

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SALON3R: STRUCTURE-AWARE LONG-TERM GENERALIZABLE 3D RECONSTRUCTION FROM UNPOSED IMAGES

Anonymous authors

Paper under double-blind review

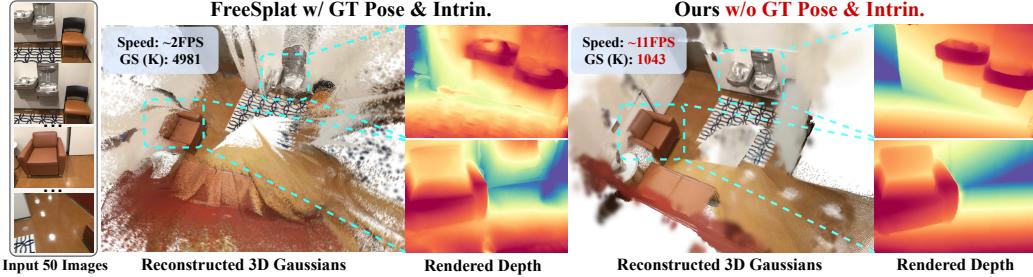


Figure 1: **Comparison between FreeSplat (Wang et al., 2024c) and our SaLon3R.** Given a sequence of *unposed and uncalibrated* images as input, our method achieves online generalizable Gaussian reconstruction with over 10 **FPS speed**, allowing high-quality rendering, accurate depth estimation, effectively reducing GS from 9830K to 1043K with nearly **90% redundancy removal**.

ABSTRACT

Recent advances in 3D Gaussian Splatting (3DGS) have enabled generalizable, on-the-fly reconstruction of sequential input views. However, existing methods often predict per-pixel Gaussians and combine Gaussians from all views as the scene representation, leading to substantial redundancies and geometric inconsistencies in long-duration video sequences. To address this, we propose **SaLon3R**, a novel framework for **Structure-aware, Long-term 3DGS Reconstruction**. To our best knowledge, SaLon3R is the first online generalizable GS method capable of reconstructing over **50** views in over **10 FPS**, with **50% to 90% redundancy removal**. Our method introduces *compact anchor primitives* to eliminate redundancy through differentiable *saliency-aware Gaussian quantization*, coupled with a *3D Point Transformer* that refines anchor attributes and saliency to resolve cross-frame geometric and photometric inconsistencies. Specifically, we first leverage a 3D reconstruction backbone to predict dense per-pixel Gaussians and a saliency map encoding regional geometric complexity. Redundant Gaussians are compressed into compact anchors by prioritizing high-complexity regions. The 3D Point Transformer then learns spatial structural priors in 3D space from training data to refine anchor attributes and saliency, enabling regionally adaptive Gaussian decoding for geometric fidelity. Without known camera parameters or test-time optimization, our approach effectively resolves artifacts and prunes the redundant 3DGS in a single feed-forward pass. Experiments on multiple datasets demonstrate our state-of-the-art performance on both novel view synthesis and depth estimation, demonstrating superior efficiency, robustness, and generalization ability for long-term generalizable 3D reconstruction. Code will be released.

1 INTRODUCTION

In recent years, Neural Radiance Fields (NeRF) (B. Mildenhall et al., 2021) and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) have significantly advanced novel view synthesis (NVS), which

054 aims to reconstruct the 3D scene from multi-view images and render high-fidelity images when
 055 queried with novel views. However, these methods are limited to per-scene test time optimiza-
 056 tion and lack the generalization ability to unseen data. To address this, generalizable models (Yu
 057 et al., 2021; A. Chen et al., 2021; Guo et al., 2024; Chen et al., 2025) have been proposed to
 058 enable a feed-forward reconstruction, achieving generalizable view synthesis. These methods require
 059 an additional pre-processing stage to estimate camera poses, *e.g.*, Structure-from-Motion. Besides
 060 its large time consumption, this pre-processing stage is sensitive to sparse and in-the-wild views,
 061 leading to inaccurate estimation and degraded rendering. To get rid of this reliance, some pose-free
 062 generalizable approaches (Smith et al., 2023; Chen & Lee, 2023; Li et al., 2024; Hong et al., 2024)
 063 are proposed to realize both pose estimation and reconstructing the 3D scene.

064 Despite their promising results, the major drawback of the current generalizable methods is the lack
 065 of multi-view Gaussian fusion with redundancy removal, limiting their applications to long-term
 066 and large-scale scene reconstruction. Specifically, given the context images as input, most methods
 067 typically predict per-pixel Gaussian attributes and combine Gaussians from all views as the scene
 068 representation, without additional structure-aware inductive bias to refine the redundancy or arti-
 069 facts. It results that previous methods either fail due to large GPU memory consumption by a large
 070 number of redundant Gaussians or experience a degradation in rendering quality due to photomet-
 071 ric inconsistency and 3D misalignment arising from reconstruction inaccuracies when addressing
 072 long-duration video images. To address this issue, some recent works (Wang et al., 2024c; Fei et al.,
 073 2024; Ziwen et al., 2024) present additional adaptation to reduce the Gaussian redundancy by fusing
 074 the overlapping 3D Gaussians in image space. However, they mainly utilize 2D features for aggre-
 075 gating the overlapped regions, and lack a holistic structure-aware 3D understanding of the scene to
 076 control the adaptive distribution of the 3D Gaussians. This will inevitably limit their application to
 077 longer-term (*i.e.*, over 50 frames) generalizable Gaussian reconstruction, yielding low efficiency and
 a large memory cost due to the accumulation of pixel-wise Gaussians, as shown in Fig. 1.

078 In this paper, we present **SaLon3R** for **S**tructure-**a**ware, **L**ong-term **3DGS** Reconstruction from
 079 *unposed* and *uncalibrated* images, achieving online scene representation learning in a feed-forward
 080 manner. To our best knowledge, SaLon3R is the first online generalizable GS method capable of
 081 reconstructing over 50 views at a speed exceeding 10 FPS. The core of our method is to encode the
 082 pixel-wise Gaussians to compact anchor primitives, leveraging spatial structural priors to eliminate
 083 redundancy and refine artifacts in a single feed-forward pass. Specifically, we adopt CUT3R (Wang
 084 et al., 2025b) as the backbone to predict global pointmaps, per-pixel Gaussian latents, and associated
 085 saliency map. Unlike previous methods that fuse the overlapped regions, we devise a saliency-aware
 086 quantization mechanism to encode the pixel-wise dense Gaussians into compact Gaussian anchors
 087 by voxel aggregation. To address the inconsistencies, we utilize a lightweight point transformer that
 088 applies local attention to serialized anchors, effectively capturing 3D spatial relationships to resolve
 089 artifacts and inconsistencies. After the refinement, the Gaussian anchors are adaptively decoded
 090 into Gaussians based on the updated 3D saliency of each voxel, allowing adaptive Gaussian density
 091 control. Our model enables the extrapolation rendering ability for improved quality and robustness.

092 Extensive experiments show that our method significantly outperforms pose-free approaches and
 093 surpasses pose-required methods in depth estimation, while achieving competitive performance in
 094 novel view synthesis. It further achieves 50% to 90% redundancy reduction and online reconstruc-
 095 tion at more than 10 FPS. Moreover, our method exhibits strong generalization, outperforming pose-
 096 required methods in zero-shot settings. The contributions of this work are summarized as follows.

- 097 • We introduce SaLon3R for pose-free long-term generalizable reconstruction with structure-
 098 aware learning to eliminate redundancy and refine artifacts, enhancing the rendering quality
 099 and geometric consistency. To our best knowledge, SaLon3R is the first online generaliz-
 100 able GS method capable of reconstructing over 50 views at a speed exceeding 10 FPS.
- 101 • We present a saliency-aware Gaussian quantization mechanism to encode the dense pixel-
 102 wise Gaussians into sparse Gaussian anchors incrementally. A lightweight point trans-
 103 former is employed to achieve interaction between the surrounding Gaussians to learn the
 104 3D structure, allowing out-of-distribution prediction and artifacts refinement.
- 105 • Extensive experiments demonstrate our superior performance on long-term generalizable
 106 online reconstruction from unposed and uncalibrated images. With 50% to 90% redun-
 107 dancy removal, our SaLon3R significantly outperforms pose-required methods in depth
 estimation and achieves state-of-the-art results in novel view synthesis.

