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Abstract

The advent of Large Language Models (LLMs)
has significantly eased the process of knowl-
edge acquisition for users through interactive
question answering. However, when con-
fronted with domain-specific knowledge, users
may struggle to formulate relevant questions
aligned with the initial query. To address
this challenge, in this paper, we introduce a
novel task termed Knowledge-aware Follow-
up Query Generation (KQG), which aims to
generate a sequence of follow-up queries with
diverse knowledge to aid users in progres-
sive knowledge acquisition from LLMs. To
facilitate this task, we first construct a new
dataset tailored specifically for KQG, sourced
from an online knowledge sharing commu-
nity. Subsequently, we propose a novel end-
to-end training framework for KQG, named
ReSAG (Retrieval-then-Selecting Augmented
Generation), which extends typical Retrieval-
Augmented Generation (RAG) methods by in-
corporating a selecting policy network. To
be specific, ReSAG comprises three main
components: a knowledge retriever, a select-
ing policy network, and a T5-based question
generator. To train our framework in an end-
to-end manner, we introduce a novel variant
of policy optimization that integrates neural
dense retrieval and selecting into a T5-based
sequence-to-sequence generation model, using
only ground-truth target output. Finally, exten-
sive experiments demonstrate that our approach
significantly outperforms existing state-of-the-
art methods, including generative models, RAG
models, and LLM-based methods.

1 Introduction

Recent advancements in Large Language Models
(LLMs), including OpenAI’'s GPT-3.5 (Ouyang
etal., 2022), GPT-4 (Achiam et al., 2023), Google’s
PalLM (Chowdhery et al., 2023), ChatGLM (Zeng
et al., 2022), and other benchmark models (Tou-
vron et al., 2023; Taori et al., 2023; Chiang et al.,
2023), have showcased remarkable capabilities in

knowledge-oriented question answering. These
models greatly facilitate the knowledge-seeking
process for users through interactive question an-
swering. However, challenges arise when deal-
ing with domain-specific knowledge, as users may
struggle to pose relevant queries to acquire more
information. This difficulty often stems from a
lack of awareness regarding knowledge relations
and taxonomy. As illustrated in Figure 1, consider
the case of a student querying information about
singleton design pattern in C++. Despite the ini-
tial inquiry, the user may fail to acquire further
knowledge about related topics such as lazy initial-
ization and eager initialization, which are integral
to understanding the singleton design pattern.

To address the aforementioned challenges, one
seemingly straightforward approach is to prompt
LLMs directly to generate the follow-up queries.
Figure 1 illustrates an example where a LLM pro-
duces queries based on such a prompt. Although
each suggested query is relevant to the initial query,
they often lean towards superficial queries of the
“What”, “How”, and “Which” types, lacking depth
in knowledge exploration. This tendency over-
looks the intricate relationships within knowledge,
thereby limiting their effectiveness in aiding user
knowledge acquisition. The above phenomenon
can be attributed to two main reasons: Firstly, sim-
plistic prompt designs fail to elicit professional
and complex knowledge relations from LLMs, re-
sulting in discontented query generation. Secondly,
LLMs often exhibit limited performance in domain-
specific knowledge-oriented reasoning tasks (Wang
et al., 2023), as they struggle to capture the nu-
anced structure of knowledge during generation.
While fine-tuning and maintaining LLMs to inte-
grate domain-specific knowledge may alleviate this
issue to some extent, it can pose a significant finan-
cial burden for many institutions and researchers.
Additionally, the limited availability and confiden-
tiality of domain-specific data introduce risks of



Introduce common design patterns in C++: singleton design
pattern. A

a The Singleton Pattern is a commonly used software design

<> pattern that ensures that a class has only one instance and
provides a global access point. This pattern is often used in
scenarios where objects need to be created and destroyed
frequently, and where a global access point is provided.

...... What to

ask? (D
Recommend 5 queries related to the aforementioned o
knowledge to help me master it better. “>

Q 1. What is the Singleton design pattern?
Za3> 2. What are the advantages and disadvantages of the
Singleton design pattern?
3. In which scenarios is the Singleton design pattern
applicable?
4. How can the uniqueness of the Singleton design pattern
be ensured?
5. How to create a Singleton class?

1. The structure and implementation of the singleton pattern.
ReSAG 2. Implementation of singleton pattern: lazy initialization.
3. Implementation of singleton pattern: eager initialization.

Figure 1: An illustrating example of follow-up query
generation for a LLM-based prompting method and our
ReSAG.

potential data leaks.

To enhance the performance of LLMs on
domain-specific reasoning tasks, recent research
efforts (Shi et al., 2023; Peng et al., 2023) have
primarily focused on employing a held-out dense
retriever to extract knowledge and then leverag-
ing that knowledge for generating results. This
approach, known as retrieval-augmented genera-
tion (RAG), has demonstrated success in various
knowledge-intensive tasks. However, these meth-
ods often retrieve homogeneous knowledge with
a high degree of similarity, posing a challenge for
the model to differentiate between similar infor-
mation (Shen et al., 2023). Consequently, this
may lead to the inadvertent selection of inappro-
priate retrieved evidences, failing to produce the
diverse knowledge. Along this line, in this paper,
we introduce a novel task called Knowledge-aware
Follow-up Query Generation (KQG), aimed at pro-
ducing a sequence of queries with diverse knowl-
edge based on an initial query. These queries serve
as a progressive means of knowledge acquisition
from LLMs for users. To facilitate this, we con-
struct a dataset specifically tailored for KQG from
an online knowledge sharing community focusing
on information technology. This dataset comprises
a large collection of query and follow-up queries
pairs characterized by high correlation, intended
for academic research purposes.

Building upon this dataset, we propose a novel
end-to-end training framework for KQG, named
ReSAG (Retrieval-then-Selecting Augmented
Generation), which extends typical Retrieval-
Augmented Generation (RAG) methods by incor-

porating a selecting policy network. This network
connects the generation and retrieval processes,
learning an optimal policy to select the suitable
evidences from the retrieved passages so that it fa-
cilitates the generator in producing multiple queries
with associated knowledge, while also diversifying
the retrieved evidences to prevent the homogeneity
of generation results. The proposed ReSAG con-
sists of three main components: a knowledge re-
triever, a selecting policy network, and a T5-based
query generator. To train our framework in an
end-to-end manner, we introduce a novel variation
of policy optimization, which allows us to train
the initial retriever, policy networks, and generator
using only ground-truth target output. Our main
contributions are summarized as follows:

(1) We introduce a novel task and dataset, KQG,
designed to generate a sequence of associated
knowledge-aware follow-up queries based on the
initial query by retrieving evidence passages from
a knowledge base. This large-scale KQG dataset
comprises 1,677,513 document passages for ev-
idence retrieval and 210,531 (query, follow-up
queries) pairs for model training, validation, and
testing purposes .

