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ABSTRACT

In decentralized federated learning (DFL), the presence of abnormal clients, often
caused by noisy or poisoned data, can significantly disrupt the learning process
and degrade the overall robustness of the model. Previous methods on this issue
often require a sufficiently large number of normal neighboring clients or prior
knowledge of reliable clients, which reduces the practical applicability of DFL.
To address these limitations, we develop here a novel adaptive DFL (aDFL) ap-
proach for robust estimation. The key idea is to adaptively adjust the learning rates
of clients. By assigning smaller rates to suspicious clients and larger rates to nor-
mal clients, aDFL mitigates the negative impact of abnormal clients on the global
model in a fully adaptive way. Our theory does not put any stringent conditions
on neighboring nodes and requires no prior knowledge. A rigorous convergence
analysis is provided to guarantee the oracle property of aDFL. Extensive numeri-
cal experiments demonstrate the superior performance of the aDFL method.

1 INTRODUCTION

Motivation. Decentralized federated learning (DFL) is an effective solution to handle large-scale
datasets by distributing computation across multiple clients (Beltrán et al., 2023) in a decentralized
way. Different from centralized federated learning (CFL), DFL eliminates the need for a central
server and enables clients to collaborate in a peer-to-peer manner. The decentralized structure im-
proves scalability, robustness, and privacy preservation, making it an appealing solution for large-
scale data analysis (Li et al., 2021). Nevertheless, DFL also faces a serious challenge. DFL systems
may involve unreliable or undesirable clients that degrade the overall performance of the learning
process. One typical example is Byzantine failure, which refers to transmitting incorrect information
to the whole network (Blanchard et al., 2017; Yin et al., 2018; Tu et al., 2021b). In addition, some
clients may hold low-quality or even corrupted data, contain information irrelevant to the target task,
exhibit severe distribution shifts, or suffer from unstable communication and computation. These
issues could negatively impact the training process by introducing noise or bias into the model up-
dates, which is especially problematic for DFL, as the lack of a central server makes it more difficult
to detect and correct abnormal behaviors (Wu et al., 2023b; Zhang & Wang, 2024).

Challenge. To address the abnormal clients in DFL, various robust learning methods have been
proposed; see Section 2 for a more detailed discussion. Nevertheless, existing methods suffer from
at least one of the following two limitations. First, many existing methods require for each client a
sufficiently large number of normal neighborhood clients. Otherwise, a robust and reliable summary
(e.g., median) of neighborhood gradients/estimators cannot be obtained (Yang & Bajwa, 2019; Su &
Vaidya, 2020; Fang et al., 2022). Second, many other methods require prior knowledge of reliable
clients, which is an even more stringent condition for most practical applications (Peng et al., 2023;
Wu et al., 2023b; Zhang & Wang, 2024).

Contributions. To solve those aforementioned problems, we propose here an adaptive decentralized
federated learning (aDFL) approach for robust estimation. The key idea of aDFL is to dynamically
adjust the learning rates of individual clients based on their behavior in the DFL process. Intuitively,
those clients with suspicious behavior in their estimated gradients should be given smaller learning
rates. In contrast, larger learning rates should be given to those clients who behave more normally
in their gradients. The consequence is that the negative effect of those abnormal clients can be
well controlled and minimized in a fully automatic way. Compared with existing methods, our
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theory does not put any stringent conditions on neighboring clients and requires no prior knowledge.
In summary, we make the following contributions in this work. Methodologically, we develop
here a novel aDFL approach for robust learning. This method adapts to diverse DFL settings and
data scenarios. Additionally, it does not rely on the assumption of homogeneous data distribution
across clients, which overcomes a key limitation of many existing approaches (Yang & Bajwa, 2019;
Fang et al., 2022; Peng et al., 2023; Qian et al., 2024) and improves the applicability to real-world
heterogeneous scenarios. Theoretically, the convergence rate of the aDFL algorithm is rigorously
analyzed. Our results show that, aDFL can achieve the oracle property (i.e., the same asymptotic
efficiency as the estimator computed by normal clients only) under appropriate regularity conditions.

2 RELATED WORK

Decentralized federated learning. The literature about DFL can be classified into two categories.
The first one is decentralized consensus optimization methods, which enforce consensus among
neighboring estimators to ensure global consensus. These methods include proximal gradient (Wu
et al., 2017; Lü et al., 2020), ADMM (Li et al., 2019b; Liu et al., 2022b) and gradient tracking (Xu
et al., 2017; Tang et al., 2018; Li et al., 2019d; Song et al., 2022a;b). The second one is decentralized
gradient descent methods, which mainly apply (stochastic) gradient descent after obtaining averaged
neighborhood estimators. Typical works include Jiang et al. (2017), Sirb & Ye (2018), Li et al.
(2019c), Xu et al. (2021), Liu et al. (2022a), and Wu et al. (2023a). More discussions can be found
in Beltrán et al. (2023). Note that the proposed aDFL method falls under the second category but
can be extended to the first category without difficulty; see Appendix A.4 for detailed discussion.

Robust centralized learning. It focuses on minimizing the impact of abnormal participants in
a centralized distributed machine learning system (Blanchard et al., 2017; Chen et al., 2017; Yin
et al., 2018). The literature in this regard can be classified into two approaches. The first approach
aims to mitigate the impact of abnormal clients by designing robust aggregation rules, which are
closely related to the robust estimation techniques in statistics (Shi et al., 2022). The most typical
technique is to replace the sample mean of the local gradients/estimators by its robust counterpart,
such as the trimmed mean (Yin et al., 2018), median (Chen et al., 2017; Yin et al., 2019), and
quantile (Tu et al., 2021a). Another approach tries to first identify the abnormal clients by analyzing
and detecting abnormal patterns, and then exclude them from the subsequent updating process. The
methods include discrepancy comparison (Blanchard et al., 2017), reputation scores (Xia et al.,
2019; Xie et al., 2019), and anomaly detection (Li et al., 2019a). Notably, this line of work is
also closely related to outlier detection in statistical domain, where various methods have been
developed to detect abnormal samples (Filzmoser et al., 2008; Zimek et al., 2012; Ro et al., 2015).
One representative work in the federated learning regime is Qian et al. (2024), which leverages false
discovery rate (FDR) control and sample splitting techniques to identify abnormal clients.

Robust decentralized learning. In DFL, the absence of a central server makes it significantly more
difficult to identify and mitigate the influence of abnormal clients. As a result, most existing work
on robust DFL extends techniques originally developed for CFL, but often at the cost of stronger
assumptions, such as requiring enough trustworthy neighbors. A common line of work includes
various robust aggregation rules, such as clipping and trimming (Yang & Bajwa, 2019; He et al.,
2022; Su & Vaidya, 2020). Various variance reduction techniques are also used, including the TV-
norm regularization and related techniques (Peng et al., 2021; 2023; Hu et al., 2023). Another
widely used idea is to evaluate the consistency or credibility of each client by comparing its model
with those of its neighbors, and then down-weight or exclude those that behave abnormally. This
leads to techniques such as performance-based filtering (Guo et al., 2021; Elkordy et al., 2022) and
credibility-aware aggregation (Hou et al., 2022). These methods rely on local information exchange
and are tailored to the decentralized setting where global oversight is unavailable.

3 STANDARD DECENTRALIZED FEDERATED LEARNING

3.1 PROBLEM DESCRIPTION

We begin by introducing the model setup and notation. Due to page limitations, a complete list
of notation is provided in Appendix B.1. Assume a total of N instances denoted as (Xi, Yi) for
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1 ≤ i ≤ N. Here, Xi = (Xij) ∈ Rp is the feature vector and Yi ∈ R is the associated uni-
variate response. We next consider a total of M clients indexed by M = {1, 2, . . . ,M}. Let
SF = {1, 2, . . . , N} represent the whole sample set, and let Sm denote the sample collected by
the mth client. We then should have SF =

⋃
m Sm and Sm1

⋂
Sm2

= ∅ for any m1 ̸= m2. For
simplicity, we assume that |Sm| = N/M = n for every 1 ≤ m ≤ M. In federated learning, data
across different clients often exhibit considerable heterogeneity, which may arise from varied data
collection environments. Despite the heterogeneity here, we assume that all normal clients share
a common underlying regression relationship. To be more precise, denote the joint distribution of
(x, y) ∈ X × Y by P(x, y). Then we allow the marginal distributions P(x) and P(y) to be hetero-
geneous but basically require the conditional distribution P(y | x) must be the same across different
clients. The common parameter of interest is denoted as θ0 ∈ Rp. Next, let ℓ(x, y; θ) be a loss
function with parameter θ ∈ Rp. Define a global loss function as L(θ) = N−1

∑N
i=1 ℓ(Xi, Yi; θ).

It can be decomposed as L(θ) = M−1
∑M

m=1 Lm(θ), where Lm(θ) = n−1
∑

i∈Sm
ℓ(Xi, Yi; θ) is

the loss function defined on the mth client. Next define θ̂ = argminθ L(θ) as the whole sample
estimator and θ̂m = argminθ Lm(θ) as the local estimator computed on the mth client.

In this work, we consider the data-contaminated adversary setting, where all of the clients are
assumed to follow the learning protocol but the local data on the abnormal client may be corrupted
(Biggio et al., 2012; Fang et al., 2020; Jagielski et al., 2018; Li et al., 2016). Specifically, define
for each client a binary variable am ∈ {1, 0} to indicate whether the mth client is abnormal or not.
Collect the indices of abnormal clients by A = {m : am = 1}. Let ϱ = |A|/M ∈ [0, 1/2) be the
fraction of abnormal clients. Accordingly, we assume that as n→∞,{√

n(θ̂m − θ0)→d N(0,Σm) if m /∈ A,√
n(θ̂m − θm)→d N(0,Σm) with θm ̸= θ0 if m ∈ A.

for some positive definite matrix Σm ∈ Rp×p. Since θm ̸= θ0 for any m ∈ A, including those
abnormal clients A in DFL without effective control should cause seriously biased results.

3.2 THE DFL FRAMEWORK

We start with a standard DFL framework involving two key steps (Yuan et al., 2016; Wu et al.,
2023a). First, each client aggregates information from its neighbors to derive a neighborhood-
averaged parameter estimator. Next, it updates this estimator by the method of gradient descent
based on the data placed on the local client. Specifically, assume M clients are connected through
a communication network represented by an adjacency matrix A = (am1m2

) ∈ RM×M . Here,
am1m2

= 1 if client m1 can receive information from client m2, and am1m2
= 0 otherwise. De-

fine in-degree dm1 =
∑

m2
am1m2

. We assume that dm1
> 0 for every 1 ≤ m1 ≤ M. Define

the weighting matrix W = (wm1m2) ∈ RM×M with wm1m2 = am1m2/dm1 . Let θ̂(t,m) be the
estimator obtained on the mth client at the tth iteration. Then, the update formula at the (t + 1)th
iteration is:

θ̃(t,m) =

M∑
k=1

wmkθ̂
(t,k); θ̂(t+1,m) = θ̃(t,m) − αL̇m

(
θ̃(t,m)

)
. (3.1)

Here L̇m(θ) ∈ Rp denotes the first order derivative of Lm(·) with respect to θ, and α ∈ R+

denotes the learning rate. Under appropriate regularity assumptions and assuming ϱ = 0, Wu et al.
(2023a) showed that, with a sufficiently small α and a relatively balanced network structure W ,
θ̂(t,m) should converge numerically to an asymptotically efficient estimator of θ0. However, it is
unclear what would happen if some of the clients are abnormal (i.e., ϱ > 0). We are thus inspired to
study the theoretical properties of θ̂(t,m) under the assumption with ϱ > 0.

To this end, define SE2(W ) = M−1∥W⊤1M − 1M∥2 which measures the balance of network
structures. In the most ideal situation with doubly stochastic W in the sense that 1⊤MW = 1⊤

M
(Lian et al., 2018; Li et al., 2019d), we have SE(W ) = 0. Then we have the following regularity
conditions.
Assumption 1 (Parameter space). Assume the parameter space Θ is a compact and convex subset
of Rp. Let int(Θ) be the set of interior points of Θ. Assume θm ∈ int(Θ) for m ∈ A ∪ {0}.
Moreover, define r = supθ∈Θ maxm ∥θ − θm∥ > 0 as a rough measure for the radius of Θ.
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Assumption 2 (Covariates distribution). Assume (Xi, Yi) from the mth client, i.e., i ∈ Sm are
independently and identically generated from a probability distribution Pm.

