ADAPTIVE DECENTRALIZED FEDERATED LEARNING FOR ROBUST OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

In decentralized federated learning (DFL), the presence of abnormal clients, often caused by noisy or poisoned data, can significantly disrupt the learning process and degrade the overall robustness of the model. Previous methods on this issue often require a sufficiently large number of normal neighboring clients or prior knowledge of reliable clients, which reduces the practical applicability of DFL. To address these limitations, we develop here a novel adaptive DFL (aDFL) approach for robust estimation. The key idea is to adaptively adjust the learning rates of clients. By assigning smaller rates to suspicious clients and larger rates to normal clients, aDFL mitigates the negative impact of abnormal clients on the global model in a fully adaptive way. Our theory does not put any stringent conditions on neighboring nodes and requires no prior knowledge. A rigorous convergence analysis is provided to guarantee the oracle property of aDFL. Extensive numerical experiments demonstrate the superior performance of the aDFL method.

1 Introduction

Motivation. Decentralized federated learning (DFL) is an effective solution to handle large-scale datasets by distributing computation across multiple clients (Beltrán et al., 2023) in a decentralized way. Different from centralized federated learning (CFL), DFL eliminates the need for a central server and enables clients to collaborate in a peer-to-peer manner. The decentralized structure improves scalability, robustness, and privacy preservation, making it an appealing solution for large-scale data analysis (Li et al., 2021). Nevertheless, DFL also faces a serious challenge. DFL systems may involve unreliable or undesirable clients that degrade the overall performance of the learning process. One typical example is Byzantine failure, which refers to transmitting incorrect information to the whole network (Blanchard et al., 2017; Yin et al., 2018; Tu et al., 2021b). In addition, some clients may hold low-quality or even corrupted data, contain information irrelevant to the target task, exhibit severe distribution shifts, or suffer from unstable communication and computation. These issues could negatively impact the training process by introducing noise or bias into the model updates, which is especially problematic for DFL, as the lack of a central server makes it more difficult to detect and correct abnormal behaviors (Wu et al., 2023b; Zhang & Wang, 2024).

Challenge. To address the abnormal clients in DFL, various robust learning methods have been proposed; see Section 2 for a more detailed discussion. Nevertheless, existing methods suffer from at least one of the following two limitations. First, many existing methods require for each client a sufficiently large number of normal neighborhood clients. Otherwise, a robust and reliable summary (e.g., median) of neighborhood gradients/estimators cannot be obtained (Yang & Bajwa, 2019; Su & Vaidya, 2020; Fang et al., 2022). Second, many other methods require prior knowledge of reliable clients, which is an even more stringent condition for most practical applications (Peng et al., 2023; Wu et al., 2023b; Zhang & Wang, 2024).

Contributions. To solve those aforementioned problems, we propose here an adaptive decentralized federated learning (aDFL) approach for robust estimation. The key idea of aDFL is to dynamically adjust the learning rates of individual clients based on their behavior in the DFL process. Intuitively, those clients with suspicious behavior in their estimated gradients should be given smaller learning rates. In contrast, larger learning rates should be given to those clients who behave more normally in their gradients. The consequence is that the negative effect of those abnormal clients can be well controlled and minimized in a fully automatic way. Compared with existing methods, our

theory does not put any stringent conditions on neighboring clients and requires no prior knowledge. In summary, we make the following contributions in this work. **Methodologically,** we develop here a novel aDFL approach for robust learning. This method adapts to diverse DFL settings and data scenarios. Additionally, it does not rely on the assumption of homogeneous data distribution across clients, which overcomes a key limitation of many existing approaches (Yang & Bajwa, 2019; Fang et al., 2022; Peng et al., 2023; Qian et al., 2024) and improves the applicability to real-world heterogeneous scenarios. **Theoretically,** the convergence rate of the aDFL algorithm is rigorously analyzed. Our results show that, aDFL can achieve the oracle property (i.e., the same asymptotic efficiency as the estimator computed by normal clients only) under appropriate regularity conditions.

2 RELATED WORK

Decentralized federated learning. The literature about DFL can be classified into two categories. The first one is *decentralized consensus optimization methods*, which enforce consensus among neighboring estimators to ensure global consensus. These methods include proximal gradient (Wu et al., 2017; Lü et al., 2020), ADMM (Li et al., 2019b; Liu et al., 2022b) and gradient tracking (Xu et al., 2017; Tang et al., 2018; Li et al., 2019d; Song et al., 2022a;b). The second one is *decentralized gradient descent methods*, which mainly apply (stochastic) gradient descent after obtaining averaged neighborhood estimators. Typical works include Jiang et al. (2017), Sirb & Ye (2018), Li et al. (2019c), Xu et al. (2021), Liu et al. (2022a), and Wu et al. (2023a). More discussions can be found in Beltrán et al. (2023). Note that the proposed aDFL method falls under the second category but can be extended to the first category without difficulty; see Appendix A.4 for detailed discussion.

Robust centralized learning. It focuses on minimizing the impact of abnormal participants in a centralized distributed machine learning system (Blanchard et al., 2017; Chen et al., 2017; Yin et al., 2018). The literature in this regard can be classified into two approaches. The first approach aims to mitigate the impact of abnormal clients by designing robust aggregation rules, which are closely related to the robust estimation techniques in statistics (Shi et al., 2022). The most typical technique is to replace the sample mean of the local gradients/estimators by its robust counterpart, such as the trimmed mean (Yin et al., 2018), median (Chen et al., 2017; Yin et al., 2019), and quantile (Tu et al., 2021a). Another approach tries to first identify the abnormal clients by analyzing and detecting abnormal patterns, and then exclude them from the subsequent updating process. The methods include discrepancy comparison (Blanchard et al., 2017), reputation scores (Xia et al., 2019; Xie et al., 2019), and anomaly detection (Li et al., 2019a). Notably, this line of work is also closely related to outlier detection in statistical domain, where various methods have been developed to detect abnormal samples (Filzmoser et al., 2008; Zimek et al., 2012; Ro et al., 2015). One representative work in the federated learning regime is Qian et al. (2024), which leverages false discovery rate (FDR) control and sample splitting techniques to identify abnormal clients.

Robust decentralized learning. In DFL, the absence of a central server makes it significantly more difficult to identify and mitigate the influence of abnormal clients. As a result, most existing work on robust DFL extends techniques originally developed for CFL, but often at the cost of stronger assumptions, such as requiring enough trustworthy neighbors. A common line of work includes various robust aggregation rules, such as clipping and trimming (Yang & Bajwa, 2019; He et al., 2022; Su & Vaidya, 2020). Various variance reduction techniques are also used, including the TV-norm regularization and related techniques (Peng et al., 2021; 2023; Hu et al., 2023). Another widely used idea is to evaluate the consistency or credibility of each client by comparing its model with those of its neighbors, and then down-weight or exclude those that behave abnormally. This leads to techniques such as performance-based filtering (Guo et al., 2021; Elkordy et al., 2022) and credibility-aware aggregation (Hou et al., 2022). These methods rely on local information exchange and are tailored to the decentralized setting where global oversight is unavailable.

3 STANDARD DECENTRALIZED FEDERATED LEARNING

3.1 PROBLEM DESCRIPTION

We begin by introducing the model setup and notation. Due to page limitations, a complete list of notation is provided in Appendix B.1. Assume a total of N instances denoted as (X_i, Y_i) for

 $1 \leq i \leq N$. Here, $X_i = (X_{ij}) \in \mathbb{R}^p$ is the feature vector and $Y_i \in \mathbb{R}$ is the associated univariate response. We next consider a total of M clients indexed by $\mathcal{M} = \{1, 2, \ldots, M\}$. Let $\mathcal{S}_F = \{1, 2, \ldots, N\}$ represent the whole sample set, and let \mathcal{S}_m denote the sample collected by the mth client. We then should have $\mathcal{S}_F = \bigcup_m \mathcal{S}_m$ and $\mathcal{S}_{m_1} \cap \mathcal{S}_{m_2} = \emptyset$ for any $m_1 \neq m_2$. For simplicity, we assume that $|\mathcal{S}_m| = N/M = n$ for every $1 \leq m \leq M$. In federated learning, data across different clients often exhibit considerable heterogeneity, which may arise from varied data collection environments. Despite the heterogeneity here, we assume that all normal clients share a common underlying regression relationship. To be more precise, denote the joint distribution of $(x,y) \in \mathcal{X} \times \mathcal{Y}$ by $\mathcal{P}(x,y)$. Then we allow the marginal distributions $\mathcal{P}(x)$ and $\mathcal{P}(y)$ to be heterogeneous but basically require the conditional distribution $\mathcal{P}(y \mid x)$ must be the same across different clients. The common parameter of interest is denoted as $\theta_0 \in \mathbb{R}^p$. Next, let $\ell(x,y;\theta)$ be a loss function with parameter $\theta \in \mathbb{R}^p$. Define a global loss function as $\mathcal{L}(\theta) = N^{-1} \sum_{i=1}^N \ell(X_i, Y_i; \theta)$. It can be decomposed as $\mathcal{L}(\theta) = M^{-1} \sum_{m=1}^M \mathcal{L}_m(\theta)$, where $\mathcal{L}_m(\theta) = n^{-1} \sum_{i \in \mathcal{S}_m} \ell(X_i, Y_i; \theta)$ is the loss function defined on the mth client. Next define $\widehat{\theta} = \arg\min_{\theta} \mathcal{L}(\theta)$ as the whole sample estimator and $\widehat{\theta}_m = \arg\min_{\theta} \mathcal{L}_m(\theta)$ as the local estimator computed on the mth client.

In this work, we consider the *data-contaminated adversary* setting, where all of the clients are assumed to follow the learning protocol but the local data on the abnormal client may be corrupted (Biggio et al., 2012; Fang et al., 2020; Jagielski et al., 2018; Li et al., 2016). Specifically, define for each client a binary variable $a_m \in \{1,0\}$ to indicate whether the mth client is abnormal or not. Collect the indices of abnormal clients by $\mathcal{A} = \{m: a_m = 1\}$. Let $\varrho = |\mathcal{A}|/M \in [0,1/2)$ be the fraction of abnormal clients. Accordingly, we assume that as $n \to \infty$,

$$\begin{cases} \sqrt{n}(\widehat{\theta}_m - \theta_0) \to_d N(0, \Sigma_m) & \text{if } m \notin \mathcal{A}, \\ \sqrt{n}(\widehat{\theta}_m - \theta_m) \to_d N(0, \Sigma_m) & \text{with } \theta_m \neq \theta_0 & \text{if } m \in \mathcal{A}. \end{cases}$$

for some positive definite matrix $\Sigma_m \in \mathbb{R}^{p \times p}$. Since $\theta_m \neq \theta_0$ for any $m \in \mathcal{A}$, including those abnormal clients \mathcal{A} in DFL without effective control should cause seriously biased results.

3.2 THE DFL FRAMEWORK

We start with a standard DFL framework involving two key steps (Yuan et al., 2016; Wu et al., 2023a). First, each client aggregates information from its neighbors to derive a neighborhood-averaged parameter estimator. Next, it updates this estimator by the method of gradient descent based on the data placed on the local client. Specifically, assume M clients are connected through a communication network represented by an adjacency matrix $A = (a_{m_1m_2}) \in \mathbb{R}^{M\times M}$. Here, $a_{m_1m_2}=1$ if client m_1 can receive information from client m_2 , and $a_{m_1m_2}=0$ otherwise. Define in-degree $d_{m_1}=\sum_{m_2}a_{m_1m_2}$. We assume that $d_{m_1}>0$ for every $1\leq m_1\leq M$. Define the weighting matrix $W=(w_{m_1m_2})\in\mathbb{R}^{M\times M}$ with $w_{m_1m_2}=a_{m_1m_2}/d_{m_1}$. Let $\widehat{\theta}^{(t,m)}$ be the estimator obtained on the mth client at the tth iteration. Then, the update formula at the t1)th iteration is:

$$\widetilde{\theta}^{(t,m)} = \sum_{k=1}^{M} w_{mk} \widehat{\theta}^{(t,k)}; \qquad \widehat{\theta}^{(t+1,m)} = \widetilde{\theta}^{(t,m)} - \alpha \dot{\mathcal{L}}_m (\widetilde{\theta}^{(t,m)}). \tag{3.1}$$

Here $\dot{\mathcal{L}}_m(\theta) \in \mathbb{R}^p$ denotes the first order derivative of $\mathcal{L}_m(\cdot)$ with respect to θ , and $\alpha \in \mathbb{R}^+$ denotes the learning rate. Under appropriate regularity assumptions and assuming $\varrho=0$, Wu et al. (2023a) showed that, with a sufficiently small α and a relatively balanced network structure W, $\widehat{\theta}^{(t,m)}$ should converge numerically to an asymptotically efficient estimator of θ_0 . However, it is unclear what would happen if some of the clients are abnormal (i.e., $\varrho>0$). We are thus inspired to study the theoretical properties of $\widehat{\theta}^{(t,m)}$ under the assumption with $\varrho>0$.

To this end, define $SE^2(W) = M^{-1} \|W^{\top} \mathbf{1}_M - \mathbf{1}_M\|^2$ which measures the balance of network structures. In the most ideal situation with doubly stochastic W in the sense that $\mathbf{1}_M^{\top}W = \mathbf{1}_M^{\top}$ (Lian et al., 2018; Li et al., 2019d), we have SE(W) = 0. Then we have the following regularity conditions.

Assumption 1 (Parameter space). Assume the parameter space Θ is a compact and convex subset of \mathbb{R}^p . Let $\operatorname{int}(\Theta)$ be the set of interior points of Θ . Assume $\theta_m \in \operatorname{int}(\Theta)$ for $m \in \mathcal{A} \cup \{0\}$. Moreover, define $r = \sup_{\theta \in \Theta} \max_m \|\theta - \theta_m\| > 0$ as a rough measure for the radius of Θ .

Assumption 2 (Covariates distribution). Assume (X_i, Y_i) from the mth client, i.e., $i \in S_m$ are independently and identically generated from a probability distribution \mathcal{P}_m .

Assumption 3 (Local strong convexity). Define $\Omega_m(\theta) = \mathbb{E}_m [\ddot{\ell}(X_i, Y_i; \theta)]$ for $m \in \mathcal{M}$, where $\ddot{\ell}(x, y; \theta) \in \mathbb{R}^{p \times p}$ denotes the second order derivative of $\ell(x, y; \theta)$ with respect to θ . Assume that for $m \in \mathcal{M}$, we have $\lambda_{\min} \{\Omega_m(\theta_m)\} \geq \lambda_{\min}$ for some positive constant λ_{\min} , and $\min_m \inf_{\theta \in \Theta} \lambda_{\min} \{\ddot{\mathcal{L}}_m(\theta)\} \geq 0$.

Assumption 4 (Smoothness). Assume that there exists some constant $C_{\max} > 0$ such that for $m \in \mathcal{M}$, $\sup_{\theta \in \Theta} \mathbb{E}_m \{ \|\dot{\ell}(X_i, Y_i; \theta) - \mathbb{E}_m \{\dot{\ell}(X_i, Y_i; \theta)\} \|_2^8 \} \leq C_{\max}^8$, and $\sup_{\theta \in \Theta} \mathbb{E}_m \{ \|\ddot{\ell}(X_i, Y_i; \theta) - \Omega_m(\theta) \|_2^8 \} \leq C_{\max}^8$. Moreover, for any $(X_i, Y_i) \in \mathcal{S}_m$, $\dot{\ell}(X_i, Y_i; \theta)$ and $\ddot{\ell}(X_i, Y_i; \theta)$ are Lipschitz continuous in the sense that for any $\theta', \theta'' \in \Theta$, the following inequality holds

$$\begin{aligned} & \|\dot{\ell}(X_i, Y_i; \theta') - \dot{\ell}(X_i, Y_i; \theta'')\| \le L(X_i, Y_i) \|\theta' - \theta''\|, \\ & \|\ddot{\ell}(X_i, Y_i; \theta') - \ddot{\ell}(X_i, Y_i; \theta'')\| \le L(X_i, Y_i) \|\theta' - \theta''\|, \end{aligned}$$

for some positive function $L(X_i, Y_i)$ and constant L_{\max} such that $\mathbb{E}_m\{L^8(X_i, Y_i)\} \leq L_{\max}^8$.

Assumption 5 (Network structure). There exists some constant $\rho \in (0,1)$ such that $||W^{\top}(I_M - M^{-1}I_MI_M^{\top})W|| + SE(W) \leq \rho$.

Assumption 6 (Non-vanishing bias). Define $\flat_m = \mathbb{E}_m\{\dot{\ell}(X_i,Y_i;\theta_0)\}$, Assume $\min_{m\in\mathcal{A}} \|\flat_m\| \ge \flat_{\min}$ for some constant $\flat_{\min} > 0$.

Remark 1. Assumption 1 defines the parameter space for θ_m with $m \in \mathcal{A} \cup \{0\}$. Similar conditions are also used in Zhang et al. (2013) and Jordan et al. (2019). Assumption 2 addresses the distribution of the data $\{(X_i,Y_i):i\in\mathcal{S}_k\}$, allowing the data distributions to vary across different clients. This relaxes the homogeneous data condition commonly assumed in existing approaches (Fang et al., 2022; Qian et al., 2024). Assumption 3 requires only local strong convexity of the loss functions rather than the global strong convexity typically assumed in existing literature (Karimireddy et al., 2021; Kuwaranancharoen & Sundaram, 2023; Zhang & Wang, 2024). This makes our theoretical results for our proposed method under the standard global strong convexity assumption; see Appendix A.2 for details. Assumption 4 requires the local loss functions to be sufficiently smooth, which is a classical regularity condition in convex optimization (Jordan et al., 2019) and federated learning (Zhang & Wang, 2024). Assumption 5 is a condition about the network structure. This assumption is weaker than the commonly assumed doubly stochastic assumption in the literature (Li et al., 2019d; Song et al., 2023). Assumption 6 forces abnormal clients to be distinguishable from normal clients since $\|\flat_m\| = 0$ for any $m \notin A$.

We start with the properties of the whole-sample estimator $\widehat{\theta}$ with $\varrho > 0$. This leads to the following Theorem 3.1 about the mean-squared error (MSE) of θ .

Theorem 3.1 (MSE of $\widehat{\theta}$). Assume Assumptions 1-6 hold. Further assume that $\varrho < \epsilon$ for some sufficiently small but fixed ϵ depending on $(L_{\max}, \lambda_{\min}, \rho)$. Then we have $\mathbb{E} \|\widehat{\theta} - \theta_0\|^2 = V(\widehat{\theta}) + \|\bar{\flat}_{\mathcal{A}}\|$ $B(\widehat{\theta})$, where $V(\widehat{\theta}) \lesssim L_{\max}^2/[\{(1-\varrho)\lambda_{\min}\}^2N] + O(N^{-2})$, $NV(\widehat{\theta}) \to \operatorname{tr} \{\Omega_{\mathcal{A}}^{-1}\Sigma_{\mathcal{A}}\Omega_{\mathcal{A}}^{-1}\}$ as $N \to \infty$, and

$$\frac{\varrho^2 \|\bar{\flat}_{\mathcal{A}}\|}{L_{\max}^2} - C\Big(\frac{\varrho}{N} + \frac{1}{N^3}\Big) \leq B(\widehat{\theta}) \leq O\Big(\varrho^2 \|\bar{\flat}_{\mathcal{A}}\| + \frac{\varrho}{N} + \frac{1}{N^3}\Big).$$

Here $\bar{\flat}_{\mathcal{A}} = |\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \flat_m$. The detailed formulas of $\Omega_{\mathcal{A}}$ and $\Sigma_{\mathcal{A}}$ are given in Appendix B.1.

By Theorem 3.1, we know that the MSE of $\widehat{\theta}$ is mainly determined by two terms. The first term $V(\widehat{\theta})$ reflects the variance with its leading term given by N^{-1} tr $\left\{\Omega_{\mathcal{A}}^{-1}\Sigma_{\mathcal{A}}\Omega_{\mathcal{A}}^{-1}\right\}$. The second term reflects the bias with its leading term of the same order as $\varrho^2 \|\bar{b}_{\mathcal{A}}\|^2$. If $\varrho \to 0$, $\widehat{\theta}$ remains to be a consistent estimator for θ_0 . However, for $\widehat{\theta}$ to achieve a root-N convergence rate, we need to have $\varrho^2 = o(N^{-1})$. This leads to $n/M = o(|\mathcal{A}|^{-2})$. Otherwise, $\widehat{\theta}$ may exhibit a non-negligible bias. However, this condition is not always achievable in practice. Consider for example a situation with

each client representing a local hospital. In this case, each client (e.g., a hospital) might hold a sufficiently large amount of data. Nevertheless, the total number of clients (hospitals) is typically quite limited. According to classical results on DFL, under suitable assumptions, the difference between the standard DFL estimator and $\hat{\theta}$ is statistically ignorable; see Proposition A.1 in Appendix A.1 for details. However, Theorem 3.1 indicates that $\hat{\theta}$ itself might be biased. Consequently, the DFL estimator is also expected to suffer from the same bias. This motivates us to develop a robust DFL algorithm, so that the negative effects due to the abnormal clients can be well controlled.

4 ROBUST DFL

4.1 WEIGHTED DECENTRALIZED FEDERATED LEARNING

By Theorem 3.1, we know that the key reason responsible for the poor performance of the standard DFL estimator is the existence of the abnormal clients (i.e., \mathcal{A}). Unfortunately, a standard DFL algorithm treats those abnormal clients and normal clients equally without differentiating their relative trustworthiness. One natural solution is to revise α slightly so that different learning rates can be used for different clients according to their trustworthiness. Intuitively, larger learning rates should be given to clients, which are more likely to have $a_m=0$. In contrast, significantly reduced learning rates should be given to those which are more likely to have $a_m=1$. Accordingly, the bias due to those abnormal clients in $\mathcal A$ can be greatly reduced.

Let $\widehat{\theta}_{\mathcal{A}}^{(t,m)}$ be an estimator obtained on the mth client at the tth iteration. We are motivated to modify the standard DFL updating formula (3.1) as:

$$\widehat{\theta}_{\mathcal{A}}^{(t+1,m)} = \widetilde{\theta}_{\mathcal{A}}^{(t,m)} - \alpha \omega_m \dot{\mathcal{L}}_{(m)} \left(\widetilde{\theta}_{\mathcal{A}}^{(t,m)} \right)$$
(4.1)

with $\widetilde{\theta}_{\mathcal{A}}^{(t,m)} = \sum_k w_{mk} \widehat{\theta}_{\mathcal{A}}^{(t,k)}$. Here, $\omega_m \in [0,1]$ is a data-driven weight that reflects the trustworthiness of the mth client. Intuitively, ω_m should be larger for trustworthy clients. Conversely, ω_m should be smaller for those suspicious clients.

Subsequently, we analyze the theoretical properties of the algorithm (4.1) with general ω_m s. In particular, we are eager to understand the role played by the adaptive weights ω_m s. To this end, define $\bar{\Delta}_2^2 = M^{-1} \sum_{m=1}^M \left\{ \omega_m - (1-a_m) \right\}^2$ as the mean squared distance between ω_m and the oracle weight $1-a_m$. Write $\bar{\omega}^{\mathcal{G}} = M^{-1} \sum_{m \notin \mathcal{A}} \omega_m$, $\bar{\omega}_2^{\mathcal{A}} = (|\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \omega_m^2)^{1/2}$ and $\bar{\flat}_2^{\mathcal{A}} = (|\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \|\flat_m\|^2)^{1/2}$. Further denote $\widehat{\theta}_{\mathcal{A}}^{*(t)} = \{(\widehat{\theta}_{\mathcal{A}}^{(t,1)})^\top, \dots, (\widehat{\theta}_{\mathcal{A}}^{(t,M)})^\top\}^\top \in \mathbb{R}^{Mp}$ as the stacked estimator obtained from Equation (4.1) at the tth iteration. For theoretical purposes, define an oracle estimator as the estimator obtained by using data from the trustworthy clients only. Denote this oracle estimator by $\widehat{\theta}_{\mathcal{A}} = arg\min_{\theta} \sum_{m \notin \mathcal{A}} \mathcal{L}_m(\theta)$. Let $\widehat{\delta}_0^{\mathcal{A}} = \max_m \|\widehat{\theta}_{\mathcal{A}}^{(0,m)} - \widehat{\theta}_{\mathcal{A}}\|$. We then have the following Theorem 4.1.

Theorem 4.1 (Convergence property of $\widehat{\theta}_{\mathcal{A}}^{*(t)}$). Assume that Assumptions 1-6 hold, Further assume that $\alpha + \operatorname{SE}(W) < \epsilon$ and the initial value $\widehat{\theta}_{\mathcal{A}}^{*(0)}$ is sufficiently close to $I^*\widehat{\theta}_{\mathcal{A}}$ in the sense that $\|\widehat{\theta}_{\mathcal{A}}^{*(0)} - I^*\widehat{\theta}_{\mathcal{A}}\| \le \epsilon$ for some sufficiently small but fixed ϵ depending on $(L_{\max}, \lambda_{\min}, \rho)$. Then, with probability at least $1 - O(M/n^4 + 1/(\log n)^4)$, we have $M^{-1/2}\|\widehat{\theta}_{\mathcal{A}}^{*(t)} - I^*\widehat{\theta}_{\mathcal{A}}\| \lesssim \operatorname{Err}_1 + \operatorname{Err}_2 + \operatorname{Err}_3$, where

$$\operatorname{Err}_{1} = \left(1 - \frac{\alpha \bar{\omega}^{\mathcal{G}} \lambda_{\min}}{8}\right)^{t} \widehat{\delta}_{0}^{\mathcal{A}}, \ \operatorname{Err}_{2} = \frac{\alpha L_{\max} + \operatorname{SE}(W)}{(1 - \rho) \lambda_{\min} \bar{\omega}^{\mathcal{G}}} \left\{ \left(\frac{\log n}{n}\right)^{1/2} L_{\max} + \varrho^{1/2} \bar{b}_{2}^{\mathcal{A}} \right\},$$

$$\operatorname{Err}_{3} = \frac{1}{\bar{\omega}^{\mathcal{G}} \lambda_{\min}} \left[\varrho \bar{b}_{2}^{\mathcal{A}} \overline{\omega}_{2}^{\mathcal{A}} + \bar{\Delta}_{2} \left\{ \left(\frac{\log N}{N}\right)^{\frac{1}{2}} + L_{\max} \|\widehat{\theta}_{\mathcal{A}} - \theta_{0}\| \right\} \right]. \tag{4.2}$$

Assume $M = o(n^4)$ as $n \to \infty$. Then with probability tending to 1, we have $M^{-1/2} \|\widehat{\theta}_{\mathcal{A}}^{*(\infty)} - I^* \widehat{\theta}_{\mathcal{A}} \|$ upper bounded by

$$\frac{C}{\bar{\omega}^{\mathcal{G}}} \left[\left\{ \alpha + \operatorname{SE}(W) \right\} \left(n^{-1/2} + \varrho^{1/2} \right) + \left(\varrho \overline{\omega}_{2}^{\mathcal{A}} + \frac{\bar{\Delta}_{2}}{\sqrt{N}} \right) \right]. \tag{4.3}$$

Compared to the classical results on DFL (see Proposition A.1 for details), the main difference of Theorem 4.1 is the inclusion of an additional statistical error term Err_3 . If oracle weights $(1 - a_m)$ s

are employed, we then have $\bar{\omega}^{\mathcal{G}}=1-\varrho$ and $\bar{\Delta}_2=\overline{\omega}_2^{\mathcal{A}}\equiv 0$. Accordingly, the influence of abnormal clients on $\widehat{\theta}_{\mathcal{A}}^{*(t)}$ can be eliminated completely, as long as the learning rate α is sufficiently small and the network structure W is sufficiently balanced.

