants556

of our ReSAG:557

• ReSAG w DQN uses deep Q-learning net-558

work (Wan et al., 2021) to substitute policy gra-559

dient algorithm for the policy learning.560

• ReSAG w/o SPN is variants of our ReSAG with-561

out using selecting policy network to bridge the562

retrieval and generation process. Thus, our Re-563

SAG degrades to a retrieve-then-generate model.564

565
• ReSAG w/o DPR-P is variants of our ReSAG,566

in which the retriever is only initialized with a567

pre-trained Chinese BERT model, without pre-568

training using contrastive learning technique in569

the SimCSE model (Gao et al., 2021).570

5.3 Results571
5.3.1 Main Results572

The overall results of ReSAG and all baselines573

on validation and testing datasets are reported in574

Table 1. The experimental results show that Re-575

SAG achieves the best performance on all met-576

rics, including ROUGE-1, ROUGE-2, ROUGE-577

L and BLEU-4 and BERTScore, demonstrating578

its effectiveness. On these metrics, we observe579

that ReSAG obtains an improvement of 4.001%,580

5.517%, 3.065%, 3.888%, 0.014 over the best base-581

line (i.e., RetGen) on the validation dataset and582

4.273%, 5.635%, 3.025%, 3.824%, 0.025 on the583

testing dataset. It is worth noting that all baselines584

do not perform very well. There may exist the585

following several reasons: GPT2 and T5 are typ-586

ical generative models. It is difficult for them to587

only use the initial query as source information to588

produce the knowledge-aware follow-up queries.589

It is also hard to capture the inherent relations in590

knowledge. Prompt4LLM and ICL are unsuper- 591

vised LLM-based prompting approaches. Since 592

LLM has its inherent generative styles, misalign- 593

ment between the generated results from LLM and 594

the reference results lead to a bad performance. 595

Although P-Tuning and LoraFtuneLLM are super- 596

vised LLM-based approaches, fine-tuning on the 597

training dataset, they also perform not good be- 598

cause it is hard to elicit the knowledge relations 599

from LLMs in our KQG. For FID-KD, it a typical 600

RAG model, it perform worse in our multiple target 601

generation scenario. While both our approach and 602

RetGen leverage signals from the generation pro- 603

cess to optimize the retrieval process, ReSAG intri- 604

cately designs a novel sequential decision-making 605

learning algorithm within the selection layer, re- 606

sulting in enhanced performance. 607

5.3.2 Ablation Study 608
In this subsection, we investigate the relative influ- 609

ences of different modules of ReSAG, we conduct 610

ablation test for several variants as we mentioned 611

before. The experimental results are also reported 612

in the Table 1. It is noted that the performance for 613

ReSAG (w/o SPN) decreases the most that denotes 614

the importance of selection policy learning for the 615

process of generation. In addition, we observe that 616

the performance of ReSAG (w/o DPR-P) decreases 617

a lot that indicates a good cold-start strategy for 618

the retriever can significantly improve the system 619

performance. Moreover, to evaluate the influence 620

of different policy learning algorithms in the se- 621

lection policy network, we use DQN to substitute 622

for policy gradient algorithm. We find that DQN 623

results in a decrease in performance. 624

5.3.3 Diversity Study 625
In our KQG, the diversity reflects the richness of 626

knowledge among the generated queries. We report 627

the evaluation of the diversity in the Table 2. It is 628

observed that our ReSAG achieves the best perfor- 629

mance on the Dist-2. But on Dist-1, ReSAG per- 630

form worse than T5. Overall, Our ReSAG achieve 631

better performance compared with all baselines. 632
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Table 2: Diversity evaluation results on datasets.