Assumption 3 (Local strong convexity). Define Ωm(θ) = Em

[
ℓ̈(Xi, Yi; θ)

]
for m ∈ M, where

ℓ̈(x, y; θ) ∈ Rp×p denotes the second order derivative of ℓ(x, y; θ) with respect to θ. Assume
that for m ∈ M, we have λmin

{
Ωm(θm)

}
≥ λmin for some positive constant λmin, and

minm infθ∈Θ λmin

{
L̈m(θ)

}
≥ 0.

Assumption 4 (Smoothness). Assume that there exists some constant Cmax > 0 such that for m ∈
M, supθ∈Θ Em

{∥∥ℓ̇(Xi, Yi; θ)−Em

{
ℓ̇(Xi, Yi; θ)

}∥∥8
2

}
≤ C8

max, and supθ∈Θ Em

{∥∥ℓ̈(Xi, Yi; θ)−
Ωm(θ)

∥∥8
2

}
≤ C8

max. Moreover, for any (Xi, Yi) ∈ Sm, ℓ̇(Xi, Yi; θ) and ℓ̈(Xi, Yi; θ) are Lipschitz
continuous in the sense that for any θ′, θ′′ ∈ Θ, the following inequality holds∥∥ℓ̇(Xi, Yi; θ

′)− ℓ̇(Xi, Yi; θ
′′)
∥∥ ≤ L(Xi, Yi)

∥∥θ′ − θ′′
∥∥,∥∥ℓ̈(Xi, Yi; θ

′)− ℓ̈(Xi, Yi; θ
′′)
∥∥ ≤ L(Xi, Yi)

∥∥θ′ − θ′′
∥∥

for some positive function L(Xi, Yi) and constant Lmax such that Em

{
L8(Xi, Yi)

}
≤ L8

max.

Assumption 5 (Network structure). There exists some constant ρ ∈ (0, 1) such that ∥W⊤(IM −
M−11M1⊤M )W∥+ SE(W ) ≤ ρ.

Assumption 6 (Non-vanishing bias). Define ♭m = Em{ℓ̇(Xi, Yi; θ0)}, Assume minm∈A ∥♭m∥ ≥
♭min for some constant ♭min > 0.

Remark 1. Assumption 1 defines the parameter space for θm with m ∈ A ∪ {0}. Similar con-
ditions are also used in Zhang et al. (2013) and Jordan et al. (2019). Assumption 2 addresses the
distribution of the data {(Xi, Yi) : i ∈ Sk}, allowing the data distributions to vary across different
clients. This relaxes the homogeneous data condition commonly assumed in existing approaches
(Fang et al., 2022; Qian et al., 2024). Assumption 3 requires only local strong convexity of the loss
functions rather than the global strong convexity typically assumed in existing literature (Karim-
ireddy et al., 2021; Kuwaranancharoen & Sundaram, 2023; Zhang & Wang, 2024). This makes our
theoretical results applicable to a broader class of loss functions. For completeness, we also provide
theoretical results for our proposed method under the standard global strong convexity assumption;
see Appendix A.2 for details. Assumption 4 requires the local loss functions to be sufficiently smooth,
which is a classical regularity condition in convex optimization (Jordan et al., 2019) and federated
learning (Zhang & Wang, 2024). Assumption 5 is a condition about the network structure. This
assumption is weaker than the commonly assumed doubly stochastic assumption in the literature (Li
et al., 2019d; Song et al., 2023). Assumption 6 forces abnormal clients to be distinguishable from
normal clients since ∥♭m∥ = 0 for any m /∈ A.

We start with the properties of the whole-sample estimator θ̂ with ϱ > 0. This leads to the following
Theorem 3.1 about the mean-squared error (MSE) of θ.

Theorem 3.1 (MSE of θ̂). Assume Assumptions 1 – 6 hold. Further assume that ϱ < ϵ for some
sufficiently small but fixed ϵ depending on (Lmax, λmin, ρ). Then we have E

∥∥θ̂−θ0∥∥2 = V (θ̂)+∥♭A∥
B(θ̂), where V (θ̂) ≲ L2

max/[{(1 − ϱ)λmin}2N ] + O
(
N−2

)
, NV (θ̂) → tr

{
Ω−1

A ΣAΩ
−1
A
}

as
N →∞, and

ϱ2∥♭A∥
L2
max

− C
( ϱ

N
+

1

N3

)
≤ B(θ̂) ≤ O

(
ϱ2∥♭A∥+

ϱ

N
+

1

N3

)
.

Here ♭A = |A|−1
∑

m∈A ♭m. The detailed formulas of ΩA and ΣA are given in Appendix B.1.

By Theorem 3.1, we know that the MSE of θ̂ is mainly determined by two terms. The first term
V (θ̂) reflects the variance with its leading term given by N−1 tr

{
Ω−1

A ΣAΩ
−1
A
}

. The second term
reflects the bias with its leading term of the same order as ϱ2∥♭A∥2. If ϱ → 0, θ̂ remains to be a
consistent estimator for θ0. However, for θ̂ to achieve a root-N convergence rate, we need to have
ϱ2 = o(N−1). This leads to n/M = o(|A|−2). Otherwise, θ̂ may exhibit a non-negligible bias.
However, this condition is not always achievable in practice. Consider for example a situation with
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each client representing a local hospital. In this case, each client (e.g., a hospital) might hold a
sufficiently large amount of data. Nevertheless, the total number of clients (hospitals) is typically
quite limited. According to classical results on DFL, under suitable assumptions, the difference
between the standard DFL estimator and θ̂ is statistically ignorable; see Proposition A.1 in Appendix
A.1 for details. However, Theorem 3.1 indicates that θ̂ itself might be biased. Consequently, the DFL
estimator is also expected to suffer from the same bias. This motivates us to develop a robust DFL
algorithm, so that the negative effects due to the abnormal clients can be well controlled.

4 ROBUST DFL

4.1 WEIGHTED DECENTRALIZED FEDERATED LEARNING

By Theorem 3.1, we know that the key reason responsible for the poor performance of the standard
DFL estimator is the existence of the abnormal clients (i.e.,A). Unfortunately, a standard DFL algo-
rithm treats those abnormal clients and normal clients equally without differentiating their relative
trustworthiness. One natural solution is to revise α slightly so that different learning rates can be
used for different clients according to their trustworthiness. Intuitively, larger learning rates should
be given to clients, which are more likely to have am = 0. In contrast, significantly reduced learning
rates should be given to those which are more likely to have am = 1. Accordingly, the bias due to
those abnormal clients in A can be greatly reduced.

Let θ̂(t,m)
A be an estimator obtained on the mth client at the tth iteration. We are motivated to modify

the standard DFL updating formula (3.1) as:

θ̂
(t+1,m)
A = θ̃

(t,m)
A − αωmL̇(m)

(
θ̃
(t,m)
A

)
(4.1)

with θ̃
(t,m)
A =

∑
k wmkθ̂

(t,k)
A . Here, ωm ∈ [0, 1] is a data-driven weight that reflects the trustwor-

thiness of the mth client. Intuitively, ωm should be larger for trustworthy clients. Conversely, ωm

should be smaller for those suspicious clients.

Subsequently, we analyze the theoretical properties of the algorithm (4.1) with general ωms. In
particular, we are eager to understand the role played by the adaptive weights ωms. To this end,
define ∆̄2

2 = M−1
∑M

m=1

{
ωm − (1 − am)

}2
as the mean squared distance between ωm and

the oracle weight 1 − am. Write ω̄G = M−1
∑

m/∈A ωm , ωA
2 = (|A|−1

∑
m∈A ω2

m)1/2 and
♭
A

2 = (|A|−1
∑

m∈A ∥♭m∥2)1/2. Further denote θ̂∗(t)A = {(θ̂(t,1)A )⊤, . . . , (θ̂
(t,M)
A )⊤}⊤ ∈ RMp as the

stacked estimator obtained from Equation (4.1) at the tth iteration. For theoretical purposes, define
an oracle estimator as the estimator obtained by using data from the trustworthy clients only. Denote
this oracle estimator by θ̂A = argminθ

∑
m/∈A Lm(θ). Let δ̂A0 = maxm ∥θ̂(0,m)

A − θ̂A∥. We then
have the following Theorem 4.1.

Theorem 4.1 (Convergence property of θ̂∗(t)A ). Assume that Assumptions 1 – 6 hold, Further as-
sume that α + SE(W ) < ϵ and the initial value θ̂

∗(0)
A is sufficiently close to I∗θ̂A in the sense

that ∥θ̂∗(0)A − I∗θ̂A∥ ≤ ϵ for some sufficiently small but fixed ϵ depending on (Lmax, λmin, ρ).
Then, with probability at least 1 − O

(
M/n4 + 1/(log n)4

)
, we have M−1/2∥θ̂∗(t)A − I∗ θ̂A∥ ≲

Err1 +Err2 +Err3, where

Err1 =
(
1− αω̄Gλmin

8

)t
δ̂A0 , Err2 =

αLmax + SE(W )

(1− ρ)λminω̄G

{( log n
n

)1/2
Lmax + ϱ1/2♭

A

2

}
,

Err3 =
1

ω̄Gλmin

[
ϱ♭

A

2 ω
A
2 +∆̄2

{( logN
N

)1
2

+ Lmax∥θ̂A − θ0∥
}]

. (4.2)

Assume M = o(n4) as n→∞. Then with probability tending to 1, we have M−1/2
∥∥θ̂∗(∞)

A −I∗θ̂A
∥∥

upper bounded by

C

ω̄G

[{
α+ SE(W )

}(
n−1/2 + ϱ1/2

)
+
(
ϱωA

2 +
∆̄2√
N

)]
. (4.3)

Compared to the classical results on DFL (see Proposition A.1 for details), the main difference of
Theorem 4.1 is the inclusion of an additional statistical error term Err3. If oracle weights (1− am)s

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

are employed, we then have ω̄G = 1−ϱ and ∆̄2 = ωA
2 ≡ 0. Accordingly, the influence of abnormal

clients on θ̂
∗(t)
A can be eliminated completely, as long as the learning rate α is sufficiently small and

the network structure W is sufficiently balanced.

For θ̂A to achieve the oracle property, the right-hand side of Equation (4.3) should be of an
op(1/

√
N) order. This conclusion holds if the following three conditions can be satisfied. They are,

respectively, (1)
{
α + SE(W )

}{
1/
√
n + ϱ1/2

}
/ω̄G = o(1/

√
N), (2) ωA

2 /ω̄
G = op

(
1/(ϱ
√
N)
)
,

and (3) ∆̄2/ω̄
G = op(1). The first condition can be satisfied by setting a reasonable ω̄G , and a

sufficiently small α and SE(W ). Both conditions (2) and (3) require ωm to approximate the oracle
weights (1−am) closely. However, since the status of the clients is unknown in advance, we need to
develop an effective estimator for ωm so that both conditions (2) and (3) can be practically satisfied.

4.2 ADAPTIVE DECENTRALIZED FEDERATED LEARNING

To this end, an effective measure for the trustworthiness of a client is necessarily needed. Note that
a trustworthy client should have a small gradient norm at a reasonably accurate parameter estimator.
In contrast, an abnormal client tends to exhibit a larger gradient norm. Thus, the size of the gradient
norm might serve as a natural indicator of trustworthiness. Based on this idea, we develop below a
two-stage algorithm.

STAGE 1. We start with assuming for each client m an initial estimator, denoted by θ̂
(m)
init , which may

not be statistically efficient but must be consistent. For example, one might use the standard DFL
estimator as described in Section 3.2 to serve this purpose, if condition ϱ→ 0 can be well satisfied.