108

2 RELATED WORK

110 **Generalizable Novel View Synthesis.** NeRF (B. Mildenhall *et al.*, 2021) and 3DGS (Kerbl *et al.*,
 111 2023) have revolutionized the field of novel view synthesis and 3D reconstruction. Recent meth-
 112 ods empower 3DGS with feed-forward prediction to achieve generalizable view synthesis (Charatan
 113 *et al.*, 2024; Chen *et al.*, 2025; Smart *et al.*, 2024; Ye *et al.*, 2024; Zhang *et al.*, 2025). However,
 114 most existing methods focus on sparse view reconstruction, combining pixel-wise Gaussian rep-
 115 resentations from all context views as the global representation. However, 3DGS from different
 116 views cannot be directly merged due to the view-dependent rendering process, which may bring
 117 photometric and geometric inconsistencies and lead to performance degeneration. To address this,
 118 FreeSplat (Wang *et al.*, 2024c) introduces cross-view feature aggregation and pixel-wise triplet fu-
 119 sion to eliminate redundancy. PixelGaussian (Fei *et al.*, 2024) dynamically adjusts both the distri-
 120 bution and the number of Gaussians based on the geometric complexity. Long-LRM (Ziwen *et al.*,
 121 2024) adopts an efficient token-based strategy combined with Gaussian pruning to manage long
 122 sequential data. However, these methods mainly focus on fusing the overlapping regions of the
 123 pixel-wise Gaussians among views, which lack a structure-aware 3D understanding of the scene
 124 to adaptively control the global distribution of 3DGS. In contrast, our method can effectively re-
 125 duce the redundancy and mitigate the geometrical and photometric inconsistencies, offering a more
 126 promising, scalable, and efficient solution to handle unposed long-term images.

127 **3D Reconstruction Network.** Recent advances in learning-based 3D reconstruction pave the way
 128 for the joint estimation of 3D geometry and camera parameters in an end-to-end framework (Wang
 129 *et al.*, 2024b; Leroy *et al.*, 2024; Wang *et al.*, 2025b;a; Guo *et al.*, 2025). This could avoid the
 130 accumulated errors across decomposed multiple tasks in traditional reconstruction pipelines, such as
 131 feature extraction (DeTone *et al.*, 2018; Yi *et al.*, 2016), feature matching (Lindenberger *et al.*, 2023;
 132 Sarlin *et al.*, 2020), and SfM (J. Schonberger *et al.*, 2016; Wang *et al.*, 2024a). To address these
 133 limitations, DUS3R (Wang *et al.*, 2024b) proposes a unified framework that reformulates stereo
 134 reconstruction as a pointmap regression task, eliminating the reliance on explicit camera calibration.
 135 MAST3R (Leroy *et al.*, 2024) further enhances the matching accuracy by introducing a dense feature
 136 prediction head trained with an additional matching supervision loss. CUT3R (Wang *et al.*, 2025b)
 137 leverages latent states to generate metric point maps for each incoming image in an online manner.
 138 VGGT (Wang *et al.*, 2025a) proposes a feed-forward neural network to directly estimate the key
 139 3D attributes from hundreds of views. To achieve incremental Gaussian reconstruction, we adopt
 140 CUT3R (Wang *et al.*, 2025b) and VGGT (Wang *et al.*, 2025a) as reconstruction backbones to achieve
 141 both online and offline novel view synthesis from unposed, long-sequence image inputs.

142 **3DGS with Quantization.** To address the large amount of 3DGS, some quantization-based
 143 methods aim to compress the 3DGS representation for efficiency while preserving visual quality.
 144 CompGS (Liu *et al.*, 2024) introduces a hybrid primitive structure to improve compactness with a
 145 compression ratio up to 110x. Similarly, LightGaussian (Fan *et al.*, 2024) combines vector quanti-
 146 zation with knowledge distillation and pseudo-view augmentation, reducing model size. Scaffold-
 147 GS (Lu *et al.*, 2024) introduces an anchor-based approach, voxelizing scenes to create representative
 148 anchors that derive Gaussian attributes. Octree-GS (Ren *et al.*, 2024) utilizes an octree-based struc-
 149 ture to hierarchically partition 3D space. In our work, we introduce a saliency-aware Gaussian
 150 quantization mechanism, achieving 50% to 90% redundancy removal at a speed exceeding 10 FPS.

151

3 METHODOLOGY

152

3.1 OVERVIEW

153 Given a stream of N *unposed* and *uncalibrated* images as input, our SaLon3R aims to learn a feed-
 154 forward network to enable online reconstruction for 3D Gaussian Splatting $\mathcal{G} = \{\mu, \Sigma, \alpha, \text{sh}\}$ with
 155 mean μ , covariance Σ , opacity α , and spherical harmonics coefficients sh . Mathematically, we aim
 156 to learn the following online reconstruction:
 157

$$\mathcal{G}_t, \{\mathbf{K}_t, \mathbf{P}_t\}_{t=1}^N = \text{SaLon3R}(\mathbf{I}_t, \mathcal{G}_{t-1}), \quad (1)$$

158 where \mathbf{K}_t and \mathbf{P}_t indicate the estimated camera intrinsic and extrinsic. As shown in Fig. 2, given
 159 every single frame as input, the online reconstruction network predicts the corresponding pointmap
 160 in the world coordinate, per-pixel Gaussian latent, and saliency map (Sec. 3.2). To eliminate the
 161

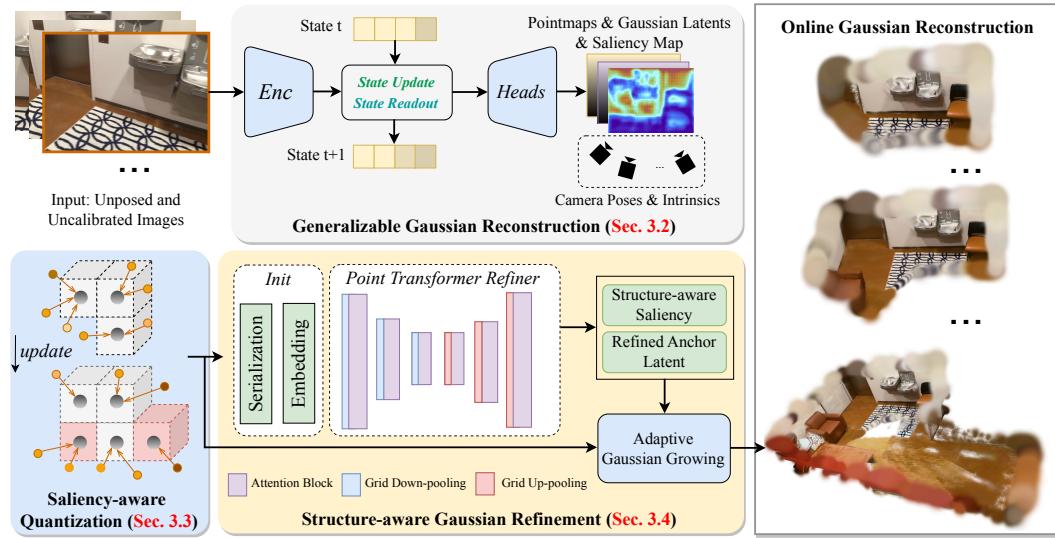


Figure 2: **Overview of our proposed SaLon3R.** Given every unposed and uncalibrated image as input, an incremental reconstruction network initially predicts the camera parameters $\mathbf{K}_t, \mathbf{P}_t$, pointmaps $\hat{\mathbf{X}}_t$, and pixel-wise Gaussian latents $\hat{\mathbf{G}}_t$. A saliency-aware quantization mechanism is designed to encode dense Gaussians into compact Gaussian anchors, reducing redundancy while maintaining geometric fidelity. A lightweight point transformer is adopted to enable structure-aware Gaussian refinement by capturing the spatial relationships to resolve the inconsistencies and enhance the extrapolation ability, achieving adaptive Gaussian growing with enhanced rendering quality.

redundancy of pixel-wise Gaussians, we devise a saliency-aware quantization mechanism to encode the pixel-wise dense Gaussians into compact Gaussian anchors by voxel downsampling (Sec. 3.3). To address the potential artifacts in reconstruction, we employ a lightweight point transformer to enable local attention of the serialized anchors to capture spatial relationships between anchors, allowing a structure-aware learning of the Gaussian field. Finally, we decode the anchors to Gaussians with adaptive density control, using the refined structure-aware saliency from the refiner (Sec. 3.4). To achieve online reconstruction, during inference, only part of the global Gaussian \mathcal{G}_{t-1} that are near the frustum of the current view are extracted to be merged with the current pixel-wise Gaussian latents as input for quantization and refinement to incrementally update to \mathcal{G}_t .

