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SALON3R: STRUCTURE-AWARE LONG-TERM GENER-
ALIZABLE 3D RECONSTRUCTION FROM UNPOSED IM-
AGES
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FreeSplat w/ GT Pose & Intrin.

Input 50 Images

Ours w/o GT Pose & Intrin.
Speed: ~2FPS
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Speed: ~11FPS
GS (K): 1043  
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...

Figure 1: Comparison between FreeSplat (Wang et al., 2024c) and our SaLon3R. Given a se-
quence of unposed and uncalibrated images as input, our method achieves online generalizable
Gaussian reconstruction with over 10 FPS speed, allowing high-quality rendering, accurate depth
estimation, effectively reducing GS from 9830K to 1043K with nearly 90% redundancy removal.

ABSTRACT

Recent advances in 3D Gaussian Splatting (3DGS) have enabled generalizable,
on-the-fly reconstruction of sequential input views. However, existing methods
often predict per-pixel Gaussians and combine Gaussians from all views as the
scene representation, leading to substantial redundancies and geometric inconsis-
tencies in long-duration video sequences. To address this, we propose SaLon3R,
a novel framework for Structure-aware, Long-term 3DGS Reconstruction. To
our best knowledge, SaLon3R is the first online generalizable GS method capable
of reconstructing over 50 views in over 10 FPS, with 50% to 90% redundancy
removal. Our method introduces compact anchor primitives to eliminate redun-
dancy through differentiable saliency-aware Gaussian quantization, coupled with
a 3D Point Transformer that refines anchor attributes and saliency to resolve cross-
frame geometric and photometric inconsistencies. Specifically, we first leverage
a 3D reconstruction backbone to predict dense per-pixel Gaussians and a saliency
map encoding regional geometric complexity. Redundant Gaussians are com-
pressed into compact anchors by prioritizing high-complexity regions. The 3D
Point Transformer then learns spatial structural priors in 3D space from training
data to refine anchor attributes and saliency, enabling regionally adaptive Gaussian
decoding for geometric fidelity. Without known camera parameters or test-time
optimization, our approach effectively resolves artifacts and prunes the redundant
3DGS in a single feed-forward pass. Experiments on multiple datasets demon-
strate our state-of-the-art performance on both novel view synthesis and depth es-
timation, demonstrating superior efficiency, robustness, and generalization ability
for long-term generalizable 3D reconstruction. Code will be released.

1 INTRODUCTION

In recent years, Neural Radiance Fields (NeRF) (B. Mildenhall et al., 2021) and 3D Gaussian Splat-
ting (3DGS) (Kerbl et al., 2023) have significantly advanced novel view synthesis (NVS), which
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aims to reconstruct the 3D scene from multi-view images and render high-fidelity images when
queried with novel views. However, these methods are limited to per-scene test time optimiza-
tion and lack the generalization ability to unseen data. To address this, generalizable models (Yu
et al., 2021; A. Chen et al., 2021; Guo et al., 2024; Chen et al., 2025) have been proposed to en-
able a feed-forward reconstruction, achieving generalizable view synthesis. These methods require
an additional pre-processing stage to estimate camera poses, e.g., Structure-from-Motion. Besides
its large time consumption, this pre-processing stage is sensitive to sparse and in-the-wild views,
leading to inaccurate estimation and degraded rendering. To get rid of this reliance, some pose-free
generalizable approaches (Smith et al., 2023; Chen & Lee, 2023; Li et al., 2024; Hong et al., 2024)
are proposed to realize both pose estimation and reconstructing the 3D scene.

Despite their promising results, the major drawback of the current generalizable methods is the lack
of multi-view Gaussian fusion with redundancy removal, limiting their applications to long-term
and large-scale scene reconstruction. Specifically, given the context images as input, most methods
typically predict per-pixel Gaussian attributes and combine Gaussians from all views as the scene
representation, without additional structure-aware inductive bias to refine the redundancy or arti-
facts. It results that previous methods either fail due to large GPU memory consumption by a large
number of redundant Gaussians or experience a degradation in rendering quality due to photomet-
ric inconsistency and 3D misalignment arising from reconstruction inaccuracies when addressing
long-duration video images. To address this issue, some recent works (Wang et al., 2024c; Fei et al.,
2024; Ziwen et al., 2024) present additional adaptation to reduce the Gaussian redundancy by fusing
the overlapping 3D Gaussians in image space. However, they mainly utilize 2D features for aggre-
gating the overlapped regions, and lack a holistic structure-aware 3D understanding of the scene to
control the adaptive distribution of the 3D Gaussians. This will inevitably limit their application to
longer-term (i.e., over 50 frames) generalizable Gaussian reconstruction, yielding low efficiency and
a large memory cost due to the accumulation of pixel-wise Gaussians, as shown in Fig. 1.