For $\widehat{\theta}_{\mathcal{A}}$ to achieve the oracle property, the right-hand side of Equation (4.3) should be of an $o_p(1/\sqrt{N})$ order. This conclusion holds if the following three conditions can be satisfied. They are, respectively, (1) $\left\{\alpha+\operatorname{SE}(W)\right\}\left\{1/\sqrt{n}+\varrho^{1/2}\right\}/\bar{\omega}^{\mathcal{G}}=o(1/\sqrt{N})$, (2) $\overline{\omega}_2^{\mathcal{A}}/\bar{\omega}^{\mathcal{G}}=o_p\left(1/(\varrho\sqrt{N})\right)$, and (3) $\bar{\Delta}_2/\bar{\omega}^{\mathcal{G}}=o_p(1)$. The first condition can be satisfied by setting a reasonable $\bar{\omega}^{\mathcal{G}}$, and a sufficiently small α and $\operatorname{SE}(W)$. Both conditions (2) and (3) require ω_m to approximate the oracle weights $(1-a_m)$ closely. However, since the status of the clients is unknown in advance, we need to develop an effective estimator for ω_m so that both conditions (2) and (3) can be practically satisfied.

4.2 Adaptive Decentralized Federated Learning

To this end, an effective measure for the trustworthiness of a client is necessarily needed. Note that a trustworthy client should have a small gradient norm at a reasonably accurate parameter estimator. In contrast, an abnormal client tends to exhibit a larger gradient norm. Thus, the size of the gradient norm might serve as a natural indicator of trustworthiness. Based on this idea, we develop below a two-stage algorithm.

STAGE 1. We start with assuming for each client m an initial estimator, denoted by $\widehat{\theta}_{\rm init}^{(m)}$, which may not be statistically efficient but must be consistent. For example, one might use the standard DFL estimator as described in Section 3.2 to serve this purpose, if condition $\varrho \to 0$ can be well satisfied.

STAGE 2. Once the initial estimator $\widehat{\theta}_{\text{init}}^{(m)}$ is obtained, the adaptive weight for the mth client can be computed as

$$\widehat{\omega}_m = \pi \{ \lambda_n \| \dot{\mathcal{L}}_{(m)}(\widehat{\theta}_{\text{init}}^{(m)}) \| \}, \tag{4.4}$$

where $\pi(\cdot) \in [0,1]$ is an appropriately selected and monotonously decreasing mapping function. For example, we use $\pi(x) = \exp(-x)$ in this work. Moreover, λ_n is a positive tuning parameter, which controls the gradient scale. It is important to note that the selection of λ_n plays a critical role in this algorithm. Specifically, $\lambda_n \| \dot{\mathcal{L}}_{(m)}(\widehat{\theta}_{\mathrm{init}}^{(m)}) \|$ should not be too low. Otherwise, $\widehat{\omega}_m$ cannot shrink to 0 quickly for those abnormal clients. Conversely, this product should not be too large either. Otherwise, $\widehat{\omega}_m$ might not give sufficient trust to those trustworthy clients. Subsequently, the updating step in Equation (4.1) can be executed by replacing ω_m with $\widehat{\omega}_m$ in (4.4). This leads to a practically feasible aDFL estimator $\widehat{\theta}_{\mathrm{aDFL}}^{(t,m)}$ for the mth client at the tth iteration with $\widehat{\theta}_{\mathrm{aDFL}}^{(0,m)} = \widehat{\theta}_{\mathrm{init}}^{(m)}$. The pseudo code for the aDFL algorithm is described below in Algorithm 1.

Algorithm 1: Adaptive Decentralized Federated Learning

```
 \begin{array}{ll} \textbf{Require:} & \text{Network } W \text{, learning rate } \alpha \text{, max iteration } T. \\ \textbf{Ensure:} & \text{aDFL estimator } \big\{ \widehat{\theta}_{\text{aDFL}}^{(T,m)} \big\}_{m=1}^{M}. \\ 1: & \text{Compute initial estimators } \big\{ \widehat{\theta}_{\text{init}}^{(m)} \big\}_{m=1}^{M}, \text{ and set } \widehat{\theta}_{\text{aDFL}}^{(0,m)} = \widehat{\theta}_{\text{init}}^{(m)} \text{ for } 1 \leq m \leq M. \\ 2: & \textbf{for } 0 \leq t \leq T-1 \textbf{ do} \\ 3: & \textbf{for } 1 \leq m \leq M \text{ (distributedly) } \textbf{do} \\ 4: & \text{Compute the neighborhood-averaged estimator } \widehat{\theta}_{\text{aDFL}}^{(t,m)} = \sum_{k} w_{mk} \widehat{\theta}_{\text{aDFL}}^{(t,k)}. \\ 5: & \text{Compute } \widehat{\theta}_{\text{aDFL}}^{(t+1,m)} = \widetilde{\theta}_{\text{aDFL}}^{(t,m)} - \alpha \widehat{\omega}_{m} \dot{\mathcal{L}}_{(m)} \big( \widetilde{\theta}_{\text{aDFL}}^{(t,m)} \big), \text{ where } \widehat{\omega}_{m} \text{ is given by (4.4).} \\ 6: & \textbf{end for} \\ 7: & \textbf{end for} \\ \end{array}
```

We next study the theoretical properties of the proposed aDFL estimator $\widehat{\theta}_{\mathrm{aDFL}}^{(t,m)}$. Denote the stacked aDFL estimator at iteration t as $\widehat{\theta}_{\mathrm{aDFL}}^{*(t)} = \left\{ (\widehat{\theta}_{\mathrm{aDFL}}^{(t,1)})^{\top}, \dots, (\widehat{\theta}_{\mathrm{aDFL}}^{(t,M)})^{\top} \right\}^{\top} \in \mathbb{R}^{Mp}$. Write the corresponding estimators of $\overline{\omega}_2^A$, $\overline{\Delta}_2$, and $\overline{\omega}^\mathcal{G}$ based on Equation (4.4) as $\widehat{\omega}_2^A$, $\widehat{\Delta}_2$ and $\widehat{\omega}^\mathcal{G}$, respectively. We then have the following Theorem 4.2.

Theorem 4.2 (Convergence rate of the aDFL). Assume that Assumptions 1-6 hold. Let $\pi(x)=\exp(-x)$, and set the initial value $\widehat{\theta}_r^{(m)}$ as the standard DFL estimator. Assume that $\log N \lesssim \lambda_n \lesssim$

 $\sqrt{n}M^{-1/8}$. Then, with probability at least $1-O(M/n^4+1/\log N)$, we have: (1) $\hat{\omega}_2^{\mathcal{A}}\lesssim 1/\sqrt{N}$, (2) $\hat{\Delta}_2^2\lesssim \varrho/\sqrt{N}+\lambda_n(1/\sqrt{n}+\|\hat{\theta}-\theta_0\|)$, and (3) $1/\hat{\omega}^{\mathcal{G}}\lesssim \exp(c\lambda_n\|\hat{\theta}-\theta_0\|)$. Further assume $M\to\infty$ with $M=o(n^4)$, $\varrho=o(1)$ and $\alpha+\mathrm{SE}(W)$ is sufficiently small as $n\to\infty$. Then, with probability tending to 1, we have $M^{-1/2}\|\hat{\theta}_{\mathrm{aDFL}}^{*(\infty)}-I^*\hat{\theta}_{\mathcal{A}}\|$ upper bounded by

$$C \exp\left(c\lambda_n \|\widehat{\theta} - \theta_0\|\right) \left\{ \frac{\lambda_n \|\widehat{\theta} - \theta_0\|}{\sqrt{N}} + o\left(\frac{1}{\sqrt{N}}\right) \right\}. \tag{4.5}$$

From Theorem 4.2, the statistical error introduced by abnormal clients (4.5) can be further reduced to be of the order $o_p(1/\sqrt{N})$, if we can further assume that $\lambda_n \|\widehat{\theta} - \theta_0\| = o_p(1)$. Here, recall that $\widehat{\theta}$ denotes the whole-sample estimator. This result implies that the aDFL estimator achieves the same asymptotic efficiency as $\widehat{\theta}_{\mathcal{A}}$, as long as a suitable tuning parameter λ_n can be used.

The validity of Theorem 4.2 relies on the assumption that an initial estimator of a reasonable quantity be provided. It can be easily satisfied as long as there exists a statistically consistent (but not necessarily efficient) initial estimator. As shown by our Theorem 3.1 and Proposition A.1, a standard DFL estimator can serve the purpose with $\varrho=o(1)$. In practice, one might also consider other decentralized robust estimators (Karimireddy et al., 2021; Fang et al., 2022; Zhang & Wang, 2024) as initial estimators $\widehat{\theta}_{\rm init}^{(m)}$ with $\varrho\in[0,1/2)$ under appropriate regularity conditions. We summarize this result in the following Corollary 4.1.

Corollary 4.1 (General initial estimator). Assume that Assumptions 1-6, and A.1 hold. Let $\pi(x) = \exp(-x)$. Assume $M \to \infty$ with $M = o(n^4)$ and $\alpha + \operatorname{SE}(W)$ is sufficiently small as $n \to \infty$. Further assume $\log N \lesssim \lambda_n \lesssim \sqrt{n} M^{-1/8}$, Then, with probability tending to 1, we have $M^{-1/2} \| \widehat{\theta}_{\mathrm{aDFL}}^{*(\infty)} - I^* \widehat{\theta}_{\mathcal{A}} \|$ upper bounded by $C \exp\left(c\lambda_n \| \overline{\theta}_{\mathrm{init}} - \theta_0 \|\right) \{\lambda_n \| \overline{\theta}_{\mathrm{init}} - \theta_0 \|/\sqrt{N} + o(1/\sqrt{N})\}$ with $\overline{\theta}_{\mathrm{init}} = M^{-1} \sum_{m=1}^{M} \widehat{\theta}_{\mathrm{init}}^{(m)}$.

We find that aDFL estimator should have the oracle property as long as $\lambda_n \|\bar{\theta}_{\text{init}} - \theta_0\| = o_p(1)$.

Remark 2. The numerical convergence speed and statistical efficiency of Algorithm 1 can be improved in two ways. First, Theorem 4.2 indicates a convergence rate of $1 - O(\hat{\omega}^{\mathcal{G}})$. Thus, after computing $\widehat{\omega}_m$, each client can obtain $\omega_{\max} = \max_m \widehat{\omega}_m$ by a DFL algorithm and then update $\widehat{\omega}_m \leftarrow \widehat{\omega}_m/\omega_{\max}$ so that $\widehat{\omega}^{\mathcal{G}}$ can be increased. Second, both Theorem 4.2 and Corollary 4.1 reveal that the error bound depends on $\|\bar{\theta}_{\text{init}} - \theta_0\|$. Then the aDFL estimator can be used as a new initial estimator for Algorithm 1 repeatedly. The multi-stage aDFL algorithm is provided in Algorithm A.1.

5 EXPERIMENTS

In this section, we examine the finite-sample performance of the proposed aDFL method. We compare our aDFL algorithm with the following alternatives: DFL (Wu et al., 2023a), BRIDGE-M, BRIDGE-T (Fang et al., 2022), SLBRN-M, SLBRN-T (Zhang & Wang, 2024) and ClippedGossip (Karimireddy et al., 2021). In aDFL method, we use cross-validation for the practical selection of λ_n . To investigate the effect of the number of neighboring nodes, we further consider two different network structures: the Directed Circle Network Wu et al. (2023a) with varying in-degree D, and the Undirected Erdős–Rényi Graph (Erdős & Rényi, 1959) with varying link probability q. Complete implementation details of the algorithms and network structures are provided in Appendix D.1.

5.1 SIMULATION EXPERIMENTS ON SYNTHETIC DATA

Following Qian et al. (2024), we consider the linear regression model $Y_i = X_i^\top \theta_0 + \varepsilon_i$, where $\varepsilon_i \sim N(0,1)$ and $\theta_0 = (\mathbf{1}_s^\top, 0, \dots, 0)^\top \in \mathbb{R}^p$ with $s = \lfloor 0.2p \rfloor$. For the distribution of X_i , we study two scenarios: a homogeneous scenario with $X_i \sim N_p(0,I_p)$, and a heterogeneous scenario in which each client generates X_i from distinct multivariate normal distributions. See Appendix D.2 for details. We consider the case where the data on abnormal clients is corrupted. Inspired by Karimireddy et al. (2021), Zhang & Wang (2024) and Qian et al. (2024), three types of data corruption are investigated:

• Bit-Flipping (BF): The response variables Y_i 's on abnormal clients are replaced by $\widetilde{Y}_i = -Y_i$.

- Out-of-Distribution (OOD): Features X_i 's on abnormal clients are replaced by $X_i = 0.7X_i + V_p$, where entries of $V_p \in \mathbb{R}^p$ are independently generated from a uniform distribution $\mathcal{U}(0,1)$.
- Model-Parameter Corruption (MP): The parameters on abnormal clients are set as $\theta_c = (\mathbf{1}_{s_c}, 0, \dots, 0)^{\top} \in \mathbb{R}^p$ with $s_c = \lfloor 0.1p \rfloor$.

We fix the feature dimension as p=50, the number of clients as M=100, and the local sample size as n=100. Thus, the total sample size is given by $N=M\times n=10,\!000$. We randomly select $\lfloor\varrho M\rfloor$ clients as abnormal clients. We then use MSE on normal clients to assess the performance of estimators computed by different algorithms. Specifically, the MSE is defined as $\mathrm{MSE}=|\mathcal{A}^c|^{-1}\sum_{m\in\mathcal{A}^c}\|\widehat{\theta}^{(m)}-\theta_0\|^2$, where $\widehat{\theta}^{(m)}\in\mathbb{R}^p$ is the resulting estimator obtained on the mth client. For all algorithms, we replicate the experiments 20 times in each setting. The averaged values and confidence bands of these MSEs under the Directed Circle Network are shown in Figure 1, while those under the Undirected Erdős–Rényi Graph are present in Appendix D.2. The additional simulation results of the heterogeneous scenario can also be found in Appendix D.2. Moreover, to further strengthen our simulation study, we explore additional experiments involving (1) two more realistic network structures, (2) two more complex data corruption types, and (3) a dynamic corruption scenario under specific settings. Across these settings, the results consistently demonstrate the robustness and effectiveness of our approach; see Appendix D.2 for details.

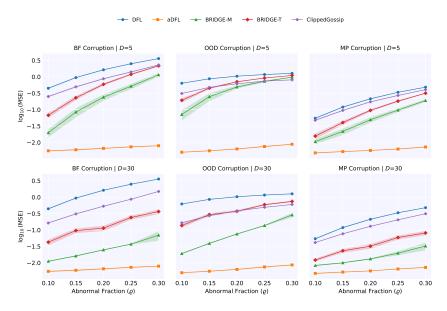


Figure 1: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the Directed Circle Network and the homogeneous scenario. Different algorithms are evaluated under different corruption types and two in-degrees (D).

Generally, the results under the two network structures show similar patterns, from which we obtain the following observations. First, under this directed network structure, we find that the two SLBRN algorithms fail to converge, so the corresponding results are not reported. Second, as the abnormal fraction (ϱ) increases, the MSE of all algorithms increases significantly except for the aDFL algorithm. Furthermore, various abnormal robust algorithms exhibit a smaller MSE compared to the standard DFL algorithm. Moreover, the aDFL algorithm achieves the smallest MSE among all these algorithms. Lastly, we find that the performances of various robust algorithms improve in terms of MSE under the same Byzantine corruption type when the D increases from 5 to 30. This is expected because more information can be transmitted with a larger number of neighboring clients.

5.2 APPLICATION TO REAL DATA

In this section, we empirically evaluate the effectiveness of our proposed aDFL method on two classical datasets: MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al., 2009). MNIST contains 60,000 training and 10,000 testing images, whereas CIFAR10 contains 50,000 training

and 10,000 testing images. In this experiment, we distribute all training data equally to M=50 clients. We consider two data distribution scenarios: (1) a homogeneous scenario, where images are randomly distributed; and (2) a heterogeneous scenario, where each client holds images from only a subset of labels. For abnormal clients, we implement both OOD and label-flipping (LF) corruption (Karimireddy et al., 2021). We train LeNet5 (LeCun et al., 1998) on MNIST using Xavier uniform initializer, and fine-tune a pre-trained VGG16 (Simonyan, 2014) on CIFAR10. To speed up convergence, we adopt a constant-and-cut learning-rate scheduling strategy (Lang et al., 2019). Further implementation details are provided in Appendix D.3. We also extend the real data analysis by exploring (i) a more heterogeneous scenario and (ii) the more challenging CINIC10 dataset (Darlow et al., 2018). The results again confirm the robustness and effectiveness of our approach; see Appendix D.3 and Figure D.12 for details.

At the *t*th iteration, we evaluate the performance of the *m*th client on the testing set. We then evaluate the performance of the *m*th client at the *t*th iteration using testing loss and accuracy. We plot the averaged values and confidence bands of these results on normal clients. In addition to the competing methods discussed above, we include the oracle estimator as a reference. In the main text, we present results for the CIFAR10 dataset under the heterogeneous scenario with LF corruption using a Directed Circle Network; see Figure 2. Additional results are provided in Appendix D.3.

From Figure 2, we find that as the fraction of abnormal clients increases or the number of neighbors decreases, the performances of competing methods decline significantly. Compared to competitors, our aDFL method achieves the best performance, which is comparable to that of the oracle across all situations. This highlights aDFL's strong ability to be adaptive to different scenarios.

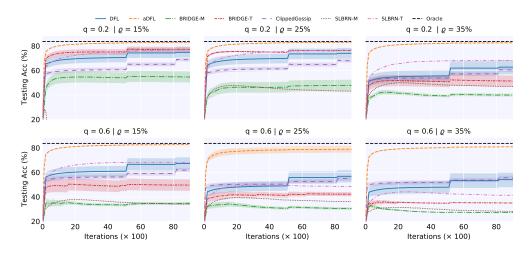


Figure 2: The testing accuracy over iterations for CIFAR10 in the heterogeneous scenario. Different methods are evaluated with varying link probabilities (q) and the fraction of abnormal clients (ϱ) under the LF corruption and Erdős–Rényi Graph.

6 Conclusion

In this work, we propose aDFL, a robust decentralized federated learning method that dynamically adjusts each client's learning rate based on training behavior. It preserves the original network topology and requires no stringent assumptions on neighbors or prior knowledge. We provide theoretical guarantees, and extensive experiments corroborate its effectiveness. However, several limitations remain. First, the current design primarily targets noisy/poisoned data; extending it to more general settings reqruies further study. Second, aDFL communicates every training round, which can be costly in large networks. Alleviating this via combining with local updating techniques is a key direction. Moreover, privacy mechanisms are not yet integrated, but our key technique (the introduction of w_m) can be easily extended to the existing privacy-preserving DFL methods. Lastly, our analysis assumes bounded gradients, which may not always hold; future work could consider using gradient clipping (Pascanu et al., 2013; Zhang et al., 2019) to relax this assumption.

REPRODUCIBILITY STATEMENT

All numerical experiments and real-data analyses are fully reproducible using the code provided in the anonymized supplementary materials.

REFERENCES

- Sivaraman Balakrishnan, Martin J Wainwright, and Bin Yu. Statistical guarantees for the em algorithm: From population to sample-based analysis. *The Annals of Statistics*, 45(1):77–120, 2017.
- Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *science*, 286 (5439):509–512, 1999.
 - Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Celdrán. Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. *IEEE Communications Surveys & Tutorials*, 2023.
- Siddhartha Bhattacharya, Daniel Helo, and Joshua Siegel. Impact of network topology on byzantine resilience in decentralized federated learning. *arXiv* preprint arXiv:2407.05141, 2024.
- Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines. arXiv preprint arXiv:1206.6389, 2012.
- Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with adversaries: Byzantine tolerant gradient descent. *Advances in neural information processing systems*, 30, 2017.
- Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. *Proceedings of the ACM on Measurement and Analysis of Computing Systems*, 1(2):44, 2017.
- Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters, 2018.
- Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet or cifar-10. *arXiv preprint arXiv:1810.03505*, 2018.
- A.R. Elkordy, S. Prakash, and S. Avestimehr. Basil: A fast and byzantine-resilient approach for decentralized training. *IEEE Journal on Selected Areas in Communications*, 40(9):2694–2716, 2022.
- P Erdős and A Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.
- C. Fang, Z. Yang, and W.U. Bajwa. Bridge: Byzantine-resilient decentralized gradient descent. *IEEE Transactions on Signal and Information Processing over Networks*, 8:610–626, 2022.
- Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to {Byzantine-Robust} federated learning. In 29th USENIX security symposium (USENIX Security 20), pp. 1605–1622, 2020.
- Peter Filzmoser, Ricardo Maronna, and Mark Werner. Outlier identification in high dimensions. *Computational Statistics & Data Analysis*, 52(3):1694–1711, 2008.
- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- S. Guo, T. Zhang, H. Yu, X. Xie, L. Ma, T. Xiang, and Y. Liu. Byzantine-resilient decentralized stochastic gradient descent. *IEEE Transactions on Circuits and Systems for Video Technology*, 32 (6):4096–4106, 2021.
 - L. He, S.P. Karimireddy, and M. Jaggi. Byzantine-robust decentralized learning via self-centered clipping. *arXiv* preprint arXiv:2202.01545, 2022.

- J. Hou, F. Wang, C. Wei, H. Huang, Y. Hu, and N. Gui. Credibility assessment based byzantineresilient decentralized learning. *IEEE Transactions on Dependable and Secure Computing*, 2022. https://doi.org/10.1109/TDSC.2022.3183337.
 - J. Hu, G. Chen, and H. Li. Prox-dbro-vr: A unified analysis on decentralized byzantine-resilient proximal stochastic optimization with variance reduction and nonasymptotic convergence rates. *arXiv preprint arXiv:2305.08051*, 2023.
 - Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In 2018 IEEE symposium on security and privacy (SP), pp. 19–35. IEEE, 2018.
 - Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep learning in fixed topology networks. *Advances in Neural Information Processing Systems*, 30, 2017.
 - Charles R Johnson and Roger A Horn. *Matrix analysis*. Cambridge university press Cambridge, 1985.
 - Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statistical inference. *Journal of the American Statistical Association*, 114(526):668–681, 2019.
 - Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust optimization. In *International Conference on Machine Learning*, pp. 5311–5319. PMLR, 2021.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In *Artificial intelligence safety and security*, pp. 99–112. Chapman and Hall/CRC, 2018.
 - K. Kuwaranancharoen and S. Sundaram. On the geometric convergence of byzantine-resilient distributed optimization algorithms. *arXiv preprint arXiv:2305.10810*, 2023.
 - Hunter Lang, Lin Xiao, and Pengchuan Zhang. Using statistics to automate stochastic optimization. *Advances in Neural Information Processing Systems*, 32:9540–9550, 2019.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 - Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks on factorization-based collaborative filtering. *Advances in neural information processing systems*, 29, 2016.
 - Suyi Li, Yong Cheng, Yang Liu, Wei Wang, and Tianjian Chen. Abnormal client behavior detection in federated learning. *arXiv preprint arXiv:1910.09933*, 2019a.
 - Weiyu Li, Yaohua Liu, Zhi Tian, and Qing Ling. Communication-censored linearized admm for decentralized consensus optimization. *IEEE Transactions on Signal and Information Processing over Networks*, 6:18–34, 2019b.
 - Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication-efficient local decentralized sgd methods. *arXiv preprint arXiv:1910.09126*, 2019c.
 - Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang Yan. A blockchain-based decentralized federated learning framework with committee consensus. *IEEE Network*, 35 (1):234–241, 2021. doi: 10.1109/MNET.011.2000263.
 - Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates. *IEEE Transactions on Signal Processing*, 67 (17):4494–4506, 2019d.
 - Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient descent. In *International Conference on Machine Learning*, pp. 3043–3052. PMLR, 2018.

