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Abstract
Preference-based Reinforcement Learning
(PbRL) effectively addresses reward design chal-
lenges in RL and facilitates human-AI alignment
by enabling agents to learn human intentions.
However, optimizing PbRL critically depends on
abundant, diverse, and accurate human feedback,
which is costly and time-consuming to acquire.
While existing feedback augmentation methods
aim to leverage sparse human preferences, they
often neglect diversity, primarily generating
feedback for trajectory pairs with extreme
differences based on high confidence. This
limitation restricts the diversity of augmented
dataset, leading to an incomplete representation
of human preferences. To overcome this, we
introduce Capturing Uncertainty and Diversity in
preference feedback Augmentation (CUDA), a
novel approach that comprehensively considers
both uncertainty and diversity. CUDA enhances
augmentation by employing ensemble-based
uncertainty estimation for filtering and extracting
feedback from diverse clusters via bucket-based
categorization. These two mechanisms enable
CUDA to obtain diverse and accurate augmented
feedback. We evaluate CUDA on MetaWorld
and DMControl offline datasets, demonstrating
significant performance improvements over
various offline PbRL algorithms and existing
augmentation methods across diverse scenarios.

1. Introduction
Preference-based Reinforcement Learning (PbRL) offers a
compelling solution to the challenges of reward design in
RL and shines as a key human-AI alignment method, fun-
damentally enabling agents to learn and align their actions
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Figure 1. Comparison of conventional augmentation methods
(confidence-based) and CUDA. The heatmap displays the distri-
bution of ground truth rewards for the augmented pairs each model
generates. The intensity of the heatmap indicates concentration.
Confidence-based augmentation concentrates augmented feedback
where two trajectories have large differences. In contrast, CUDA’s
augmented pairs show a dispersed distribution. KL denotes the KL
divergence between estimated and ground truth rewards, which
represents misalignment with the feedback; Policy indicates the
success rate of the policy trained with augmented feedback. CUDA,
notably, both aligns more closely with the ground truth reward and
makes a more robust policy.

with human intentions. However, while ensuring PbRL per-
formance requires a large quantity of diverse and accurate
feedback for training, obtaining extensive human feedback
faces considerable costs and time limitations. To address
this, feedback augmentation methods (Park et al., 2022;
Hwang et al., 2023; Choi et al., 2024) have emerged, allow-
ing the system to leverage sparse human preferences.

Crucially, however, current augmentation strategies pre-
dominantly overlook the diversity aspect of the generated
feedback, focusing almost exclusively on its accuracy. For
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instance, the strategies often opt to select only pairs with
extremely confident estimated preference probabilities. This
means augmented feedback primarily targets trajectory pairs
already exhibiting pronounced differences. Such a selection
criterion inherently restricts the diversity of the augmented
dataset, creating a concentrated pool of feedback that fails to
cover the full spectrum of human preferences and nuanced
decision-making, and consequently, introduces bias into the
augmented feedback. Figure 1 illustrates the point, with the
left (confidence-based) showing the results of feedback aug-
mentation using conventional strategies that filter using the
difference between trajectories. In these scenarios, augmen-
tation predominantly occurs for trajectory pairs where the
reward difference is extreme, leading to a lack of diversity
in the generated feedback.

To overcome these challenges, we introduce Capturing
Uncertainty and Diversity in preference feedback
Augmentation (CUDA), a novel approach that comprehen-
sively considers both uncertainty (confidence) and diversity
in augmenting preference feedback. CUDA enhances
feedback augmentation by utilizing unlabeled trajectories to
ensure diversity through two key mechanisms.

• Bucket-based sampling: CUDA utilizes a strategy that
distinguishes and places unlabeled trajectories into multi-
ple buckets based on estimated rewards, and then samples
across the buckets to ensure diverse pairs.

• Uncertainty-based filtering: Instead of relying on
conventional confidence-based filters, CUDA applies
ensemble-based uncertainty filtering by selecting only
cases where confidence intervals do not overlap.

These two mechanisms enable CUDA to obtain diverse and
accurate augmented feedback. The right side of Figure 1 il-
lustrates the distribution of augmented feedback when using
CUDA, showing a significantly more diverse range. Further-
more, it better aligns with the feedback and consequently
contributes to generating a superior policy.

We evaluate the performance of CUDA on MetaWorld and
DMControl offline datasets provided by Choi et al. (2024).
Experimental results indicates that CUDA significantly out-
performs a variety of offline PbRL algorithms. Further-
more, it demonstrates remarkable performance gains over
augmentation-based methods in a wide range of scenarios.