(2) We propose an end-to-end training frame-
work for KQG, which integrates neural dense
retrieval and selecting process into a T5-based
sequence-to-sequence generation model without
the need for query-passage matching labels.

(3) Our approach achieves superior performance
compared to existing state-of-the-art methods, in-
cluding generative models, RAG models, and LLM-
based methods, by a significant margin.

2 Related Works

Incorporating external knowledge into paramet-
ric language models for text generation has be-
come a focal point for researchers. Leveraging
the effectiveness of the dual-encoder neural re-
triever (Karpukhin et al., 2020), the RAG frame-
work has seen extensive adoption in various text
generation tasks. This framework utilizes a dense
retriever to fetch passages from a document li-
brary, using the retrieved content as input for a
generator to formulate responses. Notable im-
plementations include RAG (Lewis et al., 2020),
which encodes each retrieved pasages alongside
the query and computes the probabilities of the
answer. FiD (Izacard and Grave, 2020b) adopts a
similar approach to RAG, encoding each retrieved

'The details of data collection and processing can be found
in Appendix A.1.



evidence passages and amalgamating their hidden
states in the decoder. FiD-KD (Izacard and Grave,
2020a) and EMDR?2 (Singh et al., 2021) are vari-
ations based on FiD, differing in retriever train-
ing methods: FiD-KD utilizes knowledge distilla-
tion, whereas EMDR?2 leverages marginal likeli-
hood. REPLUG (Shi et al., 2023) extends RAG
to large language models but updates only the re-
triever during training. Unlike KQG, these RAG
methods primarily retrieve homogeneous informa-
tion for single-target generation. Re?G (Glass et al.,
2022) bears the closest resemblance to our work,
focusing on retrieving and reranking for sequence-
to-sequence generation. However, its initial re-
trieval and reranking phases necessitate the use of
provenance ground truth, which is not feasible for
our KQG. Departing from the conventional rank-
ing paradigm, ReSAG views the ranking process
as a sequential decision-making process, enabling
consideration of both knowledge relevance and di-
versity within our KQG framework.

3 Task Definition

In this section, we formally define the task
of KQG and introduce the necessary notation.
KQG aims to predict a list of follow-up queries, de-
noted as Y = [Y7, Y5, ...], based on the given initial
query X (X and Y are from the training corpus D).
This process serves to facilitate progressive knowl-
edge acquisition from a Large Language Model
(LLM) denoted as Fj,,. Directly generating follow-
up queries from the initial query X proves chal-
lenging due to limited information within X 2. Ad-
ditionally, we introduce a document-based knowl-
edge base Z, comprising a large-scale collection
of document passages for evidence retrieval to sup-
port the knowledge-oriented query generation. It is
worth noting that the sets D and Z are non-parallel,
indicating that each X is associated with a specific
Y. However, the relationship between a document
Z in Z and the tuple (X, Y) is not explicitly de-
fined. In addition, our KQG differs from typical
RAG tasks in several ways. While RAG tasks uti-
lize the input query to retrieve text documents for
additional context during target sequence genera-
tion, our KQG differs in two fundamental aspects:

(1) Unlike RAG tasks, which focus on a single
target sequence, KQG is tailored for the generation
of multiple target sequences.

2Actually, we utilize F},,, to produce the response based
on X and concatenate X with its response as the final input
for the subsequent retrieval and generation process.

(2) RAG tasks typically retrieve multiple homo-
geneous documents as evidences to facilitate the
generation of a single target sequence. In contrast,
KQG selects diverse evidences to support the gen-
eration of varied queries with diverse knowledge.
4 Methodology
In this section, we present our proposed framework,
i.e., ReSAG, designed to address the KQG task.
An overview architecture of the model is presented
in Figure 2. ReSAG comprises three pivotal com-
ponents: 1) a dense knowledge retriever, 2) a query
generator, and 3) a selecting policy network. Dif-
ferent from the RAG framework, we incorporate
an additional selecting policy network to bridge the
gap between the generation and retrieval processes.
This integration enhances the awareness of associ-
ated knowledge in the process of query generation
while also promoting diversity in the retrieved ev-
idences, thus mitigating the risk of homogeneous
generation results. Specifically, the retriever P,
retrieves the top-N passages Z={Z, -, Zn}
based on Z and X. Then, the selecting policy net-
work Py learns to select the optimal K evidences
to obtain top-K passages Z= {Z1, ..., zr } by se-
quential decision learning, where K < N. It is
worth noting that we use a larger evidence space
N to explore more potential evidences beneficial
for query generation. Finally, the generator Py pro-
duces the target query sequence based on the top- K
selected passages and the query X. In reference to
the objective of RAG outlined in Equation 18, we
formulate ReSAG as follows:

L(n,$,0) = ~log Y Po(Y|X,Zi)Py(2|2)Py(2]X),
Z;eZ
)

where 7, ¢ and 0 are the parameters of the retriever,
the selector and the generator, respectively.

Within this framework, we introduce a novel
variation of policy optimization, which allows us
to train the retriever P, policy network Py, and
generator Py using only ground-truth target output
Y. In the subsequent sections, we formally intro-
duce three modules and elucidate the joint training
procedure.

4.1 Knowledge Retriever

Let the set of evidence passages be represented by
Z={2Z1, Zs, ..., Z|z|}. Given aquery X, the objec-
tive of the retriever module is to identify a subset of
evidence passages Z € Z as additional context that
can effectively facilitate the corresponding follow-
up query generation. The retrieval module, denoted
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Figure 2: The overview architecture of our ReSAG.