STAGE 2. Once the initial estimator θ̂(m)
init is obtained, the adaptive weight for the mth client can be

computed as
ω̂m = π

{
λn

∥∥L̇(m)(θ̂
(m)
init )

∥∥}, (4.4)
where π(·) ∈ [0, 1] is an appropriately selected and monotonously decreasing mapping function.
For example, we use π(x) = exp(−x) in this work. Moreover, λn is a positive tuning parameter,
which controls the gradient scale. It is important to note that the selection of λn plays a critical
role in this algorithm. Specifically, λn∥L̇(m)(θ̂

(m)
init )∥ should not be too low. Otherwise, ω̂m cannot

shrink to 0 quickly for those abnormal clients. Conversely, this product should not be too large
either. Otherwise, ω̂m might not give sufficient trust to those trustworthy clients. Subsequently, the
updating step in Equation (4.1) can be executed by replacing ωm with ω̂m in (4.4). This leads to a
practically feasible aDFL estimator θ̂(t,m)

aDFL for the mth client at the tth iteration with θ̂
(0,m)
aDFL = θ̂

(m)
init .

The pseudo code for the aDFL algorithm is described below in Algorithm 1.

Algorithm 1: Adaptive Decentralized Federated Learning

Require: Network W , learning rate α, max iteration T.

Ensure: aDFL estimator {θ̂(T,m)
aDFL

}M
m=1

.

1: Compute initial estimators {θ̂(m)
init }Mm=1, and set θ̂(0,m)

aDFL = θ̂
(m)
init for 1 ≤ m ≤M.

2: for 0 ≤ t ≤ T − 1 do
3: for 1 ≤ m ≤M (distributedly) do
4: Compute the neighborhood-averaged estimator θ̃(t,m)

aDFL =
∑

k wmkθ̂
(t,k)
aDFL.

5: Compute θ̂
(t+1,m)
aDFL = θ̃

(t,m)
aDFL − αω̂mL̇(m)(θ̃

(t,m)
aDFL ), where ω̂m is given by (4.4).

6: end for
7: end for

We next study the theoretical properties of the proposed aDFL estimator θ̂(t,m)
aDFL. Denote the stacked

aDFL estimator at iteration t as θ̂∗(t)aDFL =
{
(θ̂

(t,1)
aDFL)

⊤, . . . , (θ̂
(t,M)
aDFL)

⊤ }⊤ ∈ RMp. Write the corre-

sponding estimators of ωA
2 , ∆̄2,and ω̄G based on Equation (4.4) as ˆ̄ωA

2 , ˆ̄∆2 and ˆ̄ωG , respectively. We
then have the following Theorem 4.2.
Theorem 4.2 (Convergence rate of the aDFL). Assume that Assumptions 1 – 6 hold. Let π(x) =

exp(−x), and set the initial value θ̂
(m)
r as the standard DFL estimator. Assume that logN ≲ λn ≲

6
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√
nM−1/8. Then, with probability at least 1 − O(M/n4 + 1/ logN), we have: (1) ˆ̄ωA

2 ≲ 1/
√
N ,

(2) ˆ̄∆2
2 ≲ ϱ/

√
N + λn(1/

√
n + ∥θ̂ − θ0∥), and (3) 1/ ˆ̄ωG ≲ exp(cλn∥θ̂ − θ0∥). Further assume

M → ∞ with M = o(n4), ϱ = o(1) and α + SE(W ) is sufficiently small as n → ∞. Then, with
probability tending to 1, we have M−1/2∥θ̂∗(∞)

aDFL − I∗θ̂A∥ upper bounded by

C exp
(
cλn∥θ̂ − θ0∥

){λn∥θ̂ − θ0∥√
N

+ o
( 1√

N

)}
. (4.5)

From Theorem 4.2, the statistical error introduced by abnormal clients (4.5) can be further reduced
to be of the order op(1/

√
N), if we can further assume that λn∥θ̂− θ0∥ = op(1). Here, recall that θ̂

denotes the whole-sample estimator. This result implies that the aDFL estimator achieves the same
asymptotic efficiency as θ̂A, as long as a suitable tuning parameter λn can be used.

The validity of Theorem 4.2 relies on the assumption that an initial estimator of a reasonable quan-
tity be provided. It can be easily satisfied as long as there exists a statistically consistent (but not
necessarily efficient) initial estimator. As shown by our Theorem 3.1 and Proposition A.1, a stan-
dard DFL estimator can serve the purpose with ϱ = o(1). In practice, one might also consider other
decentralized robust estimators (Karimireddy et al., 2021; Fang et al., 2022; Zhang & Wang, 2024)
as initial estimators θ̂(m)

init with ϱ ∈ [0, 1/2) under appropriate regularity conditions. We summarize
this result in the following Corollary 4.1.
Corollary 4.1 (General initial estimator). Assume that Assumptions 1 – 6, and A.1 hold. Let
π(x) = exp(−x). Assume M → ∞ with M = o(n4) and α + SE(W ) is sufficiently small as
n → ∞. Further assume logN ≲ λn ≲

√
nM−1/8, Then, with probability tending to 1, we

have M−1/2
∥∥θ̂∗(∞)

aDFL − I∗θ̂A
∥∥ upper bounded by C exp

(
cλn∥θ̄init − θ0∥

){
λn∥θ̄init − θ0∥/

√
N +

o
(
1/
√
N
)}

with θ̄init = M−1
∑M

m=1 θ̂
(m)
init .

We find that aDFL estimator should have the oracle property as long as λn∥θ̄init − θ0∥ = op(1).
Remark 2. The numerical convergence speed and statistical efficiency of Algorithm 1 can be im-
proved in two ways. First, Theorem 4.2 indicates a convergence rate of 1 − O(ˆ̄ωG). Thus, after
computing ω̂m, each client can obtain ωmax = maxm ω̂m by a DFL algorithm and then update
ω̂m ← ω̂m/ωmax so that ˆ̄ωG can be increased. Second, both Theorem 4.2 and Corollary 4.1 reveal
that the error bound depends on ∥θ̄init− θ0∥. Then the aDFL estimator can be used as a new initial
estimator for Algorithm 1 repeatedly. The multi-stage aDFL algorithm is provided in Algorithm A.1.

5 EXPERIMENTS

In this section, we examine the finite-sample performance of the proposed aDFL method. We com-
pare our aDFL algorithm with the following alternatives: DFL (Wu et al., 2023a), BRIDGE-M,
BRIDGE-T (Fang et al., 2022), SLBRN-M, SLBRN-T (Zhang & Wang, 2024) and ClippedGossip
(Karimireddy et al., 2021). In aDFL method, we use cross-validation for the practical selection of
λn. To investigate the effect of the number of neighboring nodes, we further consider two different
network structures: the Directed Circle Network Wu et al. (2023a) with varying in-degree D, and the
Undirected Erdős–Rényi Graph (Erdős & Rényi, 1959) with varying link probability q. Complete
implementation details of the algorithms and network structures are provided in Appendix D.1.

5.1 SIMULATION EXPERIMENTS ON SYNTHETIC DATA

Following Qian et al. (2024), we consider the linear regression model Yi = X⊤
i θ0 + εi, where

εi ∼ N(0, 1) and θ0 = (1⊤
s , 0, . . . , 0)

⊤ ∈ Rp with s = ⌊0.2p⌋. For the distribution of Xi, we
study two scenarios: a homogeneous scenario with Xi ∼ Np(0, Ip), and a heterogeneous scenario
in which each client generates Xi from distinct multivariate normal distributions. See Appendix
D.2 for details. We consider the case where the data on abnormal clients is corrupted. Inspired
by Karimireddy et al. (2021), Zhang & Wang (2024) and Qian et al. (2024), three types of data
corruption are investigated:

• Bit-Flipping (BF): The response variables Yi’s on abnormal clients are replaced by Ỹi = −Yi.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Out-of-Distribution (OOD): Features Xi’s on abnormal clients are replaced by X̃i = 0.7Xi+Vp,
where entries of Vp ∈ Rp are independently generated from a uniform distribution U(0, 1).

• Model-Parameter Corruption (MP): The parameters on abnormal clients are set as θc =
(1sc , 0, . . . , 0)

⊤ ∈ Rp with sc = ⌊0.1p⌋.

We fix the feature dimension as p = 50, the number of clients as M = 100, and the local sample
size as n = 100. Thus, the total sample size is given by N = M × n = 10,000. We ran-
domly select ⌊ϱM⌋ clients as abnormal clients. We then use MSE on normal clients to assess the
performance of estimators computed by different algorithms. Specifically, the MSE is defined as
MSE = |Ac|−1

∑
m∈Ac ∥θ̂(m) − θ0∥2, where θ̂(m) ∈ Rp is the resulting estimator obtained on the

mth client. For all algorithms, we replicate the experiments 20 times in each setting. The averaged
values and confidence bands of these MSEs under the Directed Circle Network are shown in Figure
1, while those under the Undirected Erdős–Rényi Graph are present in Appendix D.2. The additional
simulation results of the heterogeneous scenario can also be found in Appendix D.2. Moreover, to
further strengthen our simulation study, we explore additional experiments involving (1) two more
realistic network structures, (2) two more complex data corruption types, and (3) a dynamic corrup-
tion scenario under specific settings. Across these settings, the results consistently demonstrate the
robustness and effectiveness of our approach; see Appendix D.2 for details.
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Figure 1: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the Directed
Circle Network and the homogeneous scenario. Different algorithms are evaluated under different
corruption types and two in-degrees (D).

Generally, the results under the two network structures show similar patterns, from which we obtain
the following observations. First, under this directed network structure, we find that the two SLBRN
algorithms fail to converge, so the corresponding results are not reported. Second, as the abnormal
fraction (ϱ) increases, the MSE of all algorithms increases significantly except for the aDFL algo-
rithm. Furthermore, various abnormal robust algorithms exhibit a smaller MSE compared to the
standard DFL algorithm. Moreover, the aDFL algorithm achieves the smallest MSE among all these
algorithms. Lastly, we find that the performances of various robust algorithms improve in terms of
MSE under the same Byzantine corruption type when the D increases from 5 to 30. This is expected
because more information can be transmitted with a larger number of neighboring clients.

5.2 APPLICATION TO REAL DATA

In this section, we empirically evaluate the effectiveness of our proposed aDFL method on two
classical datasets: MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al., 2009). MNIST
contains 60,000 training and 10,000 testing images, whereas CIFAR10 contains 50,000 training

8
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and 10,000 testing images. In this experiment, we distribute all training data equally to M = 50
clients. We consider two data distribution scenarios: (1) a homogeneous scenario, where images
are randomly distributed; and (2) a heterogeneous scenario, where each client holds images from
only a subset of labels. For abnormal clients, we implement both OOD and label-flipping (LF)
corruption (Karimireddy et al., 2021). We train LeNet5 (LeCun et al., 1998) on MNIST using
Xavier uniform initializer, and fine-tune a pre-trained VGG16 (Simonyan, 2014) on CIFAR10. To
speed up convergence, we adopt a constant-and-cut learning-rate scheduling strategy (Lang et al.,
2019). Further implementation details are provided in Appendix D.3. We also extend the real data
analysis by exploring (i) a more heterogeneous scenario and (ii) the more challenging CINIC10
dataset (Darlow et al., 2018). The results again confirm the robustness and effectiveness of our
approach; see Appendix D.3 and Figure D.12 for details.

At the tth iteration, we evaluate the performance of the mth client on the testing set. We then
evaluate the performance of the mth client at the tth iteration using testing loss and accuracy. We
plot the averaged values and confidence bands of these results on normal clients. In addition to the
competing methods discussed above, we include the oracle estimator as a reference. In the main text,
we present results for the CIFAR10 dataset under the heterogeneous scenario with LF corruption
using a Directed Circle Network; see Figure 2. Additional results are provided in Appendix D.3.

From Figure 2, we find that as the fraction of abnormal clients increases or the number of neighbors
decreases, the performances of competing methods decline significantly. Compared to competitors,
our aDFL method achieves the best performance, which is comparable to that of the oracle across
all situations. This highlights aDFL’s strong ability to be adaptive to different scenarios.
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Figure 2: The testing accuracy over iterations for CIFAR10 in the heterogeneous scenario. Different
methods are evaluated with varying link probabilities (q) and the fraction of abnormal clients (ϱ)
under the LF corruption and Erdős–Rényi Graph.