2. Background
2.1. Offline Preference-Based Reinforcement Learning

Preference-Based Reinforcement Learning (PbRL) (Chris-
tiano et al., 2017) is a framework for training reinforcement
learning agents without explicitly defining a reward function.
The goal of offline PbRL is to optimize the policy function
πθ(a|s) using this pre-collected preference data, without

any further interaction with the environment. Instead of
directly designing a reward signal, a supervisor provides
feedback in the form of preferences. Generally, a prefer-
ence is composed of two trajectories (τ1, τ2) and a human
feedback label (y) that encodes a comparison between them.

To model these preferences, the Bradley-Terry(Bradley &
Terry, 1952) is commonly used in pairwise comparison
problems. The probability that trajectory τ1 is preferred
over trajectory τ2 is given by:

P [τ1 ≻ τ2] =
φ(fθ(τ1))

φ(fθ(τ1)) + φ(fθ(τ2))
(1)

Here, fθ(τ) represents the score assigned to trajectory τ by
the model, which reflects its estimated quality or preference
and φ is an activation function, commonly using either
the exponential function or a linear function. The model
parameters θ are learned by minimizing the cross-entropy
loss between the predicted preference probabilities and the
actual human feedback labels. The loss for a single pairwise
comparison is defined as:

L = −(y logP [τ1 ≻ τ2] + (1− y) logP [τ2 ≻ τ1]) (2)

where y = 1 if τ1 is preferred over τ2, and y = 0 otherwise.

By optimizing this loss function over a set of labeled tra-
jectory pairs, the model aligns its predictions with human
preferences, effectively inferring a reward signal without
the need for manual design.

There have been several approaches to optimizing policies
in offline PbRL. Preference Transformer (PT) (Kim et al.,
2023) models human preferences using a Transformer-based
architecture and proposes a method to learn non-Markovian
rewards as a weighted sum, extending existing Markovian
reward assumptions. This approach effectively reflects tem-
poral dependencies and enables the solution of complex
control tasks. Offline Preference-based Reward Learning
(OPRL) (Shin et al., 2023) approached offline PbRL by
selecting queries with high Value of Information through
active learning. Direct Preference-based Policy Optimiza-
tion without reward modeling (DPPO) (An et al., 2023)
learns policies directly from preference by utilizing a con-
trastive learning framework. Inverse Preference Learning
(IPL) (Hejna & Sadigh, 2024) proposes an efficient algo-
rithm that directly learns preference data using Q-functions
without explicitly learning a reward function. This design
allows for effective learning with a simpler structure and
fewer parameters.
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Figure 2. Comparison of CUDA and existing methods. (a) Conventional confidence-based feedback augmentation. (b) The CUDA
framework. CUDA ensures diversity through bucket-based sampling, which groups estimated rewards and induces sampling from different
buckets. Furthermore, uncertainty-based sampling enables CUDA to select pairs even without extreme differences, achieving diverse yet
confident augmentation. CUDA’s augmented feedback supports both reward-based and reward-free policy learning.

2.2. Feedback Augmentation in PbRL

Feedback augmentation is a key technique for improving
the performance of PbRL by maximizing the information
gained from limited human feedback.

SURF (Park et al., 2022) first introduces feedback aug-
mentation to PbRL, particularly within an online learning
framework. Its methodology involves augmenting prefer-
ence pairs by filtering for those where the estimated re-
ward based preference probability exceeds a specific thresh-
old, subsequently leveraging these augmented feedback for
semi-supervised learning. The reliance of SURF on only
confidence-based filtering limits its augmented data to tra-
jectory pairs exhibiting significant disparities. Our approach,
however, can include pairs with even subtle differences be-
tween trajectories, leading to the creation of a richer and
more diverse set of augmented feedback.

SeqRank (Hwang et al., 2023) utilizes sequential preference
ranking to efficiently generate additional feedback through
comparisons between defender and challenger. LiRE (Choi
et al., 2024) proposed a method to improve the performance
of the reward model without additional data collection by
constructing a Ranked List of Trajectories (RLT) using
second-order preferences. SeqRank and LiRE use trajecto-
ries for augmentation only if those trajectories have been
included in a feedback ranking at least once. On the other
hand, our approach can include unlabeled trajectories in
the feedback generation process. This allows the model to
infer preferences for previously unseen trajectories, which
can greatly expand the scope of data augmentation. In ad-

dition, unlike existing methods, which require sequential
and online feedback collection, our method can learn from
arbitrary and simultaneous feedback without being bound
by strict order.