Approaches Validation Dataset Testing Dataset

Dist-1 Dist-2 Dist-1 Dist-2
Prompt4LLM 0.545 0.818 0.545 0.816
ICL 0.560 0.816 0.564 0.814
P-Tuning 0.342 0.532 0.321 0.562
LoraFtuneLLM 0.211 0.327 0.213 0.336
GPT2 0.280 0.408 0.281 0.411
T5 0.696 0.827 0.698 0.828
FID-KD 0.622 0.811 0.612 0.815
RetGen 0.628 0.820 0.619 0.818

ReSAG 0.636 0.836 0.634 0.834

However, it is challenging to evaluate the diver-633

sity of knowledge within the generated follow-up634

queries. To address this, we selected 100 samples635

at random from the testing dataset and enlisted the636

expertise of three human annotators. Their task637

was to determine the number of distinct knowledge638

points present in the generated follow-up queries.639

The findings revealed that our methods resulted in640

an average of 3.21 knowledge points per generated641

queries in comparison to the 4.67 knowledge points642

found in the ground-truth queries. This underscores643

the effectiveness of our approach in generating the644

follow-up queries with diverse knowledge.645

5.4 Human Evaluation646
We conduct user testing to assess the effectiveness647

of follow-up queries generated by our ReSAG for648

knowledge acquisition from a LLM. Specifically,649

we divided 8 real users into two groups, Group650

A and Group B. Each group was presented with651

100 initial queries. In the first round, both Group652

A and Group B posed initial queries to an LLM.653

In the subsequent round, Group A had the option654

to either self-prompt for further knowledge or not,655

while Group B could choose to utilize the generated656

follow-up queries or not. Finally, we computed the657

average number of rounds. Experimental results658

reveal that Group B engaged in an average of 2.4659

rounds of interactions for knowledge acquisition,660

while Group A only averaged 1.3 rounds. This661

demonstrates that the generated follow-up queries662

effectively enhance the interaction process between663

LLMs and users in progressive information acqui-664

sition.665

5.5 Case Study666
To demonstrate the effectiveness of our ReSAG,667

depicted in Figure 3, we conduct a case study on668

query generation using ChatGLM3 for knowledge669

acquisition. Initially, we input a initial query into670

ChatGLM3 to generate a response. Subsequently,671

we prompt ChatGLM3 to recommend five queries672

related to the initial query, serving as a baseline673

comparison known as Prompt4LLM. Upon obser-674

Figure 3: Case study of KQG for knowledge acquisi-
tion.
vation, Prompt4LLM tends to suggest superficial 675

queries of the “What”, “How”, and “Which” types, 676

lacking depth in knowledge exploration. Con- 677

versely, our ReSAG effectively captures knowl- 678

edge relations, generating insightful queries such 679

as “Modified Gram-Schmidt QR” and “Projection 680

of Linearly Independent Column Vectors onto the 681

Range”, which enrich and expand upon the ini- 682

tial query’s understanding of “QR Decomposition". 683

This case study underscores our ReSAG’s ability 684

to grasp knowledge relationships by retrieving and 685

ranking relevant evidences. For further case studies, 686

please refer to Appendix A.5. 687

6 Conclusion 688
In this study, we introduced a novel approach 689

named ReSAG, which integrates neural initial 690

retrieval and selecting process into a T5-based 691

sequence-to-sequence generation framework. Re- 692

SAG comprised a knowledge retriever, a selection 693

policy network, and a query generator. Notably, 694

the policy network served as a crucial bridge be- 695

tween the query generator and the knowledge re- 696

triever, ensuring their performance is correlated or 697

aligned to enhance overall system performance. To 698

improve the knowledge retriever, we leveraged sig- 699

nals from the policy network to guide progressive 700

updates during training of the query generator. To 701

enable end-to-end training, we introduced a novel 702

variant of policy optimization that trains the initial 703

retrieval and selector using only ground truth on 704

the target sequence output. Extensive experiments 705

demonstrated that our approach outperforms exist- 706

ing state-of-the-art methods, including generative 707

models, RAG models, and LLM-based methods. 708
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7 Limitations709

While the effectiveness of the proposed approach710

has been validated within the domain of informa-711

tion technology, its applicability to other domains,712

such as general or educational question answering,713

remains to be explored. Additionally, although we714

employed both rule-based and machine learning715

methods to filter noise from the collected dataset to716

ensure high-quality training samples, some noise717

may still persist in the data.718
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A.1 Dataset 919

A.1.1 Data Collection 920

The KQG task, unlike the RAG tasks, addresses 921

the challenge of diverse evidence retrieval for multi- 922
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Figure 4: The case example of a title and its catalogue.