6 CONCLUSION

In this work, we propose aDFL, a robust decentralized federated learning method that dynamically
adjusts each client’s learning rate based on training behavior. It preserves the original network topol-
ogy and requires no stringent assumptions on neighbors or prior knowledge. We provide theoretical
guarantees, and extensive experiments corroborate its effectiveness. However, several limitations
remain. First, the current design primarily targets noisy/poisoned data; extending it to more general
settings reqruies further study. Second, aDFL communicates every training round, which can be
costly in large networks. Alleviating this via combining with local updating techniques is a key
direction. Moreover, privacy mechanisms are not yet integrated, but our key technique (the intro-
duction of wm) can be easily extended to the existing privacy-preserving DFL methods. Lastly, our
analysis assumes bounded gradients, which may not always hold; future work could consider using
gradient clipping (Pascanu et al., 2013; Zhang et al., 2019) to relax this assumption.
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REPRODUCIBILITY STATEMENT

All numerical experiments and real-data analyses are fully reproducible using the code provided in
the anonymized supplementary materials.
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A ADDITIONAL DISCUSSIONS AND RESULTS

A.1 THE PROPERTIES OF THE STANDARD DFL ESTIMATOR

Denote θ̂∗(t) = {(θ̂(t,1))⊤, . . . , (θ̂(t,M))⊤}⊤ ∈ RMp be the stacked standard DFL estimator ob-
tained at the tth iteration, and let δ̂0 = maxm ∥θ̂(0,m) − θ̂∥ be the initial distance. The numerical
convergence property of the standard DFL algorithm is elaborated by the following Proposition A.1.
Proposition A.1 (Convergence Property of the Standard DFL). Assume that Assumptions 1 – 6 hold.
Further assume that α + SE(W ) < ϵ and δ̂0 < ϵ for some sufficiently small but fixed ϵ depending
on (Lmax, λmin, ρ). Then, with probability at least 1−O(M/n4), the following relationship holds.

M−1/2
∥∥∥θ̂∗(t) − I∗θ̂

∥∥∥ ≲
(
1− α(1− ϱ)λmin

8

)t
δ̂0 +

α+ SE(W )

(1− ρ)(1− ϱ)λmin
.

Proposition A.1 suggests that the discrepancy between the DFL estimator θ̂∗(t) obtained in the tth
step and the whole-sample estimator I∗θ̂ is upper bounded by: (1) the optimization error {1 −
(αλmin)/8}t and (2) the statistical error

{
α+ SE(W )

}
/
{
λmin(1− ρ)

}
. By the time of numerical

convergence with t → ∞, we obtain M−1/2∥θ̂∗(∞) − I∗θ̂∥ ≤
{
α + SE(W )

}
/
{
λmin(1 − ρ)

}
.

Therefore, to have the difference between θ̂∗(∞) and θ̂ to be statistically ignorable, we should have
α+SE(W ) = o(1/N). Moreover, we can combine the conclusions of Theorem 3.1 and Proposition
A.1 to obtain an explicit bound on ∥θ̂∗(∞) − I∗θ∗0∥ in terms of n,M , and ρ as

M−1/2
∥∥∥θ̂∗(∞)− I∗θ∗0

∥∥∥ ≲
α+ SE(W )

(1− ρ)(1− ϱ)
+

1√
δ

{ 1

(1− ϱ)
√
nM

+ ϱ∥♭A∥+
(ϱ∥♭A∥)1/2√

N
+

1

nM

}
with probability at least 1− δ for some small constant δ > 0.

A.2 THE THEORETICAL RESULTS UNDER GLOBAL STRONG CONVEXITY ASSUMPTION

Assumption 3′ (Global Strong Convexity). Assume there exists a fixed positive constant λmin, such
that minm infθ∈Θ λmin

{
Ωm(θ)

}
≥ λmin.

Theorem A.1 (MSE of θ̂). Assume Assumptions 1 – 3′, and 4 – 6 hold. Then we have E
∥∥θ̂−θ0

∥∥2 =

V (θ̂) + ∥♭A∥ B(θ̂), where V (θ̂) ≲ L2
max/(λ

2
minN) +O

(
N−2

)
, NV (θ̂)→ tr

{
Ω−1

A ΣAΩ
−1
A
}

as
N →∞, and

ϱ2∥♭A∥
L2
max

− C
( ϱ

N
+

1

N3

)
≤ B(θ̂) ≤ O

(
ϱ2∥♭A∥+

ϱ

N
+

1

N3

)
.

Here ♭A = |A|−1
∑

m∈A ♭m. The detailed formulas of ΩA and ΣA are given in Appendix B.1.

Since θ̂A is computed based solely on trust-able data, its properties can be directly derived by ex-
tending the classical properties of M -estimators (Van der Vaart, 2000; Serfling, 2009; Zhang et al.,
2013). We then have the following proposition.

Proposition A.2 (MSE of θ̂A). Assume that Assumptions 1 – 3′, and 4 hold. Then we have E
∥∥θ̂A−

θ0
∥∥2 = V (θ̂A) + B(θ̂A), where V (θ̂A) ≤

{
λ2
minN (1− ϱ)

}−1
2L2

max, NV (θ̂A) → tr
[
{(M −

|A|)−1
∑

m/∈A Ωm(θ0)}−1{(M−|A|)−1
∑

m/∈A Σm(θ0)}{(M−|A|)−1
∑

m/∈A Ωm(θ0)}−1
]
, and

B(θ̂A) = O
(
N−2

(
1− ϱ

)−2)
.
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By comparing Proposition A.2 with Theorem A.1, we find that using only trustworthy clients should
result in a superior estimator, as compared with the estimator computed based on all clients.

Theorem A.2 (Convergence Property of θ̂∗(t)A ). Assume that Assumptions 1 – 3′, and 4 – 6 hold,
and α + SE(W ) < ϵ, for some sufficiently small but fixed ϵ depending on (Lmax, λmin, ρ).
Then, with probability at least 1 − O

(
M/n4 + 1/(log n)4

)
, we have M−1/2∥θ̂∗(t)A − I∗ θ̂A∥ ≲

Err1 +Err2 +Err3, where

Err1 =
(
1− αω̄λmin

8

)t
δ̂A0 , Err2 =

αLmax + SE(W )

(1− ρ)λminω̄

{( log n
n

)1/2
Lmax + ϱ1/2♭

A

2

}
,

Err3 =
1

ω̄λmin

[
ϱ♭

A

2 ω
A
2 +∆̄2

{( logN
N

)1
2

+ Lmax∥θ̂A − θ0∥
}]

.

Assume M = o(n4) as n→∞. Then with probability tending to 1, we have M−1/2
∥∥θ̂∗(∞)

A −I∗θ̂A
∥∥

upper bounded by

C

ω̄

[{
α+ SE(W )

}(
n−1/2 + ϱ1/2

)
+
(
ϱωA

2 +
∆̄2√
N

)]
.

Theorem A.3 (Convergence Rate of the aDFL). Assume that Assumptions 1 – 3′, and 4 – 6 hold.
Let π(x) = exp(−x), and set the initial value θ̂

(m)
r as the standard DFL estimator. Assume that

logN ≲ λn ≲
√
nM−1/8. Then, with probability at least 1−O(M/n4 + 1/ logN), we have: (1)

ˆ̄ωA
2 ≲ 1/

√
N , (2) ˆ̄∆2

2 ≲ ϱ/
√
N+λn(1/

√
n+∥θ̂−θ0∥), and (3) 1/ ˆ̄ω ≲ exp(cλn∥θ̂−θ0∥). Further

assume M →∞ with M = o(n4), ϱ = o(1) and α+SE(W ) is sufficiently small as n→∞. Then,
with probability tending to 1, we have M−1/2∥θ̂∗(∞)

aDFL − I∗θ̂A∥ upper bounded by

C exp
(
cλn∥θ̂ − θ0∥

){λn∥θ̂ − θ0∥√
N

+ o
( 1√

N

)}
.

A.3 THE ASSUMPTION FOR COROLLARY 4.1.

Assumption A.1 (Consensus Convergence). Denote θ̄init = M−1
∑M

m=1 θ̂
(m)
init . Assume that (1)

λn∥θ̄init − θ0∥ = Op(1), and (2) λnM
−1
∑M

m=1 ∥θ̂
(m)
init − θ̄init∥2 = op(1/N

2).

Remark 3. Assumption A.1 requires that the initial estimators {θ̂(m)
init }m have a clear consensus

in the sense that their sample variance is of the order op(1/(
√
λnN)). Moreover, their consensus

should be of a reasonable quality in the sense that λn∥θ̄init − θ0∥ = Op(1). Such types of initial
estimators can be easily obtained by, for example, (1) a standard DFL algorithm with a sufficiently
small α + SE(W ) value; or (2) a gradient tracking algorithm of Shi et al. (2015) on a symmetric
doubly stochastic W .

A.4 MULTI-STAGE ADFL ALGORITHM

It is worth noting that in Algorithm A.1, the key step of the aDFL method involves computing
adaptive weights using Equation (4.4). These weights adjust each client’s training contribution
based on its behavior. Consequently, our proposed aDFL method can be smoothly extended to many
existing DFL frameworks. Moreover, with an appropriate choice of λn, one can expect to achieve
nearly oracle performance.

A.5 THE CHOICE OF λn

We propose here a method of decentralized cross validation (DCV) for an automatic selection of
λn. Specifically, for any 1 ≤ m ≤ M , we split Sm into a training set Strainm and a valida-
tion set Svalm . The training set ∪mStrainm is then used to obtain the aDFL estimator under dif-
ferent λn values, while the validation set ∪mSvalm is used to evaluate the aDFL estimator’s per-
formance. In the presence of Byzantine attacks in DFL, the most ideal global metric should be
Lval({θ(m)}m) = |Ac|−1

∑M
m=1(1 − am)

∑
i∈Sval

m
ℓ(Xi, Yi; θ

(m)), which is the validation losses

computed on all trustworthy clients. By leveraging the aDFL estimator θ̂
∗(T )
aDFL and the adaptive
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Algorithm A.1: Multi-stage Adaptive Decentralized Federated Learning

Require: initial estimator {θ̂(m)
init }Mm=1; max iteration T ; number of stages S;

Ensure: aDFL estimator {θ̂(T,m)
aDFL

}M
m=1

1: for s ≤ S do
2: Set θ̂(0,m)

aDFL = θ̂
(m)
init for 1 ≤ m ≤M

3: for 0 ≤ t ≤ T − 1 do
4: for 1 ≤ m ≤M (distributedly) do
5: Compute the neighborhood-averaged estimator θ̃(t,m)

aDFL =
∑

k wmkθ̂
(t,k)
aDFL

6: Update parameter estimator by

θ̂
(t+1,m)
aDFL = θ̃

(t,m)
aDFL − αω̂mL̇(m)(θ̃

(t,m)
aDFL ),

where ω̂m is computed as (4.4)
7: end for
8: end for
9: end for

weights {ω̂m}m produced by the aDFL algorithm on the training data, we can construct an estima-
tor for the ideal loss function. Specifically, it is defined as

L̂val(θ̂
∗(T )
aDFL) = (M ̂̄ω)−1

M∑
m=1

ω̂m

∑
i∈Sval

m

ℓ(Xi, Yi; θ̂
(T,m)
aDFL ) + (M ˆ̄ω)−1λn

−1/2
val

( M∑
m=1

ω̂2
m

)1/2
.

Here nval = |Sval| and λ represents a penalty on the adaptive weights to balance the estimation
value and the variance of L̂val(θ̂

∗(T )
aDFL). We observe that λ is not highly sensitive in our algorithm.

In practice, we set λ = 1.64. Then the DCV algorithm can be executed for each λk
n in a two stage

manner:

In the first stage, each client m executes Algorithm 1 to obtain the aDFL estimator θ̂
(T,m)
aDFL and

{ω̂m}m. Based on this estimator, every client calculates its validation loss, denoted as L̂(0,m)
val and

recorded as the initial loss value. We also define the initial averaged adaptive weight as ˆ̄ω(0,m) =
ω̂m.

In the second stage, an iterative algorithm should be executed on the decentralized network, so that
an estimator for L̂val(θ̂

∗(T )
aDFL) with consensus can be obtained. To this end, assume that client m has

obtained the loss value L̂(t,m)
val and averaged adaptive weight ˆ̄ω(t,m) at iteration t. At the (t + 1)th

iteration, the loss value and averaged adaptive weight are updated as follows:

L̂(t+1,m)
val =

M∑
k=1

wmkL̂(t,k)
val ; ˆ̄ω(t+1,m) =

M∑
k=1

wmk ˆ̄ω
(t,k).