3.2 GENERALIZABLE GAUSSIAN RECONSTRUCTION

Preliminary of CUT3R (Wang et al., 2025b). Given a sequence of streaming unposed and uncalibrated images $\{\mathbf{I}_t\}_{t=1}^N$, we first encode the image to tokens \mathbf{F}_t via ViT encoder. For incremental reconstruction, the state is first initialized as learnable tokens to interact with image tokens by state-update and state-readout. Specifically, state-update utilizes input image tokens to update the state \mathbf{s}_{t-1} to \mathbf{s}_t , and state-readout aims to read the context from the state to provide historical spatial information. The two interactions are conducted with two interconnected transformer decoders:

$$[\mathbf{z}'_t, \mathbf{F}'_t], \mathbf{s}_t = \text{Decoders}([\mathbf{z}_t, \mathbf{F}_t], \mathbf{s}_{t-1}), \quad (2)$$

where \mathbf{z} refers to the pose token to learn motion information for pose estimation. Both image token \mathbf{F}_t and pose token \mathbf{z}_t are updated to \mathbf{F}'_t and \mathbf{z}'_t with updated context information.

Geometry and 3DGS Decoding. Subsequently, geometric results and camera poses are estimated from \mathbf{z}'_t and \mathbf{F}'_t to predict pointmaps and confidence maps. Similarly, we adopt the DPT-like architecture (Ranftl et al., 2021) as Gaussian head to predict the pixel-wise Gaussian latents $\hat{\mathbf{G}}_t \in \mathbb{R}^{H \times W \times C}$ with associated saliency map \mathbf{S}_t , which captures the geometric and photometric complexity of different regions spatially. Specifically, the predicted local pointmaps $\hat{\mathbf{X}}_t^{\text{self}}$ and camera poses $\hat{\mathbf{P}}_t$ are utilized to compute the pointmaps in world coordinate as Gaussian centers $\hat{\mathbf{X}}_t \in \mathbb{R}^{H \times W \times 3}$. Besides, we estimate focal length with the Weiszfeld algorithm (Plastria, 2011).

$$\hat{\mathbf{X}}_t^{\text{self}} = \text{Head}_{\text{pts}}(\mathbf{F}'_t), \quad \hat{\mathbf{G}}_t = \text{Head}_{\text{GS}}(\mathbf{F}'_t), \quad \hat{\mathbf{P}}_t = \text{Head}_{\text{pose}}(\mathbf{z}'_t). \quad (3)$$

216 3.3 SALIENCY-AWARE GAUSSIAN QUANTIZATION
217

218 Despite the advances of current generalizable methods, they are limited to the sparse view prediction
219 due to directly merging the pixel-wise Gaussians with view-dependent effects, leading to photometric
220 and geometric inconsistencies, slow inference speed, and large GPU allocation. While recent
221 methods (Wang et al., 2024c; Fei et al., 2024) mitigate the problem by fusing the overlapped region,
222 they fall short of a global 3D structure understanding to reduce redundancy while preserving geo-
223 metric fidelity. To address the issue, we devise a saliency-aware quantization for points aggregation,
224 allowing a significant redundancy removal while avoiding the information loss in salient regions,
225 *i.e.*, the region with rich textures and geometry complexity.

226 **Voxelization for Gaussian Centers.** Given every image as input, we build the anchors with the
227 predicted Gaussian latents $\hat{\mathbf{G}}_t$ and Gaussian centers $\hat{\mathbf{X}}_t$. Specifically, we first voxelize the scene
228 from the Gaussian centers $\hat{\mathbf{X}}_t$ and compute the voxel center \mathbf{v}_i for each point $\mathbf{x}_i \in \hat{\mathbf{X}}_t$: $\mathbf{v}_i = \left\lfloor \frac{\mathbf{x}_i}{\gamma} \right\rfloor \cdot \gamma$,
229 where $\lfloor \cdot \rfloor$ denotes the floor operation, and γ is the voxel size for grid resolution. From this operation,
230 we effectively reduce the redundancy by quantizing the pointmap to a set of voxels.
231

232 **Saliency-based Anchor Fusion.** After voxelization, we aggregate the points within the same voxel
233 to a single anchor representing the geometry and the Gaussian latent. Each point \mathbf{v}_i is associated
234 with a predicted global saliency score s_i to indicate its appearance and geometry complexity. It
235 is noted that the saliency estimation is learnable and only trained with rendering loss without any
236 ground truth. We use the saliency scores to compute a normalized weighted sum to fuse the anchors
237 for positions and latents, ensuring more salient points contribute more significantly to the fused
238 representation. We take the fused anchor position as the anchor Gaussian center μ_k^a . For a voxel
239 with L points, we fuse the anchor feature as follows:
240

$$241 \quad \mathbf{s}_k^a = \sum_{i=1}^L s_i, \quad \mu_k^a = \frac{\sum_{i=1}^L s_i \mathbf{v}_i}{\mathbf{s}_k^a}, \quad \mathbf{f}_k^a = \frac{\sum_{i=1}^L s_i \mathbf{f}_i}{\mathbf{s}_k^a}. \quad (4)$$

242 After the anchor fusion, a MLP head is employed to convert the anchor latent \mathbf{f}_k^a to anchor Gaussian
243 attributes as: $\{\Sigma_k^a, \alpha_k^a, \mathbf{sh}_k^a\} = \text{MLP}_{\text{GS}}(\mathbf{f}_k^a)$.
244

245 3.4 STRUCTURE-AWARE GAUSSIAN REFINEMENT
246

247 Given multiple views as input, directly fusing predicted Gaussians into a coherent scene represen-
248 tation is insufficient to address the photometric inconsistencies across views and 3D misalignments
249 arising from reconstruction and pose inaccuracies. Additionally, while current generalizable meth-
250 ods support effective interpolation to render novel views within the context views, it is also crucial
251 to enable the model to learn extrapolation prediction to enhance the robustness of extrapolated cam-
252 era views. To address this, we adopt Point Transformer V3 (PTV3) (Wu et al., 2024) as an effi-
253 cient structure-aware point cloud encoder to capture spatial relationships in predicted coarse anchor
254 Gaussians, eliminating the artifacts while enhancing the 3D consistency. By training on large-scale
255 datasets with out-of-distribution views, our model also enhances the extrapolation rendering ability
256 for better rendering quality and robustness.

257 **Point Cloud Serialization.** To enable efficient pointcloud processing, we first use pointcloud ser-
258 ialization to transform the unstructured point-based anchors to a structured format. Specifically, we
259 employ the serialized encoding to convert the point position to an integer reflecting the order in a
260 space-filling curve (*i.e.*, z-order curve and Hilbert curve). After serialization, the input points are
261 sparsified and encoded to features through an embedding layer.

262 **Point Transformer Refiner.** The point transformer follows the structure of U-Net, consisting of a
263 five-stage encoder with a downsampling grid pooling layer and attention blocks in each stage, and a
264 decoder with an upsampling grid pooling layer and attention blocks in each stage. For each attention
265 block, we apply patch attention to group points into non-overlapping patches, performing interaction
266 among patches for attention computation. Specifically, we concatenate the Gaussian attributes with
267 the anchor saliency as the feature to the input, and the refined anchor latent is predicted as:
268

$$269 \quad \mathbf{h}_k^a = \text{PointTransformer}(\{\mu_k^a, \Sigma_k^a, \alpha_k^a, \mathbf{sh}_k^a, \mathbf{s}_k^a\}). \quad (5)$$

270 **Adaptive Gaussian Growing.** To derive the Gaussians from anchor latents, we apply a growing
271 strategy to predict M Gaussians from each anchor. The residual primitives are decoded through an