target generation. To facilitate this objective, we923

have curated a large-scale Chinese dataset specifi-924

cally designed for follow-up query generation. The925

dataset is sourced from CSDN 3, an online knowl-926

edge sharing community focusing on information927

technology, where a substantial amount of knowl-928

edge articles is available. Each article comprises a929

title, a catalogue, and passages. Figure 4 illustrates930

an example of a title alongside its corresponding931

catalogue structure. Upon closer inspection, it be-932

comes evident that the title functions akin to the933

initial query for a specific knowledge, and the cat-934

alogue serves as a set of follow-up queries with935

associated knowledge. Leveraging this observa-936

tion, we extract the title as the initial query and937

consider each item in the catalogue as a target out-938

put. Consequently, we construct our dataset based939

on the extracted query and the list of target out-940

put. Furthermore, we create a document library941

to facilitate evidence retrieval, drawing on the text942

passages within the articles.943

To ensure the high quality of samples, we em-944

ploy two approaches to filter out low-quality sam-945

ples: a heuristic rules-based method and a LLM-946

based in-context learning method 4. The former947

utilizes regular expressions or empirical rules to fil-948

ter titles or catalogues containing specific symbols,949

or sentences that are excessively long or short. The950

latter seeks to leverage the semantic understanding951

of a LLM to assess the quality of a sample, in-952

corporating a few manually annotated high-quality953

demonstrations for guidance.954

A.1.2 Statistics and Analysis955

In this subsection, we conduct an analysis of the956

statistical features of our constructed dataset. Af-957

ter quality filtering, our KQG dataset comprises958

a total of 210,531 (query, follow-up queries) pairs959

and 1,677,513 document passages. The samples960

3https://www.csdn.net/
4We utilize ChatGLM3 for Chinese comprehension.

Table 3: The statistics of the KQG dataset.