Then, by similar technique of Yuan et al. (2016) and Wu et al. (2023a), it can be proved that
L̂(t,m)

val → L̂∞
val ≈ M−1

∑M
m=1 L̂

(0,m)
val and ˆ̄ω(t,m) → ˆ̄ω∞ ≈ ˆ̄ω as t → ∞ under appropriate

regularity conditions. Finally, the optimal λn is selected as λopt
n = argminλn∈{λk

n}k
L∞

val/ ˆ̄ω
∞.

Subsequently, we present the complete DCV algorithm in Algorithm A.2.

B PROOF OF THE MAIN THEORETICAL RESULTS

We first show that under the assumption of global strong convexity, the theorem presented in Section
A.2 holds. We then extend this result to the setting of local strong convexity.

B.1 NOTATIONS AND PRELIMITS

Let Ip be the p× p identity matrix. Define 1M = (1, . . . , 1)⊤ ∈ RM and I∗ = 1M ⊗ Ip ∈ RMp×p.
For a sequence {a(t)}, define a(∞) = limt→∞ a(t). For two positive sequences {an} and {bn},
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Algorithm A.2: DCV for Choosing λn

Require: candidate sets {λk
n}k, training set {S train

m } and validation set {Sval
m }, tuning parameter λ;

Ensure: λopt
n

1: for λk
n in {λk

n}k do
2: Obtain θ̂

∗(T )
aDFL and {ω̂m}m by Algorithm 1 on {S train

m }m.
3: for 1 ≤ m ≤M (distributedly) do
4: Compute initial estimators ˆ̄ω2(0,m) = ω̂2

m, ˆ̄ω(0,m) = ω̂m and L̂(0,m)
val =

ω̂m

∑
i∈Sval

m
ℓ(Xi, Yi; θ̂

(T,m)
aDFL ).

5: end for
6: for 0 ≤ t ≤ T − 1 do
7: for 1 ≤ m ≤M (distributedly) do
8: Update estimators by ˆ̄ω2(t+1,m) =

∑M
k=1 wmk ˆ̄ω

2(t,m); ˆ̄ω(t+1,m) =
∑M

k=1 wmk ˆ̄ω
(t,m)

and L̂(t+1,m)
val =

∑M
k=1 wmkL̂(t,k)

val .
9: end for

10: end for
11: For each m, we have ˆ̄ω2(T,m) ≡ ˆ̄ω2(T ), ˆ̄ω(T,m) ≡ ˆ̄ω(T ) and L̂(T,m)

val ≡ L̂(T )
val for sufficiently

large T . Denote ˆ̄ω2(T ), ˆ̄ω(T ), L̂(T )
val as ˆ̄ω2(T )(λk

n), ˆ̄ω
(T )(λk

n), L̂
(T )
val (λ

k
n).

12: end for
13: Obtain λopt

n = argminλk
n∈{λk

n}k
(M ˆ̄ω(T )(λk

n))
−1
{
L̂(T )

val (λ
k
n) + λn

−1/2
val (M ˆ̄ω2(T )(λk

n))
1/2
}
.

write an ≪ bn or an = o(bn) if an/bn → 0 as n → ∞. Write an ≲ bn or an = O(bn) if
an/bn ≤ C < ∞ as n → ∞. For a vector x ∈ Rp, denote its Euclidean norm by ∥x∥. For a
symmetric matrix B ∈ Rp×p, denote its smallest and largest eigenvalues by λmin(B) and λmax(B),
respectively. For an arbitrary matrix B ∈ Rp1×p2 , define its ℓ2-norm as ∥B∥ = λ

1/2
max(B⊤B). For

a set S, denote its cardinality by |S| and represent its complement by Sc. Denote Em(·) stands for
the expectation with respect to a probability distribution Pm. The generic absolute constants c and
C may vary from line to line.

For simplicity of notation, write ℓ(Xi, Yi; θ) as ℓi(θ), denote eAm(θ) = Em

{
ℓi(θ)

}
. De-

fine θA = argminθM
−1
∑M

m=1 e
A
m(θ) represents pseudo-true parameter. Denote ω̄ =

M−1
∑M

m=1 ωm, ΣA(θ) = M−1
∑M

m=1

[
Em

{
ℓ̇i(θ) − Em(ℓ̇i(θ))

}{
ℓ̇i(θ) − Em(ℓ̇i(θ))

}⊤]
and

ΩA(θ) = M−1
∑M

m=1

{
Ωm(θ)

}
.

B.2 PROOF OF THEOREM A.1 AND PROPOSITION A.2

Proof of Theorem A.1: We decompose E∥θ̂ − θ0∥2 = V (θ̂) + B(θ̂), where V (θ̂) = E∥θ̂ − θA∥2,
and B(θ̂) = 2E(θ̂ − θA)

⊤(θA − θ0) + ∥θA − θ0∥2. We next investigate the two terms separately.

STEP 1. We first study V (θ̂). Note that E{L(θ)} = M−1
∑M

m=1 e
A
m(θ). Additionally, since Xi

and Yi are independently generated (though not identically distributed), based on Assumptions 1 –
4, along with the events E1 and E2 defined in Lemma C.1, we can apply Equation (23) and employ
similar proof techniques from Appendix B of Zhang et al. (2013), specifically Sections B.01 and
B.02, then we obtain:

V (θ̂) = E∥θ̂ − θA∥2 ≲
L2
max

λ2
minN

+O

(
1

N2

)
. (B.1)

E∥θ̂ − θA∥ ≲
L3
max

Nλ3
min

+O

(
1

N3

)
. (B.2)

In addition, we have V (θ̂) = E
∥∥ − Ω−1

A (θA)L̇(θA)
∥∥2{1 + o(1)

}
. Then it could be verified that

E
∥∥Ω−1

A (θA)L̇(θA)
∥∥2

= tr

[
Ω−1

A (θA)E

{
N−1

N∑
i=1

ℓ̇i(θA)

}{
N−1

N∑
i=1

ℓ̇⊤i (θA)

}
Ω−1

A (θA)

]
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= tr

[
Ω−1

A (θA)E
{
N−1

N∑
i=1

(
ℓ̇i(θA)− Eℓ̇i(θA)

)}{
N−1

N∑
i=1

(
ℓ̇i(θA)− Eℓ̇i(θA)

)⊤}
Ω−1

A (θA)

]
= N−1 tr

{
Ω−1

A (θA)ΣA(θA)Ω
−1
A (θA)

}
.

This yields

NV (θ̂)→ tr
{
Ω−1

A (θA)ΣA(θA)Ω
−1
A (θA)

}
as N →∞.

STEP 2. We next investigate (θA − θ0)
⊤E(θ̂ − θA) and ∥θA − θ0∥2. By definition, we know that

M−1
∑M

m=1 ė
A
m(θA) = 0, this leads to

0 = M−1
M∑

m=1

{
ėAm(θA)− ėAm(θ0)

}
+M−1

M∑
m=1

ėAm(θ0).

By definition, we know that Em

{
ℓ̇i(θ0)

}
= 0 for m /∈ A, then it can be verified that

M−1
M∑

m=1

ėAm(θ0) =
|A|
M
|A|−1

∑
m∈A

♭m =
|A|̄♭A
M

. (B.3)

We subsequently establish both the upper and lower bounds for ∥θA−θ0∥. First, it could be verified
that for any θ ∈ Θ, λmin

{
ëAm(θ)

}
= λmin

{
Ωm(θ)

}
≥ λmin by Assumption 3′. Then we have

0 = M−1
M∑

m=1

{
ėAm(θA)− ėAm(θ0)

}⊤
(θA − θ0) +

|A|
M

(♭̄A)
⊤(θA − θ0)

≥ λmin∥θA − θ0∥2 +
|A|
M

(♭̄A)
⊤(θA − θ0).

This yields ∥θA− θ0∥ ≤ λ−1
min|A|M−1∥♭̄A∥. In addition, it could be proved that for any θ′, θ′′ ∈ Θ,

∥ėAm(θ′)− ėAm(θ′′)∥ ≤ Lmax∥θ′ − θ′′∥ by definition and Assumption 4. Then we have

∥∥∥M−1
M∑

m=1

{
ėAm(θA)− ėAm(θ0)

}∥∥∥ =
∥∥∥ |A|
M

♭̄A

∥∥∥ =⇒ |A|
M
∥♭̄A∥

≤ M−1
M∑

m=1

Lmax∥θA − θ0∥ = Lmax∥θA − θ0∥.

As a consequence, we can obtain

|A|
M

L−1
max∥♭̄A∥ ≤ ∥θA − θ0∥ ≤

|A|
M

λ−1
min∥♭̄A∥. (B.4)

Combining the results of (B.2) and (B.4), we know

∥∥(θA − θ0)
⊤E(θ̂ − θA)

∥∥ ≲
|A|
NM

∥♭̄A∥+O
(∥♭̄A∥

N3

)
. (B.5)

Combining the results of (B.4) and (B.5), we have

|A|2

M2
L−2
max∥♭̄A∥2 − 2

∥∥(θA − θ0)
⊤E(θ̂ − θA)

∥∥ ≤ B(θ̂) ≤ |A|
2

M2
λ−2
min∥♭̄A∥

2 + 2
∥∥(θA − θ0)

⊤E(θ̂ − θA)
∥∥.

Simplify ΩA(θA) and ΣA(θA) to ΩA and ΣA. Further note that ϱ = |A|/M, this finishes the
theorem proof.

Proof of Proposition A.2: The proof of Proposition A.2 is similar to that of Theorem A.1. Thus,
we omit the detailed proof here.
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B.3 PROOF OF THEOREM A.2 AND PROPOSITION A.1

We first introduce some notations. Denote ω∗
m = 1 − am represents the oracle weight, ∆m =

ωm − ω∗
m, ŜE

2
= M−1

∑M
m=1 ∥L̇(m)(θ̂A)∥2, and SEω = ∥M−1

∑M
m=1(ωm − ω∗)L̇m(θ̂A)∥.

Recall that ω̄ = M−1
∑M

m=1 ωm, ωA
2 =

(
|A|−1

∑
m∈A ω2

m

)1/2
, ♭

A

2 =
(
|A|−1

∑
m∈A ∥♭m∥2

)1/2
.

θ̄
(t)
A = M−1

∑M
m=1 θ̂

(t,m)
A represent the averaged estimator in the tth iteration. Let θ̂∗A = I∗θ̂A,

θ̄
∗(t)
A = I∗θ̄

(t)
A .

We will work with the weighted loss function and weighted Hessian matrix defined as follows:

Lw(θ) = M−1
M∑

m=1

ωmLm(θ)

Ωw
A(θ) = E

{
L̈w(θ)

}
= M−1

M∑
m=1

ωmΩm(θ).

By Lemma C.1, to prove Theorem 4.1, it suffices to study the upper bound of θ̂∗(t+1)
A − θ̂∗A under

the good events
⋂

m E1,m
⋂
Eω2
⋂

m E3,m
⋂
E4
⋂
E5. Then the proof of this theorem is divided into

three steps. In the first and second steps, we decompose θ̂
∗(t+1)
A − θ̂∗A to θ̂

∗(t+1)
A − θ̄

∗(t+1)
A and

θ̄
∗(t+1)
A − θ̂∗A and analyze these two terms separately. In the third step, we combine the results from

the first two steps to derive the final theorem.

STEP 1. We first study ∥θ̄∗(t+1)
A − θ̂∗A∥. It could be verified that

∥θ̄(t+1)
A − θ̂A∥ ≤ ∥θ̄(t)A − θ̂A − αM−1

M∑
m=1

ωmL̇m(θ̄
(t)
A )∥+ αM−1

M∑
m=1

∥ωmL̇m(θ̃
(t,m)
A )

−ωmL̇m(θ̄
(t)
A )∥+ ∥M−1

M∑
m=1

θ̃
(t,m)
A − θ̄

(t)
A ∥ = ∆(1) +∆(2) +∆(3).