In this paper, we present SaLon3R for Structure-aware, Long-term 3DGS Reconstruction from
unposed and uncalibrated images, achieving online scene representation learning in a feed-forward
manner. To our best knowledge, SaLon3R is the first online generalizable GS method capable of
reconstructing over 50 views at a speed exceeding 10 FPS. The core of our method is to encode the
pixel-wise Gaussians to compact anchor primitives, leveraging spatial structural priors to eliminate
redundancy and refine artifacts in a single feed-forward pass. Specifically, we adopt CUT3R (Wang
et al., 2025b) as the backbone to predict global pointmaps, per-pixel Gaussian latents, and associated
saliency map. Unlike previous methods that fuse the overlapped regions, we devise a saliency-aware
quantization mechanism to encode the pixel-wise dense Gaussians into compact Gaussian anchors
by voxel aggregation. To address the inconsistencies, we utilize a lightweight point transformer that
applies local attention to serialized anchors, effectively capturing 3D spatial relationships to resolve
artifacts and inconsistencies. After the refinement, the Gaussian anchors are adaptively decoded
into Gaussians based on the updated 3D saliency of each voxel, allowing adaptive Gaussian density
control. Our model enables the extrapolation rendering ability for improved quality and robustness.

Extensive experiments show that our method significantly outperforms pose-free approaches and
surpasses pose-required methods in depth estimation, while achieving competitive performance in
novel view synthesis. It further achieves 50% to 90% redundancy reduction and online reconstruc-
tion at more than 10 FPS. Moreover, our method exhibits strong generalization, outperforming pose-
required methods in zero-shot settings. The contributions of this work are summarized as follows.

• We introduce SaLon3R for pose-free long-term generalizable reconstruction with structure-
aware learning to eliminate redundancy and refine artifacts, enhancing the rendering quality
and geometric consistency. To our best knowledge, SaLon3R is the first online generaliz-
able GS method capable of reconstructing over 50 views at a speed exceeding 10 FPS.

• We present a saliency-aware Gaussian quantization mechanism to encode the dense pixel-
wise Gaussians into sparse Gaussian anchors incrementally. A lightweight point trans-
former is employed to achieve interaction between the surrounding Gaussians to learn the
3D structure, allowing out-of-distribution prediction and artifacts refinement.

• Extensive experiments demonstrate our superior performance on long-term generalizable
online reconstruction from unposed and uncalibrated images. With 50% to 90% redun-
dancy removal, our SaLon3R significantly outperforms pose-required methods in depth
estimation and achieves state-of-the-art results in novel view synthesis.
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2 RELATED WORK

Generalizable Novel View Synthesis. NeRF (B. Mildenhall et al., 2021) and 3DGS (Kerbl et al.,
2023) have revolutionized the field of novel view synthesis and 3D reconstruction. Recent meth-
ods empower 3DGS with feed-forward prediction to achieve generalizable view synthesis (Charatan
et al., 2024; Chen et al., 2025; Smart et al., 2024; Ye et al., 2024; Zhang et al., 2025). However,
most existing methods focus on sparse view reconstruction, combining pixel-wise Gaussian rep-
resentations from all context views as the global representation. However, 3DGS from different
views cannot be directly merged due to the view-dependent rendering process, which may bring
photometric and geometric inconsistencies and lead to performance degeneration. To address this,
FreeSplat (Wang et al., 2024c) introduces cross-view feature aggregation and pixel-wise triplet fu-
sion to eliminate redundancy. PixelGaussian (Fei et al., 2024) dynamically adjusts both the distri-
bution and the number of Gaussians based on the geometric complexity. Long-LRM (Ziwen et al.,
2024) adopts an efficient token-based strategy combined with Gaussian pruning to manage long
sequential data. However, these methods mainly focus on fusing the overlapping regions of the
pixel-wise Gaussians among views, which lack a structure-aware 3D understanding of the scene
to adaptively control the global distribution of 3DGS. In contrast, our method can effectively re-
duce the redundancy and mitigate the geometrical and photometric inconsistencies, offering a more
promising, scalable, and efficient solution to handle unposed long-term images.

3D Reconstruction Network. Recent advances in learning-based 3D reconstruction pave the way
for the joint estimation of 3D geometry and camera parameters in an end-to-end framework (Wang
et al., 2024b; Leroy et al., 2024; Wang et al., 2025b;a; Guo et al., 2025). This could avoid the
accumulated errors across decomposed multiple tasks in traditional reconstruction pipelines, such as
feature extraction (DeTone et al., 2018; Yi et al., 2016), feature matching (Lindenberger et al., 2023;
Sarlin et al., 2020), and SfM (J. Schonberger et al., 2016; Wang et al., 2024a). To address these
limitations, DUSt3R (Wang et al., 2024b) proposes a unified framework that reformulates stereo
reconstruction as a pointmap regression task, eliminating the reliance on explicit camera calibration.
MASt3R (Leroy et al., 2024) further enhances the matching accuracy by introducing a dense feature
prediction head trained with an additional matching supervision loss. CUT3R (Wang et al., 2025b)
leverages latent states to generate metric point maps for each incoming image in an online manner.
VGGT (Wang et al., 2025a) proposes a feed-forward neural network to directly estimate the key
3D attributes from hundreds of views. To achieve incremental Gaussian reconstruction, we adopt
CUT3R (Wang et al., 2025b) and VGGT (Wang et al., 2025a) as reconstruction backbones to achieve
both online and offline novel view synthesis from unposed, long-sequence image inputs.