3. Problem Definition
3.1. Offline PbRL

In PbRL, an agent learns a policy by utilizing human feed-
back rather than explicit reward functions. For the offline
setting, we assume the following conditions. Given an of-
fline dataset D, it comprises a large quantity of unlabeled
trajectories Du and a limited number of trajectory pairs Fl

labeled by human feedback. The goal is to learn an optimal
policy πθ(a|s) that maximizes the inferred reward signal
derived from these preference labels.

3.2. Insufficient diversity in feedback augmentation

Optimizing the reward function with only a limited num-
ber of labeled pairs (Fl) poses challenges. Consequently,
some researchers augment preference feedback based on
estimated rewards. They implement confidence-based ap-
proaches that calculate probabilities using estimated rewards
from Eq. (1) and add a pair as augmented feedback if the
value exceeds a certain threshold.

However, this method does not guarantee diverse augmented
feedback. Typically, only pairs with extremely large tra-
jectory differences exceed the threshold, meaning the aug-
mented data does not include common cases, leading to
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Table 1. Performance difference between confidence-based feed-
back augmentation and real feedback. Confidence refers to the
case where we train the model using 10,000 augmented pairs from
confidence-based augmentation. In contrast, Oracle represents
obtaining 10,000 feedback samples using a scripted teacher model.
Oracle and Confidence show a significant performance difference.

Method button-press box-close sweep Average
Confidence 0.55± 0.18 0.63± 0.27 0.76± 0.10 0.65

Oracle 0.73± 0.32 0.89± 0.13 0.86± 0.15 0.83

Difference 0.18 0.26 0.10 0.18

inherent bias in the augmented feedback. As a result, it
shows a significant performance difference compared to
using real feedback. Although confidence-based augmenta-
tion achieves high agreement with oracle labels, it leads to
significantly lower policy performance compared to using
10,000 oracle feedbacks (Table 1).

Therefore, we require a novel feedback augmentation ap-
proach that resolves the diversity limitations and provides
both diverse and confident feedback.

4. Method
4.1. Our Method: CUDA

We propose CUDA, a unified framework that combines
reward model learning with feedback augmentation. While
our overall goal is to capture both diversity and reliability
in the augmented feedback, we achieve this through three
main components:

(1) We train a bootstrapped ensemble of reward models
on a limited set of labeled feedback to enable robust
return prediction and uncertainty estimation.

(2) We partition the unlabeled trajectories into multiple
buckets based on mean predictions, and sample feed-
back from inter-bucket pairs to ensure diversity.

(3) To maintain reliability, we filter out trajectory pairs
with high predictive uncertainty.

This integrated pipeline allows us to selectively generate
preference labels that are both diverse and reliable, enhanc-
ing reward model performance with minimal human effort.

4.2. Reward Models from Labeled Feedback

We use the Markovian Reward (MR) model as our reward
model. During training, we apply an exponential transfor-
mation φ(x) = ex, which is used to define the probability
in the loss function.

We train an ensemble of N reward models with different ran-
dom initializations on the labeled data. For each state-action
pair (st, at) in a trajectory τ = {(s1, a1), . . . , (sT , aT )},

each model predicts a reward rn(st, at), and the ensemble
mean is given by:

r̄t =
1

N

N∑
n=1

rn(st, at) (3)

The predicted return for the trajectory is computed as:

R̂(τ) =

T∑
t=1

r̄t (4)

To estimate uncertainty, we compute an uncertainty score
u(τ) by summing the variance of the reward predictions at
each timestep:

u(τ) =

(
T∑

t=1

(
1

N

N∑
n=1

(rn(st, at)− r̄t)
2

))1/2

(5)

This state-wise variance captures local prediction disagree-
ment across the ensemble, and its sum provides a trajectory-
level uncertainty estimate used for data filtering.

4.3. Bucket-based Sampling

To promote diversity in the augmented feedback, we cluster
the set of unlabeled trajectories into k buckets using k-
means++(Arthur & Vassilvitskii, 2006) clustering based on
their predicted return R̂(τ). Instead of fixing k in advance,
we search for the optimal number of clusters within the
range [ 12k, k], and select the value of k that maximizes the
silhouette score(Rousseeuw, 1987). The method ensures
more natural groupings of trajectories with similar rewards.

To construct trajectory pairs, we consider all unordered
bucket pairs (i, j) where i < j. For each such pair, we sam-
ple a number of feedback pairs proportional to the product
of the sizes of the two buckets, i.e., |Bi| · |Bj |, where Bi de-
notes the set of trajectories in bucket i. The total number of
generated preference pairs is normalized so that the overall
number of pairs sums to approximately n.