Back propagation

as P, (Z|X), is constructed based on the conven-
tional dense passage retriever (DPR) (Karpukhin
et al., 2020). DPR employs a dual encoder architec-
ture (Yih et al., 2011) wherein one encoder, f,, en-
codes the initial query, and another, f;, encodes the
evidence passage into a vector. We leverage trans-
former encoders for f; and f4, employing an archi-
tecture similar to BERT (Kenton and Toutanova,
2019) with 12 layers and a hidden size of 768. The
ultimate representation of the initial token (i.e., the
standard [CLS] token from BERT’s tokenization)
serves as our query and passage embedding. It’s
worth noting that initializing f, and fg with a pre-
trained BERT weights and then pretraining with
contrastive learning in the SimCSE model [9] have
been proven to avoid cold-starting, resulting in nor-
mal retrieval accuracy.

fa(X) = BERT,(X)

fa(Z) = BERT4(Z)

score(X,Z) = f(X)T fa(2Z)

P,(Z|X) x exp(score(X, Z))

(@3]

where f,(X) denotes a query representation gen-
erated by a dedicated query encoder, while f;(Z)
represents a dense passage representation produced
by a passage encoder. The retrieval score, denoted
as score(+, ), is determined by the dot product be-
tween the two resultant vectors.

For the computation of top-N passages, top-
N(P,(Z|X)), where N passages Z exhibit the
highest prior probability P,(Z|X), poses a Max-
imum Inner Product Search (MIPS) (Shrivastava
and Li, 2014) challenge. This problem can be effec-
tively addressed through an approximate solution
in sub-linear time. To achieve this, the passage em-
bedding vectors are pre-calculated and organized
into an index using Locality Sensitivity Hashing
(LSH) (Datar et al., 2004). This indexing allows
the query vector to be hashed to a cluster contain-
ing passages that are relatively pertinent. While
this search strategy is approximate, it demonstrates

compelling empirical search results, particularly
when dealing with extensive passage sets. We de-
note the set of retrieved passages as Z={Zy, -,
ZnN}.

4.2 Selecting Policy Network

The retriever’s tendency to retrieve homogeneous
evidence poses a challenge for generating effec-
tive follow-up queries. To overcome this limita-
tion, we elaborately devise a selecting policy net-
work, which is designed to learn an optimal pol-
icy for the evidence selection, enabling the genera-
tion of follow-up queries with diverse knowledge.
Thus, this process is conceptualized as a sequen-
tial decision-making process. The selecting policy
network mainly consists of three modules. Based
on the retrieved top-N evidence passages [ f4(Z1),
fa(Z2), ..., fa(Zn)], a context module first cap-
tures contextual-aware information for the retrieved
passages. Subsequently, an aggregation module
enhances the query representation by incorporat-
ing this contextual-aware information, enabling the
capture of correlations between the query and the
retrieved passages. Finally, a evidence selection
module is employed to learn and select these pas-
sages, obtaining the optimal top-K evidences to
maximize the evaluation metrics of the generated
queries.

Context module. It is evident that the retrieved
passages are contextually dependent, prompting
the application of a multi-layer Transformer net-
work to encode contextual-aware information for

the evidence passages. Formally,
[Hz,,..., Hz,| = Transformer([f4(Z1), ..., fa(ZN)]) B)

where f;(Z;) denotes the representation of the i-th
passage obtained from the retriever in Eq. 2, and
Hyz, represents the corresponding context-aware
passage representation.

Aggregation module. This module serves
to amalgamate the original query representations
within the evidence passages, yielding an aggre-
gated query representation. An attention network
is applied in thistodule, defined as follows:

HX :Zai*Hzi

=0 0
exp(MLP([f4(X); Hz,])

Z;'V:o exp(MLP([f4(X); HZj])

where H x represents the aggregated query repre-
sentation. The term MLP(-) signifies a two-layer
fully connected network utilizing the rectified lin-
ear unit as the activation function. The notation
[-;-] denotes the concatenation of two vectors.

i =



Evidence selection module. This module se-
quentially assigns labels of 1 (indicating relevance
to a target output) or 0 (otherwise) to each evidence
passage. Implemented with a LSTM (Hochreiter
and Schmidhuber, 1997) network and a softmax
layer, the module takes the passage Hyz, and the
query Hx as input at time ¢; and makes a binary
prediction, conditioned on contextual-aware evi-
dence passage representation and the previously
labeled passages. This process discerns both lo-
cally and globally important passages, thereby sup-
porting diverse query generation. The passages are
selected based on P(A; = 1|Z;), the confidence
scores assigned by the softmax layer of the policy
network.

Py(Ai|X, Z;) = softmax(LSTM(Hz,, Hx)). (5)

The learning process involves selecting passages
through training our network within a reinforce-
ment learning framework. This entails the direct
optimization of final evaluation metrics, specifi-
cally ROUGE (ROUGE, 2004) and BLEU (Pap-
ineni et al., 2002) in our query generation.

4.3 Query Generator

After the evidence selection, we obtain the top-K
passages Z. The query generator takes a query
X and Z as input to produce the target queries Y.
In our KQG setting, we encourage the retriever
to recall diverse passages, facilitating the genera-
tion of a variety of target queries. Consequently,
following prior RAG tasks, we employ Fusion-in-
Decoder model (Izacard and Grave, 2020b) as the
generator, which can fuse pertinent information
from the top-K retrieved passages. Specifically,
the query generator is built on top of T5 (Raffel
et al., 2020), a pre-trained sequence-to-sequence
transformer featuring an encoder g, and a decoder
gq. For the encoder’s input, each retrieved passage
Zj, € Z is initially appended with the query:

I, = [CLS) X [SEP] Zx [SEP], (6)

where “[CLS]” marks the beginning of a passage,
and “[SEP]” serves as a separator for distinct parts
of the passage as well as the final token. Each I, is
then independently fed as input to the T5 encoder
ge- The resulting representations corresponding to
all retrieved passages are concatenated as follows:

Lok = [ge(T1), -, 9e(IK)] € RIXKEXD %)

where T represents the number of tokens in each I,
and D is the hidden size of the TS encoder g.. Sub-
sequently, 17k serves as input to the T5 decoder

gq- Similar to the paradigm of text generation, dur-
ing the generation of a target token, the decoder
generate each token in the target output with both
causal attention and cross-attention. In other words,
it produce current token by incorporating both pre-
viously generated token and the tokens encoded in
I k. Since I;.. i encompasses information from
multiple passages, the decoder can aggregate valu-
able information from various sources and engage
in joint reasoning.