3DGS with Quantization. To address the large amount of 3DGS, some quantization-based
methods aim to compress the 3DGS representation for efficiency while preserving visual quality.
CompGS (Liu et al., 2024) introduces a hybrid primitive structure to improve compactness with a
compression ratio up to 110x. Similarly, LightGaussian (Fan et al., 2024) combines vector quanti-
zation with knowledge distillation and pseudo-view augmentation, reducing model size. Scaffold-
GS (Lu et al., 2024) introduces an anchor-based approach, voxelizing scenes to create representative
anchors that derive Gaussian attributes. Octree-GS (Ren et al., 2024) utilizes an octree-based struc-
ture to hierarchically partition 3D space. In our work, we introduce a saliency-aware Gaussian
quantization mechanism, achieving 50% to 90% redundancy removal at a speed exceeding 10 FPS.

3 METHODOLOGY

3.1 OVERVIEW

Given a stream of N unposed and uncalibrated images as input, our SaLon3R aims to learn a feed-
forward network to enable online reconstruction for 3D Gaussian Splatting G = {µ,Σ,α, sh} with
mean µ, covariance Σ, opacity α, and spherical harmonics coefficients sh. Mathematically, we aim
to learn the following online reconstruction:

Gt, {Kt,Pt}Nt=1 = SaLon3R(It,Gt−1), (1)

where Kt and Pt indicate the estimated camera intrinsic and extrinsic. As shown in Fig. 2, given
every single frame as input, the online reconstruction network predicts the corresponding pointmap
in the world coordinate, per-pixel Gaussian latent, and saliency map (Sec. 3.2). To eliminate the
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Figure 2: Overview of our proposed SaLon3R. Given every unposed and uncalibrated image
as input, an incremental reconstruction network initially predicts the camera parameters Kt,Pt,
pointmaps X̂t, and pixel-wise Gaussian latents Ĝt. A saliency-aware quantization mechanism is
designed to encode dense Gaussians into compact Gaussian anchors, reducing redundancy while
maintaining geometric fidelity. A lightweight point transformer is adopted to enable structure-aware
Gaussian refinement by capturing the spatial relationships to resolve the inconsistencies and enhance
the extrapolation ability, achieving adaptive Gaussian growing with enhanced rendering quality.

redundancy of pixel-wise Gaussians, we devise a saliency-aware quantization mechanism to encode
the pixel-wise dense Gaussians into compact Gaussian anchors by voxel downsampling (Sec. 3.3).
To address the potential artifacts in reconstruction, we employ a lightweight point transformer to
enable local attention of the serialized anchors to capture spatial relationships between anchors, al-
lowing a structure-aware learning of the Gaussian field. Finally, we decode the anchors to Gaussians
with adaptive density control, using the refined structure-aware saliency from the refiner (Sec . 3.4).
To achieve online reconstruction, during inference, only part of the global Gaussian Gt−1 that are
near the frustum of the current view are extracted to be merged with the current pixel-wise Gaussian
latents as input for quantization and refinement to incrementally update to Gt.

3.2 GENERALIZABLE GAUSSIAN RECONSTRUCTION

Preliminary of CUT3R (Wang et al., 2025b). Given a sequence of streaming unposed and uncal-
ibrated images {It}Nt=1, we first encode the image to tokens Ft via ViT encoder. For incremental
reconstruction, the state is first initialized as learnable tokens to interact with image tokens by state-
update and state-readout. Specifically, state-update utilizes input image tokens to update the state
st−1 to st, and state-readout aims to read the context from the state to provide historical spatial
information. The two interactions are conducted with two interconnected transformer decoders:

[z′t,F
′
t], st = Decoders([zt,Ft], st−1), (2)

where z refers to the pose token to learn motion information for pose estimation. Both image token
Ft and pose token zt are updated to F′

t and z′t with updated context information.

Geometry and 3DGS Decoding. Subsequently, geometric results and camera poses are esti-
mated from z′t and F′

t to predict pointmaps and confidence maps. Similarly, we adopt the DPT-
like architecture (Ranftl et al., 2021) as Gaussian head to predict the pixel-wise Gaussian latents
Ĝt ∈ RH×W×C with associated saliency map St, which captures the geometric and photomet-
ric complexity of different regions spatially. Specifically, the predicted local pointmaps X̂self

t and
camera poses P̂t are utilized to compute the pointmaps in world coordinate as Gaussian centers
X̂t ∈ RH×W×3. Besides, we estimate focal length with the Weiszfeld algorithm (Plastria, 2011).

X̂self
t = Headpts(F

′
t), Ĝt = HeadGS(F

′
t), P̂t = Headpose(z

′
t). (3)
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3.3 SALIENCY-AWARE GAUSSIAN QUANTIZATION

Despite the advances of current generalizable methods, they are limited to the sparse view prediction
due to directly merging the pixel-wise Gaussians with view-dependent effects, leading to photomet-
ric and geometric inconsistencies, slow inference speed, and large GPU allocation. While recent
methods (Wang et al., 2024c; Fei et al., 2024) mitigate the problem by fusing the overlapped region,
they fall short of a global 3D structure understanding to reduce redundancy while preserving geo-
metric fidelity. To address the issue, we devise a saliency-aware quantization for points aggregation,
allowing a significant redundancy removal while avoiding the information loss in salient regions,
i.e., the region with rich textures and geometry complexity.