- Wei Liu, Li Chen, and Wenyi Zhang. Decentralized federated learning: Balancing communication and computing costs. *IEEE Transactions on Signal and Information Processing over Networks*, 8:131–143, 2022a.
 - Weidong Liu, Xiaojun Mao, and Xin Zhang. Fast and robust sparsity learning over networks: A decentralized surrogate median regression approach. *IEEE Transactions on Signal Processing*, 70:797–809, 2022b.
 - Qingguo Lü, Xiaofeng Liao, Huaqing Li, and Tingwen Huang. A computation-efficient decentralized algorithm for composite constrained optimization. *IEEE Transactions on Signal and Information Processing over Networks*, 6:774–789, 2020.
 - Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.
 - Luigi Palmieri, Lorenzo Valerio, Chiara Boldrini, and Andrea Passarella. The effect of network topologies on fully decentralized learning: a preliminary investigation. In *Proceedings of the 1st International Workshop on Networked AI Systems*, pp. 1–6, 2023.
 - Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In *International conference on machine learning*, pp. 1310–1318. Pmlr, 2013.
 - J. Peng, W. Li, and Q. Ling. Byzantine-robust decentralized stochastic optimization over static and time-varying networks. *Signal Processing*, 183:108020, 2021. doi: 10.1016/j.sigpro.2021. 108020.
 - J. Peng, W. Li, and Q. Ling. Byzantine-robust decentralized stochastic optimization with stochastic gradient noise-independent learning error. *arXiv* preprint arXiv:2308.05292, 2023.
 - Chengde Qian, Mengyuan Wang, Haojie Ren, and Changliang Zou. ByMI: Byzantine machine identification with false discovery rate control. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 41357–41382. PMLR, 21–27 Jul 2024.
 - Kyungmin Ro, Changliang Zou, Zhi Wang, and Guosheng Yin. Outlier detection for high-dimensional data. *Biometrika*, 102(3):589–599, 2015.
 - Robert J Serfling. Approximation theorems of mathematical statistics. John Wiley & Sons, 2009.
 - Junyu Shi, Wei Wan, Shengshan Hu, Jianrong Lu, and Leo Yu Zhang. Challenges and approaches for mitigating byzantine attacks in federated learning. In 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 139–146, 2022.
 - Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized consensus optimization. *SIAM Journal on Optimization*, 25(2):944–966, 2015.
 - Karen Simonyan. Very deep convolutional networks for large-scale image recognition. *arXiv* preprint arXiv:1409.1556, 2014.
 - Benjamin Sirb and Xiaojing Ye. Decentralized consensus algorithm with delayed and stochastic gradients. *SIAM Journal on Optimization*, 28(2):1232–1254, 2018.
 - Zhuoqing Song, Weijian Li, Kexin Jin, Lei Shi, Ming Yan, Wotao Yin, and Kun Yuan. Communication-efficient topologies for decentralized learning with o(1) consensus rate. Advances in Neural Information Processing Systems, 35:1073–1085, 2022a.
- Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Compressed gradient tracking for decentralized optimization over general directed networks. *IEEE Transactions on Signal Processing*, 70:1775–1787, 2022b.
 - Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking for decentralized optimization. *Mathematical Programming*, pp. 1–53, 2023.

- L. Su and N.H. Vaidya. Byzantine-resilient multiagent optimization. *IEEE Transactions on Auto-* 650
 - Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. Decentralized training over decentralized data. In *International Conference on Machine Learning*, pp. 4848–4856. PMLR, 2018.
 - Jiaqing Tu, Wei Liu, Xin Mao, and Xin Chen. Variance reduced median-of-means estimator for byzantine-robust distributed inference. *Journal of Machine Learning Research*, 22(1):3780–3846, 2021a.
 - Jiyuan Tu, Weidong Liu, Xiaojun Mao, and Xi Chen. Variance reduced median-of-means estimator for byzantine-robust distributed inference. *Journal of Machine Learning Research*, 22(84):1–67, 2021b.
 - Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.
 - Shuyuan Wu, Danyang Huang, and Hansheng Wang. Network gradient descent algorithm for decentralized federated learning. *Journal of Business & Economic Statistics*, 41(3):806–818, 2023a.
 - Shuyuan Wu, Bin Du, Xuetong Li, and Hansheng Wang. Network em algorithm for gaussian mixture model in decentralized federated learning. *Working Paper*, 2024.
 - Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H Sayed. Decentralized consensus optimization with asynchrony and delays. *IEEE Transactions on Signal and Information Processing over Networks*, 4(2):293–307, 2017.
 - Z. Wu, T. Chen, and Q. Ling. Byzantine-resilient decentralized stochastic optimization with robust aggregation rules. *IEEE Transactions on Signal Processing*, 71:3179–3195, 2023b.
 - Qiang Xia, Zhenyu Tao, Zhanhao Hao, and Qiang Li. FABA: An algorithm for fast aggregation against byzantine attacks in distributed neural networks. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 4824–4830, Macao, China, 2019. International Joint Conferences on Artificial Intelligence Organization.
 - Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with suspicion-based fault-tolerance. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 6893–6901. PMLR, 2019.
 - Jie Xu, Wei Zhang, and Fei Wang. A(dp)² sgd: Asynchronous decentralized parallel stochastic gradient descent with differential privacy. *IEEE transactions on pattern analysis and machine intelligence*, 44(11):8036–8047, 2021.
 - Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Convergence of asynchronous distributed gradient methods over stochastic networks. *IEEE Transactions on Automatic Control*, 63 (2):434–448, 2017.
 - Z. Yang and W.U. Bajwa. Byrdie: Byzantine-resilient distributed coordinate descent for decentralized learning. *IEEE Transactions on Signal and Information Processing over Networks*, 5(4): 611–627, 2019.
 - Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed learning: Towards optimal statistical rates. In *International conference on machine learning*, pp. 5650–5659. Pmlr, 2018.
 - Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Defending against saddle point attack in byzantine-robust distributed learning. In *Proceedings of the 36th International Conference on Machine Learning*, pp. 7074–7084. PMLR, 2019.
 - Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. *SIAM Journal on Optimization*, 26(3):1835–1854, 2016.
 - Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training: A theoretical justification for adaptivity. *arXiv preprint arXiv:1905.11881*, 2019.

 Xudong Zhang and Lei Wang. High-dimensional M-estimation for byzantine-robust decentralized learning. *Information Sciences*, 653:119808, 2024.

Yuchen Zhang, John C Duchi, and Martin J Wainwright. Communication-efficient algorithms for statistical optimization. *The Journal of Machine Learning Research*, 14(1):3321–3363, 2013.

Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised outlier detection in high-dimensional numerical data. *Statistical Analysis and Data Mining: The ASA Data Science Journal*, 5(5):363–387, 2012.

A ADDITIONAL DISCUSSIONS AND RESULTS

A.1 THE PROPERTIES OF THE STANDARD DFL ESTIMATOR

Denote $\widehat{\theta}^{*(t)} = \{(\widehat{\theta}^{(t,1)})^{\top}, \dots, (\widehat{\theta}^{(t,M)})^{\top}\}^{\top} \in \mathbb{R}^{Mp}$ be the stacked standard DFL estimator obtained at the tth iteration, and let $\widehat{\delta}_0 = \max_m \|\widehat{\theta}^{(0,m)} - \widehat{\theta}\|$ be the initial distance. The numerical convergence property of the standard DFL algorithm is elaborated by the following Proposition A.1.

Proposition A.1 (Convergence Property of the Standard DFL). Assume that Assumptions 1-6 hold. Further assume that $\alpha + \mathrm{SE}(W) < \epsilon$ and $\widehat{\delta}_0 < \epsilon$ for some sufficiently small but fixed ϵ depending on $(L_{\mathrm{max}}, \lambda_{\mathrm{min}}, \rho)$. Then, with probability at least $1 - O(M/n^4)$, the following relationship holds.

$$M^{-1/2} \left\| \widehat{\theta}^{*(t)} - I^* \widehat{\theta} \right\| \lesssim \left(1 - \frac{\alpha (1 - \varrho) \lambda_{\min}}{8} \right)^t \widehat{\delta}_0 + \frac{\alpha + \operatorname{SE}(W)}{(1 - \varrho) (1 - \varrho) \lambda_{\min}}.$$

Proposition A.1 suggests that the discrepancy between the DFL estimator $\widehat{\theta}^{*(t)}$ obtained in the tth step and the whole-sample estimator $I^*\widehat{\theta}$ is upper bounded by: (1) the optimization error $\{1-(\alpha\lambda_{\min})/8\}^t$ and (2) the statistical error $\{\alpha+\mathrm{SE}(W)\}/\{\lambda_{\min}(1-\rho)\}$. By the time of numerical convergence with $t\to\infty$, we obtain $M^{-1/2}\|\widehat{\theta}^{*(\infty)}-I^*\widehat{\theta}\|\leq \{\alpha+\mathrm{SE}(W)\}/\{\lambda_{\min}(1-\rho)\}$. Therefore, to have the difference between $\widehat{\theta}^{*(\infty)}$ and $\widehat{\theta}$ to be statistically ignorable, we should have $\alpha+\mathrm{SE}(W)=o(1/N)$. Moreover, we can combine the conclusions of Theorem 3.1 and Proposition A.1 to obtain an explicit bound on $\|\widehat{\theta}^{*(\infty)}-I^*\theta_0^*\|$ in terms of n,M, and ρ as

$$M^{-1/2} \left\| \widehat{\theta}^{*(\infty)} - I^* \theta_0^* \right\| \lesssim \frac{\alpha + \operatorname{SE}(W)}{(1 - \rho)(1 - \varrho)} + \frac{1}{\sqrt{\delta}} \left\{ \frac{1}{(1 - \rho)\sqrt{nM}} + \varrho \|\bar{\flat}_{\mathcal{A}}\| + \frac{(\varrho \|\bar{\flat}_{\mathcal{A}}\|)^{1/2}}{\sqrt{N}} + \frac{1}{nM} \right\}$$

with probability at least $1 - \delta$ for some small constant $\delta > 0$.

A.2 THE THEORETICAL RESULTS UNDER GLOBAL STRONG CONVEXITY ASSUMPTION

Assumption 3' (Global Strong Convexity). Assume there exists a fixed positive constant λ_{\min} , such that $\min_{m}\inf_{\theta\in\Theta}\lambda_{\min}\{\Omega_m(\theta)\}\geq\lambda_{\min}$.

Theorem A.1 (MSE of $\widehat{\theta}$). Assume Assumptions 1-3', and 4-6 hold. Then we have $\mathbb{E}\|\widehat{\theta}-\theta_0\|^2 = V(\widehat{\theta}) + \|\bar{b}_{\mathcal{A}}\| \quad B(\widehat{\theta})$, where $V(\widehat{\theta}) \lesssim L_{\max}^2/(\lambda_{\min}^2 N) + O\left(N^{-2}\right)$, $NV(\widehat{\theta}) \to \operatorname{tr}\left\{\Omega_{\mathcal{A}}^{-1}\Sigma_{\mathcal{A}}\Omega_{\mathcal{A}}^{-1}\right\}$ as $N \to \infty$, and

$$\frac{\varrho^2 \|\bar{\flat}_{\mathcal{A}}\|}{L_{\max}^2} - C \left(\frac{\varrho}{N} + \frac{1}{N^3} \right) \leq B(\widehat{\theta}) \leq O \left(\varrho^2 \|\bar{\flat}_{\mathcal{A}}\| + \frac{\varrho}{N} + \frac{1}{N^3} \right).$$

Here $\bar{\flat}_{\mathcal{A}} = |\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \flat_m$. The detailed formulas of $\Omega_{\mathcal{A}}$ and $\Sigma_{\mathcal{A}}$ are given in Appendix B.1.

Since $\widehat{\theta}_{\mathcal{A}}$ is computed based solely on trust-able data, its properties can be directly derived by extending the classical properties of M-estimators (Van der Vaart, 2000; Serfling, 2009; Zhang et al., 2013). We then have the following proposition.

Proposition A.2 (MSE of $\widehat{\theta}_{\mathcal{A}}$). Assume that Assumptions 1-3', and 4 hold. Then we have $\mathbb{E}\|\widehat{\theta}_{\mathcal{A}} - \theta_0\|^2 = V(\widehat{\theta}_{\mathcal{A}}) + B(\widehat{\theta}_{\mathcal{A}})$, where $V(\widehat{\theta}_{\mathcal{A}}) \leq \{\lambda_{\min}^2 N(1-\varrho)\}^{-1} 2L_{\max}^2$, $NV(\widehat{\theta}_{\mathcal{A}}) \to \operatorname{tr}\left[\{(M-|\mathcal{A}|)^{-1}\sum_{m\notin\mathcal{A}}\Omega_m(\theta_0)\}^{-1}\{(M-|\mathcal{A}|)^{-1}\sum_{m\notin\mathcal{A}}\Sigma_m(\theta_0)\}\{(M-|\mathcal{A}|)^{-1}\sum_{m\notin\mathcal{A}}\Omega_m(\theta_0)\}^{-1}\right]$, and $B(\widehat{\theta}_{\mathcal{A}}) = O(N^{-2}(1-\varrho)^{-2})$.

By comparing Proposition A.2 with Theorem A.1, we find that using only trustworthy clients should result in a superior estimator, as compared with the estimator computed based on all clients.

Theorem A.2 (Convergence Property of $\widehat{\theta}_{\mathcal{A}}^{*(t)}$). Assume that Assumptions 1-3', and 4-6 hold, and $\alpha+\operatorname{SE}(W)<\epsilon$, for some sufficiently small but fixed ϵ depending on $(L_{\max},\lambda_{\min},\rho)$. Then, with probability at least $1-O(M/n^4+1/(\log n)^4)$, we have $M^{-1/2}\|\widehat{\theta}_{\mathcal{A}}^{*(t)}-I^*\widehat{\theta}_{\mathcal{A}}\|\lesssim \operatorname{Err}_1+\operatorname{Err}_2+\operatorname{Err}_3$, where

$$\operatorname{Err}_{1} = \left(1 - \frac{\alpha \bar{\omega} \lambda_{\min}}{8}\right)^{t} \hat{\delta}_{0}^{\mathcal{A}}, \ \operatorname{Err}_{2} = \frac{\alpha L_{\max} + \operatorname{SE}(W)}{(1 - \rho) \lambda_{\min} \bar{\omega}} \left\{ \left(\frac{\log n}{n}\right)^{1/2} L_{\max} + \varrho^{1/2} \bar{b}_{2}^{\mathcal{A}} \right\},$$

$$\operatorname{Err}_{3} = \frac{1}{\bar{\omega} \lambda_{\min}} \left[\varrho \bar{b}_{2}^{\mathcal{A}} \bar{\omega}_{2}^{\mathcal{A}} + \bar{\Delta}_{2} \left\{ \left(\frac{\log N}{N}\right)^{\frac{1}{2}} + L_{\max} \|\hat{\theta}_{\mathcal{A}} - \theta_{0}\| \right\} \right].$$

Assume $M=o(n^4)$ as $n\to\infty$. Then with probability tending to 1, we have $M^{-1/2}\|\widehat{\theta}_{\mathcal{A}}^{*(\infty)}-I^*\widehat{\theta}_{\mathcal{A}}\|$ upper bounded by

$$\frac{C}{\bar{\omega}} \Big[\Big\{ \alpha + \operatorname{SE}(W) \Big\} \Big(n^{-1/2} + \varrho^{1/2} \Big) + \Big(\varrho \overline{\omega}_2^{\mathcal{A}} + \frac{\bar{\Delta}_2}{\sqrt{N}} \Big) \Big].$$

Theorem A.3 (Convergence Rate of the aDFL). Assume that Assumptions 1-3', and 4-6 hold. Let $\pi(x)=\exp(-x)$, and set the initial value $\widehat{\theta}_r^{(m)}$ as the standard DFL estimator. Assume that $\log N \lesssim \lambda_n \lesssim \sqrt{n} M^{-1/8}$. Then, with probability at least $1-O(M/n^4+1/\log N)$, we have: (1) $\widehat{\omega}_2^A \lesssim 1/\sqrt{N}$, (2) $\widehat{\Delta}_2^2 \lesssim \varrho/\sqrt{N} + \lambda_n (1/\sqrt{n} + \|\widehat{\theta} - \theta_0\|)$, and (3) $1/\widehat{\omega} \lesssim \exp(c\lambda_n \|\widehat{\theta} - \theta_0\|)$. Further assume $M \to \infty$ with $M = o(n^4)$, $\varrho = o(1)$ and $\alpha + \mathrm{SE}(W)$ is sufficiently small as $n \to \infty$. Then, with probability tending to 1, we have $M^{-1/2} \|\widehat{\theta}_{\mathrm{aDFL}}^{*(n)} - I^*\widehat{\theta}_A\|$ upper bounded by

$$C \exp\left(c\lambda_n \|\widehat{\theta} - \theta_0\|\right) \left\{\frac{\lambda_n \|\widehat{\theta} - \theta_0\|}{\sqrt{N}} + o\left(\frac{1}{\sqrt{N}}\right)\right\}.$$

A.3 THE ASSUMPTION FOR COROLLARY 4.1.

Assumption A.1 (Consensus Convergence). Denote $\bar{\theta}_{\text{init}} = M^{-1} \sum_{m=1}^{M} \widehat{\theta}_{\text{init}}^{(m)}$. Assume that (1) $\lambda_n \|\bar{\theta}_{\text{init}} - \theta_0\| = O_p(1)$, and (2) $\lambda_n M^{-1} \sum_{m=1}^{M} \|\widehat{\theta}_{\text{init}}^{(m)} - \bar{\theta}_{\text{init}}\|^2 = o_p(1/N^2)$.

Remark 3. Assumption A.1 requires that the initial estimators $\{\widehat{\theta}_{\mathrm{init}}^{(m)}\}_m$ have a clear consensus in the sense that their sample variance is of the order $o_p(1/(\sqrt{\lambda_n}N))$. Moreover, their consensus should be of a reasonable quality in the sense that $\lambda_n \|\widehat{\theta}_{\mathrm{init}} - \theta_0\| = O_p(1)$. Such types of initial estimators can be easily obtained by, for example, (1) a standard DFL algorithm with a sufficiently small $\alpha + \mathrm{SE}(W)$ value; or (2) a gradient tracking algorithm of Shi et al. (2015) on a symmetric doubly stochastic W.

A.4 MULTI-STAGE ADFL ALGORITHM

It is worth noting that in Algorithm A.1, the key step of the aDFL method involves computing adaptive weights using Equation (4.4). These weights adjust each client's training contribution based on its behavior. Consequently, our proposed aDFL method can be smoothly extended to many existing DFL frameworks. Moreover, with an appropriate choice of λ_n , one can expect to achieve nearly oracle performance.

A.5 THE CHOICE OF λ_n

We propose here a method of decentralized cross validation (DCV) for an automatic selection of λ_n . Specifically, for any $1 \leq m \leq M$, we split \mathcal{S}_m into a training set $\mathcal{S}_m^{\text{train}}$ and a validation set $\mathcal{S}_m^{\text{val}}$. The training set $\cup_m \mathcal{S}_m^{\text{train}}$ is then used to obtain the aDFL estimator under different λ_n values, while the validation set $\cup_m \mathcal{S}_m^{\text{val}}$ is used to evaluate the aDFL estimator's performance. In the presence of Byzantine attacks in DFL, the most ideal global metric should be $\mathcal{L}^{\text{val}}(\{\theta^{(m)}\}_m) = |\mathcal{A}^c|^{-1}\sum_{m=1}^M (1-a_m)\sum_{i\in\mathcal{S}_m^{\text{val}}}\ell(X_i,Y_i;\theta^{(m)})$, which is the validation losses computed on all trustworthy clients. By leveraging the aDFL estimator $\widehat{\theta}_{\text{aDFL}}^{*(T)}$ and the adaptive

Algorithm A.1: Multi-stage Adaptive Decentralized Federated Learning

```
811
              Require: initial estimator \{\widehat{\theta}_{\mathrm{init}}^{(m)}\}_{m=1}^{M}; max iteration T; number of stages S; Ensure: aDFL estimator \{\widehat{\theta}_{\mathrm{aDFL}}^{(T,m)}\}_{m=1}^{M}
812
813
814
                1: for s \leq S do
                         815
816
817
                              for 1 \le m \le M (distributedly) do
                                  Compute the neighborhood-averaged estimator \hat{\theta}_{aDFL}^{(t,m)} = \sum_{k} w_{mk} \hat{\theta}_{aDFL}^{(t,k)}
818
                5:
819
                                   Update parameter estimator by
820
                                                                          \widehat{\theta}_{\mathrm{aDFL}}^{(t+1,m)} = \ \widehat{\theta}_{\mathrm{aDFL}}^{(t,m)} - \alpha \widehat{\omega}_m \dot{\mathcal{L}}_{(m)} (\widehat{\theta}_{\mathrm{aDFL}}^{(t,m)}),
821
                                  where \widehat{\omega}_m is computed as (4.4)
823
                7:
                              end for
824
                8:
                          end for
825
                9: end for
```

weights $\{\widehat{\omega}_m\}_m$ produced by the aDFL algorithm on the training data, we can construct an estimator for the ideal loss function. Specifically, it is defined as

$$\widehat{\mathcal{L}}^{\mathrm{val}}(\widehat{\theta}_{\mathrm{aDFL}}^{*(T)}) = (M\widehat{\widehat{\omega}})^{-1} \sum_{m=1}^{M} \widehat{\omega}_{m} \sum_{i \in \mathcal{S}_{\mathrm{val}}^{\mathrm{val}}} \ell(X_{i}, Y_{i}; \widehat{\theta}_{\mathrm{aDFL}}^{(T,m)}) + (M\widehat{\widehat{\omega}})^{-1} \lambda n_{\mathrm{val}}^{-1/2} \Big(\sum_{m=1}^{M} \widehat{\omega}_{m}^{2}\Big)^{1/2}.$$

Here $n_{\rm val} = |\mathcal{S}_{\rm val}|$ and λ represents a penalty on the adaptive weights to balance the estimation value and the variance of $\widehat{\mathcal{L}}^{\rm val}(\widehat{\theta}_{\rm aDFL}^{*(T)})$. We observe that λ is not highly sensitive in our algorithm. In practice, we set $\lambda = 1.64$. Then the DCV algorithm can be executed for each λ_n^k in a two stage manner:

In the first stage, each client m executes Algorithm 1 to obtain the aDFL estimator $\widehat{\theta}_{a\mathrm{DFL}}^{(T,m)}$ and $\{\widehat{\omega}_m\}_m$. Based on this estimator, every client calculates its validation loss, denoted as $\widehat{\mathcal{L}}_{\mathrm{val}}^{(0,m)}$ and recorded as the initial loss value. We also define the initial averaged adaptive weight as $\widehat{\omega}^{(0,m)} = \widehat{\omega}_m$.

In the second stage, an iterative algorithm should be executed on the decentralized network, so that an estimator for $\widehat{\mathcal{L}}^{\mathrm{val}}(\widehat{\theta}^{*(T)}_{\mathrm{aDFL}})$ with consensus can be obtained. To this end, assume that client m has obtained the loss value $\widehat{\mathcal{L}}^{(t,m)}_{\mathrm{val}}$ and averaged adaptive weight $\widehat{\omega}^{(t,m)}$ at iteration t. At the (t+1)th iteration, the loss value and averaged adaptive weight are updated as follows:

$$\widehat{\mathcal{L}}_{\text{val}}^{(t+1,m)} = \sum_{k=1}^{M} w_{mk} \widehat{\mathcal{L}}_{\text{val}}^{(t,k)}; \quad \widehat{\omega}^{(t+1,m)} = \sum_{k=1}^{M} w_{mk} \widehat{\omega}^{(t,k)}.$$

Then, by similar technique of Yuan et al. (2016) and Wu et al. (2023a), it can be proved that $\widehat{\mathcal{L}}_{\mathrm{val}}^{(t,m)} \to \widehat{\mathcal{L}}_{\mathrm{val}}^{\infty} \approx M^{-1} \sum_{m=1}^{M} \widehat{\mathcal{L}}_{\mathrm{val}}^{(0,m)}$ and $\widehat{\omega}^{(t,m)} \to \widehat{\omega}^{\infty} \approx \widehat{\omega}$ as $t \to \infty$ under appropriate regularity conditions. Finally, the optimal λ_n is selected as $\lambda_n^{\mathrm{opt}} = arg \min_{\lambda_n \in \{\lambda_n^k\}_k} \mathcal{L}_{\mathrm{val}}^{\infty}/\widehat{\omega}^{\infty}$. Subsequently, we present the complete DCV algorithm in Algorithm A.2.

B PROOF OF THE MAIN THEORETICAL RESULTS

We first show that under the assumption of global strong convexity, the theorem presented in Section A.2 holds. We then extend this result to the setting of local strong convexity.

B.1 NOTATIONS AND PRELIMITS

Let I_p be the $p \times p$ identity matrix. Define $\mathbf{1}_M = (1, \dots, 1)^\top \in \mathbb{R}^M$ and $I^* = \mathbf{1}_M \otimes I_p \in \mathbb{R}^{Mp \times p}$. For a sequence $\{a^{(t)}\}$, define $a^{(\infty)} = \lim_{t \to \infty} a^{(t)}$. For two positive sequences $\{a_n\}$ and $\{b_n\}$,

Algorithm A.2: DCV for Choosing λ_n

Require: candidate sets $\{\lambda_n^k\}_k$, training set $\{S_m^{\text{train}}\}$ and validation set $\{S_m^{\text{val}}\}$, tuning parameter λ ; **Ensure:** λ_n^{opt}

- 1: **for** λ_n^k in $\{\lambda_n^k\}_k$ **do** 2: Obtain $\widehat{\theta}_{\text{aDFL}}^{*(T)}$ and $\{\widehat{\omega}_m\}_m$ by Algorithm 1 on $\{\mathcal{S}_m^{\text{train}}\}_m$.
- for $1 \le m \le M$ (distributedly) do 870
 - Compute initial estimators $\hat{\bar{\omega}}^{2(0,m)} = \hat{\omega}_m^2$, $\hat{\bar{\omega}}^{(0,m)} = \hat{\omega}_m$ and $\hat{\mathcal{L}}_{\mathrm{val}}^{(0,m)}$ $\widehat{\omega}_m \sum_{i \in \mathcal{S}_m^{\text{val}}} \ell(X_i, Y_i; \widehat{\theta}_{aDFL}^{(T,m)}).$
 - 5:

864

866

868

871

872 873

874

875

878

879

887

888 889

890

891

892

893

894 895

900 901

902

903

904

905

906

907

908

909

910

911

912 913

914

915 916

917

- 6: **for** $0 \le t \le T - 1$ **do**
- 7: for $1 \le m \le M$ (distributedly) do
- Update estimators by $\hat{\omega}^{2(t+1,m)} = \sum_{k=1}^{M} w_{mk} \hat{\omega}^{2(t,m)}; \ \hat{\omega}^{(t+1,m)} = \sum_{k=1}^{M} w_{mk} \hat{\omega}^{(t,m)}$ and $\hat{\mathcal{L}}_{\text{val}}^{(t+1,m)} = \sum_{k=1}^{M} w_{mk} \hat{\mathcal{L}}_{\text{val}}^{(t,k)}$.
- end for 9:
- 10:
- For each m, we have $\hat{\omega}^{2(T,m)} \equiv \hat{\omega}^{2(T)}$, $\hat{\omega}^{(T,m)} \equiv \hat{\omega}^{(T)}$ and $\widehat{\mathcal{L}}_{\text{val}}^{(T,m)} \equiv \widehat{\mathcal{L}}_{\text{val}}^{(T)}$ for sufficiently large T. Denote $\hat{\omega}^{2(T)}$, $\hat{\omega}^{(T)}$, $\widehat{\mathcal{L}}_{\text{val}}^{(T)}$ as $\hat{\omega}^{2(T)}(\lambda_n^k)$, $\hat{\omega}^{(T)}(\lambda_n^k)$, $\widehat{\mathcal{L}}_{\text{val}}^{(T)}(\lambda_n^k)$.
- - 13: Obtain $\lambda_n^{\text{opt}} = arg \min_{\lambda_n^k \in \{\lambda_n^k\}_k} (M\hat{\omega}^{(T)}(\lambda_n^k))^{-1} \{ \hat{\mathcal{L}}_{\text{val}}^{(T)}(\lambda_n^k) + \lambda n_{\text{val}}^{-1/2} (M\hat{\omega}^{2(T)}(\lambda_n^k))^{1/2} \}.$

write $a_n \ll b_n$ or $a_n = o(b_n)$ if $a_n/b_n \to 0$ as $n \to \infty$. Write $a_n \lesssim b_n$ or $a_n = O(b_n)$ if $a_n/b_n \leq C < \infty$ as $n \to \infty$. For a vector $x \in \mathbb{R}^p$, denote its Euclidean norm by ||x||. For a symmetric matrix $B \in \mathbb{R}^{p \times p}$, denote its smallest and largest eigenvalues by $\lambda_{\min}(B)$ and $\lambda_{\max}(B)$, respectively. For an arbitrary matrix $B \in \mathbb{R}^{p_1 \times p_2}$, define its ℓ_2 -norm as $||B|| = \lambda_{\max}^{1/2}(B^\top B)$. For a set S, denote its cardinality by |S| and represent its complement by S^c . Denote $\mathbb{E}_m(\cdot)$ stands for the expectation with respect to a probability distribution \mathcal{P}_m . The generic absolute constants c and C may vary from line to line.