The strategy emphasizes high-volume bucket pairs while
preserving return diversity, resulting in a balanced and rep-
resentative feedback set for reward model training.

4.4. Uncertainty-based Filtering

To ensure the confindence of augmented feedback, we apply
uncertainty-based filtering to the trajectory pairs selected
from bucket-based sampling. For each trajectory τ , we use
the uncertainty score u(τ) defined in Eq. (5).

When constructing a pair between two trajectories τi and τj
from bucket i < j, we include the pair only if their predicted
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Table 2. Average success rates on Metaworld.

Algorithms
button-press-

topdown box-close dial-turn sweep
button-press-
topdown-wall sweep-into drawer-open lever-pull avg

Ground Truth∗ 0.69± 0.11 0.75± 0.02 0.51± 0.04 0.68± 0.06 0.30± 0.05 0.43± 0.05 0.20± 0.16 0.25± 0.19 0.48

O
ffl

in
e

Pb
R

L

MR-linear∗ 0.33± 0.23 0.44± 0.35 0.40± 0.14 0.95± 0.04 0.13± 0.09 0.25± 0.08 0.16± 0.16 0.51± 0.06 0.40

MR∗ 0.03± 0.03 0.35± 0.37 0.30± 0.29 0.92± 0.11 0.05± 0.05 0.31± 0.11 0.15± 0.05 0.79± 0.24 0.33

PT∗ 0.07± 0.11 0.02± 0.01 0.00± 0.00 0.15± 0.15 0.00± 0.00 0.16± 0.04 0.11± 0.04 0.07± 0.08 0.06

OPRL† 0.12± 0.06 0.04± 0.03 0.54± 0.11 0.94± 0.06 0.00± 0.00 0.26± 0.08 0.94± 0.06 0.54± 0.12 0.42

DPPO† 0.04± 0.04 0.10± 0.11 0.27± 0.22 0.10± 0.16 0.01± 0.01 0.23± 0.07 0.36± 0.11 0.10± 0.12 0.15

IPL† 0.34± 0.14 0.06± 0.05 0.32± 0.12 0.27± 0.24 0.09± 0.09 0.32± 0.07 0.19± 0.13 0.31± 0.15 0.23

A
ug

m
en

ta
tio

n SURF (offline)∗ 0.37± 0.26 0.33± 0.36 0.38± 0.17 0.85± 0.28 0.13± 0.07 0.19± 0.07 0.09± 0.08 0.53± 0.15 0.36

SeqRank∗ 0.34± 0.26 0.01± 0.02 0.26± 0.12 0.35± 0.33 0.02± 0.04 0.25± 0.08 0.27± 0.13 0.17± 0.25 0.20

LiRE∗ 0.57± 0.21 0.79± 0.18 0.82± 0.16 0.68± 0.33 0.28± 0.07 0.33± 0.09 0.01± 0.06 0.82± 0.28 0.54

CUDA (Ours) 0.59± 0.27 0.64± 0.23 0.90± 0.06 0.88± 0.07 0.29± 0.11 0.36± 0.09 0.04± 0.06 0.84± 0.05 0.56

∗ shows our implementation results, and † presents results from Choi et al. (2024)

Table 3. Performance on DMControl
Algorithm hopper-hop walker-walk humanoid-walk avg

Ground Truth† 157.95± 9.64 839.6± 36.57 250.9± 11.62 416.15

MR-linear∗ 127.69± 26.22 635.02± 94.35 89.92± 12.78 284.21

SURF∗ 127.60± 29.00 696.56± 78.61 100.95± 15.21 308.37

SeqRank† 80.84± 27.67 698.81± 91.71 80.68± 14.67 286.77

LiRE† 99.14± 12.28 822.27± 50.83 104.08± 17.45 341.83

CUDA (Ours) 132.50± 19.68 784.64± 34.21 148.06± 35.94 355.07

∗: our implementation; †: results from Choi et al. (2024)

returns R̂(τi) and R̂(τj) are separated by a sufficient margin
relative to their uncertainties. Specifically, the pair is chosen
if it satisfies the following condition:

R̂(τi) + z · u(τi) < R̂(τj)− z · u(τj) (6)

,where z is a confidence parameter controlling the tolerance
for uncertainty. This criterion ensures that the relative prefer-
ence between τi and τj can be inferred with high confidence,
effectively filtering out low-confidence comparisons.

We combine the original labeled feedback with the aug-
mented preference pairs generated from unlabeled trajecto-
ries to construct the final training set of preference feedback.