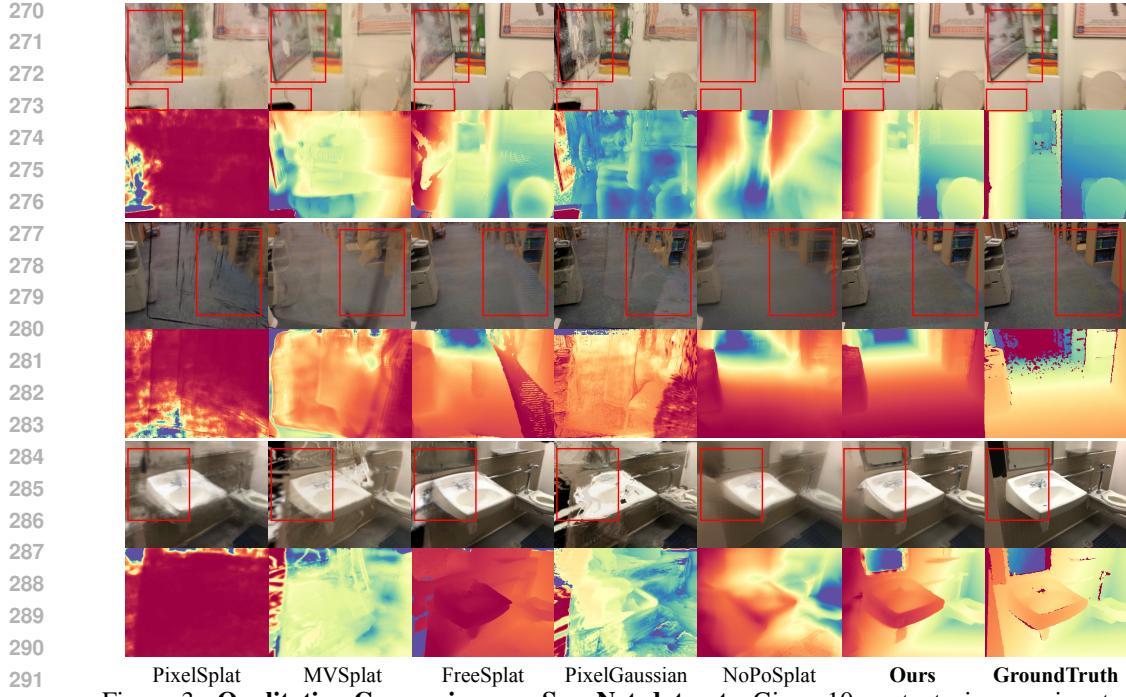


Figure 3: **Qualitative Comparison on ScanNet dataset.** Given 10 context views as input, we compare the novel view synthesis results for both rendered color and depth. We also provide more qualitative results in the supplementary material.

MLP head from the refined anchor latent \mathbf{h}_k^a :

$$\{\Delta\mu_{k,i}, \Delta\Sigma_{k,i}, \Delta\alpha_{k,i}, \Delta\mathbf{sh}_{k,i}, \Delta\mathbf{s}_{k,i}\}_{i=1}^M = \text{MLP}_{\text{grow}}(\mathbf{h}_k^a). \quad (6)$$

To achieve adaptive density control, our goal is to prune redundant Gaussians in regions with sparse textures and low geometric complexity, while allocating more Gaussians to recover high-frequency details and regions with large depth gradients. To this end, we leverage the refined saliency, which encodes structure-aware spatial information through the point transformer. Specifically, the saliency is fused to update the opacity, and a mask \mathbf{M}^r is derived to filter out redundant Gaussians.

$$\alpha_{k,i}^r = (\alpha_{k,i}^a + \Delta\alpha_{k,i}) \cdot (1 + \text{Tanh}(\mathbf{s}_{k,i}^a + \Delta\mathbf{s}_{k,i})), \quad \mathbf{M}_{k,i}^r = \alpha_{k,i}^r > \beta, \quad (7)$$

where β is the threshold for opacity pruning. We could obtain the refined Gaussian prediction \mathcal{G}^r :

$$\mathcal{G}^r = \bigcup_{k=1}^K \{(\mu_k^a + \Delta\mu_{k,i}, \Sigma_k^a + \Delta\Sigma_{k,i}, \alpha_{k,i}^r, \mathbf{sh}_k^a + \Delta\mathbf{sh}_{k,i}) \mid \mathbf{M}_{k,i}^r = 1, i = 1, \dots, M\}. \quad (8)$$

Training Objective. We fix the pretrained weights of the reconstruction network (except for Gaussian/saliency prediction) and train other modules. During training, we take randomly sampled views as context views and the others as target views from a sequence, to train our model for handling extrapolation views. We follow (Charatan et al., 2024) to use the perceptual loss and L1 loss as the photometric loss between the rendered target image and ground-truth images. Additionally, to refine the rendered depth smoothness, we apply an edge-aware depth regularization loss on the rendered depth to constrain the surface smoothness. The total loss is defined as:

$$\mathcal{L}_{\text{total}} = \lambda_1 \mathcal{L}_1 + \lambda_2 \mathcal{L}_{\text{LPIPS}} + \lambda_3 \mathcal{L}_{\text{smooth}}, \quad (9)$$

where $\lambda_1, \lambda_2, \lambda_3$ denote the weights for different losses, we set $\lambda_1 = 1.0, \lambda_2 = 0.05, \lambda_3 = 0.0005$.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train our method on the ScanNet (Dai et al., 2017) dataset, following FreeSplat (Wang et al., 2024c) to have 100 scenes for training and 8 scenes for testing. Unlike FreeSplat, we adopt a

324 Table 1: **Novel View Evaluation results on ScanNet (Dai et al., 2017).** PF: Pose-free methods.
325

326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	10 views			30 views			50 views		
			326 327 328 329 330 331 332 333 334 335								
✗	PixelSplat	17.77	0.572	0.505	-	-	-	-	-	-	-
	MVSplat	17.74	0.643	0.411	-	-	-	-	-	-	-
	FreeSplat	23.24	0.785	0.266	21.16	0.704	0.342	19.90	0.702	0.365	-
	PixelGaussian	17.41	0.601	0.429	-	-	-	-	-	-	-
✓	NoPoSplat	18.46	0.652	0.396	17.03	0.637	0.506	15.71	0.574	0.515	-
	FLARE	18.24	0.691	0.403	16.21	0.602	0.434	15.92	0.566	0.577	-
	Ours	22.54	0.750	0.337	20.47	0.679	0.384	19.78	0.682	0.392	-
	Ours_{w/ VGGT}	23.26	0.805	0.289	21.25	0.728	0.384	20.26	0.720	0.377	-

336 Table 2: **Novel view depth evaluation on ScanNet (Dai et al., 2017).** PF: Pose-free methods.
337

338 339 340 341 342 343 344 345 346 347	338 339 340 341 342 343 344 345 346 347	338 339 340 341 342 343 344 345 346 347	10 views			30 views			50 views		
			338 339 340 341 342 343 344 345 346 347								
✗	PixelSplat	0.680	0.715	1.15	5898	-	-	-	-	-	-
	MVSplat	0.331	0.811	2.11	1966	-	-	-	-	-	-
	FreeSplat	0.102	0.973	3.66	1082	0.411	0.894	2.87	2934	0.346	0.904
	PixelGaussian	0.392	0.766	3.05	2952	-	-	-	-	-	-
✓	NoPoSplat	0.390	0.794	3.59	1180	1.185	0.559	1.24	3801	1.716	0.463
	FLARE	0.487	0.802	3.32	1180	1.212	0.543	1.13	3801	1.814	0.489
	Ours	0.030	0.977	10.16	866	0.060	0.953	10.10	2073	0.068	0.972
	Ours_{w/ VGGT}	0.030	0.978	10.53	853	0.051	0.960	10.72	1972	0.062	0.974

348 more challenging setting by using sparsely overlapping input images, where the context view overlap
349 is limited to only 15%–50%. To validate the generalization ability, we further conduct the cross-
350 dataset evaluation on ScanNet++ (Yeshwanth et al., 2023) and Replica (Straub et al., 2019). For
351 fair comparison, we retrain all the methods on ScanNet (Dai et al., 2017) based on their pretrained
352 weights and adopt the same validation setting as our method.

353 **Evaluation Metrics.** We evaluate the performance of novel view synthesis with PSNR, SSIM (Z.
354 Wang et al., 2004), and LPIPS (R. Zhang et al., 2018). To evaluate the depth, we report two common
355 metrics in mono-depth estimation: Abs Rel and $\delta < 1.25$ (δ_1). The unit for the 3DGS number is K.
356

357 **Baselines.** To validate our performance, we extensively compare SaLon3R with previous feed-
358 forward methods: 1) Pose-required: PixelSplat (Charatan et al., 2024), MVSplat (Chen et al., 2025),
359 FreeSplat (Wang et al., 2024c), PixelGaussian (Fei et al., 2024), and 2) Pose-free: FLARE (Zhang
360 et al., 2025), NoPoSplat (Ye et al., 2024). Due to the out-of-memory problem from large 3DGS
361 occupation, PixelSplat (Charatan et al., 2024), MVSplat (Chen et al., 2025), and PixelGaussian (Fei
362 et al., 2024) fail to report the results on 30 views and 50 views.