For simplicity of notation, write $\ell(X_i,Y_i;\theta)$ as $\ell_i(\theta)$, denote $e_m^{\mathcal{A}}(\theta) = \mathbb{E}_m\big\{\ell_i(\theta)\big\}$. Define $\theta_{\mathcal{A}} = arg \min_{\theta} M^{-1} \sum_{m=1}^M e_m^{\mathcal{A}}(\theta)$ represents pseudo-true parameter. Denote $\bar{\omega} = M^{-1} \sum_{m=1}^M \omega_m$, $\Sigma_{\mathcal{A}}(\theta) = M^{-1} \sum_{m=1}^M \big[\mathbb{E}_m\big\{\dot{\ell}_i(\theta) - \mathbb{E}_m(\dot{\ell}_i(\theta))\big\}\big\{\dot{\ell}_i(\theta) - \mathbb{E}_m(\dot{\ell}_i(\theta))\big\}^{\top}\big]$ and $\Omega_{\mathcal{A}}(\theta) = M^{-1} \sum_{m=1}^{M} \{\Omega_m(\theta)\}.$

B.2 Proof of Theorem A.1 and Proposition A.2

Proof of Theorem A.1: We decompose $\mathbb{E}\|\widehat{\theta} - \theta_0\|^2 = V(\widehat{\theta}) + B(\widehat{\theta})$, where $V(\widehat{\theta}) = \mathbb{E}\|\widehat{\theta} - \theta_A\|^2$, and $B(\widehat{\theta}) = 2\mathbb{E}(\widehat{\theta} - \theta_{\mathcal{A}})^{\top}(\theta_{\mathcal{A}} - \theta_{0}) + \|\theta_{\mathcal{A}} - \theta_{0}\|^{2}$. We next investigate the two terms separately.

STEP 1. We first study $V(\widehat{\theta})$. Note that $\mathbb{E}\{\mathcal{L}(\theta)\}=M^{-1}\sum_{m=1}^{M}e_{m}^{\mathcal{A}}(\theta)$. Additionally, since X_{i} and Y_i are independently generated (though not identically distributed), based on Assumptions 1 – 4, along with the events \mathcal{E}_1 and \mathcal{E}_2 defined in Lemma C.1, we can apply Equation (23) and employ similar proof techniques from Appendix B of Zhang et al. (2013), specifically Sections B.01 and B.02, then we obtain:

$$V(\widehat{\theta}) = \mathbb{E}\|\widehat{\theta} - \theta_{\mathcal{A}}\|^2 \lesssim \frac{L_{\text{max}}^2}{\lambda_{\text{min}}^2 N} + O\left(\frac{1}{N^2}\right). \tag{B.1}$$

$$\mathbb{E}\|\widehat{\theta} - \theta_{\mathcal{A}}\| \lesssim \frac{L_{\max}^3}{N\lambda_{\min}^3} + O\left(\frac{1}{N^3}\right). \tag{B.2}$$

In addition, we have $V(\widehat{\theta}) = \mathbb{E} \| - \Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}})\dot{\mathcal{L}}(\theta_{\mathcal{A}}) \|^2 \{1 + o(1)\}$. Then it could be verified that $\mathbb{E} \|\Omega_{A}^{-1}(\theta_{\mathcal{A}})\dot{\mathcal{L}}(\theta_{\mathcal{A}})\|^{2}$

$$= \operatorname{tr} \left[\Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}}) \mathbb{E} \left\{ N^{-1} \sum_{i=1}^{N} \dot{\ell}_{i}(\theta_{\mathcal{A}}) \right\} \left\{ N^{-1} \sum_{i=1}^{N} \dot{\ell}_{i}^{\top}(\theta_{\mathcal{A}}) \right\} \Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}}) \right]$$

$$= \operatorname{tr}\left[\Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}})\mathbb{E}\left\{N^{-1}\sum_{i=1}^{N}\left(\dot{\ell}_{i}(\theta_{\mathcal{A}}) - \mathbb{E}\dot{\ell}_{i}(\theta_{\mathcal{A}})\right)\right\}\left\{N^{-1}\sum_{i=1}^{N}\left(\dot{\ell}_{i}(\theta_{\mathcal{A}}) - \mathbb{E}\dot{\ell}_{i}(\theta_{\mathcal{A}})\right)^{\top}\right\}\Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}})\right]$$

$$= N^{-1}\operatorname{tr}\left\{\Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}})\Sigma_{\mathcal{A}}(\theta_{\mathcal{A}})\Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}})\right\}.$$

This yields

$$NV(\widehat{\theta}) \to \operatorname{tr}\left\{\Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}})\Sigma_{\mathcal{A}}(\theta_{\mathcal{A}})\Omega_{\mathcal{A}}^{-1}(\theta_{\mathcal{A}})\right\} \text{ as } N \to \infty.$$

STEP 2. We next investigate $(\theta_{\mathcal{A}} - \theta_0)^{\top} \mathbb{E}(\widehat{\theta} - \theta_{\mathcal{A}})$ and $\|\theta_{\mathcal{A}} - \theta_0\|^2$. By definition, we know that $M^{-1} \sum_{m=1}^{M} \dot{e}_m^{\mathcal{A}}(\theta_{\mathcal{A}}) = 0$, this leads to

$$0 = M^{-1} \sum_{m=1}^{M} \left\{ \dot{e}_{m}^{\mathcal{A}}(\theta_{\mathcal{A}}) - \dot{e}_{m}^{\mathcal{A}}(\theta_{0}) \right\} + M^{-1} \sum_{m=1}^{M} \dot{e}_{m}^{\mathcal{A}}(\theta_{0}).$$

By definition, we know that $\mathbb{E}_m\{\dot{\ell}_i(\theta_0)\}=0$ for $m\notin\mathcal{A}$, then it can be verified that

$$M^{-1} \sum_{m=1}^{M} \dot{e}_m^{\mathcal{A}}(\theta_0) = \frac{|\mathcal{A}|}{M} |\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \flat_m = \frac{|\mathcal{A}|\bar{\flat}_{\mathcal{A}}}{M}.$$
 (B.3)

We subsequently establish both the upper and lower bounds for $\|\theta_{\mathcal{A}} - \theta_0\|$. First, it could be verified that for any $\theta \in \Theta$, $\lambda_{\min}\{\ddot{e}_m^{\mathcal{A}}(\theta)\} = \lambda_{\min}\{\Omega_m(\theta)\} \geq \lambda_{\min}$ by Assumption 3'. Then we have

$$0 = M^{-1} \sum_{m=1}^{M} \left\{ \dot{e}_{m}^{\mathcal{A}}(\theta_{\mathcal{A}}) - \dot{e}_{m}^{\mathcal{A}}(\theta_{0}) \right\}^{\top} (\theta_{\mathcal{A}} - \theta_{0}) + \frac{|\mathcal{A}|}{M} (\bar{\flat}_{\mathcal{A}})^{\top} (\theta_{\mathcal{A}} - \theta_{0})$$

$$\geq \lambda_{\min} \|\theta_{\mathcal{A}} - \theta_{0}\|^{2} + \frac{|\mathcal{A}|}{M} (\bar{\flat}_{\mathcal{A}})^{\top} (\theta_{\mathcal{A}} - \theta_{0}).$$

This yields $\|\theta_{\mathcal{A}} - \theta_0\| \leq \lambda_{\min}^{-1} |\mathcal{A}| M^{-1} \|\bar{b}_{\mathcal{A}}\|$. In addition, it could be proved that for any $\theta', \theta'' \in \Theta$, $\|\dot{e}_m^{\mathcal{A}}(\theta') - \dot{e}_m^{\mathcal{A}}(\theta'')\| \leq L_{\max} \|\theta' - \theta''\|$ by definition and Assumption 4. Then we have

$$\begin{split} \left\| M^{-1} \sum_{m=1}^{M} \left\{ \dot{e}_{m}^{\mathcal{A}}(\theta_{\mathcal{A}}) - \dot{e}_{m}^{\mathcal{A}}(\theta_{0}) \right\} \right\| &= \left\| \frac{|\mathcal{A}|}{M} \bar{\flat}_{\mathcal{A}} \right\| \implies \frac{|\mathcal{A}|}{M} \|\bar{\flat}_{\mathcal{A}}\| \\ &\leq M^{-1} \sum_{m=1}^{M} L_{\max} \|\theta_{\mathcal{A}} - \theta_{0}\| = L_{\max} \|\theta_{\mathcal{A}} - \theta_{0}\|. \end{split}$$

As a consequence, we can obtain

$$\frac{|\mathcal{A}|}{M} L_{\max}^{-1} \|\bar{\flat}_{\mathcal{A}}\| \le \|\theta_{\mathcal{A}} - \theta_0\| \le \frac{|\mathcal{A}|}{M} \lambda_{\min}^{-1} \|\bar{\flat}_{\mathcal{A}}\|. \tag{B.4}$$

Combining the results of (B.2) and (B.4), we know

$$\left\| (\theta_{\mathcal{A}} - \theta_0)^{\top} \mathbb{E}(\widehat{\theta} - \theta_{\mathcal{A}}) \right\| \lesssim \frac{|\mathcal{A}|}{NM} \|\bar{\flat}_{\mathcal{A}}\| + O\left(\frac{\|\bar{\flat}_{\mathcal{A}}\|}{N^3}\right). \tag{B.5}$$

Combining the results of (B.4) and (B.5), we have

$$\frac{|\mathcal{A}|^2}{M^2} L_{\max}^{-2} \|\bar{\mathbf{b}}_{\mathcal{A}}\|^2 - 2\|(\theta_{\mathcal{A}} - \theta_0)^{\top} \mathbb{E}(\widehat{\theta} - \theta_{\mathcal{A}})\| \le B(\widehat{\theta}) \le \frac{|\mathcal{A}|^2}{M^2} \lambda_{\min}^{-2} \|\bar{\mathbf{b}}_{\mathcal{A}}\|^2 + 2\|(\theta_{\mathcal{A}} - \theta_0)^{\top} \mathbb{E}(\widehat{\theta} - \theta_{\mathcal{A}})\|.$$

Simplify $\Omega_{\mathcal{A}}(\theta_{\mathcal{A}})$ and $\Sigma_{\mathcal{A}}(\theta_{\mathcal{A}})$ to $\Omega_{\mathcal{A}}$ and $\Sigma_{\mathcal{A}}$. Further note that $\varrho = |\mathcal{A}|/M$, this finishes the theorem proof.

Proof of Proposition A.2: The proof of Proposition A.2 is similar to that of Theorem A.1. Thus, we omit the detailed proof here.

B.3 PROOF OF THEOREM A.2 AND PROPOSITION A.1

We first introduce some notations. Denote $\omega_m^* = 1 - a_m$ represents the oracle weight, $\Delta_m = \omega_m - \omega_m^*$, $\widehat{\mathrm{SE}}^2 = M^{-1} \sum_{m=1}^M \|\dot{\mathcal{L}}_{(m)}(\widehat{\theta}_{\mathcal{A}})\|^2$, and $\overline{\mathrm{SE}}_{\omega} = \|M^{-1} \sum_{m=1}^M (\omega_m - \omega^*) \dot{\mathcal{L}}_m(\widehat{\theta}_{\mathcal{A}})\|$. Recall that $\bar{\omega} = M^{-1} \sum_{m=1}^M \omega_m$, $\bar{\omega}_2^A = \left(|\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \omega_m^2\right)^{1/2}$, $\bar{\mathfrak{b}}_2^A = \left(|\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \|\mathfrak{b}_m\|^2\right)^{1/2}$. $\bar{\theta}_{\mathcal{A}}^{(t)} = M^{-1} \sum_{m=1}^M \widehat{\theta}_{\mathcal{A}}^{(t,m)}$ represent the averaged estimator in the tth iteration. Let $\hat{\theta}_{\mathcal{A}}^* = I^* \widehat{\theta}_{\mathcal{A}}$, $\bar{\theta}_{\mathcal{A}}^{*(t)} = I^* \bar{\theta}_{\mathcal{A}}^{(t)}$.

We will work with the weighted loss function and weighted Hessian matrix defined as follows:

$$\mathcal{L}_w(\theta) = M^{-1} \sum_{m=1}^M \omega_m \mathcal{L}_m(\theta)$$
$$\Omega_{\mathcal{A}}^w(\theta) = \mathbb{E} \{ \ddot{\mathcal{L}}_w(\theta) \} = M^{-1} \sum_{m=1}^M \omega_m \Omega_m(\theta).$$

By Lemma C.1, to prove Theorem 4.1, it suffices to study the upper bound of $\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}$ under the good events $\bigcap_{m} \mathcal{E}_{1,m} \bigcap \mathcal{E}_{2}^{\omega} \bigcap_{m} \mathcal{E}_{3,m} \bigcap \mathcal{E}_{4} \bigcap \mathcal{E}_{5}$. Then the proof of this theorem is divided into three steps. In the first and second steps, we decompose $\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}$ to $\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \overline{\theta}_{\mathcal{A}}^{*}$ and analyze these two terms separately. In the third step, we combine the results from the first two steps to derive the final theorem.

STEP 1. We first study $\|\bar{\theta}_A^{*(t+1)} - \hat{\theta}_A^*\|$. It could be verified that

$$\|\bar{\theta}_{\mathcal{A}}^{(t+1)} - \hat{\theta}_{\mathcal{A}}\| \leq \|\bar{\theta}_{\mathcal{A}}^{(t)} - \hat{\theta}_{\mathcal{A}} - \alpha M^{-1} \sum_{m=1}^{M} \omega_{m} \dot{\mathcal{L}}_{m}(\bar{\theta}_{\mathcal{A}}^{(t)})\| + \alpha M^{-1} \sum_{m=1}^{M} \|\omega_{m} \dot{\mathcal{L}}_{m}(\tilde{\theta}_{\mathcal{A}}^{(t,m)}) - \omega_{m} \dot{\mathcal{L}}_{m}(\bar{\theta}_{\mathcal{A}}^{(t)})\| + \|M^{-1} \sum_{m=1}^{M} \tilde{\theta}_{\mathcal{A}}^{(t,m)} - \bar{\theta}_{\mathcal{A}}^{(t)}\| = \Delta_{(1)} + \Delta_{(2)} + \Delta_{(3)}.$$

(i) Analysis of $\Delta_{(1)}$: Note that $\lambda_{\min}(\Omega^{\omega}_{\mathcal{A}}(\theta)) \geq \bar{\omega}\lambda_{\min}$ by definition and Assumption 3'. Then we have

$$\Delta_{(1)} = \|\bar{\theta}_{\mathcal{A}}^{(t)} - \hat{\theta}_{\mathcal{A}} - \alpha \dot{\mathcal{L}}_{\omega}(\bar{\theta}_{\mathcal{A}}^{(t)})\| \leq \|\bar{\theta}_{\mathcal{A}}^{(t)} - \hat{\theta}_{\mathcal{A}} - \alpha \dot{\mathcal{L}}_{\omega}(\bar{\theta}_{\mathcal{A}}^{(t)}) - \alpha \dot{\mathcal{L}}_{\omega}(\hat{\theta}_{\mathcal{A}})\|$$

$$+\alpha \|M^{-1} \sum_{m=1}^{M} \omega_{m} \dot{\mathcal{L}}_{m}(\hat{\theta}_{\mathcal{A}}) - M^{-1} \sum_{m=1}^{M} \omega_{m}^{*} \dot{\mathcal{L}}_{m}(\hat{\theta}_{\mathcal{A}})\|$$

$$\leq (1 - \alpha \bar{\omega} \lambda_{\min}/2) \|\bar{\theta}_{\mathcal{A}}^{(t)} - \hat{\theta}_{\mathcal{A}}\| + \alpha \overline{SE}_{\omega}.$$

The second inequality holds since $\ddot{\mathcal{L}}_w(\theta) \geq \bar{\omega} \lambda_{\min}/2$ under \mathcal{E}_2^{ω} and $\sum_{m=1}^M \omega_m^* \dot{\mathcal{L}}_m(\widehat{\theta}_{\mathcal{A}}) = 0$.

(ii) Analysis of $\Delta_{(2)}$:

$$M\Delta_{(2)}/\alpha = \sum_{m=1}^{M} \omega_{m} \|\dot{\mathcal{L}}_{m}(\widetilde{\theta}_{\mathcal{A}}^{(t,m)}) - \dot{\mathcal{L}}_{m}(\bar{\theta}_{\mathcal{A}}^{(t)})\| \leq 2 \sum_{m=1}^{M} \omega_{m} L_{\max} \|\widetilde{\theta}_{\mathcal{A}}^{(t,m)} - \bar{\theta}_{\mathcal{A}}^{(t)}\|$$

$$\leq 2\sqrt{M} L_{\max} \|(W \otimes I_{p})\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| \leq 2\sqrt{M} L_{\max} \rho \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\|.$$

The first inequality holds under $\cap_m \mathcal{E}_{1,m}$, and the last inequality holds by Lemma C.2 (i). Finally, we have $\Delta_{(3)} \leq M^{-1/2}\operatorname{SE}(W) \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\|$ by Lemma C.2 (ii). This leads to

$$\|\bar{\theta}_{\mathcal{A}}^{(t+1)} - \widehat{\theta}_{\mathcal{A}}\| \le \left(1 - \frac{\alpha \bar{\omega} \lambda_{\min}}{2}\right) \|\bar{\theta}_{\mathcal{A}}^{(t)} - \widehat{\theta}_{\mathcal{A}}\| + M^{-1/2} \left\{2L_{\max} \alpha \rho + \operatorname{SE}(W)\right\} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| + \alpha \overline{\operatorname{SE}}_{\omega}.$$

As a result, we have

$$\|\bar{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}\| \leq \left(1 - \frac{\alpha \bar{\omega} \lambda_{\min}}{2}\right) \|\bar{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| + \left\{2L_{\max}\alpha\rho + \operatorname{SE}(W)\right\} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| + \alpha \sqrt{M} \overline{\operatorname{SE}}_{\omega}.$$

STEP 2. We next study $\|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \overline{\theta}_{\mathcal{A}}^{*(t+1)}\|$. It could be verified that $\|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \overline{\theta}_{\mathcal{A}}^{*(t+1)}\|$

$$\leq \|(W \otimes I_p)(\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)})\| + \alpha \left\{ \sum_{m=1}^{M} \|\omega_m \dot{\mathcal{L}}_m(\widetilde{\theta}_{\mathcal{A}}^{(t,m)}) - M^{-1} \sum_{m=1}^{M} \omega_m \dot{\mathcal{L}}_m(\widetilde{\theta}_{\mathcal{A}}^{(t,m)})\|^2 \right\}^{1/2} + \sqrt{M} \Delta_{(3)}$$

$$\leq \rho \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| + \alpha \|\dot{\mathcal{L}}_{\omega}^{*}(\widetilde{\theta}_{\mathcal{A}}^{*(t)})\| + \sqrt{M}\Delta_{(3)}.$$

Here $\dot{\mathcal{L}}_{\omega}^{*}(\widetilde{\theta}_{\mathcal{A}}^{*(t)}) = \left\{\omega_{1}\dot{\mathcal{L}}_{1}^{\top}(\widetilde{\theta}_{\mathcal{A}}^{(t,1)}), \ldots, \omega_{m}\dot{\mathcal{L}}_{m}^{\top}(\widetilde{\theta}_{\mathcal{A}}^{(t,m)})\right\}^{\top}$. The first inequality holds because $\|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \bar{\theta}_{\mathcal{A}}^{*(t+1)}\| \leq \|(W \otimes I_{p})\widehat{\theta}_{\mathcal{A}}^{*(t)} - \alpha\dot{\mathcal{L}}_{w}^{*}(\widetilde{\theta}_{\mathcal{A}}^{*(t)}) - \bar{\theta}_{\mathcal{A}}^{*(t)} + \alpha I^{*}M^{-1}\sum_{m=1}^{M}\omega_{m}\dot{\mathcal{L}}_{m}(\widetilde{\theta}_{\mathcal{A}}^{(t,m)})\| + \|I^{*}(M^{-1}\sum_{m=1}^{M}\widetilde{\theta}_{\mathcal{A}}^{(t,m)} - \bar{\theta}_{\mathcal{A}}^{(t)})\|$, and the second inequality holds because $\sum_{m=1}^{M}\|\omega_{m}\dot{\mathcal{L}}_{m}(\widetilde{\theta}_{\mathcal{A}}^{(t,m)}) - M^{-1}\sum_{m=1}^{M}\omega_{m}\dot{\mathcal{L}}_{m}(\widetilde{\theta}_{\mathcal{A}}^{(t,m)})\|^{2} \leq \sum_{m=1}^{M}\|\omega_{m}\dot{\mathcal{L}}_{m}(\widetilde{\theta}_{\mathcal{A}}^{(t,m)})\|^{2}$. Next, note that

$$\|\dot{\mathcal{L}}_m(\widetilde{\theta}_{\mathcal{A}}^{(t,m)})\| \leq 2L_{\max}\|\widetilde{\theta}_{\mathcal{A}}^{(t,m)} - \bar{\theta}_{\mathcal{A}}^{(t)}\| + 2L_{\max}\|\bar{\theta}_{\mathcal{A}}^{(t)} - \widehat{\theta}_{\mathcal{A}}\| + \|\dot{\mathcal{L}}_m(\widehat{\theta}_{\mathcal{A}})\|.$$

Then it could be verified that $\|\dot{\mathcal{L}}_{\omega}^*(\widetilde{\theta}^{*(t)})\|$

$$\leq \left\{ 4 \sum_{m=1}^{M} \omega_{m}^{2} L_{\max}^{2} \|\widetilde{\theta}_{\mathcal{A}}^{(t,m)} - \bar{\theta}_{\mathcal{A}}^{(t)}\|^{2} \right\}^{1/2} + \left\{ 4 \sum_{m=1}^{M} \omega_{m}^{2} L_{\max}^{2} \|\bar{\theta}_{\mathcal{A}}^{(t)} - \widehat{\theta}_{\mathcal{A}}\|^{2} \right\}^{1/2} + \left\{ \sum_{m=1}^{M} \omega_{m}^{2} \|\dot{\mathcal{L}}_{m}(\widehat{\theta}_{\mathcal{A}})\|^{2} \right\}^{1/2}$$

$$\leq 2 L_{\max} \left\{ \sum_{m=1}^{M} \|\widetilde{\theta}_{\mathcal{A}}^{(t,m)} - \bar{\theta}_{\mathcal{A}}^{(t)}\|^{2} \right\}^{1/2} + 2 L_{\max} \|\bar{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| + \sqrt{M} \widehat{SE}.$$

By combining the above results with Lemma C.2, we have $\|\hat{\theta}_{\mathcal{A}}^{*(t+1)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\|$

$$\leq \rho \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| + 2\alpha L_{\max} \left[\left\{ \sum_{m=1}^{M} \|\widetilde{\theta}_{\mathcal{A}}^{(t,m)} - \bar{\theta}_{\mathcal{A}}^{(t)}\|^{2} \right\}^{1/2} + \|\bar{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| \right] + \alpha \sqrt{M} \widehat{SE} + \sqrt{M} \Delta_{(3)}$$

$$\leq \left\{ \rho + 2\rho L_{\max} \alpha + SE(W) \right\} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| + 2\alpha L_{\max} \|\bar{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| + \alpha \sqrt{M} \widehat{SE}.$$

STEP 3. Finally, we establish the upper bound of $\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}$. To achieve this, we combine the results from Steps 1 and 2. Let $\bar{\delta}^{*(t+1)} = \|\bar{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}\|$ and $\widehat{\delta}^{*(t+1)} = \|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \bar{\theta}_{\mathcal{A}}^{*(t+1)}\|$. Using these definitions, we obtain:

$$\begin{pmatrix} \widehat{\delta}^{*(t+1)} \\ \bar{\delta}^{*(t+1)} \end{pmatrix} \leq \begin{bmatrix} \rho + 2\alpha\rho L_{\max} + \mathrm{SE}(W) & 2\alpha L_{\max} \\ 2\alpha\rho L_{\max} + \mathrm{SE}(W) & 1 - \alpha\bar{\omega}\lambda_{\min}/2 \end{bmatrix} \begin{pmatrix} \widehat{\delta}^{*(t)} \\ \bar{\delta}^{*(t)} \end{pmatrix} + \alpha\sqrt{M} \begin{pmatrix} \widehat{\mathrm{SE}} \\ \overline{\mathrm{SE}}_{\omega} \end{pmatrix}.$$
 (B.6)