Finally, we define the probability of the gener-

ated queries as:
!

P(Y|X,Z;0) = [ [ Polwely<e, X, Z59),  (®
t=1
where 0 denotes the generator parameters and [ is

the number of generated query tokens. The gener-
ation of query tokens continues until the decoder
outputs a special [EOS] token or the generated
queries reaches a pre-specified maximum length.

4.4 Training via Reinforcement Learning

In this section, we extend the application of re-
inforcement learning to bridge the retrieval and
generation processes. Specifically, we formulate
an objective function, or reward function, to assess
how effectively the retrieved passages contribute
to the generation of the target queries. This re-
ward function is utilized to globally optimize the
evaluation metrics of query generation, namely
ROUGE (ROUGE, 2004) and BLEU (Papineni
et al., 2002), through policy gradient reinforcement
learning. Our training algorithm facilitates explo-
ration within the space of potential evidence, sup-
porting follow-up query generation with diverse
knowledge. Consequently, reinforcement learning
contributes to KQG in two key ways: (a) by di-
rectly optimizing the evaluation metrics instead
of maximizing the likelihood of reference target
queries and (b) by enhancing our model’s ability to
discriminate among evidence passages. A passage
is selected if it effectively supports the generator in
producing high-scoring target queries.

Training procedure. We train a policy m, with
parameters 1) to predict binary labels, where ) = {7,
¢}. Given the retrieved top-N passages Z =7,
Z3, ..., ZN], the policy m,, generates a binary prob-
ability distribution for each Z; in Z. We denote the
collection of these distributions for all passages in
Z as Ty (| X, Z). The probability 7, (A| X, Z) of
an action sequence A can be formulated as follows:

mu(AlX, 2) = [ Ps(Ail X, Z:) )



where 7, (A|X, Z) represents the probability of
including a passage Z; when A; = 1 or excluding it
when A; = 0. When selecting evidences using 7,
we choose the label with the higher score for each
passage:

A" = [argmaz Ty (A X, Zi) for Zi € 2] (10)
A

We employ a policy gradient technique (Sut-
ton et al., 1999) to train our model. Unlike con-
ventional sequential reinforcement learning setups,
our Ty, takes only one action for a given input,
promptly receiving the corresponding reward with-
out transitioning through other intermediate states.
In essence, a single action corresponds to a spe-
cific label sequence A = (Aq, Ao, ..., Ax) € {0,
1}). However, in our scenario, the policy generally
has the flexibility to access rewards for multiple
potential actions through sampling.

The training objective aims to maximize the
expected reward assigned to a predicted label se-
quence A given a set of input retrieved passages Z,
as computed by the reward function R:

J () = E[R(Z, A)]. (n
Then, according to he policy gradient theo-

rem (Sutton et al., 1999), the gradient of this expec-
tation can be expressed as follows:

VyJ () = VyE[R(Z, A)logmy(A|X, 2)]  (12)
Given the intractability of computing this expec-
tation for a large dataset and the corresponding
action space, the gradient is estimated through sam-

pling:
VT (1) = Vyr'logny (A°|X, Z)] (13)

where A% ~ 7, (-| X, Z) represents a sample from
the current policy at a given step, comprising binary
passage labels A° = (A7, A3, ..., A}), and r® =
R(Z, A%).

In line with common practice in policy gradients,
we introduce a baseline subtraction from the re-
ward to reduce variance. We define the baseline as
r® = R(Z, AY), representing the reward assigned
to the most likely label sequence A according to the
current policy. The resulting gradient is expressed
as:

VT () = Vs (r® —r°)logmy (A°|X, 2)]  (14)

Consequently, our model is trained by minimiz-
ing the following loss function:

Ly = (r" = r*)logmy (A°| X, Z)]. (15)

The incorporation of the baseline 7 facilitates

an intuitive interpretation: a sample A® is encour-
aged if its reward surpasses the current policy’s

prediction (i.e., when the factor 7? — 7° is negative),
and discouraged otherwise.

Reward Function. The reward function is in-
tended to ensure the connection of retriever and
generation process. The selecting policy network
perform the action to select K evidence passages
from Z. Then, the generator produce the corre-
sponding queries Y based on the selected K pas-
sages. We use evaluation metrics, namely ROUGE-
1, ROUGE-2, ROUGE-L and BLEU-4 to calculate
reward as follows:

R(Z,A) = A\ * ROUGE-1(Y,Y) + A2 * ROUGE-2(Y,Y)
+ A3 * ROUGE-L(Y,Y) 4 Ay * BLEU-4(Y,Y)
(16)

where the evaluation scores ROUGE-x(Y', Y) and
BLEU-4(Y, Y) quantify the performance of the
model. The weights A1, A\a, A3, and A4 serve as
hyperparameters for each metric, and it is important
to note that A1 + A2 + A3z + A4 equals 1.0. Within
this reward function, ROUGE-1 and ROUGE-2
measure unigram and bigram overlap, providing an
assessment of informativeness, while the longest
common subsequence (ROUGE-L) is employed to
evaluate fluency. BLEU-4 is used to evaluate the
similarity between a generated text and a reference
text. The whole training process for ReSAG is
shown in Algorithm 1 in Appendix A.7.

S Experiments

5.1 Evaluation Metrics

In contrast to previous works (Du et al., 2017;
Yao et al., 2018) on query generation evaluation
that measure the quality of a generated query with
respect to a single reference query using widely
adopted similarity metrics such as BLEU (Pap-
ineni et al., 2002) and ROUGE (ROUGE, 2004),
our ReSAG generates a list of queries, and there
are multiple gold reference queries. To maintain
consistency with single-target evaluation, we con-
catenate all generated queries and the gold refer-
ence queries separately. Subsequently, we em-
ploy metrics, including BLEU-4, ROUGE, and
BERTScore (Zhang et al., 2019) and Diversity (Li
et al., 2015), to conduct evaluations from the per-
spectives of lexical match, contextual embedding
semantics and knowledge diversity. The detailed
description for these mertics can be found in Ap-
pendix A.4.