363 **Implementation Details.** All experiments are implemented using Pytorch (Paszke et al., 2019)
364 on A100 NVIDIA GPU. We use the pretrained weights from CUT3R (Wang et al., 2025b) and
365 fix the scene reconstruction module during training. We employ the Adam optimizer (Kingma &
366 Ba, 2014) to train the point transformer, Head_{GS}, MLP_{GS}, and MLP_{grow}. We follow (Wang et al.,
367 2024c) to conduct experiments under resolution as 512×384 for the ScanNet (Dai et al., 2017) and
368 ScanNet++ (Yeshwanth et al., 2023) datasets. We adopt $M = 4$ for Gaussian growing.

369 4.2 MAIN RESULTS

370 **Novel View Synthesis.** We evaluate novel view synthesis using 10, 30, and 50 input views, with
371 results reported in Tab. 1 and detailed analysis in the appendix. Our method achieves competitive
372 performance with pose-required approaches and consistently outperforms pose-free methods. As
373 shown in Fig. 3, PixelSplat (Charatan et al., 2024) and MVSplat (Chen et al., 2025) suffer from
374 geometric and photometric inconsistencies, producing blurry RGB and inaccurate depth due to the
375 absence of Gaussian pruning. FreeSplat (Wang et al., 2024c) and PixelGaussian (Fei et al., 2024)
376 mitigate redundancy but only prune in overlapping regions, limiting structure-aware refinement and
377 generalization to extrapolated views. In contrast, our SaLon3R leverages structural priors from

Figure 4: **Visualization of Global Gaussian Splatting and Extrapolation Views.** We zoom in extrapolated views of the bed and desk for better comparison. It demonstrates our method outperforming the FreeSplat with more consistent 3D structure, resulting better rendering performance.

Table 3: **Zero-shot Novel View Synthesis on Replica (Straub et al., 2019) and ScanNet++ (Yeshwanth et al., 2023) from 10 views.**

PF Method	Replica					ScanNet++					
	PSNR↑	SSIM↑	LPIPS↓	Abs Rel ↓	$\delta_1 \uparrow$	PSNR↑	SSIM↑	LPIPS↓	Abs Rel ↓	$\delta_1 \uparrow$	
✗	PixelSplat	16.61	0.587	0.607	4.248	0.343	17.54	0.625	0.523	0.766	0.530
	MVSplat	16.85	0.642	0.436	2.119	0.610	17.01	0.606	0.446	0.875	0.577
	PixelGaussian	16.12	0.593	0.668	2.865	0.591	17.46	0.608	0.491	1.182	0.574
	FreeSplat	18.92	0.719	0.369	1.485	0.790	22.56	0.769	0.258	0.350	0.828
✓	NoPoSplat	16.72	0.674	0.446	1.723	0.792	17.02	0.667	0.546	0.658	0.647
	FLARE	16.75	0.667	0.431	1.497	0.710	16.91	0.659	0.471	0.696	0.609
	Ours	20.79	0.683	0.312	0.712	0.917	22.08	0.694	0.372	0.104	0.921
	Ours w/ VGGT	21.05	0.728	0.301	0.704	0.925	22.40	0.743	0.346	0.095	0.931

large-scale data to refine 3D inconsistencies, enabling robust free-view rendering with floater removal, fewer Gaussians, and faster reconstruction, as illustrated in Fig. 4.

Depth Evaluation. We report the depth evaluation results of novel views in Tab. 2. Even without pose or intrinsic as input, our SaLon3R significantly outperforms previous generalizable methods in depth estimation. Fig. 3 shows that our rendered depth achieves smooth and accurate depth results with rich details, eliminating the artifacts arising from overfitting or 3D inconsistencies.

Zero-shot Evaluation. To validate the generalization ability, we conduct the zero-shot test on Replica (Straub et al., 2019) and ScanNet++ (Yeshwanth et al., 2023) without further training. The results show that our method outperforms the previous methods in both rendering quality and depth estimation performance, demonstrating our generalization ability to cross datasets.

4.3 ABLATION STUDY

Effect of integrating different backbones. We conduct an ablation study to investigate the generalization ability of our method to different backbones. Specifically, we take VGGT (Wang et al., 2025a) as the backbone with the fixed pretrained weight, training other modules (Gaussian Head and Refinement network) in the same setup. As shown in Tab. 1, compared to CUT3R, VGGT performs inference over all input images in an offline manner, achieving improved geometry quality, pose accuracy, and efficiency. This leads to consistent performance gains. These results highlight the strong generalization ability of our method, which can be seamlessly integrated with diverse backbones for generalizable GS reconstruction.

Effect of different components. We conducted an ablation study to evaluate the contribution of different components (Tab. 5). Starting with CUT3R and a Gaussian head as the baseline, we observed excessive Gaussians and rendering artifacts from retaining all pixel-wise Gaussians. Incorporating the quantization scheme effectively reduces redundancy but introduces quality degradation due to

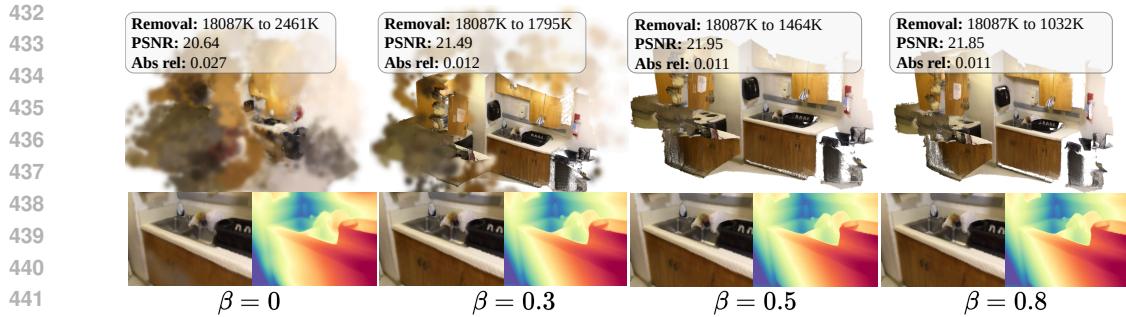


Figure 5: **Effects of Adaptive Gaussian Growing.** Applying β from 0 to 0.5 removes most redundant Gaussians and significantly improves the performance. A larger $\beta = 0.8$ could further remove redundant Gaussians with little degradation.

Table 4: **Ablation study on the Number of Context Views.** The context views range from 10 to 200 in the office02 scene on Replica.

Views	PSNR↑	LPIPS↓	Abs Rel ↓	FPS ↑	GS (K)↓
10	25.13	0.429	0.069	10.23	939
30	24.63	0.317	0.057	9.85	2138
50	23.70	0.305	0.061	9.76	2905
100	23.05	0.321	0.069	9.72	3286
200	23.24	0.318	0.066	9.53	3397

Table 5: **Ablation Study for the effects of different components on ScanNet.**

Method	PSNR ↑	LPIPS ↓	Abs Rel ↓	GS(K) ↓
Baseline	20.78	0.429	0.103	1966
+ Quant.	16.95	0.459	0.073	616
+ Sal. Quant.	18.06	0.436	0.065	616
+ GS Refiner	21.65	0.358	0.054	616
+ Adapt. Grow	22.45	0.347	0.078	866
+ \mathcal{L}_{smooth} (Ours)	22.54	0.337	0.030	866

downsampling. Guided by learned saliency, important regions are preserved and fused, improving rendering quality. Adding a point transformer further refines Gaussian anchors by exploiting structural priors, while our adaptive growing mechanism optimizes Gaussian distribution with structure-aware saliency. Finally, edge-aware regularization enforces local smoothness, yielding additional gains in both rendering and reconstruction quality.