(i) Analysis of ∆(1) : Note that λmin(Ω
ω
A(θ)) ≥ ω̄λmin by definition and Assumption 3′. Then we

have

∆(1) = ∥θ̄(t)A − θ̂A − αL̇ω(θ̄
(t)
A )∥ ≤ ∥θ̄(t)A − θ̂A − αL̇ω(θ̄

(t)
A )− αL̇ω(θ̂A)∥

+α∥M−1
M∑

m=1

ωmL̇m(θ̂A)−M−1
M∑

m=1

ω∗
mL̇m(θ̂A)∥

≤ (1− αω̄λmin/2)∥θ̄(t)A − θ̂A∥+ αSEω.

The second inequality holds since L̈w(θ) ≥ ω̄λmin/2 under Eω2 and
∑M

m=1 ω
∗
mL̇m(θ̂A) = 0.

(ii) Analysis of ∆(2) :

M∆(2)/α =

M∑
m=1

ωm∥L̇m(θ̃
(t,m)
A )− L̇m(θ̄

(t)
A )∥ ≤ 2

M∑
m=1

ωmLmax∥θ̃(t,m)
A − θ̄

(t)
A ∥

≤ 2
√
MLmax∥(W ⊗ Ip)θ̂

∗(t)
A − θ̄

∗(t)
A ∥ ≤ 2

√
MLmaxρ∥θ̂∗(t)A − θ̄

∗(t)
A ∥.

The first inequality holds under ∩mE1,m, and the last inequality holds by Lemma C.2 (i). Finally,
we have ∆(3) ≤M−1/2 SE(W )∥θ̂∗(t)A − θ̄

∗(t)
A ∥ by Lemma C.2 (ii). This leads to

∥θ̄(t+1)
A − θ̂A∥ ≤

(
1− αω̄λmin

2

)
∥θ̄(t)A − θ̂A∥+M−1/2

{
2Lmaxαρ+ SE(W )

}
∥θ̂∗(t)A − θ̄

∗(t)
A ∥+ αSEω.

As a result, we have

∥θ̄∗(t+1)
A − θ̂∗A∥ ≤

(
1− αω̄λmin

2

)
∥θ̄∗(t)A − θ̂∗A∥+

{
2Lmaxαρ+ SE(W )

}
∥θ̂∗(t)A − θ̄

∗(t)
A ∥+ α

√
MSEω.
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STEP 2. We next study ∥θ̂∗(t+1)
A − θ̄

∗(t+1)
A ∥. It could be verified that ∥θ̂∗(t+1)

A − θ̄
∗(t+1)
A ∥

≤ ∥(W ⊗ Ip)(θ̂
∗(t)
A −θ̄

∗(t)
A )∥+α

{ M∑
m=1

∥ωmL̇m(θ̃
(t,m)
A )−M−1

M∑
m=1

ωmL̇m(θ̃
(t,m)
A )∥2

}1/2

+
√
M∆(3)

≤ ρ∥θ̂∗(t)A − θ̄
∗(t)
A ∥+ α∥L̇∗

ω(θ̃
∗(t)
A )∥+

√
M∆(3).

Here L̇∗
ω(θ̃

∗(t)
A ) =

{
ω1L̇⊤

1 (θ̃
(t,1)
A ), . . . , ωmL̇⊤

m(θ̃
(t,m)
A )

}⊤
. The first inequality holds because

∥θ̂∗(t+1)
A − θ̄

∗(t+1)
A ∥ ≤ ∥(W ⊗ Ip)θ̂

∗(t)
A −αL̇∗

w(θ̃
∗(t)
A )− θ̄

∗(t)
A +αI∗M−1

∑M
m=1 ωmL̇m(θ̃

(t,m)
A )∥+

∥I∗(M−1
∑M

m=1 θ̃
(t,m)
A −θ̄(t)A )∥, and the second inequality holds because

∑M
m=1 ∥ωmL̇m(θ̃

(t,m)
A )−

M−1
∑M

m=1 ωmL̇m(θ̃
(t,m)
A )∥2 ≤

∑M
m=1 ∥ωmL̇m(θ̃

(t,m)
A )∥2. Next, note that

∥L̇m(θ̃
(t,m)
A )∥ ≤ 2Lmax∥θ̃(t,m)

A − θ̄
(t)
A ∥+ 2Lmax∥θ̄(t)A − θ̂A∥+ ∥L̇m(θ̂A)∥.

Then it could be verified that ∥L̇∗
ω(θ̃

∗(t))∥

≤

{
4

M∑
m=1

ω2
mL2

max∥θ̃
(t,m)
A −θ̄

(t)
A ∥2

}1/2

+

{
4

M∑
m=1

ω2
mL2

max∥θ̄
(t)
A −θ̂A∥2

}1/2

+

{ M∑
m=1

ω2
m∥L̇m(θ̂A)∥2

}1/2

≤ 2Lmax

{ M∑
m=1

∥θ̃(t,m)
A − θ̄

(t)
A ∥2

}1/2

+ 2Lmax∥θ̄∗(t)A − θ̂∗A∥+
√
M ŜE.

By combining the above results with Lemma C.2, we have ∥θ̂∗(t+1)
A − θ̄

∗(t)
A ∥

≤ ρ∥θ̂∗(t)A −θ̄
∗(t)
A ∥+ 2αLmax

[{ M∑
m=1

∥θ̃(t,m)
A − θ̄

(t)
A ∥2

}1/2

+ ∥θ̄∗(t)A −θ̂∗A∥
]
+ α

√
M ŜE +

√
M∆(3)

≤
{
ρ+ 2ρLmaxα+ SE(W )

}
∥θ̂∗(t)A − θ̄

∗(t)
A ∥+ 2αLmax∥θ̄∗(t)A − θ̂∗A∥+ α

√
M ŜE.

STEP 3. Finally, we establish the upper bound of θ̂∗(t+1)
A − θ̂∗A. To achieve this, we combine the

results from Steps 1 and 2. Let δ̄∗(t+1) = ∥θ̄∗(t+1)
A − θ̂∗A∥ and δ̂∗(t+1) = ∥θ̂∗(t+1)

A − θ̄
∗(t+1)
A ∥. Using

these definitions, we obtain:(
δ̂∗(t+1)

δ̄∗(t+1)

)
≤
[
ρ+ 2αρLmax + SE(W ) 2αLmax

2αρLmax + SE(W ) 1− αω̄λmin/2

](
δ̂∗(t)

δ̄∗(t)

)
+α
√
M

(
ŜE
SEω

)
. (B.6)

Denote

H = [hij ]2×2 =

[
ρ+ 2αρLmax + SE(W ) 2αLmax

2αρLmax + SE(W ) 1− αω̄λmin/2

]
,

and ρH = max |λ(H)| represents the spectral radius of H. By Lemma C.3, we have 0 < ρH <
1− (αω̄λmin)/8. Thus, the linear system in (B.6) converges. By recursion and noting that hij > 0
for sufficiently small α, we derive the following.(

δ̂∗(t+1)

δ̄∗(t+1)

)
≤ Ht+1

(
δ̂∗(0)

δ̄∗(0)

)
+ α
√
M(I2 −H)−1

(
ŜE
SEω

)
. (B.7)

It could be calculated that,

(I2 −H)−1 = c0

[
αω̄λmin/2 2αLmax

2αρLmax + SE(W ) 1− ρ− 2αρLmax − SE(W )

]
,

Here c0 > 0 and

1

c0
= α

[{
1− ρ− 2αρLmax − SE(W )

} ω̄λmin

2
− 2Lmax

{
2Lmaxαρ+ SE(W )

}]
≥ α

[
w̄λmin

2
(1− ρ)− (1− ρ)(w̄λmin)

2

16Lmax
− 2Lmax

(1− ρ)w̄λmin

8Lmax

]
≥ α

(
(1− ρ)ωλmin

4
− (1− ρ)ωλmin

8

ω̄λmin

8Lmax

)
≥ α

(1− ρ)ω̄λmin

8
,
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Substituting the above results into equation (B.7), we obtain:(
δ̂∗(t+1)

δ̄∗(t+1)

)
≤ Ht+1

(
δ̂∗(0)

δ̄∗(0)

)
+O

( √
M

(1− ρ)ω̄λmin

)(
α
(
ω̄λminŜE/2 + 2LmaxSEω

){
2αLmax + SE(W )

}
ŜE + (1− ρ)SEω

)
. (B.8)

Then, for ρω = 1−(αω̄λmin)/8 ∈ (ρH , 1), by Gelfand’s formula (Johnson & Horn, 1985, Corollary
5.6.14), there exists some t0 ∈ N such that for all t ≥ t0:

∥θ̂∗(t+1)
A − θ̄

∗(t+1)
A ∥ ≲ ρt+1

ω (∥δ̂∗(0)∥+ ∥δ̄∗(0)∥) +O

( √
M

(1− ρ)ω̄λmin

)
α
(
ω̄λminŜE/2

+2LmaxSEω

)
∥θ̄∗(t+1)

A − θ̂∗A∥ ≲ ρt+1
ω (∥δ̂∗(0)∥+ ∥δ̄∗(0)∥) +O

( √
M

(1− ρ)ω̄λmin

)[{
2αLmax + SE(W )

}
ŜE

+(1− ρ)SEω

]
. (B.9)

By reorganizing the results in (B.9), we obtain the following inequality:

∥θ̂∗(t+1)
A − θ̂∗A∥ ≲ 2ρt+1

ω (∥δ̂∗(0)∥+ ∥δ̄∗(0)∥) +O

( √
M

(1− ρ)λminω̄

)[{
αLmax + SE(W )

}
ŜE

+(1− ρ)SEω

]
. (B.10)

The inequality holds because (i) : αω̄λmin/2 + 2αLmax + SE(W ) ≲
{
2αLmax + SE(W )

}
, and

(ii) : (1− ρ+2αLmax) ≲ (1− ρ). Next, we specify the forms of ŜE and SEω to simplify equation
(B.10).

STEP 3.1. We first analyze SEω , recall that ∆̄2
2 = M−1

∑M
m=1

{
ωm − (1− am)

}2
we obtain:

SEω ≤ ∥M−1
M∑

m=1

(ωm − ω∗
m)L̇m(θ0)∥+ ∥M−1

M∑
m=1

(ωm − ω∗
m)
{
L̇m(θ̂A)− L̇m(θ0)

}
∥

≤ ∥M−1
M∑

m=1

(ωm − ω∗
m)L̇m(θ0)∥+ 2∆̄2Lmax∥θ̂A − θ0∥.

It could be verified that ∥M−1
∑M

m=1∆mL̇m(θ0)∥=∥M−1
∑M

m=1 ∆m

[
L̇(m)(θ0)−E

{
L̇(m)(θ0)

}]
+

M−1
∑M

m=1 ∆m♭m∥.

Analysis of the second term: ∥M−1
∑M

m=1 ∆m♭m∥ = ∥M−1
∑

m∈A ωm♭m∥ ≤
M−1

∑
m∈A ωm∥♭m∥.

Analysis of the first term: Note that M−1
∑M

m=1 ∆m

[
L̇(m)(θ0) − E

{
L̇(m)(θ0)

}]
=

M−1
∑

m∈A ωm

[
L̇(m)(θ0) − E

{
L̇(m)(θ0)

}]
+ M−1

∑
m/∈A ∆mL̇(m)(θ0). First, under events⋂

m∈A E3,m, we have ∥M−1
∑

m∈A ωm

[
L̇(m)(θ0) − E

{
L̇(m)(θ0)

}]
∥ ≤ M−1

∑
m∈A ωm∥♭m∥.

Second, it could be proved that under events E4,

∥M−1
∑
m/∈A

∆mL̇(m)(θ0)∥ ≲
M − |A|

M

( log(N − n|A|)
(N − n|A|)

)1/2
∆̄c

A.

Here ∆̄c
A =

{
(M − |A|)−1

∑
m/∈A(ωm − ω∗)2

}1/2
. Combining the above results, we have

SEω ≤ M−1
∑
m∈A

ωm∥♭m∥+O

(√
log(N − n|A|)√

N

{
M−1

∑
m/∈A

(ωm − ω∗)2
}1/2)

+2∆̄2Lmax∥θ̂A − θ0∥.
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STEP 3.2. We next study ŜE. By the Cauchy-Schwarz inequality, we have

ŜE
2

≲
{
M−1

M∑
m=1

∥∥L̇(m)(θ̂A)− L̇(m)(θ0)
∥∥2 +M−1

M∑
m=1

∥L̇(m)(θ0)− Eℓ̇(x, y; θ0)∥2

+M−1
M∑

m=1

∥Eℓ̇(x, y; θ0)∥2
}
.