5.2 Baseline Methods

To verify the effectiveness of our ReSAG, we
select several baselines, including generative ap-
proaches (i.e., GPT2 and T5), large language model



Table 1: Main results on validation and testing datasets.

Validation Dataset

Testing Dataset

Approaches
ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 BERTScore ROUGE-1 ROUGE-2 ROUGE-L BLEU-4  BERTScore

GPT2 13.482 2.052 10.348 1.488 0.589 13.439 2.037 10.287 1.485 0.590
T5 22.406 6.686 17.406 2.187 0.674 22.300 6.761 17.234 2.183 0.672
Prompt4LLM 15.126 2.694 11.516 1.193 0.613 14.999 2.673 11.396 1.178 0.611
ICL 16.585 3.36 12.649 1.551 0.622 16.120 3.037 12.374 1.34 0.620
P-Tuning 20.86 5.48 139 1.520 0.610 20.410 5.46 13.41 1.433 0.608
LoraFtuneLLM 21.464 6.015 16.340 2.025 0.639 21.751 6.158 16.553 2.062 0.661
FID-KD 23.902 7.232 18.504 3.103 0.681 23.827 7.139 18.334 3.005 0.679
RetGen 24.632 8.038 19.267 3.955 0.692 24.428 7.933 19.142 3.904 0.681
ReSAG 28.633 13.555 22,332 7.843 0.706 28.701 13.568 22.167 7.728 0.706

- w/ DQN 26.595 11.156 20.49 6.132 0.664 26.613 11.239 20.444 6.214 0.668

- w/o SPN 21.663 6.843 16.579 2.773 0.425 21.974 6.904 16.619 2.811 0.432

- w/o DPR-P 25.009 10.37 19.383 5.132 0.554 25.182 10.281 19.258 5.091 0.532

based approaches (i.e., P-Tuning, LoraFtuneLLM,
Prompt4LLM and ICL) and typical RAG method
(i.e., FID-KD). The detailed description for these
baselines can be found in Appendix A.3.

In our baselines, for LoraFtunelLLM,
Prompt4LLM and ICL, we select
Baichun2 (Baichuan, 2023) as our testing

LLM. In addition, we also introduce some variants

of our ReSAG:

* ReSAG w DQN uses deep Q-learning net-
work (Wan et al., 2021) to substitute policy gra-
dient algorithm for the policy learning.

* ReSAG w/o SPN is variants of our ReSAG with-
out using selecting policy network to bridge the
retrieval and generation process. Thus, our Re-
SAG degrades to a retrieve-then-generate model.

* ReSAG w/o DPR-P is variants of our ReSAG,
in which the retriever is only initialized with a
pre-trained Chinese BERT model, without pre-
training using contrastive learning technique in
the SimCSE model (Gao et al., 2021).

5.3 Results

5.3.1 Main Results

The overall results of ReSAG and all baselines
on validation and testing datasets are reported in
Table 1. The experimental results show that Re-
SAG achieves the best performance on all met-
rics, including ROUGE-1, ROUGE-2, ROUGE-
L and BLEU-4 and BERTScore, demonstrating
its effectiveness. On these metrics, we observe
that ReSAG obtains an improvement of 4.001%,
5.517%, 3.065%, 3.888%, 0.014 over the best base-
line (i.e., RetGen) on the validation dataset and
4.273%, 5.635%, 3.025%, 3.824%, 0.025 on the
testing dataset. It is worth noting that all baselines
do not perform very well. There may exist the
following several reasons: GPT2 and T5 are typ-
ical generative models. It is difficult for them to
only use the initial query as source information to
produce the knowledge-aware follow-up queries.
It is also hard to capture the inherent relations in

knowledge. Prompt4LLM and ICL are unsuper-
vised LLM-based prompting approaches. Since
LLM has its inherent generative styles, misalign-
ment between the generated results from LLM and
the reference results lead to a bad performance.
Although P-Tuning and LoraFtuneLLLM are super-
vised LLM-based approaches, fine-tuning on the
training dataset, they also perform not good be-
cause it is hard to elicit the knowledge relations
from LLMs in our KQG. For FID-KD, it a typical
RAG model, it perform worse in our multiple target
generation scenario. While both our approach and
RetGen leverage signals from the generation pro-
cess to optimize the retrieval process, ReSAG intri-
cately designs a novel sequential decision-making
learning algorithm within the selection layer, re-
sulting in enhanced performance.

5.3.2 Ablation Study

In this subsection, we investigate the relative influ-
ences of different modules of ReSAG, we conduct
ablation test for several variants as we mentioned
before. The experimental results are also reported
in the Table 1. It is noted that the performance for
ReSAG (w/o SPN) decreases the most that denotes
the importance of selection policy learning for the
process of generation. In addition, we observe that
the performance of ReSAG (w/o DPR-P) decreases
a lot that indicates a good cold-start strategy for
the retriever can significantly improve the system
performance. Moreover, to evaluate the influence
of different policy learning algorithms in the se-
lection policy network, we use DQN to substitute
for policy gradient algorithm. We find that DQN
results in a decrease in performance.

5.3.3 Diversity Study

In our KQG, the diversity reflects the richness of
knowledge among the generated queries. We report
the evaluation of the diversity in the Table 2. It is
observed that our ReSAG achieves the best perfor-
mance on the Dist-2. But on Dist-1, ReSAG per-
form worse than T5. Overall, Our ReSAG achieve
better performance compared with all baselines.



Table 2: Diversity evaluation results on datasets.

Validation Dataset ~ Testing Dataset

Approaches

Dist-1 Dist-2  Dist-1  Dist-2
Prompt4LLM 0.545 0.818 0.545 0816
ICL 0.560 0.816 0.564 0814
P-Tuning 0.342 0.532 0.321  0.562
LoraFtuneLLM 0.211 0.327 0213 0.336
GPT2 0.280 0.408 0.281 0411
T5 0.696 0.827 0.698 0.828
FID-KD 0.622 0.811 0.612 0.815
RetGen 0.628 0.820 0.619 0.818
ReSAG 0.636 0.836 0.634  0.834

However, it is challenging to evaluate the diver-
sity of knowledge within the generated follow-up
queries. To address this, we selected 100 samples
at random from the testing dataset and enlisted the
expertise of three human annotators. Their task
was to determine the number of distinct knowledge
points present in the generated follow-up queries.
The findings revealed that our methods resulted in
an average of 3.21 knowledge points per generated
queries in comparison to the 4.67 knowledge points
found in the ground-truth queries. This underscores
the effectiveness of our approach in generating the
follow-up queries with diverse knowledge.