Voxelization for Gaussian Centers. Given every image as input, we build the anchors with the
predicted Gaussian latents Ĝt and Gaussian centers X̂t. Specifically, we first voxelize the scene
from the Gaussian centers X̂t and compute the voxel center vi for each point xi ∈ X̂t: vi =

⌊
xi

γ

⌋
·γ,

where ⌊·⌋ denotes the floor operation, and γ is the voxel size for grid resolution. From this operation,
we effectively reduce the redundancy by quantizing the pointmap to a set of voxels.

Saliency-based Anchor Fusion. After voxelization, we aggregate the points within the same voxel
to a single anchor representing the geometry and the Gaussian latent. Each point vi is associated
with a predicted global saliency score si to indicate its appearance and geometry complexity. It
is noted that the saliency estimation is learnable and only trained with rendering loss without any
ground truth. We use the saliency scores to compute a normalized weighted sum to fuse the anchors
for positions and latents, ensuring more salient points contribute more significantly to the fused
representation. We take the fused anchor position as the anchor Gaussian center µa

k. For a voxel
with L points, we fuse the anchor feature as follows:

sak =

L∑
i=1

si, µa
k =

∑L
i=1 sivi

sak
, fak =

∑L
i=1 sifi
sak

. (4)

After the anchor fusion, a MLP head is employed to convert the anchor latent fak to anchor Gaussian
attributes as: {Σa

k,α
a
k, sh

a
k} = MLPGS(f

a
k ).

3.4 STRUCTURE-AWARE GAUSSIAN REFINEMENT

Given multiple views as input, directly fusing predicted Gaussians into a coherent scene represen-
tation is insufficient to address the photometric inconsistencies across views and 3D misalignments
arising from reconstruction and pose inaccuracies. Additionally, while current generalizable meth-
ods support effective interpolation to render novel views within the context views, it is also crucial
to enable the model to learn extrapolation prediction to enhance the robustness of extrapolated cam-
era views. To address this, we adopt Point Transformer V3 (PTV3) (Wu et al., 2024) as an effi-
cient structure-aware point cloud encoder to capture spatial relationships in predicted coarse anchor
Gaussians, eliminating the artifacts while enhancing the 3D consistency. By training on large-scale
datasets with out-of-distribution views, our model also enhances the extrapolation rendering ability
for better rendering quality and robustness.

Point Cloud Serialization. To enable efficient pointcloud processing, we first use pointcloud seri-
alization to transform the unstructured point-based anchors to a structured format. Specifically, we
employ the serialized encoding to convert the point position to an integer reflecting the order in a
space-filling curve (i.e., z-order curve and Hilbert curve). After serialization, the input points are
sparsified and encoded to features through an embedding layer.

Point Transformer Refiner. The point transformer follows the structure of U-Net, consisting of a
five-stage encoder with a downsampling grid pooling layer and attention blocks in each stage, and a
decoder with an upsampling grid pooling layer and attention blocks in each stage. For each attention
block, we apply patch attention to group points into non-overlapping patches, performing interaction
among patches for attention computation. Specifically, we concatenate the Gaussian attributes with
the anchor saliency as the feature to the input, and the refined anchor latent is predicted as:

ha
k = PointTransformer({µa

k,Σ
a
k,α

a
k, sh

a
k, s

a
k}). (5)

Adaptive Gaussian Growing. To derive the Gaussians from anchor latents, we apply a growing
strategy to predict M Gaussians from each anchor. The residual primitives are decoded through an

5
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Ours GroundTruthPixelSplat MVSplat FreeSplat PixelGaussian NoPoSplat
Figure 3: Qualitative Comparison on ScanNet dataset. Given 10 context views as input, we
compare the novel view synthesis results for both rendered color and depth. We also provide more
qualitative results in the supplementary material.

MLP head from the refined anchor latent ha
k:

{∆µk,i,∆Σk,i,∆αk,i,∆shk,i,∆sk,i}Mi=1 = MLPgrow(h
a
k). (6)

To achieve adaptive density control, our goal is to prune redundant Gaussians in regions with sparse
textures and low geometric complexity, while allocating more Gaussians to recover high-frequency
details and regions with large depth gradients. To this end, we leverage the refined saliency, which
encodes structure-aware spatial information through the point transformer. Specifically, the saliency
is fused to update the opacity, and a mask Mr is derived to filter out redundant Gaussians.