Denote

$$\mathbf{H} = [h_{ij}]_{2\times 2} = \begin{bmatrix} \rho + 2\alpha\rho L_{\max} + \mathrm{SE}(W) & 2\alpha L_{\max} \\ 2\alpha\rho L_{\max} + \mathrm{SE}(W) & 1 - \alpha\bar{\omega}\lambda_{\min}/2 \end{bmatrix},$$

and $\rho_H = \max |\lambda(\mathbf{H})|$ represents the spectral radius of \mathbf{H} . By Lemma C.3, we have $0 < \rho_H < 1 - (\alpha \bar{\omega} \lambda_{\min})/8$. Thus, the linear system in (B.6) converges. By recursion and noting that $h_{ij} > 0$ for sufficiently small α , we derive the following.

$$\begin{pmatrix} \widehat{\delta}^{*(t+1)} \\ \bar{\delta}^{*(t+1)} \end{pmatrix} \le \mathbf{H}^{t+1} \begin{pmatrix} \widehat{\delta}^{*(0)} \\ \bar{\delta}^{*(0)} \end{pmatrix} + \alpha \sqrt{M} (I_2 - \mathbf{H})^{-1} \begin{pmatrix} \widehat{\mathbf{SE}} \\ \overline{\mathbf{SE}}_{\omega} \end{pmatrix}.$$
(B.7)

It could be calculated that,

$$(I_2 - \mathbf{H})^{-1} = c_0 \begin{bmatrix} \alpha \bar{\omega} \lambda_{\min} / 2 & 2\alpha L_{\max} \\ 2\alpha \rho L_{\max} + \text{SE}(W) & 1 - \rho - 2\alpha \rho L_{\max} - \text{SE}(W) \end{bmatrix},$$

Here $c_0 > 0$ and

$$\begin{split} \frac{1}{c_0} &= \alpha \left[\left\{ 1 - \rho - 2\alpha \rho L_{\max} - \mathrm{SE}(W) \right\} \frac{\bar{\omega} \lambda_{\min}}{2} - 2L_{\max} \left\{ 2L_{\max} \alpha \rho + \mathrm{SE}(W) \right\} \right] \\ &\geq \alpha \left[\frac{\bar{w} \lambda_{\min}}{2} (1 - \rho) - \frac{(1 - \rho)(\bar{w} \lambda_{\min})^2}{16L_{\max}} - 2L_{\max} \frac{(1 - \rho)\bar{w} \lambda_{\min}}{8L_{\max}} \right] \\ &\geq \alpha \left(\frac{(1 - \rho)\omega \lambda_{\min}}{4} - \frac{(1 - \rho)\omega \lambda_{\min}}{8} \frac{\bar{\omega} \lambda_{\min}}{8L_{\max}} \right) \geq \alpha \frac{(1 - \rho)\bar{\omega} \lambda_{\min}}{8}, \end{split}$$

Substituting the above results into equation (B.7), we obtain:

$$\left(\frac{\widehat{\delta}^{*(t+1)}}{\bar{\delta}^{*(t+1)}}\right) \leq \mathbf{H}^{t+1} \left(\frac{\widehat{\delta}^{*(0)}}{\bar{\delta}^{*(0)}}\right) + O\left(\frac{\sqrt{M}}{(1-\rho)\bar{\omega}\lambda_{\min}}\right) \left(\frac{\alpha(\bar{\omega}\lambda_{\min}\widehat{SE}/2 + 2L_{\max}\overline{SE}_{\omega})}{\{2\alpha L_{\max} + SE(W)\}\widehat{SE} + (1-\rho)\overline{SE}_{\omega}\}}\right).$$
(B.8)

Then, for $\rho_{\omega} = 1 - (\alpha \bar{\omega} \lambda_{\min})/8 \in (\rho_H, 1)$, by Gelfand's formula (Johnson & Horn, 1985, Corollary 5.6.14), there exists some $t_0 \in \mathbb{N}$ such that for all $t \geq t_0$:

$$\begin{split} \|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \bar{\theta}_{\mathcal{A}}^{*(t+1)}\| & \lesssim \rho_{\omega}^{t+1}(\|\widehat{\delta}^{*(0)}\| + \|\bar{\delta}^{*(0)}\|) + O\left(\frac{\sqrt{M}}{(1-\rho)\bar{\omega}\lambda_{\min}}\right) \alpha(\bar{\omega}\lambda_{\min}\widehat{SE}/2 \\ & + 2L_{\max}\overline{SE}_{\omega}) \\ \|\bar{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}\| & \lesssim \rho_{\omega}^{t+1}(\|\widehat{\delta}^{*(0)}\| + \|\bar{\delta}^{*(0)}\|) + O\left(\frac{\sqrt{M}}{(1-\rho)\bar{\omega}\lambda_{\min}}\right) \left[\left\{2\alpha L_{\max} + SE(W)\right\}\widehat{SE} \right. \\ & + (1-\rho)\overline{SE}_{\omega} \right]. \end{split} \tag{B.9}$$

By reorganizing the results in (B.9), we obtain the following inequality:

$$\|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}\| \lesssim 2\rho_{\omega}^{t+1}(\|\widehat{\delta}^{*(0)}\| + \|\bar{\delta}^{*(0)}\|) + O\left(\frac{\sqrt{M}}{(1-\rho)\lambda_{\min}\bar{\omega}}\right) \left[\left\{\alpha L_{\max} + \operatorname{SE}(W)\right\}\widehat{\operatorname{SE}} + (1-\rho)\overline{\operatorname{SE}}_{\omega}\right]. \tag{B.10}$$

The inequality holds because $(i): \alpha \bar{\omega} \lambda_{\min}/2 + 2\alpha L_{\max} + \mathrm{SE}(W) \lesssim \{2\alpha L_{\max} + \mathrm{SE}(W)\}$, and $(ii): (1-\rho+2\alpha L_{\max}) \lesssim (1-\rho)$. Next, we specify the forms of $\widehat{\mathrm{SE}}$ and $\overline{\mathrm{SE}}_{\omega}$ to simplify equation (B.10).

STEP 3.1. We first analyze $\overline{\mathrm{SE}}_{\omega}$, recall that $\bar{\Delta}_2^2=M^{-1}\sum_{m=1}^M\left\{\omega_m-(1-a_m)\right\}^2$ we obtain:

$$\overline{SE}_{\omega} \leq \|M^{-1} \sum_{m=1}^{M} (\omega_{m} - \omega_{m}^{*}) \dot{\mathcal{L}}_{m}(\theta_{0}) \| + \|M^{-1} \sum_{m=1}^{M} (\omega_{m} - \omega_{m}^{*}) \Big\{ \dot{\mathcal{L}}_{m}(\widehat{\theta}_{\mathcal{A}}) - \dot{\mathcal{L}}_{m}(\theta_{0}) \Big\} \|$$

$$\leq \|M^{-1} \sum_{m=1}^{M} (\omega_{m} - \omega_{m}^{*}) \dot{\mathcal{L}}_{m}(\theta_{0}) \| + 2\bar{\Delta}_{2} L_{\max} \|\widehat{\theta}_{\mathcal{A}} - \theta_{0}\|.$$

It could be verified that $\|M^{-1}\sum_{m=1}^{M}\Delta_{m}\dot{\mathcal{L}}_{m}(\theta_{0})\| = \|M^{-1}\sum_{m=1}^{M}\Delta_{m}\left[\dot{\mathcal{L}}_{(m)}(\theta_{0}) - \mathbb{E}\left\{\dot{\mathcal{L}}_{(m)}(\theta_{0})\right\}\right] + M^{-1}\sum_{m=1}^{M}\Delta_{m}\flat_{m}\|.$

Analysis of the second term: $\|M^{-1}\sum_{m=1}^{M}\Delta_m\flat_m\|=\|M^{-1}\sum_{m\in\mathcal{A}}\omega_m\flat_m\|\leq M^{-1}\sum_{m\in\mathcal{A}}\omega_m\|\flat_m\|.$

Analysis of the first term: Note that $M^{-1}\sum_{m=1}^{M}\Delta_m [\dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}\{\dot{\mathcal{L}}_{(m)}(\theta_0)\}] = M^{-1}\sum_{m\in\mathcal{A}}\omega_m [\dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}\{\dot{\mathcal{L}}_{(m)}(\theta_0)\}] + M^{-1}\sum_{m\notin\mathcal{A}}\Delta_m\dot{\mathcal{L}}_{(m)}(\theta_0)$. First, under events $\bigcap_{m\in\mathcal{A}}\mathcal{E}_{3,m}$, we have $\|M^{-1}\sum_{m\in\mathcal{A}}\omega_m [\dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}\{\dot{\mathcal{L}}_{(m)}(\theta_0)\}]\| \leq M^{-1}\sum_{m\in\mathcal{A}}\omega_m \|\flat_m\|$. Second, it could be proved that under events \mathcal{E}_4 ,

$$||M^{-1}\sum_{m\notin\mathcal{A}}\Delta_m\dot{\mathcal{L}}_{(m)}(\theta_0)||\lesssim \frac{M-|\mathcal{A}|}{M}\Big(\frac{\log(N-n|\mathcal{A}|)}{(N-n|\mathcal{A}|)}\Big)^{1/2}\bar{\Delta}_{\mathcal{A}}^c.$$

Here $\bar{\Delta}^c_{\mathcal{A}} = \left\{ (M - |\mathcal{A}|)^{-1} \sum_{m \notin \mathcal{A}} (\omega_m - \omega^*)^2 \right\}^{1/2}$. Combining the above results, we have

$$\overline{SE}_{\omega} \leq M^{-1} \sum_{m \in \mathcal{A}} \omega_m \| \flat_m \| + O\left(\frac{\sqrt{\log(N - n|\mathcal{A}|)}}{\sqrt{N}} \left\{ M^{-1} \sum_{m \notin \mathcal{A}} (\omega_m - \omega^*)^2 \right\}^{1/2} \right) + 2\overline{\Delta}_2 L_{\max} \| \widehat{\theta}_{\mathcal{A}} - \theta_0 \|.$$

STEP 3.2. We next study \widehat{SE} . By the Cauchy-Schwarz inequality, we have

$$\widehat{SE}^{2} \lesssim \left\{ M^{-1} \sum_{m=1}^{M} \left\| \dot{\mathcal{L}}_{(m)}(\widehat{\theta}_{\mathcal{A}}) - \dot{\mathcal{L}}_{(m)}(\theta_{0}) \right\|^{2} + M^{-1} \sum_{m=1}^{M} \left\| \dot{\mathcal{L}}_{(m)}(\theta_{0}) - \mathbb{E}\dot{\ell}(x, y; \theta_{0}) \right\|^{2} + M^{-1} \sum_{m=1}^{M} \left\| \mathbb{E}\dot{\ell}(x, y; \theta_{0}) \right\|^{2} \right\}.$$

We study the three terms separately. First, under events $\cap_m \mathcal{E}_{m,1}$, we have $M^{-1} \sum_{m=1}^M \|\dot{\mathcal{L}}_{(m)}(\widehat{\theta}_{\mathcal{A}}) - \dot{\mathcal{L}}_{(m)}(\theta_0)\|^2 \le 4L_{\max}^2 \|\widehat{\theta}_{\mathcal{A}} - \theta_0\|^2$. Second, under event \mathcal{E}_5 , we have $M^{-1} \sum_{m=1}^M \|\dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}\dot{\ell}(x,y;\theta_0)\|^2 \le \log n/n$. Finally, it is obvious to show that $M^{-1} \sum_{m=1}^M \|\mathbb{E}\dot{\ell}(x,y;\theta_0)\|^2 = M^{-1} \sum_{m\in\mathcal{A}} \|b_m\|^2$. Combining the above results, we have

$$\widehat{SE} \lesssim L_{\max} \|\widehat{\theta}_{\mathcal{A}} - \theta_0\| + \frac{\sqrt{\log n}}{\sqrt{n}} + \frac{\sqrt{|\mathcal{A}|}}{\sqrt{M}} \left\{ \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \|\flat_m\|^2 \right\}^{1/2}.$$

Recall that $\overline{\omega}_2^A = \left(|\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \omega_m^2\right)^{1/2}$, $\overline{\flat}_2^A = \left(|\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \|\flat_m\|^2\right)^{1/2}$. Substituting the result obtained from Step 3 into equation (B.10), and define $\widehat{\delta}_0 = \max_m \|\widehat{\theta}_{A}^{(0,m)} - \widehat{\theta}_{A}\|$, we obtain

$$\begin{split} M^{-1/2} \| \widehat{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*} \| &\lesssim \rho_{\omega}^{t} \widehat{\delta}_{0} + \frac{\alpha L_{\max} + \operatorname{SE}(W)}{(1 - \rho) \lambda_{\min} \bar{\omega}} \left\{ \left(\frac{\log n}{n}\right)^{1/2} L_{\max} + \left(\frac{|\mathcal{A}|}{M}\right)^{1/2} \bar{b}_{2}^{\mathcal{A}} \right\} \\ &+ (\bar{\omega} \lambda_{\min})^{-1} \left\{ \frac{|\mathcal{A}|}{M} \bar{b}_{2}^{\mathcal{A}} \overline{\omega}_{2}^{\mathcal{A}} + \bar{\Delta}_{2} \left(\frac{\log N}{N}\right)^{1/2} + L_{\max} \bar{\Delta}_{2} \| \widehat{\theta}_{\mathcal{A}} - \theta_{0} \| \right\}. \end{split}$$

The first inequality holds because it could be proved that $\|\widehat{\theta}_{\mathcal{A}} - \theta_0\| \lesssim (\log N/N)^{1/2}$ with probability at least $1 - O(1/(\log N)^4)$ by Lemma 6 in Zhang et al. (2013). Furthermore, as $n \to \infty$, applying Markov's inequality readily demonstrates that

$$M^{-1/2} \lim_{t \to \infty} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - I^* \widehat{\theta}_{\mathcal{A}} \| \lesssim \frac{1}{\bar{\omega}} \left[\left\{ \alpha + \operatorname{SE}(W) \right\} \left\{ \frac{1}{\sqrt{n}} + \left(\frac{|\mathcal{A}|}{M} \right)^{1/2} \right\} + \left(\frac{|\mathcal{A}|}{M} \overline{\omega}_2^{\mathcal{A}} + \frac{\bar{\Delta}_2}{\sqrt{N}} \right) \right]$$

with probability tending to 1. The disappearance of $\log n$ and $\log N$ occurs because Markov's inequality can be directly applied in this context to derive upper bounds for $\|\widehat{\theta}_{\mathcal{A}} - \theta_0\|$, $M^{-1} \sum_{m=1}^{M} \|\dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}\dot{\ell}(x,y;\theta_0)\|^2$, and $\|M^{-1} \sum_{m \in \mathcal{A}} \Delta_m \dot{\mathcal{L}}_{(m)}(\theta_0)\|$. This finishes the theorem proof.

Proof of Proposition A.1: The proof of Proposition A.1 can be found in Wu et al. (2023a). Thus, we omit the details here.

B.4 PROOF OF THEOREM A.3

With a slight abuse of notation, we define (1) $\bar{\omega}=M^{-1}\sum_{m=1}^{M}\widehat{\omega}_m$, (2) $(\overline{\omega}_2^A)^2=|\mathcal{A}|^{-1}\sum_{m\in\mathcal{A}}\widehat{\omega}_m^2$, and (3) $\bar{\Delta}_2^2=M^{-1}\sum_{m=1}^{M}\left\{\widehat{\omega}_m-(1-a_m)\right\}^2$. Furthermore, note that $\widehat{\theta}_{\mathrm{init}}^{(m)}=\widehat{\theta}^{(\infty,m)}$ corresponds to the standard DFL estimator, which we simply denote as $\widehat{\theta}^{(m)}$ throughout this section. By applying the sample-splitting technique (Balakrishnan et al., 2017; Chernozhukov et al., 2018), we can separately study the training process and the estimation of $\widehat{\omega}_m$. As a result, it remains to analyze (1) – (3) in the following 3 parts, respectively.

PART 1. We first investigate $(\overline{\omega}_2^A)^2$. Recall that $\widehat{\theta}$ denotes the whole sample estimator. By definition, we have

$$(\overline{\omega}_{2}^{A})^{2} = \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left(-2\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta}^{(m)}\|\right) \leq \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \left|\exp\left(-2\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta}^{(m)}\|\right) - \exp\left(-2\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta})\|\right)\right| + \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left(-2\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta})\|\right) = \Delta_{1}^{(1)} + \Delta_{2}^{(1)}.$$

Note that by mean value theorem, Lemma C.1, and under the events $\bigcap_m \mathcal{E}_{1,m}$, the following holds with probability at least $1 - O(M/n^4)$.

$$\Delta_{1}^{(1)} \leq 2\lambda_{n} \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp(-\xi_{m}) \Big| \|\dot{\mathcal{L}}_{m}(\widehat{\theta}^{(m)})\| - \|\dot{\mathcal{L}}_{m}(\widehat{\theta})\| \Big| \\
\leq 2\lambda_{n} \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} 2L_{\max} \|\widehat{\theta}^{(m)} - \widehat{\theta}\| \leq 4L_{\max} \lambda_{n} \sqrt{\frac{1}{|\mathcal{A}|}} \sum_{m \in \mathcal{A}} \|\widehat{\theta}^{(m)} - \widehat{\theta}\|^{2} \\
\leq 4L_{\max} \lambda_{n} \sqrt{\frac{M}{|\mathcal{A}|}} \sqrt{\frac{1}{M}} \sum_{m=1}^{M} \|\widehat{\theta}^{(m)} - \widehat{\theta}\|^{2} \lesssim \lambda_{n} \left(\frac{M}{|\mathcal{A}|}\right)^{1/2} \{\alpha + \operatorname{SE}(W)\}.$$

Here ξ_m is some positive constant for any $1 \leq m \leq M$ and $\exp(-\xi_m) \leq 1$. The second inequality holds under assumption 4. The last equality holds by Proposition A.1. Then we can set a sufficiently small α and $\mathrm{SE}(W)$ such that $(\lambda_n/\bar{\omega})\big(M/|\mathcal{A}|\big)^{1/2}\big\{\alpha+\mathrm{SE}(W)\big\}\ll M^2/(|\mathcal{A}|^2N)$. As a result, $\Delta_1^{(1)}$ is an ignorable higher order term.

We next investigate $\Delta_2^{(1)}$. Recall that $\theta_{\mathcal{A}} = arg \, min_{\theta} M^{-1} \sum_{m=1}^M e_m^{\mathcal{A}}(\theta)$ represents pseudo-true parameter and $\theta_m = arg \, min_{\theta} \mathbb{E}_m \ell(X_i, Y_i; \theta)$. Then by triangle-inequality, we have

$$\Delta_{2}^{(1)} \leq \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left(-2\lambda_{n} \|\dot{\mathcal{L}}_{m}(\theta_{\mathcal{A}}) - \dot{\mathcal{L}}_{m}(\theta_{m})\|\right) \times \exp\left(2\lambda_{n} \|\dot{\mathcal{L}}_{m}(\theta_{m})\|\right)
\times \exp\left(2\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta}) - \dot{\mathcal{L}}_{m}(\theta_{\mathcal{A}})\|\right)
\leq \left\{\frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left(-6\lambda_{n} \|\dot{\mathcal{L}}_{m}(\theta_{\mathcal{A}}) - \dot{\mathcal{L}}_{m}(\theta_{m})\|\right)\right\}^{1/3} \left\{\frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left(6\lambda_{n} \|\dot{\mathcal{L}}_{m}(\theta_{m})\|\right)\right\}^{1/3}
\times \left\{\frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left(6\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta}) - \dot{\mathcal{L}}_{m}(\theta_{\mathcal{A}})\|\right)\right\}^{1/3} = \Delta_{1}^{(2)} \Delta_{2}^{(2)} \Delta_{3}^{(2)}. \tag{B.11}$$

The second inequality holds by Cauchy-Schwartz inequality. We then study the three terms in equation (B.11) separately.

Analysis of $\Delta_1^{(2)}$: Define good events: $\mathcal{E}_{2,m} = \left\{ \|\ddot{\mathcal{L}}_{(m)}(\theta) - \Omega_{\mathcal{A}}(\theta) \| \leq \lambda_{\min}/4 \right\}$. Using similar techniques in Lemma C.1, it is easy to prove that $\mathbb{P}(\bigcup_{m \in \mathcal{A}} \mathcal{E}_{2,m}^c) \lesssim |\mathcal{A}| L_{\max}^8/(\lambda_{\min}^8 n^4)$. Further define good event: $\mathcal{E}_6 = \left\{ \|\theta_{\mathcal{A}} - \theta_0\| \leq \min_{m \in \mathcal{A}} \|\theta_m - \theta_0\|/2 \right\}$. Using equation (B.4) in Appendix B.2, we can show that \mathcal{E}_6 holds when $M \geq 2|\mathcal{A}| \|\bar{b}_{\mathcal{A}}\|/(\min_{m \in \mathcal{A}} \|\theta_m - \theta_0\|\lambda_{\min})$. Then it suffices to study $\Delta_1^{(2)}$ under events $\bigcap \mathcal{E}_{2,m} \bigcap \mathcal{E}_6$. It could be verified that with probability at least $1 - O(M/n^4)$,

$$\Delta_1^{(2)} \le \left[\frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left\{ -3\lambda_n(\lambda_{\min}/2) \|\theta_m - \theta_{\mathcal{A}}\| \right\} \right]^{1/3} \le \exp\left\{ -\frac{\lambda_n \lambda_{\min}}{2} \min_{m \in \mathcal{A}} \|\theta_m - \theta_0\|/2 \right\}.$$

Analysis of $\Delta_2^{(2)}$: Define good events: $\mathcal{E}_{3,m}^* = \{\lambda_n \| \dot{\mathcal{L}}_{(m)}(\theta_m) \| \leq C \}$ for some sufficient large C > 0. Note that $\mathbb{E}\{\dot{\mathcal{L}}_{(m)}(\theta_m)\} = 0$. Then using similar techniques in proof of Lemma C.1 and under Assumptions 1-4, we have

$$\mathbb{P}\Big(\bigcup_{m\in\mathcal{A}}(\mathcal{E}_{3,m}^*)^c\Big)\leq |\mathcal{A}|\frac{\lambda_n^8}{C^8n^4}.$$

Consequently, as long as $\lambda_n \lesssim \sqrt{n}(|\mathcal{A}|)^{-1/8}$, we have $\max_m \lambda_n \|\dot{\mathcal{L}}_m(\theta_m)\| = O(1)$ under $\bigcap_{m \in \mathcal{A}} \mathcal{E}_{3,m}^*$, this leads to $\Delta_2^{(2)} = O(1)$ with probability at least $1 - O(M/n^4)$.

Analysis of $\Delta_3^{(2)}$: Under events $\bigcap \mathcal{E}_{1,m}$ defined in (C.1), it could be verified that

$$\Delta_3^{(2)} \leq \left[\frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left\{ 12\lambda_n L_{\max} \|\widehat{\theta} - \theta_{\mathcal{A}}\| \right\} \right]^{1/3} = \exp\left\{ 4\lambda_n L_{\max} \|\widehat{\theta} - \theta_{\mathcal{A}}\| \right\}.$$

The first inequality holds under Assumption 4. As a result, as long as $\lambda_n \lesssim \sqrt{N}$, by equation (B.1) in Appendix B.2, we have $\Delta_3^{(2)} = O(1)$ with probability at least $1 - O(M/n^4)$.

Combining the above results, we know that as long as $\lambda_n \lesssim \sqrt{n} M^{-1/8}$, we have $\overline{\omega}_2^A \lesssim \exp\left(-\frac{\lambda_n \lambda_{\min} \min \|\theta_m - \theta_0\|/8}\right)$ with probability at least $1 - O(M/n^4)$, this finishes the first part.

PART 2. We next study $\bar{\Delta}_2^2 = M^{-1} \sum_{m=1}^M \left\{ \widehat{\omega}_m - (1-a_m) \right\}^2$. Define $\mathcal{G} = \mathcal{A}^c$ represents the indices of the trustworthy clients. By definition, we have

$$\bar{\Delta}_2^2 = \frac{1}{M} \sum_{m \in \mathcal{A}} \widehat{\omega}_m^2 + \frac{1}{M} \sum_{m \in \mathcal{G}} (\widehat{\omega}_m - 1)^2.$$

First, by PART 1, we have $M^{-1}\sum_{m\in\mathcal{A}}\widehat{\omega}_m^2\lesssim |\mathcal{A}|M^{-1}\exp\left(-\lambda_n\lambda_{\min}\min\|\theta_m-\theta_0\|/4\right)$. Then it remains to study $M^{-1}\sum_{m\in\mathcal{G}}(\widehat{\omega}_m-1)^2$.