Effect of view numbers. We conduct an ablation study to investigate the impact of varying the number of context views on SaLon3R’s performance. For a 300-frame scene segment from Replica (Straub et al., 2019), we fixed 1/10 of the frames as target views and uniformly sampled different numbers of context views. As shown in Tab. 4, our method maintains stable processing speed and Gaussian count even with more context views, showing its suitability for long-term online streaming. Increasing context views from 10 to 30 improves depth estimation and LPIPS by leveraging richer input, while PSNR decreases slightly under denser inputs due to photometric inconsistencies but remains stable beyond 50 views.

Effect of adaptive Gaussian growing. We conduct an ablation study by varying the opacity threshold β for adaptive Gaussian growing to enable the density control. As illustrated in Fig. 5, when increasing β , it is observed that the background Gaussians are eliminated to decrease, which shows the effectiveness of our saliency-aware mechanism to maintain the region with complex geometry and textures. Therefore, the PSNR and Abs rel are improved by eliminating the noise using β . However, when setting the threshold to 0.8, there is a little drop in PSNR, indicating that choosing an appropriate β could help improve the rendering quality while keeping in small amount of Gaussians.

5 CONCLUSION

In this paper, we propose SaLon3R, a novel framework for structure-aware, long-term 3DGS reconstruction. Our method enables efficient and structure-aware scene representation learning in a fully feed-forward manner, without requiring any camera parameters as input. Specifically, we present a saliency-aware quantization scheme for Gaussian primitives using sparse anchors. To further refine the Gaussian representations and mitigate artifacts, we incorporate a lightweight point transformer to facilitate local attention across serialized anchors. The proposed SaLon3R framework supports online incremental reconstruction from streaming image sequences and exhibits superior performance in extensive evaluations. Since our method is designed for static reconstruction, its performance may degrade in dynamic scenes. As future work, we plan to extend it to dynamic, generalizable Gaussian reconstruction for globally consistent 4D reconstruction.

486 REFERENCES
487

488 A. Chen *et al.* Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In
489 *ICCV*, pp. 14124–14133, 2021.

490 B. Mildenhall *et al.* Nerf: Representing scenes as neural radiance fields for view synthesis. *Commun. ACM*, 65(1):99–106, 2021.

491

492 David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian
493 splats from image pairs for scalable generalizable 3d reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19457–19467, 2024.

494

495

496 Yu Chen and Gim Hee Lee. Dbarf: Deep bundle-adjusting generalizable neural radiance fields.
497 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
498 24–34, 2023.

499

500 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
501 Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
502 images. In *European Conference on Computer Vision*, pp. 370–386. Springer, 2025.

503

504 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
505 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

506

507 Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest
508 point detection and description. In *Proceedings of the IEEE conference on computer vision and*
509 *pattern recognition workshops*, pp. 224–236, 2018.

510

511 Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang, et al. Lightgaus-
512 sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. *Advances in neural*
513 *information processing systems*, 37:140138–140158, 2024.

514

515 Xin Fei, Wenzhao Zheng, Yueqi Duan, Wei Zhan, Masayoshi Tomizuka, Kurt Keutzer, and Jiwen
516 Lu. Pixelgaussian: Generalizable 3d gaussian reconstruction from arbitrary views. *arXiv preprint*
517 *arXiv:2410.18979*, 2024.

518

519 Jiaxin Guo, Jiangliu Wang, Ruofeng Wei, Di Kang, Qi Dou, and Yun-hui Liu. Uc-nerf: Uncertainty-
520 aware conditional neural radiance fields from endoscopic sparse views. *IEEE Transactions on*
521 *Medical Imaging*, pp. 1–1, 2024. doi: 10.1109/TMI.2024.3496558.

522

523 Jiaxin Guo, Wenzhen Dong, Tianyu Huang, Hao Ding, Ziyi Wang, Haomin Kuang, Qi Dou, and
524 Yun-Hui Liu. Endo3r: Unified online reconstruction from dynamic monocular endoscopic video.
525 *arXiv preprint arXiv:2504.03198*, 2025.

526

527 Sunghwan Hong, Jaewoo Jung, Heeseong Shin, Jiaolong Yang, Seungryong Kim, and Chong Luo.
528 Unifying correspondence pose and nerf for generalized pose-free novel view synthesis. In *Pro-
529 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20196–
530 20206, 2024.

531

532 J. Schonberger *et al.* Structure-from-motion revisited. In *ICCV*, pp. 4104–4113, 2016.

533

534 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
535 ting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4), 2023.

536

537 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
538 *arXiv:1412.6980*, 2014.

539

540 Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r.
541 *arXiv preprint arXiv:2406.09756*, 2024.

542

543 Hao Li, Yuanyuan Gao, Chenming Wu, Dingwen Zhang, Yalun Dai, Chen Zhao, Haocheng Feng,
544 Errui Ding, Jingdong Wang, and Junwei Han. Grrt: Towards pose-free generalizable 3d gaussian
545 splatting in real-time. *CoRR*, 2024.

540 Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Pollefeys. Lightglue: Local feature matching
 541 at light speed. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 542 pp. 17627–17638, 2023.

543

544 Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
 545 3d scene representation via compressed gaussian splatting. In *Proceedings of the 32nd ACM*
 546 *International Conference on Multimedia*, pp. 2936–2944, 2024.

547 Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
 548 Structured 3d gaussians for view-adaptive rendering. In *Proceedings of the IEEE/CVF Conference*
 549 *on Computer Vision and Pattern Recognition*, pp. 20654–20664, 2024.

550

551 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 552 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 553 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

554 Frank Plastria. The weiszfeld algorithm: proof, amendments, and extensions. *Foundations of loca-*
 555 *tion analysis*, pp. 357–389, 2011.

556

557 R. Zhang *et al.* The unreasonable effectiveness of deep features as a perceptual metric. In *CVPR*,
 558 pp. 586–595, 2018.

559

560 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 561 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188,
 562 2021.

563

564 Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-
 565 gs: Towards consistent real-time rendering with lod-structured 3d gaussians. *arXiv preprint*
 566 *arXiv:2403.17898*, 2024.

567

568 Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
 569 Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF confer-*
 570 *ence on computer vision and pattern recognition*, pp. 4938–4947, 2020.

571

572 Brandon Smart, Chuanxia Zheng, Iro Laina, and Victor Adrian Prisacariu. Splatt3r: Zero-shot
 573 gaussian splatting from uncalibrated image pairs. *arXiv preprint arXiv:2408.13912*, 2024.

574

575 Cameron Smith, Yilun Du, Ayush Tewari, and Vincent Sitzmann. Flowcam: training general-
 576 izable 3d radiance fields without camera poses via pixel-aligned scene flow. *arXiv preprint*
 577 *arXiv:2306.00180*, 2023.

578

579 Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J Engel,
 580 Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. The replica dataset: A digital replica of indoor
 581 spaces. *arXiv preprint arXiv:1906.05797*, 2019.

582

583 Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual geometry
 584 grounded deep structure from motion. In *Proceedings of the IEEE/CVF Conference on Computer*
 585 *Vision and Pattern Recognition*, pp. 21686–21697, 2024a.

586

587 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 588 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision*
 589 *and Pattern Recognition Conference*, pp. 5294–5306, 2025a.

590

591 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Con-
 592 tinuous 3d perception model with persistent state. *arXiv preprint arXiv:2501.12387*, 2025b.

593

594 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 595 ometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 596 *and Pattern Recognition*, pp. 20697–20709, 2024b.

597

598 Yunsong Wang, Tianxin Huang, Hanlin Chen, and Gim Hee Lee. Freesplat: Generalizable 3d
 599 gaussian splatting towards free view synthesis of indoor scenes. *Advances in Neural Information*
 600 *Processing Systems*, 37:107326–107349, 2024c.

594 Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong
 595 He, and Hengshuang Zhao. Point transformer v3: Simpler faster stronger. In *Proceedings of the*
 596 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4840–4851, 2024.
 597

598 Botao Ye, Sifei Liu, Haofei Xu, Xuetong Li, Marc Pollefeys, Ming-Hsuan Yang, and Songyou Peng.
 599 No pose, no problem: Surprisingly simple 3d gaussian splats from sparse unposed images. *arXiv*
 600 *preprint arXiv:2410.24207*, 2024.

601 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-
 602 fidelity dataset of 3d indoor scenes. In *Proceedings of the IEEE/CVF International Conference*
 603 *on Computer Vision*, pp. 12–22, 2023.

604 Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. Lift: Learned invariant feature
 605 transform. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
 606 lands, October 11–14, 2016, Proceedings, Part VI 14*, pp. 467–483. Springer, 2016.