αr
k,i = (αa

k,i +∆αk,i) · (1 + Tanh(sak,i +∆sk,i)), Mr
k,i = αr

k,i > β, (7)

where β is the threshold for opacity pruning. We could obtain the refined Gaussian prediction Gr:

Gr =

K⋃
k=1

{(
µa

k +∆µk,i,Σ
a
k +∆Σk,i,α

r
k,i, sh

a
k +∆shk,i

)
| Mr

k,i = 1, i = 1, . . . ,M
}
. (8)

Training Objective. We fix the pretrained weights of the reconstruction network (except for Gaus-
sian/saliency prediction) and train other modules. During training, we take randomly sampled views
as context views and the others as target views from a sequence, to train our model for handling
extrapolation views. We follow (Charatan et al., 2024) to use the perceptual loss and L1 loss as the
photometric loss between the rendered target image and ground-truth images. Additionally, to refine
the rendered depth smoothness, we apply an edge-aware depth regularization loss on the rendered
depth to constrain the surface smoothness. The total loss is defined as:

Ltotal = λ1L1 + λ2LLPIPS + λ3Lsmooth, (9)

where λ1, λ2, λ3 denote the weights for different losses, we set λ1 = 1.0, λ2 = 0.05, λ3 = 0.0005.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train our method on the ScanNet (Dai et al., 2017) dataset, following FreeSplat (Wang
et al., 2024c) to have 100 scenes for training and 8 scenes for testing. Unlike FreeSplat, we adopt a

6
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Table 1: Novel View Evaluation results on ScanNet (Dai et al., 2017). PF: Pose-free methods.

PF Method 10 views 30 views 50 views

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

✗

PixelSplat 17.77 0.572 0.505 - - - - - -
MVSplat 17.74 0.643 0.411 - - - - - -
FreeSplat 23.24 0.785 0.266 21.16 0.704 0.342 19.90 0.702 0.365
PixelGaussian 17.41 0.601 0.429 - - - - - -

✓

NoPoSplat 18.46 0.652 0.396 17.03 0.637 0.506 15.71 0.574 0.515
FLARE 18.24 0.691 0.403 16.21 0.602 0.434 15.92 0.566 0.577
Ours 22.54 0.750 0.337 20.47 0.679 0.384 19.78 0.682 0.392
Oursw/ VGGT 23.26 0.805 0.289 21.25 0.728 0.384 20.26 0.720 0.377

Table 2: Novel view depth evaluation on ScanNet (Dai et al., 2017). PF: Pose-free methods.

PF Method 10 views 30 views 50 views

Abs Rel↓ δ1 ↑ FPS↑ GS↓ Abs Rel↓ δ1 ↑ FPS↑ GS↓ Abs Rel↓ δ1 ↑ FPS↑ GS↓

✗

PixelSplat 0.680 0.715 1.15 5898 - - - - - - - -
MVSplat 0.331 0.811 2.11 1966 - - - - - - - -
FreeSplat 0.102 0.973 3.66 1082 0.411 0.894 2.87 2934 0.346 0.904 2.36 4981
PixelGaussian 0.392 0.766 3.05 2952 - - - - - - - -

✓

NoPoSplat 0.390 0.794 3.59 1180 1.185 0.559 1.24 3801 1.716 0.463 0.91 6422
FLARE 0.487 0.802 3.32 1180 1.212 0.543 1.13 3801 1.814 0.489 0.85 6422
Ours 0.030 0.977 10.16 866 0.060 0.953 10.10 2073 0.068 0.972 10.15 3042
Oursw/ VGGT 0.030 0.978 10.53 853 0.051 0.960 10.72 1972 0.062 0.974 10.66 2897

more challenging setting by using sparsely overlapping input images, where the context view overlap
is limited to only 15%–50%. To validate the generalization ability, we further conduct the cross-
dataset evaluation on ScanNet++ (Yeshwanth et al., 2023) and Replica (Straub et al., 2019). For
fair comparison, we retrain all the methods on ScanNet (Dai et al., 2017) based on their pretrained
weights and adopt the same validation setting as our method.

Evaluation Metrics. We evaluate the performance of novel view synthesis with PSNR, SSIM (Z.
Wang et al., 2004), and LPIPS (R. Zhang et al., 2018). To evaluate the depth, we report two common
metrics in mono-depth estimation: Abs Rel and δ < 1.25 (δ1). The unit for the 3DGS number is K.

Baselines. To validate our performance, we extensively compare SaLon3R with previous feed-
forward methods: 1) Pose-required: PixelSplat (Charatan et al., 2024), MVSplat (Chen et al., 2025),
FreeSplat (Wang et al., 2024c), PixelGaussian (Fei et al., 2024), and 2) Pose-free: FLARE (Zhang
et al., 2025), NoPoSplat (Ye et al., 2024). Due to the out-of-memory problem from large 3DGS
occupation, PixelSplat (Charatan et al., 2024), MVSplat (Chen et al., 2025), and PixelGaussian (Fei
et al., 2024) fail to report the results on 30 views and 50 views.

Implementation Details. All experiments are implemented using Pytorch (Paszke et al., 2019)
on A100 NVIDIA GPU. We use the pretrained weights from CUT3R (Wang et al., 2025b) and
fix the scene reconstruction module during training. We employ the Adam optimizer (Kingma &
Ba, 2014) to train the point transformer, HeadGS, MLPGS, and MLPgrow. We follow (Wang et al.,
2024c) to conduct experiments under resolution as 512× 384 for the ScanNet (Dai et al., 2017) and
ScanNet++ (Yeshwanth et al., 2023) datasets. We adopt M = 4 for Gaussian growing.