5.4 Human Evaluation

We conduct user testing to assess the effectiveness
of follow-up queries generated by our ReSAG for
knowledge acquisition from a LLM. Specifically,
we divided 8 real users into two groups, Group
A and Group B. Each group was presented with
100 initial queries. In the first round, both Group
A and Group B posed initial queries to an LLM.
In the subsequent round, Group A had the option
to either self-prompt for further knowledge or not,
while Group B could choose to utilize the generated
follow-up queries or not. Finally, we computed the
average number of rounds. Experimental results
reveal that Group B engaged in an average of 2.4
rounds of interactions for knowledge acquisition,
while Group A only averaged 1.3 rounds. This
demonstrates that the generated follow-up queries
effectively enhance the interaction process between
LLMs and users in progressive information acqui-
sition.

5.5 Case Study

To demonstrate the effectiveness of our ReSAG,
depicted in Figure 3, we conduct a case study on
query generation using ChatGLM3 for knowledge
acquisition. Initially, we input a initial query into
ChatGLM3 to generate a response. Subsequently,
we prompt ChatGLM3 to recommend five queries
related to the initial query, serving as a baseline
comparison known as Prompt4LLLM. Upon obser-

Introduce lterative Solution of Eigenvalues and Eigenvectors
for Square Matrices Based on QR Decomposition

Yo

a The method for iterative solution of eigenvalues and

eigenvectors for square matrices based on QR decomposition
is as follows: 1. Select an initial matrix X, usually a random
matrix or an identity matrix. 2. Perform QR decomposition on
matrix X, which involves finding an orthogonal matrix Q and
an upper triangular matrix R such that X = QR. Q is a full-rank
matrix, and R is a diagonal matrix.

Recommend 5 queries related to the initial query to help me
master it better.

a 1. What is QR decomposition?
Jg3> 2. What are the applications of QR decomposition?
3. How to perform QR decomposition?
4. What are eigenvalues and eigenvectors?
5. What are the algorithmic steps for iterative solution of
eigenvalues and eigenvectors for square matrices based
on QR decomposition?

Yo

1. Principle of QR iteration method for eigenvalue calculation

2. QR decomposition: modified Gram-Schmidt QR

3. Derivation of QR decomposition: projection of linearly
independent column vectors onto the range

4. C++ implementation for iterative solution of eigenvalues
and eigenvectors for square matrices based on QR
decomposition

RAG

Figure 3: Case study of KQG for knowledge acquisi-
tion.
vation, Prompt4L.LM tends to suggest superficial

queries of the “What”, “How”, and “Which” types,
lacking depth in knowledge exploration. Con-
versely, our ReSAG effectively captures knowl-
edge relations, generating insightful queries such
as “Modified Gram-Schmidt QR” and “Projection
of Linearly Independent Column Vectors onto the
Range”, which enrich and expand upon the ini-
tial query’s understanding of “QR Decomposition".
This case study underscores our ReSAG’s ability
to grasp knowledge relationships by retrieving and
ranking relevant evidences. For further case studies,
please refer to Appendix A.5.

6 Conclusion

In this study, we introduced a novel approach
named ReSAG, which integrates neural initial
retrieval and selecting process into a T5-based
sequence-to-sequence generation framework. Re-
SAG comprised a knowledge retriever, a selection
policy network, and a query generator. Notably,
the policy network served as a crucial bridge be-
tween the query generator and the knowledge re-
triever, ensuring their performance is correlated or
aligned to enhance overall system performance. To
improve the knowledge retriever, we leveraged sig-
nals from the policy network to guide progressive
updates during training of the query generator. To
enable end-to-end training, we introduced a novel
variant of policy optimization that trains the initial
retrieval and selector using only ground truth on
the target sequence output. Extensive experiments
demonstrated that our approach outperforms exist-
ing state-of-the-art methods, including generative
models, RAG models, and LLM-based methods.



7 Limitations

While the effectiveness of the proposed approach
has been validated within the domain of informa-
tion technology, its applicability to other domains,
such as general or educational question answering,
remains to be explored. Additionally, although we
employed both rule-based and machine learning
methods to filter noise from the collected dataset to
ensure high-quality training samples, some noise
may still persist in the data.
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Appendix

A.1 Dataset

A.1.1 Data Collection

The KQG task, unlike the RAG tasks, addresses
the challenge of diverse evidence retrieval for multi-



Title:
Decision Trees Theory in Machine Learning
Catalogue:

. What is Decision Trees?

« The Role, Definition, and Computation of Entropy

« Introduction and Computation of Conditional Entropy

« Attribute Splitting in Decision Trees: Information Gain,
Information Gain Ratio, Gini Coefficient, Gini Gain, and
Gini Gain Ratio

« Handling Continuous Values in Decision Trees

« Pre-pruning in Decision Trees

« Post-pruning in Decision Trees

Figure 4: The case example of a title and its catalogue.

target generation. To facilitate this objective, we
have curated a large-scale Chinese dataset specifi-
cally designed for follow-up query generation. The
dataset is sourced from CSDN 3, an online knowl-
edge sharing community focusing on information
technology, where a substantial amount of knowl-
edge articles is available. Each article comprises a
title, a catalogue, and passages. Figure 4 illustrates
an example of a title alongside its corresponding
catalogue structure. Upon closer inspection, it be-
comes evident that the title functions akin to the
initial query for a specific knowledge, and the cat-
alogue serves as a set of follow-up queries with
associated knowledge. Leveraging this observa-
tion, we extract the title as the initial query and
consider each item in the catalogue as a target out-
put. Consequently, we construct our dataset based
on the extracted query and the list of target out-
put. Furthermore, we create a document library
to facilitate evidence retrieval, drawing on the text
passages within the articles.

To ensure the high quality of samples, we em-
ploy two approaches to filter out low-quality sam-
ples: a heuristic rules-based method and a LLM-
based in-context learning method #. The former
utilizes regular expressions or empirical rules to fil-
ter titles or catalogues containing specific symbols,
or sentences that are excessively long or short. The
latter seeks to leverage the semantic understanding
of a LLM to assess the quality of a sample, in-
corporating a few manually annotated high-quality
demonstrations for guidance.