607

608 Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
 609 one or few images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 610 *recognition*, pp. 4578–4587, 2021.

611 Z. Wang *et al.* Image quality assessment: from error visibility to structural similarity. *IEEE Trans.
 612 Image Process.*, 13(4):600–612, 2004.

613

614 Shangzhan Zhang, Jianyuan Wang, Yinghao Xu, Nan Xue, Christian Rupprecht, Xiaowei Zhou,
 615 Yujun Shen, and Gordon Wetzstein. Flare: Feed-forward geometry, appearance and camera esti-
 616 mation from uncalibrated sparse views. *arXiv preprint arXiv:2502.12138*, 2025.

617 Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yicong Hong, Li Fuxin, and Zexiang Xu.
 618 Long-lrm: Long-sequence large reconstruction model for wide-coverage gaussian splats. *arXiv*
 619 *preprint arXiv:2410.12781*, 2024.

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

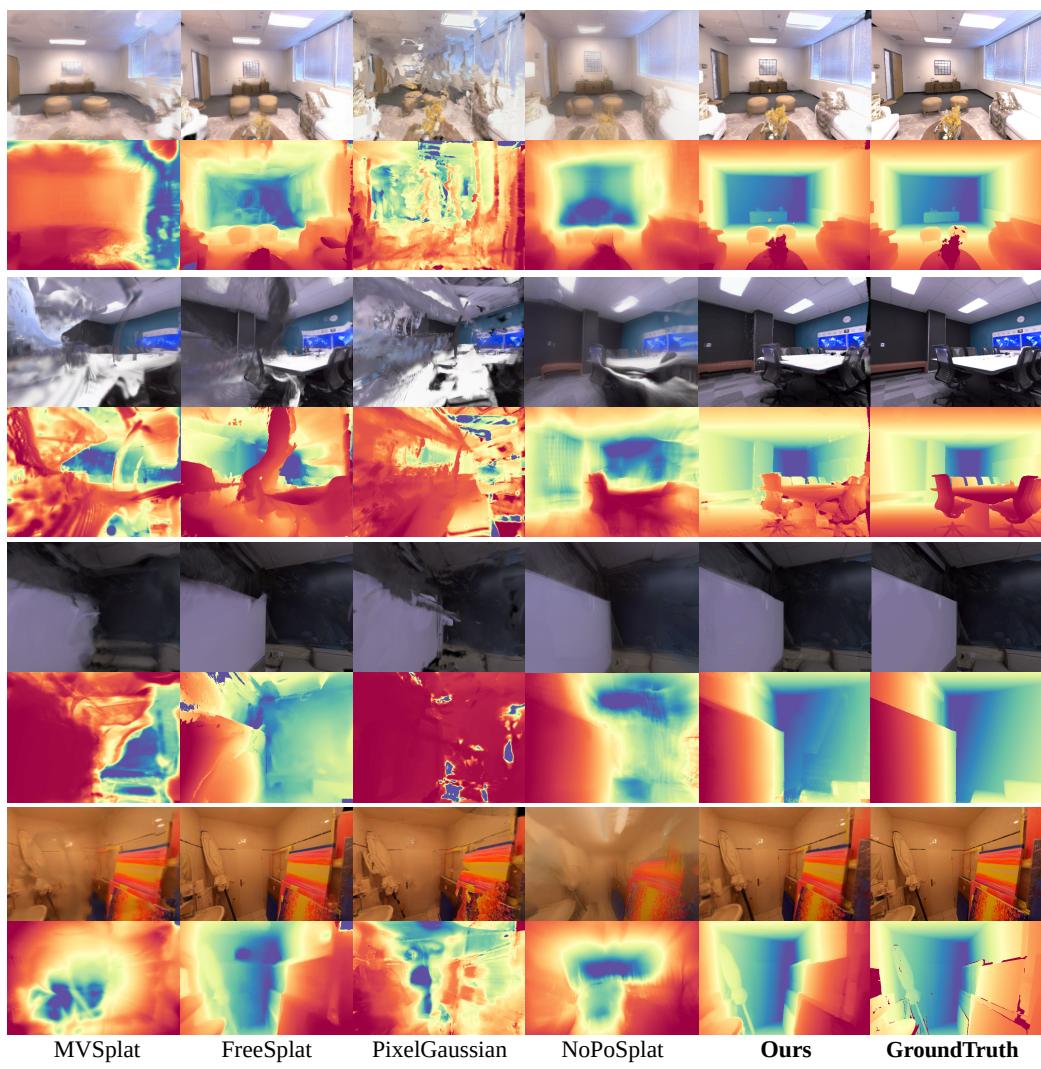
646

647

648 **A APPENDIX**649 **A.1 EXPERIMENTAL ENVIRONMENT**650 We conduct all the experiments on NVIDIA RTX A100 GPU. The experimental environment is
651 PyTorch 2.5.1 and CUDA 12.6.652 **A.2 ADDITIONAL IMPLEMENTATION DETAILS**653 During training, we fix the weights of the CUT3R model, training the point transformer model and
654 other heads. We set the resolution of the grid sampling to be 0.005 for ScanNet (Dai et al., 2017)
655 and 0.01 for the Replica (Straub et al., 2019) dataset. During training, we set an initial learning
656 rate of $1e^{-5}$ and apply linear warmup with cosine decay. We set the batch size as 1 and the input
657 view number $N = 8$, among which we randomly sample 2 – 6 views as context views and the rest
658 as target views. During evaluation, we take all the images (target and context) as input to CUT3R,
659 using the estimated poses and intrinsic parameters to render the target view with the Gaussians built
660 from context views.661 **A.3 ADDITIONAL EXPERIMENTS**662 **Effects of Quantization Resolutions.** To investigate the effects of different resolutions, we conduct
663 the ablation study by varying the resolutions from 0 to 0.02, where 0 indicates that no quantization
664 is conducted. As reported in Tab. 6, the reconstruction efficiency shows an increasing trend as the
665 resolution increases. Due to the information loss during the quantization, the performance of novel
666 view synthesis in both RGB and depth will be affected for resolutions over 0.015. Therefore, we
667 choose 0.01 as the resolution for Replica (Straub et al., 2019) Dataset to balance the efficiency and
668 effectiveness.669 **Table 6: Ablation study on the Resolution of Quantization.** We control the resolution from 0 (no
670 quantization) to 0.02 from 30 views in the office 02 scene on Replica (Straub et al., 2019).
671

Resolution	PSNR↑	SSIM↑	LPIPS↓	Abs Rel ↓	δ_1 ↑	FPS ↑	GS (K)↓
0	24.43	0.829	0.270	0.048	0.990	7.56	5629
0.005	24.48	0.832	0.264	0.049	0.990	8.95	4169
0.01	25.04	0.825	0.331	0.050	0.988	9.85	2005
0.015	24.84	0.772	0.436	0.064	0.972	10.03	942
0.02	24.53	0.758	0.470	0.092	0.953	10.15	506

672 **Visualization of the Predicted saliency.** As shown in Fig. 6, we visualize the refined saliency to
673 investigate the effects. The saliency map is rendered following alpha blending. It is observed that
674 the refined saliency shows higher value and dense distribution for the region with more complex
675 geometry and appearance, *i.e.*, the boundary of objects, regions with texture. In contrast, region
676 with simple texture and flat surfaces shows smaller saliency values and sparse distribution.
677678 **Figure 6: Visualization of the rendered 3D Saliency.**679 **Additional Qualitative Comparison.** We report additional qualitative results of the reconstructed
680 3DGS and extrapolated view comparison in Fig. 8. It showcases that our method outperforms
681

Figure 7: **Additional Qualitative Results of Novel View Synthesis** with Rendered RGB and Depth.

FreeSplat (Wang et al., 2024c) at the global reconstructed 3DGS and the out-of-distribution views. Although FreeSplat (Wang et al., 2024c) yields good results in view interpolation (see Tab. 1), the poor reconstructed 3D structure causes bad performance in view extrapolation (see Fig. 4 and Fig. 8). In contrast, our structure-aware approach achieves superior 3D reconstruction results, performing well in both interpolation and extrapolation view synthesis. Additional qualitative results of novel view synthesis are shown in Fig. 7, comparing our method with the previous baselines to test the zero-shot performance.

Table 7: **Novel view depth evaluation on ScanNet.** PF: Pose-free methods.