4.2 MAIN RESULTS

Novel View Synthesis. We evaluate novel view synthesis using 10, 30, and 50 input views, with
results reported in Tab. 1 and detailed analysis in the appendix. Our method achieves competitive
performance with pose-required approaches and consistently outperforms pose-free methods. As
shown in Fig. 3, PixelSplat (Charatan et al., 2024) and MVSplat (Chen et al., 2025) suffer from
geometric and photometric inconsistencies, producing blurry RGB and inaccurate depth due to the
absence of Gaussian pruning. FreeSplat (Wang et al., 2024c) and PixelGaussian (Fei et al., 2024)
mitigate redundancy but only prune in overlapping regions, limiting structure-aware refinement and
generalization to extrapolated views. In contrast, our SaLon3R leverages structural priors from

7
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Figure 4: Visualization of Global Gaussian Splatting and Extrapolation Views. We zoom in
extrapolated views of the bed and desk for better comparison. It demonstrates our method outper-
forming the FreeSplat with more consistent 3D structure, resulting better rendering performance.
Table 3: Zero-shot Novel View Synthesis on Replica (Straub et al., 2019) and ScanNet++ (Yesh-
wanth et al., 2023) from 10 views.

PF Method Replica ScanNet++

PSNR↑ SSIM↑ LPIPS↓ Abs Rel ↓ δ1 ↑ PSNR↑ SSIM↑ LPIPS↓ Abs Rel ↓ δ1 ↑

✗

PixelSplat 16.61 0.587 0.607 4.248 0.343 17.54 0.625 0.523 0.766 0.530
MVSplat 16.85 0.642 0.436 2.119 0.610 17.01 0.606 0.446 0.875 0.577
PixelGaussian 16.12 0.593 0.668 2.865 0.591 17.46 0.608 0.491 1.182 0.574
FreeSplat 18.92 0.719 0.369 1.485 0.790 22.56 0.769 0.258 0.350 0.828

✓

NoPoSplat 16.72 0.674 0.446 1.723 0.792 17.02 0.667 0.546 0.658 0.647
FLARE 16.75 0.667 0.431 1.497 0.710 16.91 0.659 0.471 0.696 0.609
Ours 20.79 0.683 0.312 0.712 0.917 22.08 0.694 0.372 0.104 0.921
Ours w/ VGGT 21.05 0.728 0.301 0.704 0.925 22.40 0.743 0.346 0.095 0.931

large-scale data to refine 3D inconsistencies, enabling robust free-view rendering with floater re-
moval, fewer Gaussians, and faster reconstruction, as illustrated in Fig. 4.

Depth Evaluation. We report the depth evaluation results of novel views in Tab. 2. Even without
pose or intrinsic as input, our SaLon3R significantly outperforms previous generalizable methods in
depth estimation. Fig. 3 shows that our rendered depth achieves smooth and accurate depth results
with rich details, eliminating the artifacts arising from overfitting or 3D inconsistencies.

Zero-shot Evaluation. To validate the generalization ability, we conduct the zero-shot test on Re-
lica (Straub et al., 2019) and ScanNet++ (Yeshwanth et al., 2023) without further training. The
results show that our method outperforms the previous methods in both rendering quality and depth
estimation performance, demonstrating our generalization ability to cross datasets.

4.3 ABLATION STUDY

Effect of integrating different backbones. We conduct an ablation study to investigate the gen-
eralization ability of our method to different backbones. Specifically, we take VGGT (Wang et al.,
2025a) as the backbone with the fixed pretrained weight, training other modules (Gaussian Head and
Refinement network) in the same setup. As shown in Tab. 1, compared to CUT3R, VGGT performs
inference over all input images in an offline manner, achieving improved geometry quality, pose ac-
curacy, and efficiency. This leads to consistent performance gains. These results highlight the strong
generalization ability of our method, which can be seamlessly integrated with diverse backbones for
generalizable GS reconstruction.

Effect of different components. We conducted an ablation study to evaluate the contribution of dif-
ferent components (Tab. 5). Starting with CUT3R and a Gaussian head as the baseline, we observed
excessive Gaussians and rendering artifacts from retaining all pixel-wise Gaussians. Incorporating
the quantization scheme effectively reduces redundancy but introduces quality degradation due to

8
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Removal: 18087K to 2461K
PSNR: 20.64
Abs rel: 0.027  

Removal: 18087K to 1795K
PSNR: 21.49
Abs rel: 0.012  

Removal: 18087K to 1464K
PSNR: 21.95
Abs rel: 0.011  

Removal: 18087K to 1032K
PSNR: 21.85
Abs rel: 0.011  

Figure 5: Effects of Adaptive Gaussian Growing. Applying β from 0 to 0.5 removes most redun-
dant Gaussians and significantly improves the performance. A larger β = 0.8 could further remove
redundant Gaussians with little degradation.
Table 4: Ablation study on the Number of
Context Views. The context views range from
10 to 200 in the office02 scene on Replica.
Views PSNR↑ LPIPS↓ Abs Rel ↓ FPS ↑ GS (K)↓
10 25.13 0.429 0.069 10.23 939
30 24.63 0.317 0.057 9.85 2138
50 23.70 0.305 0.061 9.76 2905
100 23.05 0.321 0.069 9.72 3286
200 23.24 0.318 0.066 9.53 3397

Table 5: Ablation Study for the effects of dif-
ferent components on ScanNet.
Method PSNR ↑ LPIPS ↓ Abs Rel↓ GS(K)↓
Baseline 20.78 0.429 0.103 1966
+ Quant. 16.95 0.459 0.073 616
+ Sal. Quant. 18.06 0.436 0.065 616
+ GS Refiner 21.65 0.358 0.054 616
+ Adapt. Grow 22.45 0.347 0.078 866
+ Lsmooth (Ours) 22.54 0.337 0.030 866

downsampling. Guided by learned saliency, important regions are preserved and fused, improving
rendering quality. Adding a point transformer further refines Gaussian anchors by exploiting struc-
tural priors, while our adaptive growing mechanism optimizes Gaussian distribution with structure-
aware saliency. Finally, edge-aware regularization enforces local smoothness, yielding additional
gains in both rendering and reconstruction quality.