Data #Num #Len(Query/FQ) #FQ

Training Set 189,477 17.76/ 14.44 9.51
Validation Set 10,527 17.70/14.35 9.46

Testing Set 10,527 17.83/14.50 9.51

Passages 1,677,513 580.67 -

were randomly split, resulting in 189,477, 10,577, 961

and 10,577 samples allocated to the training, de- 962

velopment, and test sets, respectively. The details, 963

including queries, follow-up queries, text passages, 964

and article URLs, will be provided for research 965

purposes as we make the dataset public. 966

The key statistical information is presented in 967

Table 3. Notably, the average length of textual pas- 968

sages in the document library is 580.67. For the 969

training, validation, and testing sets, the average 970

length of queries and target output are as follows: 971

17.76/14.44, 17.70/14.35, and 17.83/14.50, respec- 972

tively. On average, each query corresponds to 9.51, 973

9.46, and 9.51 follow-up queries for the training, 974

validation, and testing sets, respectively. To en- 975

sure knowledge diversity, the dataset encompasses 976

various topics in information technology, cover- 977

ing areas such as front-end development, back-end 978

development, algorithms, databases, operating sys- 979

tems, software development, and big data. The 980

constructed dataset is approximately 2.3 GB. This 981

high-quality dataset encompasses a diverse range 982

of knowledge topics, making it adequately repre- 983

sentative for our KQG task. 984

A.2 RAG 985

RAG models use the input query x to retrieve text 986

documents z from document library Z and use 987

them as additional context when generating the 988

target output y. Formally, the optimization process 989

is carried out based on the following formulation: 990

P (y|x; η, θ) =
∑
z∈Z

Pθ(y|x, z)Pη(z|x), (17) 991

where Pη(z|x) is the retriever with parameters η 992

and Pθ(y|x, z) denotes the generator parametrized 993

by θ that generates the target y based on the origi- 994

nal input query x and the retrieved document z. In 995

practical scenarios, Z often encompasses a large 996

volume of documents, making exhaustive enumera- 997

tion over Z impractical. Instead, a dense document 998

retriever Pη(·) is employed to significantly narrow 999

down the search to a select few relevant documents. 1000

Specifically, the retriever Pη takes Z and x as in- 1001

put, producing relevance scores {s1, ..., sK} for 1002

11

https://www.csdn.net/


the top-K (K being a hyperparameter) documents1003

Z̃ = {z1, · · · , zK}.1004

Given x and the top-K retrieved documents {z1,1005

z2, ..., zK}, the generator Pθ(·) is used to produce1006

a probability score for a given reference target y,1007

i.e., Pθ(y|x, zi). The loss can be approximated as:1008

L(η, θ) = −log
K∑
i=1

Pθ(y|x, zi)Pη(zi|x), (18)1009

where the normalized probability p(zj |x) is defined1010

as exp(sj)/
∑K

i=1 exp(si), with relevance scores1011

s serving as logits. The set Z̃ = {z1, · · · , zK} is1012

obtained from the retrieval process using Pη(Z, x).1013

Prior RAG models (Lewis et al., 2020; Singh1014

et al., 2021; Zhang et al., 2022) focus on co-training1015

the retriever and generator in an end-to-end differ-1016

entiable manner, incorporating feedback from the1017

model itself as “pseudo labels” to optimize retriever1018

and reader parameters iteratively.1019

A.3 Baseline Description1020

We provide a brief description of the baselines used1021

in our experiments:1022

• GPT2 (Radford et al., 2019) is a pretrained lan-1023

guage model based on the Transformer decoder,1024

which has achieved outstanding performance in1025

a wide range of text generation tasks.1026

• T5 (Raffel et al., 2020) is implemented by typ-1027

ical encoder-decoder Transformer, solving text-1028

to-text tasks. We initialize the parameters of T51029

with a pretrained Chinese T5 base model, i.e., a1030

mengzi-t5-base (Zhang et al., 2021).1031

• P-Tuning (Liu et al., 2022) is a method that1032

tunes continuous prompts with a frozen language1033

model for query generation. In our case, we have1034

opted for ChatGLM3 (Du et al., 2021) as our1035

base model.1036

• LoraFtuneLLM is a method that utilizes1037

LoRA (Hu et al., 2021) technique to finetune1038

a large language model to generate the follow-up1039

queries.1040

• Prompt4LLM is a method that directly prompts1041

a large language model to generate the follow-up1042

queries related to the initial query.1043

• ICL (Wu et al., 2022) is a method that utilizes1044

in-context learning technique to prompt a large1045

language model to generate the follow-up queries1046

with a few demonstration examples sampling1047

from the training set.1048

• FID-KD (Izacard and Grave, 2020a) is 1049

retrieval-augmented generation approach which 1050

learns retriever models for generation tasks by 1051

knowledge distillation technique without requir- 1052

ing annotated pairs of query and passages. 1053

• RetGen (Zhang et al., 2022) is retrieval- 1054

augmented generation which adopts a joint train- 1055

ing framework for text generation and passage 1056

retrieval utilizing a language model signal. 1057

A.4 Evaluation Metric Description 1058

We provide a brief summary of the metrics used in 1059

our experiments: 1060

• BLEU-4 (Papineni et al., 2002): This metric uti- 1061

lizes n-gram precision to evaluate the similarity 1062

between a generated text and a reference text. 1063

It counts the occurrences of unigrams, bigrams, 1064

trigrams, and four-grams that match their corre- 1065

sponding counterparts in the reference text. 1066

• ROUGE (ROUGE, 2004): This metric includes 1067

ROUGE-1, ROUGE-2 and ROUGE-L. ROUGE- 1068

1 and ROUGE-2 measure overlap of unigrams 1069

and bigrams respectively. ROUGE-L measures 1070

overlap of the longest common subsequence be- 1071

tween a generated text and a reference text. 1072

• BERTScore (Zhang et al., 2019): Utilizing con- 1073

textual embeddings to compute token similar- 1074

ity, BERTScore is reported based on bert-base- 1075

chinese 5 in our scenario. 1076

• Diversity (Li et al., 2015): We report degree of 1077

diversity by calculating the number of distinct 1078

unigrams and bigrams in generated responses. 1079

The value is scaled by total number of generated 1080

tokens to avoid favoring long sentences (shown 1081

as Dist-1 and Dist-2 in Table 2.). 1082

A.5 More Case Studies 1083

We conduct additional case studies, as depicted 1084

in Figure 5, to further validate the efficacy of our 1085

ReSAG. In both cases in Figure 5, the ChatGLM3- 1086

based prompting approach struggle to capture the 1087

depth of knowledge inherent in the initial query. 1088

In contrast, our ReSAG adeptly generated diverse 1089

follow-up queries that encapsulated more compre- 1090

hensive knowledge. For instance, in the top case of 1091

Figure 5, crucial aspects such as "Selection of rated 1092

current," "Overcurrent protection," and "Rated volt- 1093

age" are pivotal considerations for IGBT selection. 1094

5https://huggingface.co/bert-base-chinese
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Figure 5: The additional case studies of query genera-
tion based on ChatGLM3.