We study the three terms separately. First, under events∩mEm,1, we have M−1
∑M

m=1

∥∥L̇(m)(θ̂A)−
L̇(m)(θ0)

∥∥2 ≤ 4L2
max∥θ̂A − θ0∥2. Second, under event E5, we have M−1

∑M
m=1 ∥L̇(m)(θ0) −

Eℓ̇(x, y; θ0)∥2 ≤ log n/n. Finally, it is obvious to show that M−1
∑M

m=1 ∥Eℓ̇(x, y; θ0)∥2 =
M−1

∑
m∈A ∥♭m∥2. Combining the above results, we have

ŜE ≲ Lmax∥θ̂A − θ0∥+
√
log n√
n

+

√
|A|√
M

{ 1

|A|
∑
m∈A

∥♭m∥2
}1/2

.

Recall that ωA
2 =

(
|A|−1

∑
m∈A ω2

m

)1/2
, ♭

A

2 =
(
|A|−1

∑
m∈A ∥♭m∥2

)1/2
. Substituting the result

obtained from Step 3 into equation (B.10), and define δ̂0 = maxm ∥θ̂(0,m)
A − θ̂A∥, we obtain

M−1/2
∥∥θ̂∗(t)A − θ̂∗A

∥∥ ≲ ρtω δ̂0 +
αLmax + SE(W )

(1− ρ)λminω̄

{( log n
n

)1/2
Lmax +

( |A|
M

)1/2
♭
A

2

}
+(ω̄λmin)

−1
{ |A|
M

♭
A

2 ω
A
2 + ∆̄2

(
logN

N

)1/2

+ Lmax∆̄2∥θ̂A − θ0∥
}
.

The first inequality holds because it could be proved that ∥θ̂A−θ0∥ ≲ (logN/N)1/2 with probability
at least 1− O(1/(logN)4) by Lemma 6 in Zhang et al. (2013). Furthermore, as n→∞, applying
Markov’s inequality readily demonstrates that

M−1/2 lim
t→∞

∥∥θ̂∗(t)A − I∗θ̂A
∥∥ ≲

1

ω̄

[{
α+ SE(W )

}{ 1√
n
+
( |A|
M

)1/2}
+
( |A|
M

ωA
2 +

∆̄2√
N

)]
with probability tending to 1. The disappearance of log n and logN occurs because Markov’s
inequality can be directly applied in this context to derive upper bounds for ∥θ̂A − θ0∥,
M−1

∑M
m=1 ∥L̇(m)(θ0) − Eℓ̇(x, y; θ0)∥2, and ∥M−1

∑
m∈A ∆mL̇(m)(θ0)∥. This finishes the the-

orem proof.

Proof of Proposition A.1: The proof of Proposition A.1 can be found in Wu et al. (2023a). Thus,
we omit the details here.

B.4 PROOF OF THEOREM A.3

With a slight abuse of notation, we define (1) ω̄ = M−1
∑M

m=1 ω̂m, (2) (ωA
2 )

2 = |A|−1
∑

m∈A ω̂2
m,

and (3) ∆̄2
2 = M−1

∑M
m=1

{
ω̂m− (1− am)

}2
. Furthermore, note that θ̂(m)

init = θ̂(∞,m) corresponds
to the standard DFL estimator, which we simply denote as θ̂(m) throughout this section. By apply-
ing the sample-splitting technique (Balakrishnan et al., 2017; Chernozhukov et al., 2018), we can
separately study the training process and the estimation of ω̂m. As a result, it remains to analyze (1)
– (3) in the following 3 parts, respectively.

PART 1. We first investigate (ωA
2 )

2. Recall that θ̂ denotes the whole sample estimator. By definition,
we have

(ωA
2 )

2 =
1

|A|
∑
m∈A

exp
(
− 2λn∥L̇m(θ̂(m)∥

)
≤ 1

|A|
∑
m∈A

∣∣∣ exp (− 2λn∥L̇m(θ̂(m)∥
)

− exp
(
− 2λn∥L̇m(θ̂)∥

)∣∣∣+ 1

|A|
∑
m∈A

exp
(
− 2λn∥L̇m(θ̂)∥

)
= ∆

(1)
1 +∆

(1)
2 .
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Note that by mean value theorem, Lemma C.1, and under the events
⋂

m E1,m, the following holds
with probability at least 1−O

(
M/n4

)
.

∆
(1)
1 ≤ 2λn

1

|A|
∑
m∈A

exp(−ξm)
∣∣∣∥L̇m(θ̂(m))∥ − ∥L̇m(θ̂)∥

∣∣∣
≤ 2λn

1

|A|
∑
m∈A

2Lmax∥θ̂(m) − θ̂∥ ≤ 4Lmaxλn

√
1

|A|
∑
m∈A

∥θ̂(m) − θ̂∥2

≤ 4Lmaxλn

√
M

|A|

√√√√ 1

M

M∑
m=1

∥θ̂(m) − θ̂∥2 ≲ λn

(M

|A|

)1/2{
α+ SE(W )

}
.

Here ξm is some positive constant for any 1 ≤ m ≤ M and exp(−ξm) ≤ 1. The second inequality
holds under assumption 4. The last equality holds by Proposition A.1. Then we can set a sufficiently
small α and SE(W ) such that (λn/ω̄)

(
M/|A|

)1/2{
α + SE(W )

}
≪ M2/(|A|2N). As a result,

∆
(1)
1 is an ignorable higher order term.

We next investigate ∆
(1)
2 . Recall that θA = argminθM

−1
∑M

m=1 e
A
m(θ) represents pseudo-true

parameter and θm = argminθEmℓ(Xi, Yi; θ). Then by triangle-inequality, we have

∆
(1)
2 ≤ 1

|A|
∑
m∈A

exp
(
− 2λn∥L̇m(θA)− L̇m(θm)∥

)
× exp

(
2λn∥L̇m(θm)∥

)
× exp

(
2λn∥L̇m(θ̂)− L̇m(θA)∥

)
≤

{
1

|A|
∑
m∈A

exp
(
− 6λn∥L̇m(θA)− L̇m(θm)∥

)}1/3{
1

|A|
∑
m∈A

exp
(
6λn∥L̇m(θm)∥

)}1/3

×
{

1

|A|
∑
m∈A

exp
(
6λn∥L̇m(θ̂)− L̇m(θA)∥

)}1/3

= ∆
(2)
1 ∆

(2)
2 ∆

(2)
3 . (B.11)

The second inequality holds by Cauchy-Schwartz inequality. We then study the three terms in
equation (B.11) separately.

Analysis of ∆(2)
1 : Define good events: E2,m =

{∥∥L̈(m)(θ) − ΩA(θ)
∥∥ ≤ λmin/4

}
. Using similar

techniques in Lemma C.1, it is easy to prove that P(
⋃

m∈A Ec2,m) ≲ |A|L8
max/(λ

8
minn

4). Further
define good event: E6 =

{
∥θA− θ0∥ ≤ minm∈A ∥θm− θ0∥/2

}
. Using equation (B.4) in Appendix

B.2, we can show that E6 holds when M ≥ 2|A|∥b̄A∥/(minm∈A ∥θm−θ0∥λmin). Then it suffices to
study ∆

(2)
1 under events

⋂
E2,m

⋂
E6. It could be verified that with probability at least 1−O(M/n4),

∆
(2)
1 ≤

[ 1

|A|
∑
m∈A

exp
{
− 3λn(λmin/2)∥θm − θA∥

}]1/3
≤ exp

{
− λnλmin

2
min
m∈A

∥θm − θ0∥/2
}
.

Analysis of ∆(2)
2 : Define good events: E∗3,m =

{
λn

∥∥L̇(m)(θm)∥ ≤ C
}

for some sufficient large
C > 0. Note that E

{
L̇(m)(θm)

}
= 0. Then using similar techniques in proof of Lemma C.1 and

under Assumptions 1 – 4, we have

P
( ⋃

m∈A
(E∗3,m)c

)
≤ |A| λ8

n

C8n4
.

Consequently, as long as λn ≲
√
n(|A|)−1/8, we have maxm λn∥L̇m(θm)∥ = O(1) under⋂

m∈A E∗3,m, this leads to ∆
(2)
2 = O(1) with probability at least 1−O(M/n4).

Analysis of ∆(2)
3 : Under events

⋂
E1,m defined in (C.1), it could be verified that

∆
(2)
3 ≤

[
1

|A|
∑
m∈A

exp
{
12λnLmax∥θ̂ − θA∥

}]1/3
= exp

{
4λnLmax∥θ̂ − θA∥

}
.
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The first inequality holds under Assumption 4. As a result, as long as λn ≲
√
N, by equation (B.1)

in Appendix B.2, we have ∆
(2)
3 = O(1) with probability at least 1−O(M/n4).

Combining the above results, we know that as long as λn ≲
√
nM−1/8, we have ωA

2 ≲ exp
(
−

λnλmin min ∥θm − θ0∥/8
)

with probability at least 1−O(M/n4), this finishes the first part.

PART 2. We next study ∆̄2
2 = M−1

∑M
m=1

{
ω̂m − (1 − am)

}2
. Define G = Ac represents the

indices of the trustworthy clients. By definition, we have

∆̄2
2 =

1

M

∑
m∈A

ω̂2
m +

1

M

∑
m∈G

(ω̂m − 1)2.

First, by PART 1, we have M−1
∑

m∈A ω̂2
m ≲ |A|M−1 exp

(
− λnλmin min ∥θm − θ0∥/4

)
. Then

it remains to study M−1
∑

m∈G(ω̂m − 1)2.

By Cauchy-Schwartz inequality, it could be proved that M−1
∑

m∈G(ω̂m − 1)2

=
1

M

∑
m∈G

{
exp(−λn∥L̇m(θ̂(m))∥)− 1

}2

≤ 2

M

∑
m∈G

[{
exp

(
− λn∥L̇m(θ̂(m))∥

)
− exp

(
− λn∥L̇m(θ0)∥

)}2

+
{
exp

(
− λn∥L̇m(θ0)∥

)
− exp

(
− λn∥EL̇m(θ0)∥

)}2
]

(B.12)

≤ 4

M

∑
m∈G

{
exp

(
− ξm

)
λn

∣∣∥L̇m(θ̂(m))∥ − ∥L̇m(θ0)∥
∣∣}+

4

M

∑
m∈G

{
exp(−ξm)λn∥L̇m(θ0)∥

}
.

Here ξm is some positive constant for any 1 ≤ m ≤ M and exp(−ξm) ≤ 1. The first
inequality holds because exp(−λn∥E(L̇m(θ0))∥) = 1. The second inequality holds because
(B.12) is upper bounded by 4M−1

∑
m∈G

[∣∣ exp(−λn∥L̇m(θ̂(m))∥) − exp(−λn∥L̇m(θ0)∥)
∣∣ +∣∣ exp(−λn∥L̇m(θ0)∥)−exp(−λn∥EL̇m(θ0)∥)

∣∣]. The last inequality holds by mean value theorem.
Then under good events ∩m∈GE1,m, it could be proved that

1

M

∑
m∈G

(ωm − 1)2 ≤ 8Lmaxλn

{ 1

M

∑
m∈G
∥θ̂(m) − θ̂∥+ ∥θ̂ − θ0∥

}
+

4λn

M

∑
m∈G
∥L̇m(θ0)∥.

First, note that by Markov’s inequality, we have M−1
∑

m∈G
(
∥L̇m(θ0)∥ − E∥L̇m(θ0)∥

)
≲

(
√
logN/

√
N) with probability at least 1−O(1/ logN). Assume logN ≲ M, this yields

1

M

∑
m∈G
∥L̇m(θ0)∥ ≲ E∥L̇m∈G(θ0)∥+

( logN
N

)1/2
≲

1√
n
.