4.5. Reward Learning and Policy Optimizing

We use the augmented feedbacks to train a reward model.
The model follows the Markovian Reward (MR) architecture
and applies a final activation layer of tanh(x) + 1 to ensure
the output is strictly positive.

To compute preference probabilities during training, we
apply a linear function, φ(x) = x, which is applied to the
cumulative rewards of each trajectory. This formulation

particularly excels at capturing second-order preference that
can emerge from augmented feedback (Choi et al., 2024).

Once trained, the reward model is used to generate pseudo-
rewards for the unlabeled offline dataset. These pseudo-
rewards are then used to train a policy using Implicit Q-
Learning (IQL) (Kostrikov et al., 2021) , allowing the agent
to optimize behavior aligned with the learned preferences.

5. Experimental Results
5.1. Settings

5.1.1. OFFLINE DATASET

We evaluate CUDA on two widely used benchmark datasets
in offline reinforcement learning: Meta-World (Yu et al.,
2020) and DeepMind Control Suite (DMControl) (Tassa
et al., 2018). These environments provide diverse tasks
for evaluating both locomotion and robotic manipulation.
We use the dataset collected by (Choi et al., 2024) from
Meta-World and DMControl. For our experiments, we uti-
lize feedback generated by a scripted teacher based on this
dataset. The scripted teacher, a widely used method in PbRL
(Choi et al., 2024; Hwang et al., 2023; Kim et al., 2023), re-
places human feedback with rewards from the environment
to pose preferences. These environmental rewards are solely
used for preference calculation and not for model training.

5.1.2. BASELINES

To evaluate the effectiveness of our proposed method, we
compare it against multiple baselines, including both offline
PbRL methods and feedback augmentation-based PbRL
methods. We implement a Markovian Reward (MR) base-
line, where the reward model is trained under the assump-
tion that the reward depends only on the current state-action
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Figure 3. KL divergence of selected feedback distributions com-
pared to random sampling, measured at matched accuracy levels by
adjusting the threshold (confidence-based) or z-value (uncertainty-
based). Lower KL indicates greater diversity.

Table 4. KL divergence under different strategies. CS =
Confidence-based Sampling; UF = Uncertainty-based Filtering;
BS = Bucket-based Sampling.

Method button-press -topdown sweep-into lever-pull box-close avg

CS 0.4291 0.2686 0.3122 0.3166 0.3316
BS+CS 0.0302 0.0115 0.0466 0.0126 0.0252

UF 0.0617 0.0261 0.0486 0.0287 0.0413
UF+BS 0.0305 0.0109 0.0477 0.0124 0.0254

pair (s, a), following the standard Markov decision process
(MDP) formulation. We also evaluate an MR-linear baseline
that incorporates a linear activation function (φ(x) = x).
Moreover, we compare CUDA against Preference Trans-
former (PT) (Kim et al., 2023), OPRL (Shin et al., 2023),
DPPO (An et al., 2023), and IPL (Hejna & Sadigh, 2024)
to evaluate its performance relative to other PbRL methods.
Furthermore, we compare CUDA with feedback augmen-
tation methods such as SURF (Park et al., 2022), SeqRank
(Hwang et al., 2023), and LiRE (Choi et al., 2024). We
re-implement the online version of SURF for offline use.

5.1.3. IMPLEMENTATION DETAILS

Both CUDA and all baselines utilize a 500 feedback pair
dataset per scenario for model training. Also, all reward
models—including those used in baselines and CUDA—are
trained using the MR-linear architecture. For policy learn-
ing, we employ Implicit Q-Learning (IQL) (Kostrikov et al.,
2021) as the policy optimization algorithm. Each experi-
ment is run with ten different random seeds, and the final re-
sults are reported as the mean and standard deviation across
these runs. Further details on hyperparameters settings are
provided in the Appendix A.2.

5.2. Main Results

To evaluate the performance of CUDA, we conduct a com-
parative study against existing offline PbRL approaches and
PbRL methods that utilize feedback augmentation. Table
2 presents the average success rates of various methods
across different tasks in the MetaWorld environment. The

Figure 4. Performance comparison with and without application of
each strategy. CS denotes the conventional augmentation method.

Figure 5. Experimental results confirming CUDA’s compatibility.

results indicate significant performance variations among
the methods, highlighting the effectiveness of different algo-
rithms. CUDA demonstrates superior performance across
multiple tasks, achieving the highest success rates in five
tasks. Additionally, the average value for CUDA across all
scenarios surpasses other baselines. Notably, CUDA outper-
forms offline PbRL methods. Moreover, it also demonstrates
superiority when compared to augmentation methodologies.