By Cauchy-Schwartz inequality, it could be proved that $M^{-1}\sum_{m\in\mathcal{G}}(\widehat{\omega}_m-1)^2$

$$= \frac{1}{M} \sum_{m \in \mathcal{G}} \left\{ \exp(-\lambda_n \|\dot{\mathcal{L}}_m(\widehat{\theta}^{(m)})\|) - 1 \right\}^2$$

$$\leq \frac{2}{M} \sum_{m \in \mathcal{G}} \left[\left\{ \exp\left(-\lambda_n \|\dot{\mathcal{L}}_m(\widehat{\theta}^{(m)})\|\right) - \exp\left(-\lambda_n \|\dot{\mathcal{L}}_m(\theta_0)\|\right) \right\}^2 + \left\{ \exp\left(-\lambda_n \|\dot{\mathcal{L}}_m(\theta_0)\|\right) - \exp\left(-\lambda_n \|\mathbb{E}\dot{\mathcal{L}}_m(\theta_0)\|\right) \right\}^2 \right]$$

$$\leq \frac{4}{M} \sum_{m \in \mathcal{G}} \left\{ \exp\left(-\xi_m\right) \lambda_n |\|\dot{\mathcal{L}}_m(\widehat{\theta}^{(m)})\| - \|\dot{\mathcal{L}}_m(\theta_0)\||\right\} + \frac{4}{M} \sum_{m \in \mathcal{G}} \left\{ \exp(-\xi_m) \lambda_n \|\dot{\mathcal{L}}_m(\theta_0)\| \right\}.$$
(B.12)

Here ξ_m is some positive constant for any $1 \leq m \leq M$ and $\exp(-\xi_m) \leq 1$. The first inequality holds because $\exp(-\lambda_n \|\mathbb{E}(\dot{\mathcal{L}}_m(\theta_0))\|) = 1$. The second inequality holds because (B.12) is upper bounded by $4M^{-1} \sum_{m \in \mathcal{G}} \left[|\exp(-\lambda_n \|\dot{\mathcal{L}}_m(\widehat{\theta}^{(m)})\|) - \exp(-\lambda_n \|\dot{\mathcal{L}}_m(\theta_0)\|)| + |\exp(-\lambda_n \|\dot{\mathcal{L}}_m(\theta_0)\|) - \exp(-\lambda_n \|\mathbb{E}\dot{\mathcal{L}}_m(\theta_0)\|)| \right]$. The last inequality holds by mean value theorem. Then under good events $\bigcap_{m \in \mathcal{G}} \mathcal{E}_{1,m}$, it could be proved that

$$\frac{1}{M} \sum_{m \in \mathcal{G}} (\omega_m - 1)^2 \le 8L_{\max} \lambda_n \left\{ \frac{1}{M} \sum_{m \in \mathcal{G}} \|\widehat{\theta}^{(m)} - \widehat{\theta}\| + \|\widehat{\theta} - \theta_0\| \right\} + \frac{4\lambda_n}{M} \sum_{m \in \mathcal{G}} \|\dot{\mathcal{L}}_m(\theta_0)\|.$$

First, note that by Markov's inequality, we have $M^{-1}\sum_{m\in\mathcal{G}} \left(\|\dot{\mathcal{L}}_m(\theta_0)\| - \mathbb{E}\|\dot{\mathcal{L}}_m(\theta_0)\|\right) \lesssim (\sqrt{\log N}/\sqrt{N})$ with probability at least $1 - O(1/\log N)$. Assume $\log N \lesssim M$, this yields

$$\frac{1}{M} \sum_{m \in \mathcal{G}} \|\dot{\mathcal{L}}_m(\theta_0)\| \lesssim \mathbb{E} \|\dot{\mathcal{L}}_{m \in \mathcal{G}}(\theta_0)\| + \left(\frac{\log N}{N}\right)^{1/2} \lesssim \frac{1}{\sqrt{n}}.$$

As a results, as long as $\lambda_n \lesssim \sqrt{n}$, which holds under the assumption $\lambda_n \lesssim \sqrt{n} M^{-1/8}$ in Part 1, we have $4\lambda_n M^{-1} \sum_{m \in \mathcal{G}} \|\dot{\mathcal{L}}_m(\theta_0)\| \lesssim \lambda_n/\sqrt{n}$. Furthermore, as long as $\alpha + \widehat{\mathrm{SE}}(W)$ are sufficiently small such that $\lambda_n \left\{ \alpha + \mathrm{SE}(W) \right\} = o(1)$, by Proposition A.1, we can obtain that $\lambda_n M^{-1} \sum_{m \in \mathcal{G}} \|\widehat{\theta}^{(m)} - \widehat{\theta}\| \leq \lambda_n \sqrt{M^{-1} \sum_{m=1} \|\widehat{\theta}^{(m)} - \widehat{\theta}\|^2}$ is an ignorable higher order term.

Combining the above results, we know that as long as $\lambda_n \lesssim \sqrt{n} M^{-1/8}$, we have $\bar{\Delta}_2^2 \lesssim |\mathcal{A}| M^{-1} \exp\left(-\lambda_n \lambda_{\min} \min \|\theta_m - \theta_0\|/4\right) + \lambda_n / \sqrt{n} + \lambda_n \|\hat{\theta} - \theta_0\|$ with probability at least $1 - O(M/n^4 + 1/\log N)$, this finishes the second part.

PART 3. Finally, we next study $\bar{\omega} = M^{-1} \sum_{m=1}^{M} \widehat{\omega}_{m}$. Similar to the analysis in the previous two parts, since we can make the $\widehat{\theta}^{(m)}$ arbitrarily close to $\widehat{\theta}$ by choosing a sufficiently small $\alpha + \mathrm{SE}(W)$,

it remains to study $M^{-1} \sum_{m=1}^{M} \exp(-\lambda_n \|\dot{\mathcal{L}}_m(\widehat{\theta})\|)$. It could be verified that under good events $\bigcap_{m \in \mathcal{G}} \mathcal{E}_{1,m}$, we have

$$M^{-1} \sum_{m=1}^{M} \exp(-\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta})\|) \geq \frac{|\mathcal{G}|}{M} \frac{1}{|\mathcal{G}|} \sum_{m \in \mathcal{G}} \exp(-\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta})\|)$$

$$\geq \frac{|\mathcal{G}|}{M} \left\{ \frac{1}{|\mathcal{G}|} \sum_{m \in \mathcal{G}} \exp(-\lambda_{n} \|\dot{\mathcal{L}}_{m}(\widehat{\theta}) - \dot{\mathcal{L}}_{m}(\theta_{0})\|) \exp(\lambda_{n} \|\dot{\mathcal{L}}_{m}(\theta_{0})\|) \right\}$$

$$\geq \frac{|\mathcal{G}|}{M} \exp(-2L_{\max}\lambda_{n} \|\widehat{\theta} - \theta_{0}\|) \frac{1}{|\mathcal{G}|} \sum_{m \in \mathcal{G}} \exp(\lambda_{n} \|\dot{\mathcal{L}}_{m}(\theta_{0})\|) \geq \frac{|\mathcal{G}|}{M} \exp\left(-2L_{\max}\lambda_{n} \|\widehat{\theta} - \theta_{0}\|\right).$$

As a result, $\frac{1}{\bar{\omega}} \lesssim \exp\left(2L_{\max}\lambda_n\|\widehat{\theta} - \theta_0\|\right)$ with probability at least $1 - O(M/n^4)$. This finishes the third part.

Combining the results from the three parts, we know that when $\lambda_n \lesssim \sqrt{n} M^{-1/8}$, we have with probability at least $1 - O(M/n^4 + 1/\log N)$: (1) $(|\mathcal{A}|^{-1} \sum_{m \in \mathcal{A}} \widehat{\omega}_m^2)^{1/2} \lesssim \exp\left(-\lambda_n \lambda_{\min} \min_{m \in \mathcal{A}} \|\theta_m - \theta_0\|/8\right)$, (2) $M^{-1} \sum_{m=1}^M \left\{\widehat{\omega}_m - (1 - a_m)\right\}^2 \lesssim |\mathcal{A}| M^{-1} \exp\left(-\lambda_n \lambda_{\min} \min \|\theta_m - \theta_0\|/4\right) + \lambda_n/\sqrt{n} + \lambda_n \|\widehat{\theta} - \theta_0\|$, and (3) $(M^{-1} \sum_{m=1}^M \widehat{\omega}_m)^{-1} \lesssim \exp\left(2L_{\max}\lambda_n\|\widehat{\theta} - \theta_0\|\right)$. Substituting the above equations into (4.3), let $\alpha + \mathrm{SE}(W) = O(1/\sqrt{N})$, there exists some positive constants c_1, c_2 such that $M^{-1/2} \|\widehat{\theta}_{\mathcal{A}}^{*(\infty)} - I^*\widehat{\theta}_{\mathcal{A}}\|$ is upper bounded with probability tending to 1 by

$$C \exp\left(c_1 \times \lambda_n \|\widehat{\theta} - \theta_0\|\right) \left\{ o_p\left(1/\sqrt{N}\right) + o_p\left\{\exp\left(-c_2 \times \lambda_n\right)\right\} + \frac{\lambda_n}{\sqrt{N}} \|\widehat{\theta} - \theta_0\|\right\}.$$

B.5 PROOF OF COROLLARY 4.1

The proof of the corollary 4.1 is similar to that of Theorem A.3 by replacing $\widehat{\theta}^{(m)}$ with $\widehat{\theta}_{\text{init}}^{(m)}$ and $\widehat{\theta}$ with $\overline{\theta}_{\text{init}}$. Thus, we omit the detailed proof here.

B.6 PROOF OF THEOREM 3.1

Similarly to the proof of Theorem A.1, to prove Theorem 3.1, we aim to verify that (1) The parameter $\theta_{\mathcal{A}}$ lies in a neighborhood of θ_0 . (2) Loss function $M^{-1}\sum_{m=1}^M e_m^{\mathcal{A}}(\theta)$ is strongly convex at $\theta_{\mathcal{A}}$. Once these conditions are established, we can mimic Steps 1 and 2 of Proof B.2 to complete the proof of the theorem.

Proof of (1): Recall that $M^{-1}\sum_{m=1}^M \dot{e}_m^{\mathcal{A}}(\theta_{\mathcal{A}}) = 0$, and $M^{-1}\sum_{m=1}^M \dot{e}_m^{\mathcal{A}}(\theta_0) = \varrho \bar{\flat}_{\mathcal{A}}$ from equation (B.3). Applying the integral form of the mean value theorem, we obtain:

$$M^{-1}\sum_{m=1}^M \left\{\dot{e}_m^{\mathcal{A}}(\theta_0) - \dot{e}_m^{\mathcal{A}}(\theta_{\mathcal{A}})\right\} = M^{-1}\sum_{m=1}^M \int_0^1 \ddot{e}_m^{\mathcal{A}}(\theta_0 + t(\theta_{\mathcal{A}} - \theta_0))(\theta_0 - \theta_{\mathcal{A}})dt = \varrho \bar{\flat}_{\mathcal{A}}.$$

Denote $\Delta_{\theta} = \theta_{\mathcal{A}} - \theta_{0}$, and $\Omega_{\text{avg}} = M^{-1} \sum_{m=1}^{M} \int_{0}^{1} \ddot{e}_{m}^{\mathcal{A}} (\theta_{0} + t\Delta_{\theta}) dt$. Then the above relation simplifies to:

$$\rho \bar{b}_A = -\Omega_{\text{avg}} \Delta_{\theta}.$$
 (B.13)

We now analyze Ω_{avg} . First, for each $m \in \mathcal{A}$ and any vector $x \in \mathbb{R}^p$ with $x^{\top}x = 1$, by Assumption 3, we have

$$x^{\top} \Big(\int_0^1 \ddot{e}_m^{\mathcal{A}}(\theta_0 + t\Delta_{\theta}) dt \Big) x = \int_0^1 x^{\top} \ddot{e}_m^{\mathcal{A}}(\theta_0 + t\Delta_{\theta}) x dt \ge 0.$$

Similarly, for each $m \notin A$, using Assumption 3 again, we have

$$x^{\top} \Big(\int_0^1 \ddot{e}_m^{\mathcal{A}} (\theta_0 + t\Delta_{\theta}) dt \Big) x = \int_0^1 x^{\top} \Omega_m (\theta_0 + t\Delta_{\theta}) x dt.$$

 Furthermore, according to Assumptions 3, 4, and Weyl's inequality, for any $\theta \in \mathbb{R}^p$, it follows that for each $m \notin A$:

$$\lambda_{\min}(\Omega_m(\theta)) \ge \lambda_{\min} - L_{\max}||\theta - \theta_0||.$$

In particular, if $||\theta - \theta_0|| \le \lambda_{\min}/(2rL_{\max})$, then $\lambda_{\min}(\Omega_m(\theta)) \ge \lambda_{\min}/2$. Hence, we have for $m \notin \mathcal{A}$:

$$x^{\top} \Big(\int_{0}^{1} \ddot{e}_{m}^{\mathcal{A}}(\theta_{0} + t\Delta_{\theta}) dt \Big) x = \int_{0}^{\frac{\lambda_{\min}}{2rL_{\max}}} x^{\top} \Omega_{m} \Big(\theta_{0} + t\Delta_{\theta} \Big) x dt + x^{\top} \int_{\frac{\lambda_{\min}}{2rL_{\max}}}^{1} x^{\top} \Omega_{m} \Big(\theta_{0} + t\Delta_{\theta} \Big) x dt$$

$$\geq \frac{\lambda_{\min}}{2} \frac{\lambda_{\min}}{2rL_{\max}} + 0 = \frac{\lambda_{\min}^{2}}{4rL_{\max}}.$$

Combining the results above, the following equation holds for any $x \in \mathbb{R}^p$ satisfying $x^{\top}x = 1$,

$$x^{\top} \Omega_{\text{avg}} x = M^{-1} \sum_{m \notin \mathcal{A}} x^{\top} \Big(\int_{0}^{1} \ddot{e}_{m}^{\mathcal{A}} (\theta_{0} + t\Delta_{\theta}) dt \Big) x + \sum_{m \in \mathcal{A}} x^{\top} \Big(\int_{0}^{1} \ddot{e}_{m}^{\mathcal{A}} (\theta_{0} + t\Delta_{\theta}) dt \Big) x$$

$$\geq (1 - \varrho) \frac{\lambda_{\min}^{2}}{4r L_{\max}} + 0 = (1 - \varrho) \frac{\lambda_{\min}^{2}}{4r L_{\max}}.$$

This yields $\lambda_{\min}(\Omega_{\text{avg}}) \ge (1 - \varrho)\lambda_{\min}^2/(4rL_{\max})$. Substituting this result back into equation (B.13), we obtain:

$$||\theta_{\mathcal{A}} - \theta_{0}|| = ||\Delta_{\theta}|| \le \lambda_{\min}^{-1}(\Omega_{\text{avg}})||\varrho\bar{\flat}_{\mathcal{A}}|| \le \frac{4rL_{\max}}{\lambda_{\min}^{2}}(1-\varrho)^{-1}\varrho||\bar{\flat}_{\mathcal{A}}||. \tag{B.14}$$

This completes the proof of (1).

Proof of (2): It could be proved that under Assumption 3, we have

$$\lambda_{\min} \Big(M^{-1} \sum_{m=1}^{M} \ddot{e}_{m}^{\mathcal{A}}(\theta_{0}) \Big) \ge M^{-1} \sum_{m \in \mathcal{A}} \lambda_{\min} = (1 - \varrho) \lambda_{\min}.$$

In addition, for any θ , it could be shown that

$$\lambda_{\min} \left(M^{-1} \sum_{m=1}^{M} \ddot{e}_{m}^{\mathcal{A}}(\theta_{\mathcal{A}}) \right) \geq \lambda_{\min} \left(M^{-1} \sum_{m=1}^{M} \ddot{e}_{m}^{\mathcal{A}}(\theta_{0}) \right) - L_{\max} ||\theta_{\mathcal{A}} - \theta_{0}||$$

$$\geq (1 - \rho) \lambda_{\min} - \frac{4r L_{\max}^{2}}{\lambda_{\min}^{2}} (1 - \varrho)^{-1} \varrho ||\bar{\flat}_{\mathcal{A}}||.$$

Assume that ϱ is sufficiently small, such that $\varrho \leq \left\{8L_{\max}^2r^2\right\}^{-1}\left\{(1-\rho)^2\lambda_{\min}^3\right\}$. Then we have

$$\lambda_{\min} \left(M^{-1} \sum_{m=1}^{M} \ddot{e}_{m}^{\mathcal{A}}(\theta_{\mathcal{A}}) \right) \ge (1 - \rho) \lambda_{\min} / 2. \tag{B.15}$$

Applying equations (B.14) and (B.15). Using similar techniques as those employed in Appendix B.2, we have

$$V(\widehat{\theta}) \lesssim \frac{L_{\max}^2}{(1-\rho)^2 \lambda_{\min}^2 N} + O\left(\frac{1}{N^2}\right).$$

$$NV(\widehat{\theta}) \to \operatorname{tr} \left\{ \Omega_A^{-1}(\theta_A) \Sigma_A(\theta_A) \Omega_A^{-1}(\theta_A) \right\} \text{ as } N \to \infty.$$

$$\frac{\varrho^2 \|\bar{\flat}_{\mathcal{A}}\|}{L_{\max}^2} - C\Big(\frac{\varrho}{N} + \frac{1}{N^3}\Big) \leq B(\widehat{\theta}) \leq \frac{16r^2L_{\max}^2}{\lambda_{\min}^2(1-\varrho)^2} \frac{\varrho^2 \|\bar{\flat}_{\mathcal{A}}\|}{\lambda_{\min}^2} + O\Big(\frac{\varrho}{N} + \frac{1}{N^3}\Big).$$

This finishes the proof.

B.7 Proof of Theorem 4.1

Similarly to the proof of Theorem A.2, to prove Theorem 4.1, we aim to verify that with high probability: (1) the eigenvalues of $\ddot{\mathcal{L}}_{\omega}(\theta)$ are still bounded (by positive constants) when θ lies in a neighborhood of θ_0 ; and (2) the sequence $\{\hat{\theta}_{\mathcal{A}}^{*(t)}\}$ lies in the neighborhood of θ_0^* for any t. Once these conditions are established, we can mimic Proof B.3 to complete the proof of the theorem.

Proof of (1): Define $\delta = (\bar{\omega}_N^{\varrho}/\bar{\omega})\lambda_{\min}/(4L_{\max}), \bar{\omega}_N^{\varrho} = M^{-1}\sum_{m\in\mathcal{A}}\omega_m$, and event

$$\mathcal{E}_2^{\omega\prime} = \left\{ \| \ddot{\mathcal{L}}_w(\theta) - \Omega_{\mathcal{A}}^w(\theta) \| \le \frac{\bar{\omega}_N^{\varrho} \lambda_{\min}}{4} \right\}.$$

Using similar technique skills in the proof of Lemma C.1, we have $\mathbb{P}\{(\mathcal{E}_2^{\omega'})^c\} \lesssim C_{\max}^8/((\bar{\omega}_N^\varrho)^8\lambda_{\min}^8N^4)$. We first prove that

$$\ddot{\mathcal{L}}_{\omega}(\theta) \geq \frac{1}{2} \bar{\omega}_{N}^{\varrho} \lambda_{\min}$$

under $\mathcal{E}_2^{\omega'}$ for $\theta \in B(\theta_0, \delta)$ with $\delta = (\bar{\omega}_N^{\varrho}/\bar{\omega})\lambda_{\min}/(4L_{\max})$.

Recall that

$$\Omega_{\mathcal{A}}^{\omega}(\theta) = M^{-1} \sum_{m=1}^{M} \omega_m \Omega_m(\theta)$$

Under Assumption 3, we have

$$\Omega_{\mathcal{A}}^{\omega}(\theta_0) \ge M^{-1} \sum_{m=1}^{M} \omega_m \left(0 + (1 - a_m) \lambda_{\min} \right) = M^{-1} \sum_{m=1}^{M} \omega_m (1 - a_m) \lambda_{\min} = \bar{\omega}_N^{\varrho} \lambda_{\min}.$$

Note that $\Omega^{\omega}_{\mathcal{A}}(\theta) - \Omega^{\omega}_{\mathcal{A}}(\theta_0) = M^{-1} \sum_{m=1}^{M} \omega_m \{\Omega_m(\theta) - \Omega_m(\theta_0)\}$. Then it could be verified that under Assumption 4,

$$\|\Omega_{\mathcal{A}}^{\omega}(\theta) - \Omega_{\mathcal{A}}^{\omega}(\theta_0)\| \le \bar{\omega} L_{\max} \|\theta - \theta_0\|.$$

For any $||\theta - \theta_0|| \leq (\bar{\omega}_N^{\varrho}/\bar{\omega})\lambda_{\min}/(4L_{\max})$, under Assumptions 3, 4 and Wely's inequality, we have

$$\lambda_{\min} \left(\Omega_{\mathcal{A}}^{\omega}(\theta) \right) \ge \lambda_{\min} \left(\Omega_{\mathcal{A}}^{\omega}(\theta_0) \right) - \bar{\omega} L_{\max} \|\theta - \theta_0\| \ge \frac{3}{4} \bar{\omega}_N^{\varrho} \lambda_{\min}.$$

In addition, recall $\ddot{\mathcal{L}}_{\omega}(\theta) = M^{-1} \sum_{m=1}^{M} \omega_m \ddot{\mathcal{L}}_m(\theta)$. This yields

$$\ddot{\mathcal{L}}_{\omega}(\theta) \geq \frac{1}{2} \bar{\omega}_N^{\varrho} \lambda_{\min}.$$

under $\mathcal{E}_2^{\omega'}$ for $\theta \in B(\theta_0, \delta)$.

Proof of (2): For any $\|\theta - \widehat{\theta}_{\mathcal{A}}\| \leq \delta/2$, we have

$$\|\theta - \theta_0\| \le \|\theta - \widehat{\theta}_{\mathcal{A}}\| + \|\widehat{\theta}_{\mathcal{A}} - \theta_0\| \le \delta$$

for sufficiently large N with probability at least $1-O(1/N^4)$ by Lemma 6 in Zhang et al. (2013). Denote $R=\delta/(4\sqrt{M})$, we are going to verify that if $\|\bar{\theta}_{\mathcal{A}}^{*(t)}-\widehat{\theta}_{\mathcal{A}}^{*}\|\leq \sqrt{M}R$ and $\|\widehat{\theta}_{\mathcal{A}}^{*(t)}-\bar{\theta}_{\mathcal{A}}^{*(t)}\|\leq \sqrt{M}R$, then we have $\|\bar{\theta}_{\mathcal{A}}^{*(t+1)}-\widehat{\theta}_{\mathcal{A}}^{*}\|\leq \sqrt{M}R$ and $\|\widehat{\theta}_{\mathcal{A}}^{*(t+1)}-\widehat{\theta}_{\mathcal{A}}^{*(t+1)}\|\leq \sqrt{M}R$.

Note that now we have $\mathcal{L}_{\omega}(\theta) \geq \frac{1}{2}\bar{\omega}_{N}^{\varrho}\lambda_{\min}$, using similar technique skills in the proof of Theorem 4.1, we have

$$\begin{split} \|\bar{\theta}_{\mathcal{A}}^{*(t+1)} - \widehat{\theta}_{\mathcal{A}}^{*}\| & \leq \left(1 - \frac{\alpha \bar{\omega}_{N}^{\varrho} \lambda_{\min}}{2}\right) \|\bar{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| + \left\{2L_{\max}\alpha\rho + \operatorname{SE}(W)\right\} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| \\ & + \alpha \sqrt{M} \overline{\operatorname{SE}}_{\omega}. \\ \|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| & \leq \left\{\rho + 2\rho L_{\max}\alpha + \operatorname{SE}(W)\right\} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| + 2\alpha L_{\max} \|\bar{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| \end{split}$$

$$\|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| \leq \left\{ \rho + 2\rho L_{\max} \alpha + \operatorname{SE}(W) \right\} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| + 2\alpha L_{\max} \|\bar{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| + \alpha\sqrt{M} \widehat{\operatorname{SE}}.$$
(B.16)

We start with $\widehat{\theta}^{*(1)}$. For simplicity, we consider all the clients start from the same initializer with $\|\widehat{\theta}^{(0,m)} - \widehat{\theta}_{\mathcal{A}}\| \equiv \widehat{\delta}^{(0)}$, and assume $\widehat{\delta}^{(0)}$ is sufficiently small with $\delta^{(0)} < R$. Then equation (B.16) could be simplified as

$$\|\bar{\theta}_{\mathcal{A}}^{*(1)} - \hat{\theta}_{\mathcal{A}}^{*}\| \leq \left(1 - \frac{\alpha \bar{\omega}_{N}^{\varrho} \lambda_{\min}}{2}\right) \|\bar{\theta}_{\mathcal{A}}^{*(0)} - \hat{\theta}_{\mathcal{A}}^{*}\| + \alpha \sqrt{M} \overline{SE}_{\omega}.$$

$$\|\hat{\theta}_{\mathcal{A}}^{*(1)} - \bar{\theta}_{\mathcal{A}}^{*(1)}\| \leq 2\alpha L_{\max} \|\bar{\theta}_{\mathcal{A}}^{*(0)} - \hat{\theta}_{\mathcal{A}}^{*}\| + \alpha \sqrt{M} \widehat{SE}.$$

if α and δ^0 are suffciently small such that $(1-\alpha\bar{\omega}_N^\varrho\lambda_{\min}/2)\delta^0+\alpha\overline{\mathrm{SE}}_\omega\leq R$, and $\alpha(2L_{\max}R+\widehat{\mathrm{SE}})\leq R$, then we have $\|\bar{\theta}_{\mathcal{A}}^{*(1)}-\widehat{\theta}_{\mathcal{A}}^*\|\leq\sqrt{M}R$ and $\|\widehat{\theta}_{\mathcal{A}}^{*(1)}-\bar{\theta}_{\mathcal{A}}^{*(1)}\|\leq\sqrt{M}R$.