Effect of view numbers. We conduct an ablation study to investigate the impact of varying
the number of context views on SaLon3R’s performance. For a 300-frame scene segment from
Replica (Straub et al., 2019), we fixed 1/10 of the frames as target views and uniformly sampled
different numbers of context views. As shown in Tab. 4, our method maintains stable process-
ing speed and Gaussian count even with more context views, showing its suitability for long-term
online streaming. Increasing context views from 10 to 30 improves depth estimation and LPIPS
by leveraging richer input, while PSNR decreases slightly under denser inputs due to photometric
inconsistencies but remains stable beyond 50 views.

Effect of adaptive Gaussian growing. We conduct an ablation study by varying the opacity thresh-
old β for adaptive Gaussian growing to enable the density control. As illustrated in Fig. 5, when
increasing β, it is observed that the background Gaussians are eliminated to decrease, which shows
the effectiveness of our saliency-aware mechanism to maintain the region with complex geometry
and textures. Therefore, the PSNR and Abs rel are improved by eliminating the noise using β. How-
ever, when setting the threshold to 0.8, there is a little drop in PSNR, indicating that choosing an
appropriate β could help improve the rendering quality while keeping in small amount of Gaussians.

5 CONCLUSION

In this paper, we propose SaLon3R, a novel framework for structure-aware, long-term 3DGS recon-
struction. Our method enables efficient and structure-aware scene representation learning in a fully
feed-forward manner, without requiring any camera parameters as input. Specifically, we present a
saliency-aware quantization scheme for Gaussian primitives using sparse anchors. To further refine
the Gaussian representations and mitigate artifacts, we incorporate a lightweight point transformer to
facilitate local attention across serialized anchors. The proposed SaLon3R framework supports on-
line incremental reconstruction from streaming image sequences and exhibits superior performance
in extensive evaluations. Since our method is designed for static reconstruction, its performance
may degrade in dynamic scenes. As future work, we plan to extend it to dynamic, generalizable
Gaussian reconstruction for globally consistent 4D reconstruction.
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A APPENDIX

A.1 EXPERIMENTAL ENVIRONMENT

We conduct all the experiments on NVIDIA RTX A100 GPU. The experimental environment is
PyTorch 2.5.1 and CUDA 12.6.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

During training, we fix the weights of the CUT3R model, training the point transformer model and
other heads. We set the resolution of the grid sampling to be 0.005 for ScanNet (Dai et al., 2017)
and 0.01 for the Replica (Straub et al., 2019) dataset. During training, we set an initial learning
rate of 1e−5 and apply linear warmup with cosine decay. We set the batch size as 1 and the input
view number N = 8, among which we randomly sample 2 − 6 views as context views and the rest
as target views. During evaluation, we take all the images (target and context) as input to CUT3R,
using the estimated poses and intrinsic parameters to render the target view with the Gaussians built
from context views.

A.3 ADDITIONAL EXPERIMENTS

Effects of Quantization Resolutions. To investigate the effects of different resolutions, we conduct
the ablation study by varying the resolutions from 0 to 0.02, where 0 indicates that no quantization
is conducted. As reported in Tab. 6, the reconstruction efficiency shows an increasing trend as the
resolution increases. Due to the information loss during the quantization, the performance of novel
view synthesis in both RGB and depth will be affected for resolutions over 0.015. Therefore, we
choose 0.01 as the resolution for Replica (Straub et al., 2019) Dataset to balance the efficiency and
effectiveness.

Table 6: Ablation study on the Resolution of Quantization. We control the resolution from 0 (no
quantization) to 0.02 from 30 views in the office 02 scene on Replica (Straub et al., 2019).

Resolution PSNR↑ SSIM↑ LPIPS↓ Abs Rel ↓ δ1 ↑ FPS ↑ GS (K)↓
0 24.43 0.829 0.270 0.048 0.990 7.56 5629
0.005 24.48 0.832 0.264 0.049 0.990 8.95 4169
0.01 25.04 0.825 0.331 0.050 0.988 9.85 2005
0.015 24.84 0.772 0.436 0.064 0.972 10.03 942
0.02 24.53 0.758 0.470 0.092 0.953 10.15 506

Visualization of the Predicted saliency. As shown in Fig. 6, we visualize the refined saliency to
investigate the effects. The saliency map is rendered following alpha blending. It is observed that
the refined saliency shows higher value and dense distribution for the region with more complex
geometry and appearance, i.e., the boundary of objects, regions with texture. In contrast, region
with simple texture and flat surfaces shows smaller saliency values and sparse distribution.