A.6 Implementation Details1095

A.6.1 Hardware and library1096

We conducted all experiments on a machine1097

equipped with 56 CPUs, 1.0TB of physical mem-1098

ory, and 4 A100 GPUs. Our ReSAG and baseline1099

models were implemented using PyTorch (Paszke1100

et al., 2019) 6.1101

A.6.2 Model configurations1102

We employ the base configuration for both the1103

knowledge retriever and query generator, compris-1104

6The dataset and source codes will be made available upon
acceptance of our work.

Algorithm 1 The Algorithm Training Procedure
for ReSAG
Input: The passage knowledge base Z , (X , Y ) ∈ D, a LLM

Flm, the retriever Pη , the selector Pϕ, and the generator
Pθ

Output: The trained parameters η, ϕ and θ
1: Initialize η and θ with a Chinese-Roberta-wwm-ext and a

mengzi-t5-base, respectively
2: Pre-trainPη with contrastive learning in the SimCSE (Gao

et al., 2021)
3: Pre-train Pθ only using the initial query as input and

follow-up queries as targets
4: Compute the passage index using the current retriever

parameters η
5: for all j ∈ |D| and (X,Y ) ∈ D do
6: Retrieve top-N passages Z̃ using the current retriever

parameters η
7: Compute top-K passages Ẑ using the current selector

parameters ϕ
8: Generate follow-up queries Ŷ based on Ẑ and X
9: Compute the reward between Y and Ŷ using Eq. 16

10: Optimize the parameter θ using maximum likelihood
estimation between Y and Ŷ using Eq. 8

11: Optimize the parameters η and ϕ using Eq. 15
12: if j%1000 == 0 then
13: Update the passage index using the updated re-

triever parameters η
14: end if
15: end for

ing 12 layers, 768-dimensional hidden size, and 12 1105

attention heads. As for the selecting policy network, 1106

the context module utilizes a 3-layer Transformer 1107

encoder with 12 heads and a 768-dimensional hid- 1108

den size. The LSTM hidden size is also set to 768. 1109

In our experiments, we initially retrieve the top 50 1110

passage as evidence and select 5 passages among 1111

them, i.e.,N = 50 andK = 5. Due to GPU memory 1112

constraints, we limit our experiments to the base 1113

configuration. Nonetheless, we anticipate that our 1114

findings would extend to larger configurations. 1115

A.6.3 Retrieval 1116

To facilitate rapid retrieval, we pre-computed em- 1117

beddings for 1,677,513 evidence passages, forming 1118

our passage index. Through experimentation, we 1119

discovered that conducting Maximum Inner Prod- 1120

uct Search with FAISS is sufficiently efficient on 1121

CPU. Consequently, we store the passage index 1122

vectors on the CPU, necessitating 16 GB of CPU 1123

memory for our dataset. 1124

A.6.4 Training Details 1125

We initially set the retriever parameters using a 1126

pre-trained Chinese BERT model 7, followed by 1127

pre-training with contrastive learning techniques 1128

7https://huggingface.co/hfl/
chinese-roberta-wwm-ext
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in SimCSE (Gao et al., 2021). For the query gen-1129

erator, we initialize the T5 parameters with a pre-1130

trained Chinese T5 base model (Zhang et al., 2021),1131

i.e., the mengzi-t5-base 8. Subsequently, we exclu-1132

sively pre-train it using the initial query as input1133

and follow-up queries as targets. During end-to-1134

end training, as the passage encoder parameters1135

are continuously updated, pre-computed passage1136

embeddings may become outdated. To address this,1137

we asynchronously compute fresh passage embed-1138

dings using the latest passage encoder checkpoint,1139

updating the passage index every 1000 training1140

steps to maintain relevance.1141

A.6.5 Inference1142

At inference time, we employ greedy decoding for1143

follow-up query generation.1144

A.7 Algorithm Training Procedure1145

The detailed training procedure is shown in Algo-1146

rithm 1.1147

8https://huggingface.co/Langboat/
mengzi-t5-base
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