Additionally, our method demonstrates better performance
on the DMControl environment, as shown in Table 3, which
presents the average rewards of different methods on DM-
Control. CUDA consistently shows improved performance
against baselines. These results collectively prove that
CUDA is capable of generating better augmented feedback
in diverse scenarios and across different environments.

5.3. The efficacy of bucket-based sampling and
uncertainty-based filtering

Uncertainty-based filtering Figure 3 compares confidence-
based and uncertainty-based filtering by plotting KL di-
vergence (relative to random sampling) against accuracy
(agreement with ground-truth preference labels). Across
all tasks, uncertainty-based filtering consistently achieves
lower KL divergence than confidence-based sampling at the
same accuracy level. This indicates that uncertainty-based
methods can yield more diverse augmented feedback while
maintaining comparable label correctness.
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Figure 6. Ablation study findings. The success rate in the graph represents the average value across all tasks in Metaworld. (a) Success
rate according to changes in the number of buckets (k). (b) Success rate based on the number of augmented feedback (n). (c) Success rate
variation with respects to confidence parameter z

Table 5. Experimental results using human feedback
Scenario MR-linear LiRE CUDA(Ours)

Button-press-topdown 0.06± 0.13 0.12± 0.07 0.36± 0.16

Bucket-based sampling Table 4 shows the effect of apply-
ing bucket-based sampling. Bucket-based sampling consis-
tently reduces KL divergence across environments, whether
used with confidence-based or uncertainty-based filtering.
This suggests that bucket-based sampling enhances feed-
back diversity by preventing bias toward extreme pairs. The
full results across all 8 environments are available in Table 7.

Overall Policy Performance Comparison Figure 4 sum-
marizes the overall policy performance under different com-
binations of strategies. CUDA (BS + UF) achieves the
highest performance across environments, while using only
confidence-based sampling (CS) results in the worst perfor-
mance among the augmented variants.

5.4. Comparability

To evaluate CUDA’s compatibility by assessing whether the
augmented feedback it generates can enhance the perfor-
mance of various existing offline PbRL methods, we apply
CUDA to PT, SeqRank and LiRE. Figure 5 presents the
results of the application. Compared to the baselines, we ob-
serve a general increase in performance (indicated by green)
when we include augmented pairs generated by CUDA in
the training. Even for models like SeqRank and LiRE that al-
ready incorporate augmented data, CUDA’s augmented data
significantly contributes to improving policy performance.
Therefore, CUDA is compatible with both preference-based
RL methods and augmentation-based approaches.

5.5. Alignment with human feedback

To confirm CUDA’s alignment with human preferences, we
perform experiments using human feedback. Table 5 shows
the performance in the button-press-topdown task
in the Metaworld. We use 200 human preference feed-

back samples provided by (Choi et al., 2024). The results
demonstrate CUDA achieves significant performance im-
provements compared to both MR-linear and LiRE.

5.6. Ablation Studies

Number of buckets(k): CUDA leverages bucket-based sam-
pling to achieve feedback diversity. Figure 6 (a) depicts pol-
icy performance changes relative to the number of buckets.
We determine the optimal bucket count using the silhou-
ette score, selecting a value within minimum and maximum
bounds. Experiments show the best performance when k
ranges from 10 to 20.

Number of augmented feedback(n): Figure 6 (b) shows
the change in policy performance based on the number of
augmented feedback. Performance generally improves with
more feedback, reaching its best at 10,000, after which
it declines. We attribute the performance drop at 20,000
to a decrease in the accuracy of the augmented feedback,
highlighting the importance of augmenting an appropriate
number of samples and the accuracy.

Confidence parameter(z): We use z as the confidence
boundary for uncertainty-based filtering in Equation (6).
Since confidence changes with z, Figure 6 (c) compares per-
formance across various z values to assess its impact. The
results show that z yields the best performance at 3.1.

6. Conclusion and Limitations
In this work, we propose Capturing Uncertainty and Di-
versity in Preference Feedback Augmentation (CUDA), a
method that addresses the challenge of limited human feed-
back in PbRL. CUDA introduces a novel approach that
comprehensively integrates both uncertainty (confidence)
and diversity into the augmentation process. It achieves
this through two key mechanisms: utilizing ensemble-based
uncertainty estimation for robust filtering, and promoting
a broader range of augmented preferences by extracting
feedback from diverse, bucket-categorized trajectory clus-
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ters. These innovations allow CUDA to generate highly
diverse and accurate augmented feedback. Our extensive
evaluations on MetaWorld and DMControl offline datasets
clearly demonstrate CUDA’s superior performance, outper-
forming both conventional offline PbRL algorithms and
existing augmentation-based methods across a wide array
of scenarios. This work highlights the critical importance
of diversity alongside accuracy in feedback augmentation
for advancing PbRL capabilities.