Figure 6: Visualization of the rendered 3D Saliency.

Additional Qualitative Comparison. We report additional qualitative results of the reconstructed
3DGS and extrapolated view comparison in Fig. 8. It showcases that our method outperforms
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Ours GroundTruthMVSplat FreeSplat PixelGaussian NoPoSplat

Figure 7: Additional Qualitative Results of Novel View Synthesis with Rendered RGB and Depth.

FreeSplat (Wang et al., 2024c) at the global reconstructed 3DGS and the out-of-distribution views.
Although FreeSplat (Wang et al., 2024c) yields good results in view interpolation (see Tab. 1),
the poor reconstructed 3D structure causes bad performance in view extrapolation (see Fig. 4 and
Fig. 8). In contrast, our structure-aware approach achieves superior 3D reconstruction results, per-
forming well in both interpolation and extrapolation view synthesis. Additional qualitative results
of novel view synthesis are shown in Fig. 7, comparing our method with the previous baselines to
test the zero-shot performance.

Table 7: Novel view depth evaluation on ScanNet. PF: Pose-free methods.

PF Method 30 views 50 views

Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 ↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 ↑
✗ FreeSplat 0.411 0.760 0.929 0.436 0.894 0.346 0.443 0.821 0.391 0.904

✓
NoPoSplat 1.185 0.935 1.205 0.803 0.559 1.716 4.801 1.359 1.103 0.463
Ours 0.060 0.017 0.171 0.135 0.953 0.068 0.045 0.232 0.142 0.972
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Figure 8: Additional Visualization of Global Gaussian Splatting and Extrapolation Views. We
zoom in extrapolated views for better comparison with FreeSplat (Wang et al., 2024c) (w/ GT pose).

Table 8: Novel view depth evaluation on ScanNet. PF refers to Pose-free methods.

PF Method 10 views

Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 ↑

✗

PixelSplat 0.680 1.391 0.369 0.548 0.715
MVSplat 0.331 0.413 0.351 0.491 0.811
FreeSplat 0.102 0.276 0.256 0.165 0.973
PixelGaussian 0.392 0.307 0.306 0.617 0.766

✓
NoPoSplat 0.390 0.303 0.152 0.686 0.794
Ours 0.030 0.017 0.149 0.084 0.977

Additional Quantitative Results on Depth Evaluation. We report the full depth comparison re-
sults in Tab. 7, Tab. 8, and Tab. 9. The results show that our method significantly outperforms the
previous methods.

A.4 LIMITATIONS AND FUTURE WORKS

Despite the effectiveness of our method, the major limitation exists in the accuracy of the predicted
depth and poses from the 3D reconstruction network. Given over long frames as input, due to the
lack of global alignment, CUT3R is prone to drift in estimated camera poses and reconstructed
pointmaps, leading to view misalignment and floating points. This will inevitably influence the
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Table 9: Novel view depth evaluation on Replica (Straub et al., 2019) and Scannet++ (Yesh-
wanth et al., 2023). PF: Pose-free methods.

PF Method Replica Scannet++

Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 ↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 ↑

✗

PixelSplat 4.248 2.178 0.988 0.716 0.343 0.766 9.338 2.608 0.785 0.530
MVSplat 2.119 1.731 0.566 0.904 0.610 0.875 2.383 1.546 1.104 0.577
FreeSplat 1.485 0.470 0.383 0.373 0.790 0.350 1.400 0.954 0.360 0.828
PixelGaussian 2.865 1.785 0.636 1.016 0.591 1.182 1.924 1.965 1.461 0.574

✓
NoPoSplat 1.723 0.794 0.507 0.586 0.792 0.658 0.894 1.095 0.696 0.647
Ours 0.712 0.134 0.258 0.159 0.917 0.104 0.081 0.176 0.325 0.921

rendering performance by introducing artifacts. To address this, we propose processing frames with
intervals or employing the keyframe selection to manage large-scale scene reconstruction effectively,
ensuring compatibility with the view constraint while maintaining reconstruction quality. Further-
more, we could incorporate bundle adjustment to globally align the long sequences. This could
effectively help enhance the pose estimation accuracy and 3D consistency across views, making our
method robust for complex, multi-room scenarios.

Additionally, our work is designed for static reconstruction and may get degraded in a dynamic
scene. Extending our work to the dynamic generalizable Gaussian reconstruction is also an interest-
ing future direction. A core challenge lies in enabling the backbone model to track the point-wise 3D
motion and to accurately identify the dynamic and static regions. This is essential to help remove
the redundancy and artifacts induced by temporally accumulated errors. For achieving globally
consistent 4D reconstruction, static regions could be incrementally fused with our saliency-aware
quantization and refined over time with the point transformer, while dynamic regions require contin-
uous temporal updates from predicted motion. Additionally, modeling temporal residuals in appear-
ance will be crucial for capturing photometric changes and ensuring coherent rendering in dynamic
scenes.

B LLM USAGE

We used a large language model (LLM) to assist with writing tasks, specifically to polish language
and enhance readability. The authors take full responsibility for the scientific content, research, and
analysis, and the LLM was not used for generating scientific ideas or designing experiments.
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