A.1.2 Statistics and Analysis

In this subsection, we conduct an analysis of the
statistical features of our constructed dataset. Af-
ter quality filtering, our KQG dataset comprises
a total of 210,531 (query, follow-up queries) pairs
and 1,677,513 document passages. The samples

3https ://www.csdn.net/
*We utilize ChatGLM3 for Chinese comprehension.
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Table 3: The statistics of the KQG dataset.

Data #Num #Len(Query/FQ) #FQ
Training Set 189,477 17.76/ 14.44 9.51
Validation Set 10,527 17.70/14.35 9.46
Testing Set 10,527 17.83/14.50 9.51
Passages 1,677,513 580.67 -

were randomly split, resulting in 189,477, 10,577,
and 10,577 samples allocated to the training, de-
velopment, and test sets, respectively. The details,
including queries, follow-up queries, text passages,
and article URLs, will be provided for research
purposes as we make the dataset public.

The key statistical information is presented in
Table 3. Notably, the average length of textual pas-
sages in the document library is 580.67. For the
training, validation, and testing sets, the average
length of queries and target output are as follows:
17.76/14.44, 17.70/14.35, and 17.83/14.50, respec-
tively. On average, each query corresponds to 9.51,
9.46, and 9.51 follow-up queries for the training,
validation, and testing sets, respectively. To en-
sure knowledge diversity, the dataset encompasses
various topics in information technology, cover-
ing areas such as front-end development, back-end
development, algorithms, databases, operating sys-
tems, software development, and big data. The
constructed dataset is approximately 2.3 GB. This
high-quality dataset encompasses a diverse range
of knowledge topics, making it adequately repre-
sentative for our KQG task.

A.2 RAG

RAG models use the input query x to retrieve text
documents z from document library Z and use
them as additional context when generating the
target output y. Formally, the optimization process
is carried out based on the following formulation:

P(ylz;n, 0) = > Polyla, 2)Py(2|x),

z€EZ

an

where P,(z|z) is the retriever with parameters 7
and Py (y|z, z) denotes the generator parametrized
by 6 that generates the target y based on the origi-
nal input query x and the retrieved document z. In
practical scenarios, Z often encompasses a large
volume of documents, making exhaustive enumera-
tion over Z impractical. Instead, a dense document
retriever P, (-) is employed to significantly narrow
down the search to a select few relevant documents.
Specifically, the retriever P, takes Z and x as in-
put, producing relevance scores {si, ..., Sk} for


https://www.csdn.net/

the top-K (K being a hyperparameter) documents
Z={z1,-+, 2K}

Given z and the top-K retrieved documents { 21,
29, ..., ZK }, the generator Py(-) is used to produce
a probability score for a given reference target y,
i.e., Py(y|x, ;). The loss can be approximated as:

K
5(77,9) = _lOgZPG(ylmvzi)P’f?(zilx)v (18)
=1

where the normalized probability p(z;|z) is defined
as exp(s;) S5 | exp(s;), with relevance scores
s serving as logits. The set Z= {z1,- -+, 2K} 18
obtained from the retrieval process using P, (Z, ).

Prior RAG models (Lewis et al., 2020; Singh
etal.,2021; Zhang et al., 2022) focus on co-training
the retriever and generator in an end-to-end differ-
entiable manner, incorporating feedback from the
model itself as “pseudo labels” to optimize retriever
and reader parameters iteratively.

A.3 Baseline Description

We provide a brief description of the baselines used
in our experiments:

GPT2 (Radford et al., 2019) is a pretrained lan-
guage model based on the Transformer decoder,
which has achieved outstanding performance in
a wide range of text generation tasks.

TS (Raffel et al., 2020) is implemented by typ-
ical encoder-decoder Transformer, solving text-
to-text tasks. We initialize the parameters of T5
with a pretrained Chinese TS base model, i.e., a
mengzi-tS-base (Zhang et al., 2021).

P-Tuning (Liu et al., 2022) is a method that
tunes continuous prompts with a frozen language
model for query generation. In our case, we have
opted for ChatGLM3 (Du et al., 2021) as our
base model.

LoraFtuneLLM is a method that utilizes
LoRA (Hu et al., 2021) technique to finetune
a large language model to generate the follow-up
queries.

Prompt4LLLM is a method that directly prompts
a large language model to generate the follow-up
queries related to the initial query.

ICL (Wu et al., 2022) is a method that utilizes
in-context learning technique to prompt a large
language model to generate the follow-up queries
with a few demonstration examples sampling
from the training set.
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e FID-KD (Izacard and Grave, 2020a) is
retrieval-augmented generation approach which
learns retriever models for generation tasks by
knowledge distillation technique without requir-
ing annotated pairs of query and passages.

RetGen (Zhang et al., 2022) is retrieval-
augmented generation which adopts a joint train-
ing framework for text generation and passage
retrieval utilizing a language model signal.

A.4 Evaluation Metric Description

We provide a brief summary of the metrics used in
our experiments:

* BLEU-4 (Papineni et al., 2002): This metric uti-
lizes n-gram precision to evaluate the similarity
between a generated text and a reference text.
It counts the occurrences of unigrams, bigrams,
trigrams, and four-grams that match their corre-
sponding counterparts in the reference text.

ROUGE (ROUGE, 2004): This metric includes
ROUGE-1, ROUGE-2 and ROUGE-L. ROUGE-
1 and ROUGE-2 measure overlap of unigrams
and bigrams respectively. ROUGE-L measures
overlap of the longest common subsequence be-
tween a generated text and a reference text.

BERTScore (Zhang et al., 2019): Utilizing con-
textual embeddings to compute token similar-
ity, BERTScore is reported based on bert-base-
chinese ° in our scenario.

Diversity (Li et al., 2015): We report degree of
diversity by calculating the number of distinct
unigrams and bigrams in generated responses.
The value is scaled by total number of generated
tokens to avoid favoring long sentences (shown
as Dist-1 and Dist-2 in Table 2.).