Subsequently, assume that for any t>0, we have $\|\bar{\theta}_{\mathcal{A}}^{*(t)}-\hat{\theta}_{\mathcal{A}}^{*}\|\leq \sqrt{M}R$ and $\|\hat{\theta}_{\mathcal{A}}^{*(t)}-\bar{\theta}_{\mathcal{A}}^{*(t)}\|\leq \sqrt{M}R$. Similar to equation (B.8), we have

$$\begin{pmatrix} \widehat{\delta}^{*(t+1)} \\ \bar{\delta}^{*(t+1)} \end{pmatrix} \leq \mathbf{H}^{t+1} \begin{pmatrix} \widehat{\delta}^{*(0)} \\ 0 \end{pmatrix} + \begin{pmatrix} 8\sqrt{M} \\ \overline{(1-\rho)\bar{\omega}_N^{\varrho}\lambda_{\min}} \end{pmatrix} \begin{pmatrix} \alpha \left(\bar{\omega}_N^{\varrho}\lambda_{\min}\widehat{SE}/2 + 2L_{\max}\overline{SE}_{\omega}\right) \\ 2\alpha L_{\max} + SE(W) \right\} \widehat{SE} + (1-\rho)\overline{SE}_{\omega} \end{pmatrix}.$$

We first analyze $\hat{\delta}^{*(t+1)}$, it could be verified that

$$\widehat{\delta}^{*(0)}\widehat{\delta}^{*(t+1)} \leq (\widehat{\delta}^{*(0)})^2 (1,0) \mathbf{H}^{t+1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \widehat{\delta}^{*(0)} \left(\frac{8\sqrt{M}}{(1-\rho)\bar{\omega}_N^{\varrho} \lambda_{\min}} \right) \alpha \left(\bar{\omega}_N^{\varrho} \lambda_{\min} \widehat{SE} / 2 + 2L_{\max} \overline{SE}_{\omega} \right).$$

This yields

$$\widehat{\delta}^{*(t+1)} \leq \left(1 - \frac{\alpha \overline{\omega}_N^{\varrho} \lambda_{\min}}{8}\right)^{t+1} \sqrt{M} \widehat{\delta}^0 + \sqrt{M} \alpha \left(\frac{8}{(1-\rho)\overline{\omega}_N^{\varrho} \lambda_{\min}}\right) \left(\overline{\omega}_N^{\varrho} \lambda_{\min} \widehat{SE} / 2 + 2L_{\max} \overline{SE}_{\omega}\right).$$

As long as we have

$$\left(1 - \frac{\alpha \bar{\omega}_N^{\varrho} \lambda_{\min}}{8}\right)^{t+1} \widehat{\delta}^0 + \alpha \left(\frac{8}{(1-\rho)\bar{\omega}_N^{\varrho} \lambda_{\min}}\right) \left(\bar{\omega}_N^{\varrho} \lambda_{\min} \widehat{SE}/2 + 2L_{\max} \overline{SE}_{\omega}\right) \leq R.$$

We have $\widehat{\delta}^{*(t+1)} \leq \sqrt{M}R$. We subsequently analyze $\bar{\delta}^{*(t+1)}$, by equation (B.16), it could be shown that

$$\begin{split} \|\widehat{\theta}_{\mathcal{A}}^{*(t+1)} - \bar{\theta}_{\mathcal{A}}^{*(t)}\| &\leq \rho \sqrt{M}R + \left\{ 2\rho L_{\max}\alpha + \mathrm{SE}(W) \right\} \sqrt{M}R + \\ & 2\alpha \sqrt{M}L_{\max} \left\{ \left(1 - \frac{\alpha \bar{\omega}_N^{\varrho} \lambda_{\min}}{8} \right)^t \widehat{\delta}^0 + O(\alpha) \right\} + \sqrt{M}\alpha \widehat{\mathrm{SE}}. \end{split}$$

As long as we have

$$\left\{2L_{\max}\alpha + \operatorname{SE}(W)\right\}R + \alpha\left\{2L_{\max}\left(1 - \frac{\alpha\overline{\omega}_N^{\varrho}\lambda_{\min}}{8}\right)^t\widehat{\delta}^0 + \widehat{\operatorname{SE}}\right\} \le (1 - \rho)R/2.$$

This leads to $\bar{\delta}^{*(t+1)} < \sqrt{M}R$.

Combining the above results, we have proved that $\|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| \leq \delta/2$ for any t. Applying the above results, using similar techniques as those utilized in Appendix B.3, we have

$$M^{-1/2} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - \widehat{\theta}_{\mathcal{A}}^{*}\| \lesssim \left(1 - \frac{\alpha \bar{\omega}_{N}^{\varrho} \lambda_{\min}}{8}\right)^{t} \widehat{\delta}_{0} + \frac{\alpha L_{\max} + \operatorname{SE}(W)}{(1 - \rho) \lambda_{\min} \bar{\omega}_{N}^{\varrho}} \left\{ \left(\frac{\log n}{n}\right)^{1/2} L_{\max} + \left(\frac{|\mathcal{A}|}{M}\right)^{1/2} \bar{\flat}_{2}^{\mathcal{A}} \right\} + (\bar{\omega}_{N}^{\varrho} \lambda_{\min})^{-1} \left\{ \frac{|\mathcal{A}|}{M} \bar{\flat}_{2}^{\mathcal{A}} \bar{\omega}_{2}^{\mathcal{A}} + \bar{\Delta}_{2} \left(\frac{\log N}{N}\right)^{1/2} + L_{\max} \bar{\Delta}_{2} \|\widehat{\theta}_{\mathcal{A}} - \theta_{0}\| \right\}.$$

$$M^{-1/2}\lim_{t\to\infty} \|\widehat{\theta}_{\mathcal{A}}^{*(t)} - I^*\widehat{\theta}_{\mathcal{A}}\| \lesssim \frac{1}{\bar{\omega}_N^{\varrho}} \left[\left\{ \alpha + \mathrm{SE}(W) \right\} \left\{ \frac{1}{\sqrt{n}} + \left(\frac{|\mathcal{A}|}{M} \right)^{1/2} \right\} + \left(\frac{|\mathcal{A}|}{M} \overline{\omega}_2^{\mathcal{A}} + \frac{\bar{\Delta}_2}{\sqrt{N}} \right) \right]$$

with probability tending to 1. This finishes the proof.

B.8 Proof of Theorem 4.2

To prove Theorem 4.2, it suffices to show that under the local strong convexity assumption 3, the following term, defined in PART 1 of the proof of Theorem A.3 in Appendix B.4, satisfies:

$$\Delta_1^{(2)} = \left\{ \frac{1}{|\mathcal{A}|} \sum_{m \in \mathcal{A}} \exp\left(-6\lambda_n \|\dot{\mathcal{L}}_m(\theta_{\mathcal{A}}) - \dot{\mathcal{L}}_m(\theta_m)\|\right) \right\}^{1/3} \le \exp(-c),$$

for some positive constant c > 0 with high probability.

To this end, we begin by verifying the strong convexity of $\mathcal{L}_m(\theta)$ in a neighborhood of θ_m . For all $\theta \in B(\theta_m, \widetilde{\delta})$, with $\widetilde{\delta} = \lambda_{\min}/(4L_{\max})$, we have:

$$\lambda_{\min}(\Omega_m(\theta)) \ge \lambda_{\min}(\Omega_m(\theta_m)) - L_{\max} \|\theta - \theta_m\| \ge \frac{3}{4}\lambda_{\min}.$$

Recall the events:

$$\mathcal{E}_{2,m} = \left\{ \|\ddot{\mathcal{L}}_m(\theta) - \Omega_{\mathcal{A}}(\theta)\| \le \lambda_{\min}/4 \right\}, \quad \mathcal{E}_6 = \left\{ \|\theta_{\mathcal{A}} - \theta_0\| \le \min_{m \in \mathcal{A}} \|\theta_m - \theta_0\|/2 \right\},$$

which jointly occur with probability at least $1 - O(M/n^4)$. Hence, it suffices to analyze $\Delta_1^{(2)}$ under the joint occurrence of these events. Under these good events, we have:

$$\ddot{\mathcal{L}}_m(\theta) \geq \frac{1}{2} \lambda_{\min}, \quad \text{for all } \theta \in B(\theta_m, \widetilde{\delta}).$$

Next, define:

$$\widetilde{\theta} = \theta_m + \widetilde{\eta}u$$
, where $u = \theta_A - \theta_m$, $\widetilde{\eta} = \min\{1, \delta/\|u\|\}$.

If $||u|| \le \delta$, then clearly $\widetilde{\theta} = \theta_{\mathcal{A}}$. Otherwise, if $||u|| > \delta$, then $\widetilde{\theta}$ lies on the line joining θ_m and $\theta_{\mathcal{A}}$ with $||\widetilde{\theta} - \theta_m|| = \delta$. Under Assumption 3, it can be verified that:

$$\left[\dot{\mathcal{L}}_m(\widetilde{\theta}) - \dot{\mathcal{L}}_m(\theta_m)\right]^{\top} u \ge \frac{\lambda_{\min}}{2} \widetilde{\eta} \|u\|^2 = \frac{\lambda_{\min}}{2} \|u\| \min\{\delta, \|u\|\}.$$

Define a scalar function: $g_m(\eta) = L_m(\theta_m + \eta u)$. It is straightforward to verify that $g_m(\eta)$ is a convex function on \mathbb{R} . Hence, we have: $\dot{g}_m(1) \geq \dot{g}_m(\widetilde{\eta})$. Since $\dot{g}_m(\eta) = \left\{\dot{\mathcal{L}}_m(\theta_m + \eta u)\right\}^\top u$, it follows directly that:

$$\{\dot{\mathcal{L}}_m(\theta_{\mathcal{A}})\}^{\top} u \ge \{\dot{\mathcal{L}}_m(\widetilde{\theta})\}^{\top} u.$$

This leads to

$$\left\{\dot{\mathcal{L}}_m(\theta_{\mathcal{A}}) - \dot{\mathcal{L}}_m(\theta_m)\right\}^\top u \ge \frac{\lambda_{\min}}{2} \|u\| \min\{\delta, \|u\|\}.$$

From the above inequality, we obtain:

$$\|\dot{\mathcal{L}}_m(\theta_{\mathcal{A}}) - \dot{\mathcal{L}}_m(\theta_m)\| \ge \frac{\lambda_{\min}}{2} \min\{\delta, \|u\|\} \ge \frac{\lambda_{\min}}{2} \min\left\{\delta, \frac{\min_{m \in \mathcal{A}} \|\theta_m - \theta_0\|}{2}\right\}.$$

Combining the above results, we finally arrive at:

$$\Delta_1^{(2)} \le \exp\left(-\frac{\lambda_n \lambda_{\min}}{2} \min\left\{\delta, \frac{\min_{m \in \mathcal{A}} \|\theta_m - \theta_0\|}{2}\right\}\right),\,$$

which completes the proof.

C TECHNICAL LEMMAS

In this Appendix, we define several "good events" and provide some useful technical lemmas for the theoretical analysis.

We first define the following "good events", where the definitions of $\ddot{\mathcal{L}}_w(\theta)$ and $\Omega_{\mathcal{A}}^w(\theta)$ are provided in equation (B.3).

$$\mathcal{E}_{1,m} = \left\{ \frac{1}{n} \sum_{i \in \mathcal{S}_m} L(X_i, Y_i) \le 2L_{\max} \right\}; \quad \mathcal{E}_1 = \left\{ \frac{1}{N} \sum_{i=1}^N L(X_i, Y_i) \le 2L_{\max} \right\};$$

$$\mathcal{E}_2 = \left\{ \left\| \ddot{\mathcal{L}}(\theta) - \Omega_{\mathcal{A}}(\theta) \right\| \le \frac{\lambda_{\min}}{2} \right\}; \quad \mathcal{E}_2^{\omega} = \left\{ \left\| \ddot{\mathcal{L}}_w(\theta) - \Omega_{\mathcal{A}}^w(\theta) \right\| \le \frac{\bar{\omega} \lambda_{\min}}{2} \right\};$$

$$\mathcal{E}_{3,m} = \left\{ \left\| \dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}_m \dot{\ell}(x, y; \theta_0) \right\| \le \left\| \flat_m \right\| \middle| m \in \mathcal{A} \right\};$$

$$\mathcal{E}_4 = \left\{ \left\| \frac{1}{M - |\mathcal{A}|} \sum_{m \notin \mathcal{A}} \Delta_m \dot{\mathcal{L}}_{(m)}(\theta_0) \right\| \le \frac{\left(\frac{1}{M - |\mathcal{A}|} \sum_{m \notin \mathcal{A}} \Delta_m^2\right)^{1/2} \sqrt{\log(N - n|\mathcal{A}|)}}{\sqrt{N - n|\mathcal{A}|}} \right\};$$

$$\mathcal{E}_5 = \left\{ M^{-1} \sum_{m=1}^M \left\| \dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}_m \dot{\ell}(x, y; \theta_0) \right\|^2 \le \frac{\log n}{n} \right\}. \quad (C.1)$$

Lemma C.1. For the good events we defined in (C.1), the following inequalities hold:

$$\begin{split} (i): \mathbb{P}\big(\mathcal{E}_1^c\big) \lesssim \frac{1}{N^4}; \quad \mathbb{P}\bigg(\bigcup_m \mathcal{E}_{1,m}^c\bigg) \lesssim \frac{M}{n^4}. \\ (ii): \mathbb{P}\big(\mathcal{E}_2^c\big) \lesssim \frac{C_{\max}^8}{\lambda_{\min}^8 N^4}; \mathbb{P}\big\{\big(\mathcal{E}_2^\omega\big)^c\big\} \lesssim \frac{C_{\max}^8}{\bar{\omega}^8 \lambda_{\min}^8 N^4}. \\ (iii): \mathbb{P}\bigg(\bigcup \mathcal{E}_{3,m}^c\bigg) \lesssim \frac{|\mathcal{A}|}{n^4}. \\ (iv): \mathbb{P}\big(\mathcal{E}_4^c\big) \lesssim \frac{C_{\max}^8}{\big\{\log(N-n|\mathcal{A}|)\big\}^4}. \\ (v): \mathbb{P}\big(\mathcal{E}_5^c\big) \lesssim \frac{C_{\max}^8}{(\log n - C_{\max}^2)^4}. \end{split}$$

Proof. We omit similar proofs for brevity.

Proof of (i): It could be proved that

$$\mathbb{P}\bigg(\bigcup \mathcal{E}_{1,m}^c\bigg) \leq \sum_{m=1}^M \mathbb{P}(\mathcal{E}_{1,m}^c) \lesssim \frac{M}{n^4}.$$

The second inequality follows from Markov's inequality and Assumptions 1-4.

Proof of (ii): Assumptions 1-4 hold and note that $E\{\|\ddot{\mathcal{L}}(\theta)-\Omega_{\mathcal{A}}(\theta)\|^8\} \lesssim N^{-4}C_{\max}^8$ (see detailed proof in Lemma 7 in Zhang et al. (2013)). It could be verified that $\mathbb{P}(\mathcal{E}_2^c) \lesssim C_{\max}^8/(\lambda_{\min}^8N^4)$ by Markov's inequality. In addition, note that $\lambda_{\min}\{\Omega_{\mathcal{A}}^{\omega}(\theta)\} \geq \bar{\omega}\lambda_{\min}$ since for any vector $x \in \mathbb{R}^p$ satisfies $x^\top x = 1$, we have

$$x^{\top} \Omega_{\mathcal{A}}^{\omega}(\theta) x = M^{-1} \sum_{m=1}^{M} \omega_m \left\{ x^{\top} \Omega_m(\theta) x \right\} \ge M^{-1} \sum_{m=1}^{M} \omega_m \lambda_{\min} = \bar{\omega} \lambda_{\min}.$$

This leads to $\mathbb{P}\left\{(\mathcal{E}_2^{\omega})^c\right\} \lesssim C_{\max}^8/(\bar{\omega}^8\lambda_{\min}^8N^4)$.

Proof of (iii) – (v): Similarly, it could be shown that

$$\mathbb{P}\left(\bigcup \mathcal{E}_{3,m}^{c}\right) \leq \sum_{m \in \mathcal{A}} \mathbb{P}\left(\|\dot{\mathcal{L}}_{(m)}(\theta_{0}) - \mathbb{E}_{m}\dot{\ell}(x, y; \theta_{0})\| > \|\flat_{m}\|\right) \lesssim \frac{|\mathcal{A}|}{n^{4}}.$$

$$\mathbb{P}\left(\mathcal{E}_{4}^{c}\right) \leq \frac{\left(\frac{1}{M-|\mathcal{A}|} \sum_{m \notin \mathcal{A}} \Delta_{m}^{2}\right)^{4} C_{\max}^{8}}{\left\{\log(N-n|\mathcal{A}|)\right\}^{4} \left(\frac{1}{M-|\mathcal{A}|} \sum_{m \notin \mathcal{A}} \Delta_{m}^{2}\right)^{4}}.$$

$$\mathbb{P}\left(\mathcal{E}_{5}^{c}\right) \leq \mathbb{P}\left(M^{-1} \sum_{m=1}^{M} \left(\|Z_{m}\|^{2} - \mathbb{E}\|Z_{m}\|^{2}\right) > \frac{\log n}{n} - \frac{C_{\max}^{2}}{n}\right) \lesssim \frac{C_{\max}^{8}}{\left(\log n - C_{\max}^{2}\right)^{4}}.$$

Here $Z_m = \dot{\mathcal{L}}_{(m)}(\theta_0) - \mathbb{E}_m \dot{\ell}(x, y; \theta_0)$. This finishes the lemma proof.

Lemma C.2. Let $\widehat{\theta}^{(t,m)}$ denote the DFL estimator at the tth iteration on the mth client. Define $\widetilde{\theta}^{(t,m)} = \sum w_{mk} \widehat{\theta}^{(t,k)}$ as the neighborhood-averaged estimator, and let $\overline{\theta}^{(t)} = M^{-1} \sum_{m=1}^{M} \widehat{\theta}^{(t,m)}$

represent the averaged estimator at the tth iteration. The stacked DFL estimator and averated estimator at the tth iteration are denoted by $\widehat{\theta}^{*(t)} = ((\widehat{\theta}^{(t,1)})^{\top}, \dots, (\widehat{\theta}^{(t,M)})^{\top})^{\top}$, and $\overline{\theta}^{*(t)} = I^*\overline{\theta}^{(t)}$, respectively. For any t, we have

$$(i): \|(W \otimes I_q)(\widehat{\theta}^{*(t)} - \bar{\theta}^{*(t)})\| \le \rho \|\widehat{\theta}^{*(t)} - \bar{\theta}^{*(t)}\|.$$

$$(ii): \|M^{-1} \sum_{m=1}^{M} \widetilde{\theta}^{(t,m)} - \bar{\theta}^{(t)}\| \le M^{-1/2} \operatorname{SE}(W) \|\widehat{\theta}^{*(t)} - \bar{\theta}^{*(t)}\|.$$

Proof. The proof is given in Lemmas 6 and 7 in Wu et al. (2024).

Lemma C.3. Define a 2×2 matrix

$$\mathbf{H} = \begin{bmatrix} \rho + 2\alpha\rho L_{\max} + \mathrm{SE}(W) & 2\alpha L_{\max} \\ 2\alpha\rho L_{\max} + \mathrm{SE}(W) & 1 - \alpha\bar{\omega}\lambda_{\min}/2 \end{bmatrix}$$

with $\alpha, \lambda_{\min}, L_{\max}, SE(W) > 0$, $\bar{\omega} \in [0,1]$, and $\rho \in (0,1)$. Denote $\rho_H = \max |\lambda(\mathbf{H})|$. For the sake of simplicity in the proof, we choose a sufficiently large L_{\max} in Assumption 4 such that $\lambda_{\min} \leq L_{\max}$. Subsequently, we assume that

$$2\alpha L_{\text{max}} + \text{SE}(W) < \frac{(1-\rho)\bar{w}\lambda_{\text{min}}}{16L_{\text{max}}}.$$
 (C.2)

Then

$$0 < \rho_H < 1 - \frac{\alpha \bar{\omega} \lambda_{\min}}{8}. \tag{C.3}$$

Proof. Note that for any 2×2 matrix (a,b;c,d) with a,b,c,d>0, its maximum eigenvalue is given by $\{(a+d)+\sqrt{(a-d)^2+4bc}\}/2$. Then we have $\rho_H=\mathcal{O}_1/2+\mathcal{O}_2/2$, where $\mathcal{O}_1=\rho+2\alpha\rho L_{\max}+\mathrm{SE}(W)+(1-\alpha\bar{\omega}\lambda_{\min}/2)$, and $\mathcal{O}_2=\left\{\rho+2\alpha\rho L_{\max}+\mathrm{SE}(W)-(1-\alpha\bar{\omega}\lambda_{\min}/2)\right\}^2+8\alpha L_{\max}\{2\alpha\rho L_{\max}+\mathrm{SE}(W)\}$. Then it fould be verified that

$$\frac{\mathcal{O}_1}{2} = \frac{\rho + 1}{2} + \alpha \rho L_{\text{max}} + \frac{\text{SE}(W)}{2} - \frac{\alpha \bar{\omega} \lambda_{\text{min}}}{4}.$$
 (C.4)

$$\mathcal{O}_{2}^{2} = \left\{ 1 - \rho - 2\alpha\rho L_{\max} - \operatorname{SE}(W) \right\}^{2} + \left(\frac{\alpha \bar{\omega} \lambda_{\min}}{2} \right)^{2} - \left\{ 1 - \rho - 2\alpha\rho L_{\max} - \operatorname{SE}(W) \right\} \times \alpha \bar{\omega} \lambda_{\min} + 8\alpha L_{\max} \left\{ 2\alpha\rho L_{\max} + \operatorname{SE}(W) \right\}.$$

To show equation (C.3), we first verify the following inequality:

$$\mathcal{O}_2^2 \le \left\{ 1 - \rho - 2\alpha \rho L_{\text{max}} - \text{SE}(W) \right\}^2 + \left(\frac{\alpha \bar{\omega} \lambda_{\text{min}}}{2} \right)^2. \tag{C.5}$$

Under assumption (C.2), it could be proved that

$$\left\{2\alpha\rho L_{\max} + \operatorname{SE}(W)\right\} \left(1 + \frac{\bar{\omega}\lambda_{\min}}{8L_{\max}}\right) < \frac{\bar{\omega}\lambda_{\min}}{8L_{\max}}(1-\rho)$$

$$\implies 2\alpha\rho L_{\max} + \operatorname{SE}(W) < \frac{\bar{\omega}\lambda_{\min}}{8L_{\max}}\left\{1 - \rho - 2\alpha\rho L_{\max} - \operatorname{SE}(W)\right\}$$

$$\implies 8\alpha L_{\max}\left\{2\alpha\rho L_{\max} + \operatorname{SE}(W)\right\} < \left\{1 - \rho - 2\alpha\rho L_{\max} - \operatorname{SE}(W)\right\}\alpha\bar{\omega}\lambda_{\min}.$$

The first inequality holds because $\bar{\omega}\lambda_{\min}/(8L_{\max}) < 1$, which follows from the facts that $\bar{\omega} \leq 1$ and $\lambda_{\min} \leq L_{\max}$. This yields equation (C.5).

Combining the results of (C.4) and (C.5), we have

$$\rho_{H} < \frac{1+\rho}{2} + \alpha \rho L_{\max} + \frac{\mathrm{SE}(W)}{2} - \frac{\alpha \bar{\omega} \lambda_{\min}}{4} + \left[\left\{ \frac{1-\rho}{2} - \alpha \rho L_{\max} - \frac{\mathrm{SE}(W)}{2} \right\}^{2} + \left(\frac{\alpha \bar{\omega} \lambda_{\min}}{4} \right)^{2} \right]^{1/2}.$$

Under assumption (C.2), we have $1 - \alpha \bar{\omega} \lambda_{\min}/2 > 0$, which yields $\rho_H > 0$. Next, we are going to prove equation (C.3). To this end, it could be proved that under assumption (C.2), we have

$$\frac{3\alpha\bar{\omega}\lambda_{\min}}{16}<\frac{1-\rho}{4} \text{ and } \alpha\rho L_{\max}+\frac{\mathrm{SE}(W)}{2}<\frac{1-\rho}{4}.$$

This yields

$$\frac{3}{4} \frac{\alpha \bar{\omega} \lambda_{\min}}{4} < \frac{1 - \rho}{2} - \alpha \rho L_{\max} - \frac{SE(W)}{2}.$$

Define $\delta_1=(1-\rho)/2-\alpha\rho L_{\max}-\mathrm{SE}(W)/2$, and $\delta_2=\alpha\bar{\omega}\lambda_{\min}/8$. Then it could be verified that

$$\frac{3}{4}(2\delta_2) < \delta_1 \implies 2\delta_1\delta_2 + 4\delta_2^2 - \delta_2^2 < 4\delta_1\delta_2 \implies 2\delta_1\delta_2 + 2\frac{\alpha\bar{\omega}\lambda_{\min}}{4}\delta_2 - \delta_2^2 < 2\delta_1\frac{\alpha\bar{\omega}\lambda_{\min}}{4} \implies$$

$$\delta_1^2 + \left(\frac{\alpha \bar{\omega} \lambda_{\min}}{4}\right)^2 < \left(\delta_1 + \frac{\alpha \bar{\omega} \lambda_{\min}}{4} - \delta_2\right)^2 = \left(1 - \delta_2 - \frac{1 + \rho}{2} - \alpha \rho L_{\max} - \frac{\text{SE}(W)}{2} + \frac{\alpha \bar{\omega} \lambda_{\min}}{4}\right)^2.$$

This yields

$$\frac{1+\rho}{2} + \alpha \rho L_{\max} + \frac{\mathrm{SE}(W)}{2} - \frac{\alpha \bar{\omega} \lambda_{\min}}{4} + \left[\left\{ \frac{1-\rho}{2} - \alpha \rho L_{\max} - \frac{\mathrm{SE}(W)}{2} \right\}^2 + \left(\frac{\alpha \bar{\omega} \lambda_{\min}}{4} \right)^2 \right]^{1/2} < 1 - \delta_2,$$

which leads to $\rho_H < 1 - \delta_2$. This finishes the proof.

D COMPLETE EXPERIMENTAL DETAILS AND RESULTS

D.1 IMPLEMENTATION DETAILS

Experiments compute resources. For all experiments, we use an NVIDIA Tesla P100 GPU with 16GB GPU memory and 8 Intel(R) Xeon(R) Gold 6271 CPUs, equipped with a total of 64GB of RAM and 500GB of storage. The experiments are implemented using Python 3.8 and PyTorch 1.7.1, and the computational time required to generate each figure is approximately 6 to 8 hours.

Implementation details of competitors.

- **DFL** (Wu et al., 2023a): The standard DFL algorithm without considering abnormal clients. The resulting DFL estimator is used as the initial value for aDFL.
- **BRIDGE** (Fang et al., 2022): A robust method to aggregate neighbors' parameter estimates and run local gradient descent. Coordinate-wise median (BRIDGE-M) and coordinate-wise trimmed mean (BRIDGE-T) are used for robustness.
- **SLBRN** (Zhang & Wang, 2024): A robust gradient tracking algorithm, which aggregates both the parameter estimates and gradients from neighbors. Coordinate-wise median (SLBRN-M) and coordinate-wise trimmed mean (SLBRN-T) as used.
- ClippedGossip (Karimireddy et al., 2021; He et al., 2022): This algorithm utilizes ClippedGossip as the robust aggregation rule. Furthermore, local momentums are also used.