Since CUDA augments feedback based on a model trained
with original feedback, it becomes crucial to perform ef-
fective initial sampling and obtain accurate true feedback.
Inadequate feedback hinders its ability to perform well. Fur-
thermore, maintaining the preference relationships between
feedback pairs is essential for effective augmentation. For
example, cyclic feedback has limitations in generating buck-
ets, thus impairing performance. Therefore, as our future
work, we are considering methods to obtain high-quality
feedback during the initial feedback acquisition process,
and methods to robustly train the sore function even when
feedback with cycles is given.
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A. Experimental Details
A.1. Dataset

In this study, we utilized the dataset originally collected in the LiRE(Choi et al., 2024). The dataset was generated by
collecting replay buffers during the training of online reinforcement learning agents. Specifically, the online Soft Actor-Critic
(SAC) algorithm (Haarnoja et al., 2018), implemented in PEBBLE(Lee et al., 2021), using ground-truth rewards.

Replay buffers are collected by evaluating the online policy’s success rate every 50,000 steps. We use data gathered until the
policy’s success rate approaches 50%, same as the one used in the source paper. This approach ensures that the performance
is compared fairly under the same conditions as described in the source paper.

A.2. Hyperparameters and Setup

Table 6. Hyperparameters of the reward model and the baselines.

Hyperparameter Value

Reward Model
Optimizer Adam
Learning rate 1e-3
Batch size 32
Hidden layer dim 256
Hidden layers 2
Activation function ReLU
Final activation Tanh
Epochs 200
# of ensembles (labeled / augmented) 7 / 3
Ensemble aggregation Method Average

IQL (Kostrikov et al., 2021)
Optimizer Adam
Critic, Actor, Value hidden dim 256
Critic, Actor, Value hidden layers 2
Critic, Actor, Value activation function ReLU
learning rate 3e-4
Batch size 256
Discount factor γ 0.99
Soft Update Rate τ 0.05
Temperature β 3.0
Expectile 0.7

Setup We use a single NVIDIA RTX A5000 GPU and 96 CPU cores (Intel Xeon Gold 5220R @ 2.20GHz) in our
experiments. The system runs on Ubuntu 22.04 with Linux kernel 6.5.0 and CUDA 11.8.

A.3. CUDA Algorithm Pseudocode
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Algorithm 1 CUDA Algorithm

Require: Unlabeled dataset Du, Labeled feedback Fℓ, Number of buckets K
Ensure: Feedback set to train policy Frefined

1. Train an ensemble of reward models Rθ = {r1, . . . , rN} on labeled feedback Fℓ

2. For each trajectory τ = {(st, at)}Tt=1 in Du, compute the ensemble-averaged reward at each timestep:

r̄t =
1

N

N∑
n=1

rn(st, at)

and the predicted return:

R̂(τ) =

T∑
t=1

r̄t

3. For each trajectory τ , compute an uncertainty score:

u(τ) =

(
T∑

t=1

(
1

N

N∑
n=1

(rn(st, at)− r̄t)
2

))1/2

4. Cluster the trajectories in Du into K buckets {B1, . . . ,BK} using k-means++ on the predicted return R̂(τ).
The optimal number of clusters k∗ is selected as:

k∗ = arg max
k∈[ 12K,K]

silhouette score (k,Du;Rθ)

5. Assign sampling weights wij ∝ |Bi| · |Bj | for all unordered bucket pairs (i, j) with i < j, and normalize such that:∑
i<j

wij ≈ n

6. For each bucket pair (i, j) with i < j, sample trajectory pairs (τi, τj) ∈ Bi × Bj until wij valid feedback pairs are
collected, subject to the confidence-separated preference condition:

R̂(τi) + z · u(τi) < R̂(τj)− z · u(τj)

Let Faug be the set of all such trajectory pairs.
7. Combine the original labeled feedback with the augmented set:

Frefined = Fℓ ∪ Faug
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B. Bucket-based sampling and uncertainty-based filtering
B.1. KL Divergence of Augmented Feedback from Random Sampling

Table 7. KL divergence of reward models under different feedback selection strategies across Metaworld tasks. CS = Confidence-based
Sampling, UF = Uncertainty-based Filtering, BS+UF (CUDA) = Bucket-based Sampling combined with Uncertainty Filtering (our
method).