A.5 More Case Studies

We conduct additional case studies, as depicted
in Figure 5, to further validate the efficacy of our
ReSAG. In both cases in Figure 5, the ChatGLM3-
based prompting approach struggle to capture the
depth of knowledge inherent in the initial query.
In contrast, our ReSAG adeptly generated diverse
follow-up queries that encapsulated more compre-
hensive knowledge. For instance, in the top case of
Figure 5, crucial aspects such as "Selection of rated
current," "Overcurrent protection," and "Rated volt-
age" are pivotal considerations for IGBT selection.

Shttps://huggingface.co/bert-base-chinese
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Introduce IGBT Selection and Design Considerations

)o

a IGBT (Insulated Gate Bipolar Transistor) is a commonly

<as3> |used power semiconductor device, widely applied in fields
such as electric vehicles, industrial control, and new energy.
When designing and selecting, several aspects need to be
considered: 1. Operating voltage and current: Choose
suitable operating voltage and current based on the
application scenario.

Recommend 5 queries related to the initial query to help me
master it better.

o

a 1. What is the working principle of the GPS trajectory

<> clustering algorithm?
2. How does the TRACLUS algorithm extract features from
trajectory points?
3. Which clustering algorithm does the TRACLUS algorithm
use to cluster trajectory points?
4. In which scenarios is the TRACLUS algorithm applied?
5. What are the advantages of the TRACLUS algorithm?

1. Design considerations: overheat protection

2. Selection of rated current for IGBT

3. Design considerations: overcurrent protection
4. Selection of rated voltage for IGBT

5. Selection of IGBT switching parameters

ReSAG

Introduce the GPS trajectory clustering algorithm: TRACLUS

)o

a TRACLUS (Trajectory-Based Clustering Using Uniform

<a3> |Spatial Sampling) is an algorithm based on trajectory
clustering, which clusters trajectories by uniformly sampling
trajectory points. The TRACLUS algorithm is mainly applied
in indoor positioning and outdoor navigation fields, where it
can effectively analyze trajectory data in dynamic
environments.

Recommend 5 queries related to the initial query to help me
master it better.

)o

@ 1. What is the working principle of the GPS trajectory

@@ clustering algorithm?
2. How does the TRACLUS algorithm extract features from
trajectory points?
3. Which clustering algorithm does the TRACLUS algorithm
use to cluster trajectory points?
4. In which scenarios is the TRACLUS algorithm applied?
5. What are the advantages of the TRACLUS algorithm?

1. Explain TRACLUS algorithm in trajectory clustering

2. Trajectory distance function

3. Automotive radar clustering algorithm

4. Prototype clustering in the automotive radar clustering
algorithm

5. Line segment clustering

ReSAG

Figure 5: The additional case studies of query genera-
tion based on ChatGLM3.

A.6 Implementation Details

A.6.1 Hardware and library

We conducted all experiments on a machine
equipped with 56 CPUs, 1.0TB of physical mem-
ory, and 4 A100 GPUs. Our ReSAG and baseline
models were implemented using PyTorch (Paszke
etal., 2019) °.

A.6.2 Model configurations

We employ the base configuration for both the
knowledge retriever and query generator, compris-

%The dataset and source codes will be made available upon
acceptance of our work.
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Algorithm 1 The Algorithm Training Procedure
for ReSAG

Input: The passage knowledge base Z, (X, Y) € D, aLLM
Fim, the retriever P, the selector Py, and the generator
Py
Output: The trained parameters 7, ¢ and 0
1: Initialize n and € with a Chinese-Roberta-wwm-ext and a
mengzi-t5-base, respectively
Pre-train P,, with contrastive learning in the SimCSE (Gao
et al., 2021)
: Pre-train Py only using the initial query as input and
follow-up queries as targets

2:

4: Compute the passage index using the current retriever
parameters 7
5: forall j € |D|and (X,Y) € Ddo
6:  Retrieve top-N passages Z using the current retriever
parameters 7
7: Compute top- K passages Z using the current selector
parameters ¢
8: Generate follow-up queries Y based on Z and X
9: Compute the reward between Y and Y using Eq. 16
10: Optimize the parameter § using maximum likelihood
estimation between Y and Y’ using Eq. 8
11: Optimize the parameters 7 and ¢ using Eq. 15
12:  if %1000 == O then
13: Update the passage index using the updated re-
triever parameters 7
14: end if
15: end for

ing 12 layers, 768-dimensional hidden size, and 12
attention heads. As for the selecting policy network,
the context module utilizes a 3-layer Transformer
encoder with 12 heads and a 768-dimensional hid-
den size. The LSTM hidden size is also set to 768.
In our experiments, we initially retrieve the top 50
passage as evidence and select 5 passages among
them, i.e., N =50 and K =5. Due to GPU memory
constraints, we limit our experiments to the base
configuration. Nonetheless, we anticipate that our
findings would extend to larger configurations.

A.6.3 Retrieval

To facilitate rapid retrieval, we pre-computed em-
beddings for 1,677,513 evidence passages, forming
our passage index. Through experimentation, we
discovered that conducting Maximum Inner Prod-
uct Search with FAISS is sufficiently efficient on
CPU. Consequently, we store the passage index
vectors on the CPU, necessitating 16 GB of CPU
memory for our dataset.

A.6.4 Training Details

We initially set the retriever parameters using a
pre-trained Chinese BERT model 7, followed by
pre-training with contrastive learning techniques

7https://huggingface.co/hfl/
chinese-roberta-wwm-ext


https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext

in SimCSE (Gao et al., 2021). For the query gen-
erator, we initialize the TS5 parameters with a pre-
trained Chinese TS base model (Zhang et al., 2021),
i.e., the mengzi-t5-base 8. Subsequently, we exclu-
sively pre-train it using the initial query as input
and follow-up queries as targets. During end-to-
end training, as the passage encoder parameters
are continuously updated, pre-computed passage
embeddings may become outdated. To address this,
we asynchronously compute fresh passage embed-
dings using the latest passage encoder checkpoint,
updating the passage index every 1000 training
steps to maintain relevance.

A.6.5 Inference
At inference time, we employ greedy decoding for

follow-up query generation.
A.7 Algorithm Training Procedure

The detailed training procedure is shown in Algo-
rithm 1.

8https://huggingface.co/Langboat/
mengzi-t5-base
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