For the BRIDGE-T and SLBRN-T algorithms, we use ϱ as the trimming proportion for the trimmed mean operation. For the ClippedGossip algorithm, we employ the adaptive clipping strategy proposed by He et al. (2022) to determine the clipping radius, with the hyperparameter $\delta_{\rm max}=2\varrho$. Additionally, the momentum parameter is set to 0.9 to align with that in He et al. (2022).

Implementation details in simulation. For all algorithms, we adopt a fixed learning rate of $\alpha = 0.01$ and set the maximum number of iterations to T = 500. For the aDFL algorithm, we implement the two-stage aDFL algorithm as detailed in Appendix A.4. In addition, we apply the DCV algorithm in Appendix A.5 to select λ_n from a candidate set of 5 grid points in the range $\lceil \log(n)/25, \log(n)/5 \rceil$.

Networks. The details of the two network structures are as follows:

- Directed Circle Network: Assume that the clients are arranged in a fixed sequence with an indegree $d_{m_1} = D > 0$ for each $1 \le m_1 \le M$. The network adjacency matrix $A = (a_{m_1m_2})$ is then defined with $a_{m_1m_2} = 1$ if $m_2 = \{(m_1 + d 1) \mod M\} + 1$ for $1 \le d \le D$, and $a_{m_1m_2} = 0$ otherwise. Here, $a \mod b$ denotes the remainder when the integer a is divided by the integer b. The resulting network structure should be of a circle type Wu et al. (2023a).
- Undirected Erdős–Rényi Graph: Consider an undirected Erdős–Rényi graph represented by a symmetric adjacency matrix $A=(a_{m_1m_2})$, where $a_{m_1m_2}=a_{m_2m_1}$ for all $1 \leq m_1, m_2 \leq M$. We generate each entry $a_{m_1m_2}$ for $1 \leq m_1 < m_2 \leq M$ independently, with $P(a_{m_1m_2}=1)=q$ and $P(a_{m_1m_2}=0)=1-q$, where $q\in(0,1]$ is the link probability. Subsequently, we ensure symmetry by setting $a_{m_2m_1}=a_{m_1m_2}$ for $m_1>m_2$, and set $a_{m_1m_2}=0$ for $m_1=m_2$.

D.2 ADDITIONAL SIMULATION RESULTS

In the simulation experiments on synthetic data, the averaged values and confidence bands of MSEs under the Undirected Erdős–Rényi Graph are present in Figure D.1.

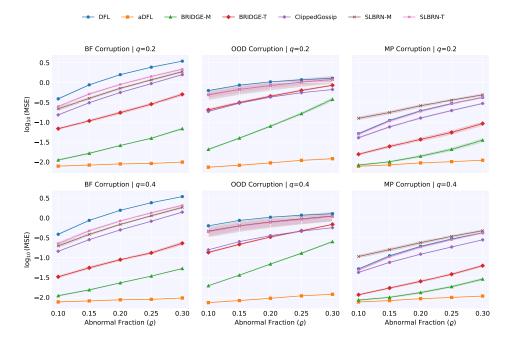


Figure D.1: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the Undirected Erdős–Rényi Graph in the homogeneous scenario. Different algorithms are evaluated under different corruption types and two link probabilities (q).

To further evaluate performance under heterogeneous data distributions, we conduct simulation experiments using synthetic data distributed in a heterogeneous manner across clients. Specifically, for each client m ($1 \le m \le M$), feature vectors X_i s are generated from the multivariate normal distribution $N_p(\mu_m, \Sigma_m)$. Here, the mean vector $\mu_m \in \mathbb{R}^p$ is constructed by sampling each element independently from the uniform distribution $\mathcal{U}(-0.5, 0.5)$. The covariance matrix $\Sigma_m \in \mathbb{R}^{p \times p}$ is defined as $\Sigma_m = \left(\rho_m^{|j_1-j_2|}\right)$, where ρ_m is sampled from $\mathcal{U}(0.2, 0.3)$. All other simulation settings remain identical to those described previously. The simulation results under two different network structures in the heterogeneous scenario are presented in Figures D.2 and D.3, respectively. Similar to the findings from the homogeneous scenario, the aDFL algorithm exhibits competitive performance compared to the competing methods.

We next consider two more realistic network structures. The first one is the scale-free network generated by the Barabasi-Albert (BA) model (Barabási & Albert, 1999), a standard topology for modeling real-world networks due to its power-law degree distribution. This structure is commonly used in federated learning research (Bhattacharya et al., 2024; Palmieri et al., 2023). Table D.1 presents the results under this network topology with M=200 clients. We also consider a larger-scale case with M=500 clients, whose results are shown in Table D.2. The second one is the stochastic block structure network. To demonstrate this part, we conduct a simulation experiment with M=100 and $\varrho=0.3$. We next construct a stochastic block structure network with two equal-sized blocks. To mimic the unevenly distributed case of abnormal clients, we put all abnormal clients in one block. The results are presented in Table D.3. These results show that our aDFL method performs excellently in more complex network structures and larger scales.

We also consider two more complex data corruption types. They are FGSM (Goodfellow et al., 2014) and PGD/iFGSM (Madry et al., 2017; Kurakin et al., 2018) attacks. We conduct experiments using the heterogeneous scenario under the scale-free network generated by the BA model with parameter m=5. The results for two corruption types are shown in Tables D.4 and D.5, respectively. The results show that our aDFL method remains robust against these novel corruption types.

Last, we explore the effectiveness of our method for the dynamic corruption case. Specifically, for every round of gradient descent (GD) iteration, we randomly reassigned clients as either normal or abnormal. The fraction of abnormal clients is set to be $\varrho=0.3$. Concurrently, the aDFL algorithm has to dynamically update its weights $\widehat{\omega}_m$ by revising Equation (5) from $\widehat{\omega}_m=\pi\{\lambda_n\|\dot{\mathcal{L}}_{(m)}(\widehat{\theta}_{\mathrm{init}}^{(m)})\|\}$ to $\widehat{\omega}_m^{(t)}=\pi\{\lambda_n\|\dot{\mathcal{L}}_{(m)}(\widehat{\theta}_{\mathrm{aDFL}}^{(t,m)})\|\}$. The corresponding results are presented in Table D.6, which demonstrate the robustness of our aDFL method against dynamic corruption.

Table D.1: The averaged MSE (standard deviation in parentheses) of different methods under the scale-free network generated by the Barabasi-Albert (BA) model with M=200 (using the heterogeneous model setting with BA parameter m=5).

Method	$\varrho = 0.1$	$\varrho = 0.15$	$\varrho = 0.2$	$\varrho = 0.25$	$\varrho = 0.3$
DFL	0.250 (0.070)	0.479 (0.124)	0.719 (0.129)	0.961 (0.155)	1.235 (0.138)
aDFL	0.004 (0.001)	0.005 (0.001)	0.005 (0.001)	0.005 (0.001)	0.006 (0.001)
BRIDGE-M	0.008 (0.001)	0.011 (0.003)	0.017 (0.005)	0.030 (0.014)	0.082 (0.092)
BRIDGE-T	0.008 (0.002)	0.013 (0.005)	0.030 (0.024)	0.099 (0.096)	0.285 (0.189)
ClippedGossip	0.104 (0.037)	0.192 (0.067)	0.290 (0.076)	0.403 (0.100)	0.527 (0.095)
SLBRN-M	0.268 (0.061)	0.401 (0.067)	0.590 (0.085)	0.819 (0.137)	1.112 (0.113)
SLBRN-T	0.188 (0.036)	0.337 (0.053)	0.533 (0.080)	0.768 (0.118)	1.070 (0.101)

Table D.2: The averaged MSE (standard deviation in parentheses) of different methods under the scale-free network generated by the Barabasi-Albert (BA) model with M=500 and $\varrho=0.3$ (using the heterogeneous model setting with BA parameter m=5).

D	FL	aDFL	BRIDGE-M	BRIDGE-T	ClippedGossip	SLBRN-M	SLBRN-T
1.3	301	0.003	0.062	0.483	0.564	1.020	1.056
0.0)	086)	(0.001)	(0.020)	(0.105)	(0.065)	(0.131)	(0.066)

Table D.3: The averaged MSE (standard deviation in parentheses) of different methods under the stochastic block network (using the heterogeneous model setting with the MP corruption and $\varrho = 0.3$).

DFL	aDFL	BRIDGE-M	BRIDGE-T	ClippedGossip	SLBRN-M	SLBRN-T
0.401	0.009	0.473	0.452	0.265	0.585	0.439
(0.022)	(0.000)	(0.031)	(0.021)	(0.012)	(0.089)	(0.042)

D.3 REAL DATA APPLICATION

Datasets. We consider the following datasets to evaluate the effectiveness of our proposed aDFL method.

- MNIST (LeCun et al., 1998) consists of 70,000 handwritten digit images (0–9), with approximately 7,000 images per class. Among these, 60,000 are used for training and the remaining 10,000 are reserved for testing. For this dataset, we use the LeNet model with p=61,706 parameters. The initial values of the LeNet model are set using the Xavier uniform initializer.
- CIFAR10 (Krizhevsky et al., 2009) comprises 60,000 color images, evenly distributed across 10 classes. Of these, 50,000 images are used for training and 10,000 are used for validation. For this dataset, we fine-tune the VGG16 model pre-trained on ImageNet dataset, with p=5,130 trainable parameters.
- We further explore a more challenging dataset CINIC10 (Darlow et al., 2018), which consists of 270,000 images drawn from both CIFAR10 and downsampled ImageNet, evenly distributed across 10 classes. We then conduct the experiment for CINIC10 in a similar way as for CIFAR10 in Section 5.2. The corresponding results are shown in Figure D.12 (ii). It shows that the results remain encouraging and are qualitatively similar to those obtained on MNIST and CIFAR10.

Distribution Pattern. The following distribution scenarios are considered:

 Homogeneous Scenario: Images from the entire training dataset are randomly and uniformly distributed across 50 clients.

Table D.4: The averaged MSE (standard deviation in parentheses) of different methods under the FGSM attack with $\epsilon = 0.5$ (using the heterogeneous model setting).

Method	$\varrho = 0.1$	$\varrho = 0.15$	$\varrho = 0.2$	$\varrho = 0.25$	$\varrho = 0.3$
DFL	0.250 (0.070)	0.479 (0.124)	0.719 (0.129)	0.961 (0.155)	1.235 (0.138)
aDFL	0.004 (0.001)	0.005 (0.001)	0.005 (0.001)	0.005 (0.001)	0.006 (0.001)
BRIDGE-M	0.008 (0.001)	0.011 (0.003)	0.017 (0.005)	0.030 (0.014)	0.082 (0.092)
BRIDGE-T	0.008 (0.002)	0.013 (0.005)	0.030 (0.024)	0.099 (0.096)	0.285 (0.189)
ClippedGossip	0.104 (0.037)	0.192 (0.067)	0.290 (0.076)	0.403 (0.100)	0.527 (0.095)
SLBRN-M	0.268 (0.061)	0.401 (0.067)	0.590 (0.085)	0.819 (0.137)	1.112 (0.113)
SLBRN-T	0.188 (0.036)	0.337 (0.053)	0.533 (0.080)	0.768 (0.118)	1.070 (0.101)

Table D.5: The averaged MSE (standard deviation in parentheses) of different methods under the PGD/i-FGDM attack with $\epsilon=0.5$ and $\alpha=0.05$ (using the heterogeneous model setting with $\varrho=0.3$).

DFL	aDFL	BRIDGE-M	BRIDGE-T	ClippedGossip	SLBRN-M	SLBRN-T
1.316	0.006	0.150	0.505	0.565	1.245	1.191
(0.172)	(0.001)	(0.253)	(0.240)	(0.117)	(0.274)	(0.232)

Table D.6: The averaged MSE (standard deviation in parentheses) of different methods under dynamic corruption (using the heterogeneous model setting under BF corruption with $\varrho=0.3$ and a directed circle network with D=5).

DFL	aDFL	BRIDGE-M	BRIDGE-T	ClippedGossip
3.556	0.010	1.267	2.100	3.305
(0.128)	(0.002)	(0.079)	(0.094)	(0.131)

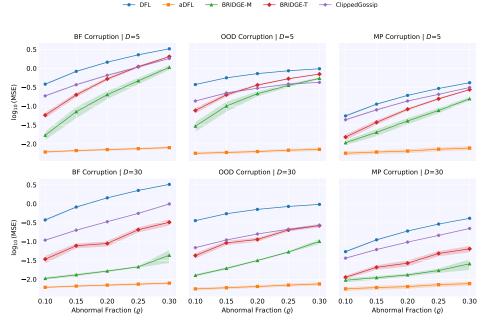


Figure D.2: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the Directed Circle Network in the heterogeneous scenario. Different algorithms are evaluated under different corruption types and two in-degrees (D).

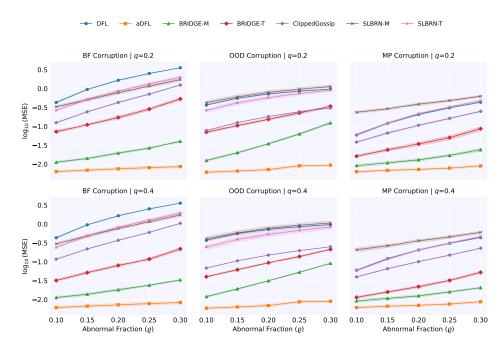


Figure D.3: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the Undirected Erdős–Rényi Graph in the heterogeneous scenario. Different algorithms are evaluated under different corruption types and two link probabilities (q).

- **Heterogeneous Scenario:** Images are first grouped according to their labels, with each label category evenly divided into 25 subsets. These subsets are then assigned such that each client receives data from 5 subsets with different labels, ensuring that every client ultimately holds data associated with 5 distinct labels.
- To increase heterogeneity, we explore a more challenging label distribution. Specifically, we assume each client holds data from 10 different classes and the class distribution is highly imbalanced: one dominant label accounts for 64% of the client's data, while each of the remaining 9 labels contributes only 4%. This introduces significant intra-client label imbalance and inter-client diversity, as the dominant label varies across clients. The detailed results using the CIFAR-10 dataset are present in Figure D.12 (i). We find that, although our aDFL method performs slightly worse than the oracle method, it exceeds all competing methods. These results demonstrate the practical robustness of our method.

Corruptions. Two kinds of data corruption are considered.

- OOD: The feature vectors X_i 's on abnormal machines are replaced by $\widetilde{X}_i = 0.3X_i + 3V_p$, where the entries of $V_p \in \mathbb{R}^p$ are independently generated from a standard normal distribution N(0,1).
- Label-Flipping (LF): We encode the image labels as numerical values ranging from 0 to 9. Subsequently, the response variables Y_i 's on the abnormal machines are replaced by $\widetilde{Y}_i = (Y_i + 1) \mod 10$.

Training strategy. We randomly distribute all training samples equally to M=50 clients. To speed up convergence, we adopt a constant-and-cut learning-rate scheduling strategy (Lang et al., 2019). Specifically, for the MNIST dataset, a total of 6,000 iterations are executed with an initial learning rate of $\alpha=0.1$. The learning rate decreases to 0.05 after 200 iterations and to 0.01 after 4,000 iterations. For the CIFAR10 dataset, we run a total of 9,000 iterations with an initial learning rate of $\alpha=1$. The learning rate is reduced to 0.5, 0.2, and 0.01 after 200, 5,000, and 8,000 iterations, respectively. For the proposed aDFL method, we recalculate the weights $\{\widehat{\omega}_m\}_m$ according to equation (4.4) whenever the learning rate is adjusted. In addition, we found that the ClippedGossip and SLBRN methods are highly sensitive to the learning rate in our setting. Therefore, we carefully adjusted the learning rate strategy for these methods separately.

Results. We present additional results that were not included in the main text. Specifically, results for real applications on MNIST and CIFAR10 under the homogeneous scenario are shown in Figures D.8 – D.11. Results under the heterogeneous scenario are shown in Figures D.5 – D.7. These results exhibit patterns consistent with those in Figure 2. In addition, we observe that the two SLBRN algorithms failed to converge in the Directed Circle Network. Therefore, the corresponding results are not reported.

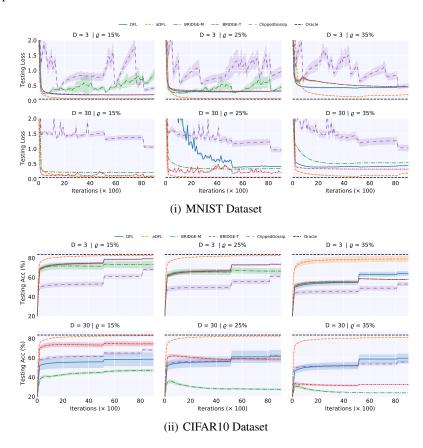


Figure D.4: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario. Different methods are evaluated with varying in-degrees (D) and fraction of abnormal clients (ϱ) under the LF corruption and Directed Circle Network.

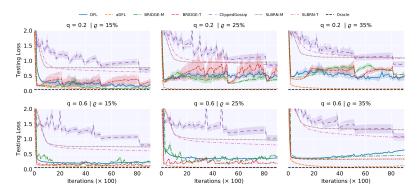


Figure D.5: The testing loss over iterations for MNIST in the heterogeneous scenario. Different methods are evaluated with varying link probabilities (q) and the fraction of abnormal clients (ϱ) under the LF corruption and Erdős–Rényi Graph.

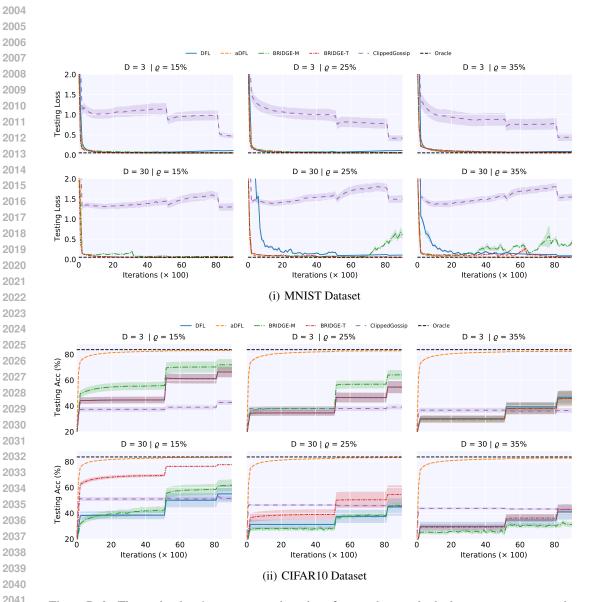


Figure D.6: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario. Different methods are evaluated with varying in-degrees (D) and fractions of abnormal clients (ϱ) under the OOD corruption and Directed Circle Network.

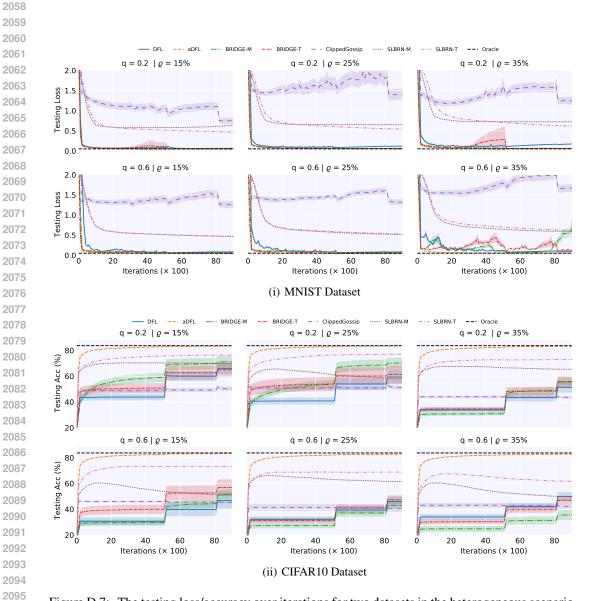


Figure D.7: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario. Different methods are evaluated with varying link probabilities (q) and fractions of abnormal clients (*ρ*) under the OOD corruption and Erdős–Rényi Graph.

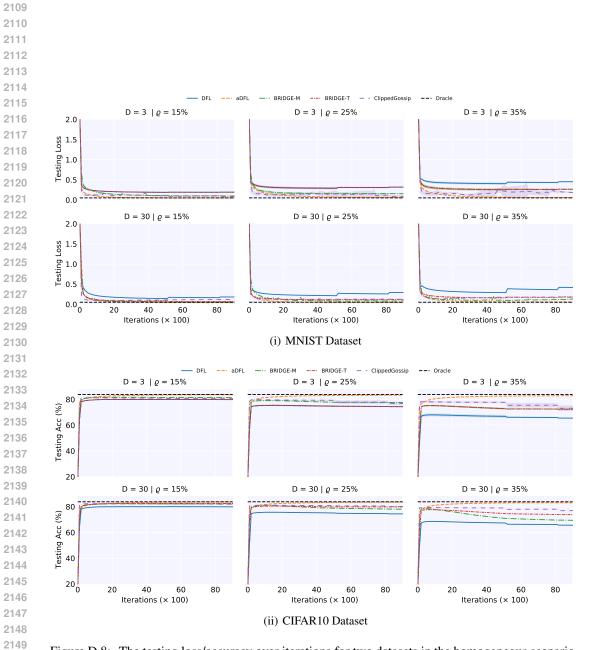


Figure D.8: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario. Different methods are evaluated with varying in-degrees (D) and fractions of abnormal clients (ϱ) under the LF corruption and Directed Circle Network.

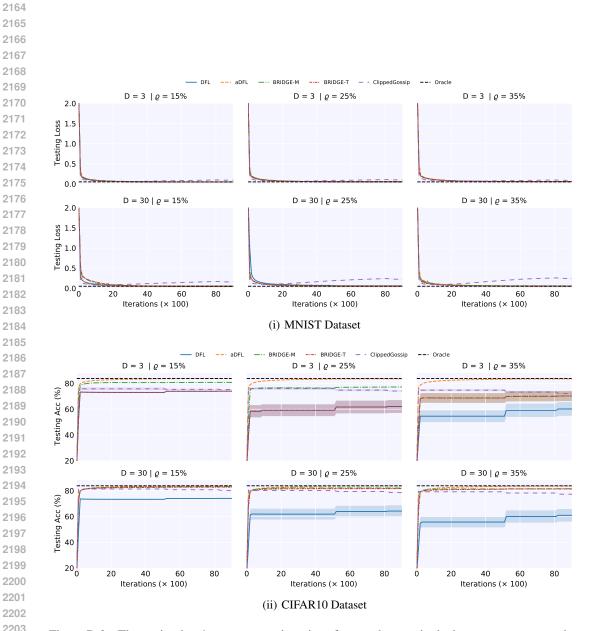


Figure D.9: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario. Different methods are evaluated with varying in-degrees (D) and fractions of abnormal clients (ϱ) under the OOD corruption and Directed Circle Network.

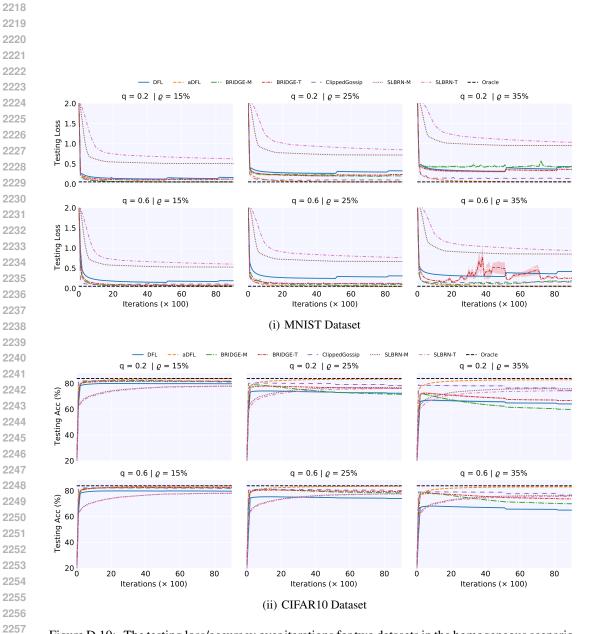


Figure D.10: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario. Different methods are evaluated with varying link probabilities (q) and fractions of abnormal clients (ϱ) under the LF corruption and Erdős–Rényi Graph.

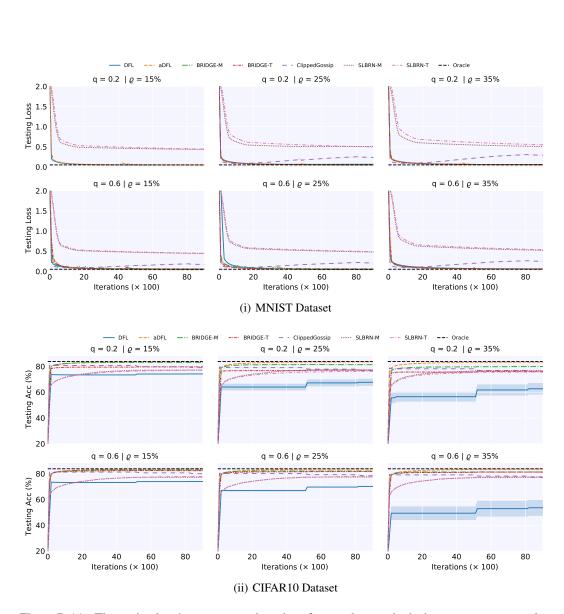


Figure D.11: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario. Different methods are evaluated with varying link probabilities (q) and fractions of abnormal clients (ϱ) under the OOD corruption and Erdős–Rényi Graph.

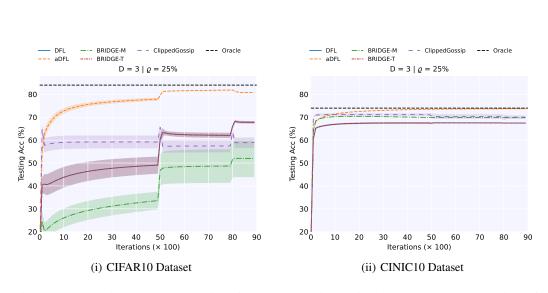


Figure D.12: Testing accuracy over iterations under the increasingly heterogeneous scenario (left panel) and the homogeneous scenario (right panel). We fix the in-degree at D=3 and set the fraction of abnormal clients to $\varrho=25\%$ under LF corruption on the Directed Circle Network.