PF Method	30 views						50 views					
	Abs Rel↓	Sq Rel↓	RMSE↓	RMSE log↓	$\delta_1 \uparrow$	Abs Rel↓	Sq Rel↓	RMSE↓	RMSE log↓	$\delta_1 \uparrow$		
✗ FreeSplat	0.411	0.760	0.929	0.436	0.894	0.346	0.443	0.821	0.391	0.904		
✗ NoPoSplat	1.185	0.935	1.205	0.803	0.559	1.716	4.801	1.359	1.103	0.463		
✓ Ours	0.060	0.017	0.171	0.135	0.953	0.068	0.045	0.232	0.142	0.972		

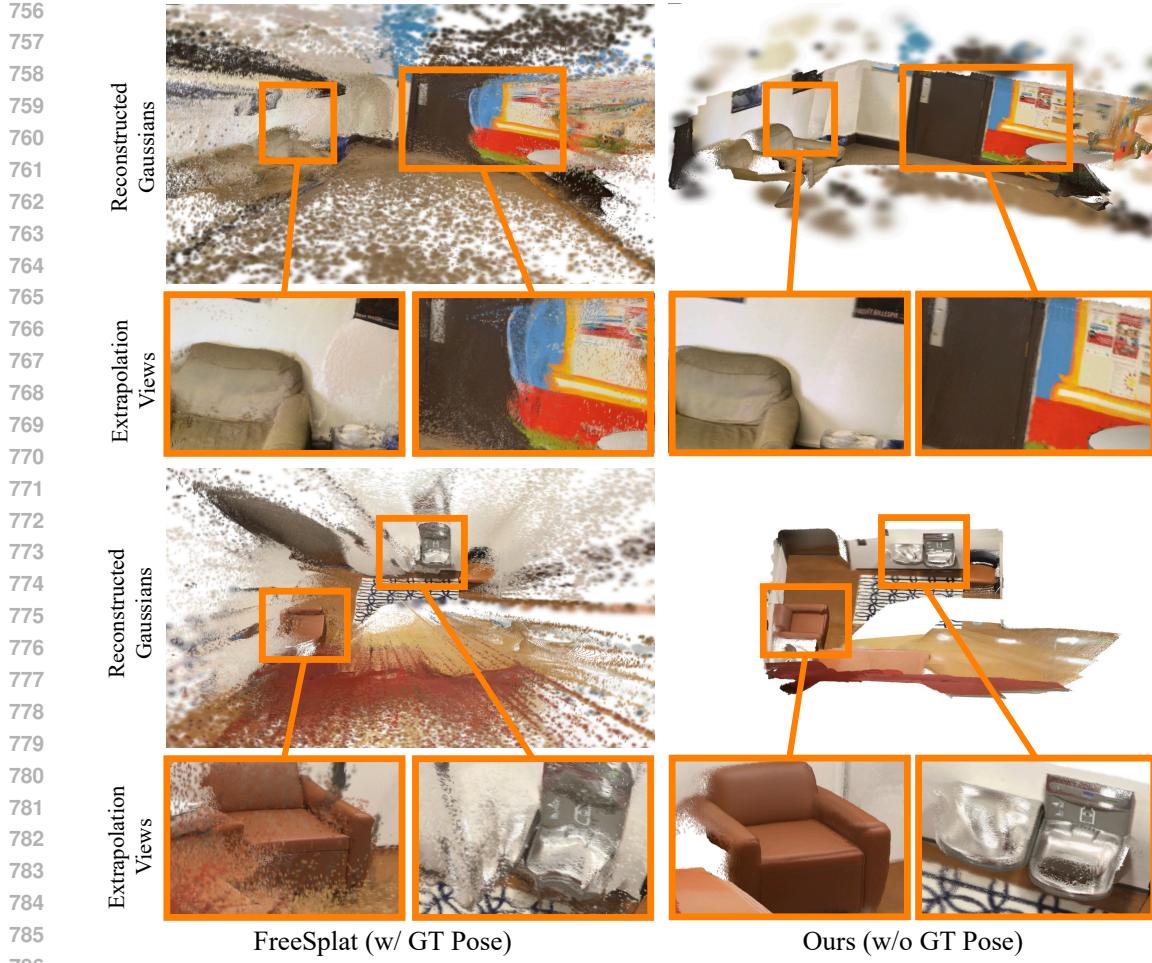


Figure 8: **Additional Visualization of Global Gaussian Splatting and Extrapolation Views.** We zoom in extrapolated views for better comparison with FreeSplat (Wang et al., 2024c) (w/ GT pose).

Table 8: **Novel view depth evaluation on ScanNet.** PF refers to Pose-free methods.

PF Method	10 views				
	Abs Rel \downarrow	Sq Rel \downarrow	RMSE \downarrow	RMSE log \downarrow	$\delta_1 \uparrow$
PixelSplat	0.680	1.391	0.369	0.548	0.715
MVSplat	0.331	0.413	0.351	0.491	0.811
✗ FreeSplat	0.102	0.276	0.256	0.165	0.973
PixelGaussian	0.392	0.307	0.306	0.617	0.766
✓ NoPoSplat	0.390	0.303	0.152	0.686	0.794
Ours	0.030	0.017	0.149	0.084	0.977

Additional Quantitative Results on Depth Evaluation. We report the full depth comparison results in Tab. 7, Tab. 8, and Tab. 9. The results show that our method significantly outperforms the previous methods.

A.4 LIMITATIONS AND FUTURE WORKS

Despite the effectiveness of our method, the major limitation exists in the accuracy of the predicted depth and poses from the 3D reconstruction network. Given over long frames as input, due to the lack of global alignment, CUT3R is prone to drift in estimated camera poses and reconstructed pointmaps, leading to view misalignment and floating points. This will inevitably influence the

810
811 Table 9: **Novel view depth evaluation on Replica (Straub et al., 2019) and Scannet++ (Yesh-
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863**

810
811 **Scannet++** (Yesh-
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 9: **Novel view depth evaluation on Replica (Straub et al., 2019) and Scannet++ (Yesh-
wanth et al., 2023).** PF: Pose-free methods.

PF Method	Replica						Scannet++					
	Abs Rel↓	Sq Rel↓	RMSE↓	RMSE log↓	$\delta_1 \uparrow$	Abs Rel↓	Sq Rel↓	RMSE↓	RMSE log↓	$\delta_1 \uparrow$		
PixelSplat	4.248	2.178	0.988	0.716	0.343	0.766	9.338	2.608	0.785	0.530		
MVSplat	2.119	1.731	0.566	0.904	0.610	0.875	2.383	1.546	1.104	0.577		
✗ FreeSplat	1.485	0.470	0.383	0.373	0.790	0.350	1.400	0.954	0.360	0.828		
PixelGaussian	2.865	1.785	0.636	1.016	0.591	1.182	1.924	1.965	1.461	0.574		
✓ NoPoSplat	1.723	0.794	0.507	0.586	0.792	0.658	0.894	1.095	0.696	0.647		
Ours	0.712	0.134	0.258	0.159	0.917	0.104	0.081	0.176	0.325	0.921		

rendering performance by introducing artifacts. To address this, we propose processing frames with intervals or employing the keyframe selection to manage large-scale scene reconstruction effectively, ensuring compatibility with the view constraint while maintaining reconstruction quality. Furthermore, we could incorporate bundle adjustment to globally align the long sequences. This could effectively help enhance the pose estimation accuracy and 3D consistency across views, making our method robust for complex, multi-room scenarios.

Additionally, our work is designed for static reconstruction and may get degraded in a dynamic scene. Extending our work to the dynamic generalizable Gaussian reconstruction is also an interesting future direction. A core challenge lies in enabling the backbone model to track the point-wise 3D motion and to accurately identify the dynamic and static regions. This is essential to help remove the redundancy and artifacts induced by temporally accumulated errors. For achieving globally consistent 4D reconstruction, static regions could be incrementally fused with our saliency-aware quantization and refined over time with the point transformer, while dynamic regions require continuous temporal updates from predicted motion. Additionally, modeling temporal residuals in appearance will be crucial for capturing photometric changes and ensuring coherent rendering in dynamic scenes.

B LLM USAGE

We used a large language model (LLM) to assist with writing tasks, specifically to polish language and enhance readability. The authors take full responsibility for the scientific content, research, and analysis, and the LLM was not used for generating scientific ideas or designing experiments.