Method button-press
-topdown box-close dial-turn sweep

button-press
-topdown-wall sweep-into drawer-open lever-pull avg

CS 0.4291 0.3166 0.1411 0.2902 0.3836 0.2686 0.2566 0.3122 0.2997
UF 0.0617 0.0287 0.0360 0.0354 0.0545 0.0261 0.0403 0.0486 0.0414
BS+CS 0.0302 0.0126 0.0141 0.0216 0.0273 0.0115 0.0232 0.0466 0.0234
BS+UF (CUDA) 0.0305 0.0124 0.0138 0.0248 0.0257 0.0109 0.0227 0.0477 0.0236

B.2. Agreement Rate of Augmented Preference Pairs with True Rewards

Table 8. Pairwise preference prediction accuracy of reward models under different feedback selection strategies across Metaworld tasks.
CS = Confidence-based Sampling, UF = Uncertainty-based Filtering, BS+UF (CUDA) = Bucket-based Sampling combined with
Uncertainty Filtering (our method).

Method button-press
-topdown box-close dial-turn sweep

button-press
-topdown-wall sweep-into drawer-open lever-pull avg

CS 0.9990 0.9853 0.9621 0.9905 0.9967 0.9400 0.9951 0.9951 0.9830
UF 0.9809 0.9119 0.9000 0.9290 0.9742 0.8025 0.9564 0.9543 0.9262
BS+CS 0.9706 0.8883 0.8576 0.9205 0.9638 0.7510 0.9457 0.9520 0.9062
BS+UF (CUDA) 0.9696 0.8910 0.8575 0.9207 0.9627 0.7525 0.9453 0.9522 0.9064

B.3. True Reward Heatmap of Augmented Preference Pairs

Figure 7 shows the true reward heatmaps of the selected augmented preference pairs for each environment under CS and
CUDA sampling strategies. The heatmaps visualize the relative sampling density of each trajectory pair compared to random
sampling, with the color intensity indicating values roughly between 0.6 and 1.4.

B.4. True Reward Distribution per Bucket

Figure 8 shows a detailed visualization of the bucket structure in the button-press-topdown environment.

Subfigure (a) presents the pairwise preference prediction accuracy between buckets, with values closer to 1 indicating strong
ordering agreement. Subfigures (b) and (c) show the distributions of true and predicted rewards in each bucket, respectively,
highlighting the effectiveness of k-means-based bucketing in separating trajectories with different reward profiles.

B.5. Performance without k-Means
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Table 9. Performance comparison with and without k-Means bucketing across environments. Results are reported as mean ± standard
deviation. The better performing condition per row is highlighted.

Environment Without k-Means With k-Means

button-press-topdown 0.6108 ± 0.1916 0.5885 ± 0.4432
box-close 0.6220 ± 0.2349 0.6396 ± 0.2297
dial-turn 0.8984 ± 0.0596 0.9028 ± 0.0616
sweep 0.8544 ± 0.0914 0.8856 ± 0.0744
button-press-topdown-wall 0.2544 ± 0.1406 0.2956 ± 0.1164
sweep-into 0.3488 ± 0.1018 0.3608 ± 0.0985
drawer-open 0.0536 ± 0.0584 0.0408 ± 0.0631
lever-pull 0.8608 ± 0.0731 0.8420 ± 0.0581

Average 0.5629 ± 0.3231 0.5635 ± 0.3193
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(a) button-press
topdown (CS) (b) button-press

topdown (CUDA) (c) box-close
(CS) (d) box-close

(CUDA)

(e) dial-turn
(CS) (f) dial-turn

(CUDA) (g) sweep
(CS) (h) sweep

(CUDA)

(i) button-press
topdown-wall (CS) (j) button-press

topdown-wall (CUDA) (k) sweep-into
(CS) (l) sweep-into

(CUDA)

(m) drawer-open
(CS) (n) drawer-open

(CUDA) (o) lever-pull
(CS) (p) lever-pull

(CUDA)

Figure 7. Heatmaps of true rewards for augmented preference pairs.

13



CUDA: Capturing Uncertainty and Diversity in Preference Feedback Augmentation

(a) Inter-bucket preference accuracy matrix

(b) True reward distribution per bucket

(c) Predicted reward distribution per bucket

Figure 8. Analysis of the k-means bucket structure in the button-press-topdown environment. Each trajectory is assigned to a bucket
based on predicted return. (a) shows the pairwise preference prediction accuracy across buckets, while (b) and (c) visualize the true and
predicted reward distributions within each bucket.
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