As a results, as long as λn ≲
√
n, which holds under the assumption λn ≲

√
nM−1/8 in

PART 1, we have 4λnM
−1
∑

m∈G ∥L̇m(θ0)∥ ≲ λn/
√
n. Furthermore, as long as α + ŜE(W )

are sufficiently small such that λn

{
α + SE(W )

}
= o(1), by Proposition A.1, we can obtain that

λnM
−1
∑

m∈G ∥θ̂(m) − θ̂∥ ≤ λn

√
M−1

∑
m=1 ∥θ̂(m) − θ̂∥2 is an ignorable higher order term.

Combining the above results, we know that as long as λn ≲
√
nM−1/8, we have ∆̄2

2 ≲

|A|M−1 exp
(
− λnλmin min ∥θm − θ0∥/4

)
+ λn/

√
n + λn∥θ̂ − θ0∥ with probability at least

1−O(M/n4 + 1/ logN), this finishes the second part.

PART 3. Finally, we next study ω̄ = M−1
∑M

m=1 ω̂m. Similar to the analysis in the previous two
parts, since we can make the θ̂(m) arbitrarily close to θ̂ by choosing a sufficiently small α+SE(W ),
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it remains to study M−1
∑M

m=1 exp(−λn∥L̇m(θ̂)∥). It could be verified that under good events
∩m∈GE1,m, we have

M−1
M∑

m=1

exp(−λn∥L̇m(θ̂)∥) ≥ |G|
M

1

|G|
∑
m∈G

exp(−λn∥L̇m(θ̂)∥)

≥ |G|
M

{
1

|G|
∑
m∈G

exp(−λn∥L̇m(θ̂)− L̇m(θ0)∥) exp(λn∥L̇m(θ0)∥)
}

≥ |G|
M

exp(−2Lmaxλn∥θ̂ − θ0∥)
1

|G|
∑
m∈G

exp(λn∥L̇m(θ0)∥) ≥
|G|
M

exp
(
− 2Lmaxλn∥θ̂ − θ0∥

)
.

As a result, 1
ω̄ ≲ exp

(
2Lmaxλn∥θ̂− θ0∥

)
with probability at least 1−O(M/n4). This finishes the

third part.

Combining the results from the three parts, we know that when λn ≲
√
nM−1/8, we have

with probability at least 1 − O(M/n4 + 1/ logN): (1) (|A|−1
∑

m∈A ω̂2
m)1/2 ≲ exp

(
−

λnλmin minm∈A ∥θm − θ0∥/8
)
, (2) M−1

∑M
m=1

{
ω̂m − (1 − am)

}2
≲ |A|M−1 exp

(
−

λnλmin min ∥θm − θ0∥/4
)

+ λn/
√
n + λn∥θ̂ − θ0∥, and (3) (M−1

∑M
m=1 ω̂m)−1 ≲

exp
(
2Lmaxλn∥θ̂− θ0∥

)
. Substituting the above equations into (4.3), let α+SE(W ) = O(1/

√
N),

there exists some positive constants c1, c2 such that M−1/2
∥∥θ̂∗(∞)

A − I∗θ̂A
∥∥ is upper bounded with

probability tending to 1 by

C exp
(
c1 × λn∥θ̂ − θ0∥

){
op

(
1/
√
N
)
+ op

{
exp

(
− c2 × λn

)}
+

λn√
N
∥θ̂ − θ0∥

}
.

B.5 PROOF OF COROLLARY 4.1

The proof of the corollary 4.1 is similar to that of Theorem A.3 by replacing θ̂(m) with θ̂
(m)
init and θ̂

with θ̄init. Thus, we omit the detailed proof here.

B.6 PROOF OF THEOREM 3.1

Similarly to the proof of Theorem A.1, to prove Theorem 3.1, we aim to verify that (1) The parameter
θA lies in a neighborhood of θ0. (2) Loss function M−1

∑M
m=1 e

A
m(θ) is strongly convex at θA.

Once these conditions are established, we can mimic Steps 1 and 2 of Proof B.2 to complete the
proof of the theorem.

Proof of (1): Recall that M−1
∑M

m=1 ė
A
m(θA) = 0, and M−1

∑M
m=1 ė

A
m(θ0) = ϱ♭̄A from equation

(B.3). Applying the integral form of the mean value theorem, we obtain:

M−1
M∑

m=1

{
ėAm(θ0)− ėAm(θA)

}
= M−1

M∑
m=1

∫ 1

0

ëAm(θ0 + t(θA − θ0))(θ0 − θA)dt = ϱ♭̄A.

Denote ∆θ = θA − θ0, and Ωavg = M−1
∑M

m=1

∫ 1

0
ëAm(θ0 + t∆θ)dt. Then the above relation

simplifies to:
ϱ♭̄A = −Ωavg∆θ. (B.13)

We now analyze Ωavg. First, for each m ∈ A and any vector x ∈ Rp with x⊤x = 1, by Assumption
3, we have

x⊤
(∫ 1

0

ëAm(θ0 + t∆θ)dt
)
x =

∫ 1

0

x⊤ëAm(θ0 + t∆θ)xdt ≥ 0.

Similarly, for each m /∈ A, using Assumption 3 again, we have

x⊤
(∫ 1

0

ëAm(θ0 + t∆θ)dt
)
x =

∫ 1

0

x⊤Ωm

(
θ0 + t∆θ

)
xdt.
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Furthermore, according to Assumptions 3, 4, and Weyl’s inequality, for any θ ∈ Rp, it follows that
for each m /∈ A:

λmin(Ωm(θ)) ≥ λmin − Lmax||θ − θ0||.
In particular, if ||θ − θ0|| ≤ λmin/(2rLmax), then λmin(Ωm(θ)) ≥ λmin/2. Hence, we have for
m /∈ A:

x⊤
(∫ 1

0

ëAm(θ0 + t∆θ)dt
)
x =

∫ λmin
2rLmax

0

x⊤Ωm

(
θ0 + t∆θ

)
xdt+ x⊤

∫ 1

λmin
2rLmax

x⊤Ωm

(
θ0 + t∆θ

)
xdt

≥ λmin

2

λmin

2rLmax
+ 0 =

λ2
min

4rLmax
.

Combining the results above, the following equation holds for any x ∈ Rp satisfying x⊤x = 1,

x⊤Ωavgx = M−1
∑
m/∈A

x⊤
(∫ 1

0

ëAm(θ0 + t∆θ)dt
)
x+

∑
m∈A

x⊤
(∫ 1

0

ëAm(θ0 + t∆θ)dt
)
x

≥ (1− ϱ)
λ2
min

4rLmax
+ 0 = (1− ϱ)

λ2
min

4rLmax
.

This yields λmin(Ωavg) ≥ (1−ϱ)λ2
min/(4rLmax). Substituting this result back into equation (B.13),

we obtain:

||θA − θ0|| = ||∆θ|| ≤ λ−1
min(Ωavg)||ϱ♭̄A|| ≤

4rLmax

λ2
min

(1− ϱ)−1ϱ||̄♭A||. (B.14)

This completes the proof of (1).

Proof of (2): It could be proved that under Assumption 3, we have

λmin

(
M−1

M∑
m=1

ëAm(θ0)
)
≥M−1

∑
m∈A

λmin = (1− ϱ)λmin.

In addition, for any θ, it could be shown that

λmin

(
M−1

M∑
m=1

ëAm(θA)
)
≥ λmin

(
M−1

M∑
m=1

ëAm(θ0)
)
− Lmax||θA − θ0||

≥ (1− ρ)λmin −
4rL2

max

λ2
min

(1− ϱ)−1ϱ||̄♭A||.

Assume that ϱ is sufficiently small, such that ϱ ≤
{
8L2

maxr
2
}−1{

(1− ρ)2λ3
min

}
. Then we have

λmin

(
M−1

M∑
m=1

ëAm(θA)
)
≥ (1− ρ)λmin/2. (B.15)

Applying equations (B.14) and (B.15). Using similar techniques as those employed in Appendix
B.2, we have

V (θ̂) ≲
L2
max

(1− ρ)2λ2
minN

+O

(
1

N2

)
.

NV (θ̂)→ tr
{
Ω−1

A (θA)ΣA(θA)Ω
−1
A (θA)

}
as N →∞.

ϱ2∥♭A∥
L2
max

− C
( ϱ

N
+

1

N3

)
≤ B(θ̂) ≤ 16r2L2

max

λ2
min(1− ϱ)2

ϱ2∥♭A∥
λ2
min

+O
( ϱ

N
+

1

N3

)
.

This finishes the proof.
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B.7 PROOF OF THEOREM 4.1

Similarly to the proof of Theorem A.2, to prove Theorem 4.1, we aim to verify that with high
probability: (1) the eigenvalues of L̈ω(θ) are still bounded (by positive constants) when θ lies in a
neighborhood of θ0; and (2) the sequence {θ̂∗(t)A } lies in the neighborhood of θ∗0 for any t. Once
these conditions are established, we can mimic Proof B.3 to complete the proof of the theorem.

Proof of (1): Define δ = (ω̄ϱ
N/ω̄)λmin/(4Lmax), ω̄

ϱ
N = M−1

∑
m∈A ωm, and event

Eω′
2 =

{
∥L̈w(θ)− Ωw

A(θ)∥ ≤
ω̄ϱ
Nλmin

4

}
.

Using similar technique skills in the proof of Lemma C.1, we have P
{
(Eω′

2 )c
}

≲
C8

max/((ω̄
ϱ
N )8λ8

minN
4). We first prove that

L̈ω(θ) ≥
1

2
ω̄ϱ
Nλmin

under Eω′
2 for θ ∈ B(θ0, δ) with δ = (ω̄ϱ

N/ω̄)λmin/(4Lmax).

Recall that

Ωω
A(θ) = M−1

M∑
m=1

ωmΩm(θ)

Under Assumption 3, we have

Ωω
A(θ0) ≥M−1

M∑
m=1

ωm

(
0 + (1− am)λmin

)
= M−1

M∑
m=1

ωm(1− am)λmin = ω̄ϱ
Nλmin.

Note that Ωω
A(θ) − Ωω

A(θ0) = M−1
∑M

m=1 ωm

{
Ωm(θ) − Ωm(θ0)

}
. Then it could be verified that

under Assumption 4,

∥Ωω
A(θ)− Ωω

A(θ0)∥ ≤ ω̄Lmax∥θ − θ0∥.

For any ||θ−θ0∥ ≤ (ω̄ϱ
N/ω̄)λmin/(4Lmax), under Assumptions 3, 4 and Wely’s inequality, we have

λmin

(
Ωω

A(θ)
)
≥ λmin

(
Ωω

A(θ0)
)
− ω̄Lmax∥θ − θ0∥ ≥

3

4
ω̄ϱ
Nλmin.

In addition, recall L̈ω(θ) = M−1
∑M

m=1 ωmL̈m(θ). This yields

L̈ω(θ) ≥
1

2
ω̄ϱ
Nλmin.

under Eω′
2 for θ ∈ B(θ0, δ).

Proof of (2): For any ∥θ − θ̂A∥ ≤ δ/2, we have

∥θ − θ0∥ ≤ ∥θ − θ̂A∥+ ∥θ̂A − θ0∥ ≤ δ

for sufficiently large N with probability at least 1 − O(1/N4) by Lemma 6 in Zhang et al. (2013).
Denote R = δ/(4

√
M), we are going to verify that if ∥θ̄∗(t)A − θ̂∗A∥ ≤

√
MR and ∥θ̂∗(t)A − θ̄

∗(t)
A ∥ ≤√

MR, then we have ∥θ̄∗(t+1)
A − θ̂∗A∥ ≤

√
MR and ∥θ̂∗(t+1)

A − θ̄
∗(t+1)
A ∥ ≤

√
MR.

Note that now we have L̈ω(θ) ≥ 1
2 ω̄

ϱ
Nλmin, using similar technique skills in the proof of Theorem

4.1, we have

∥θ̄∗(t+1)
A − θ̂∗A∥ ≤

(
1−

αω̄ϱ
Nλmin

2

)
∥θ̄∗(t)A − θ̂∗A∥+

{
2Lmaxαρ+ SE(W )

}
∥θ̂∗(t)A − θ̄

∗(t)
A ∥

+α
√
MSEω.

∥θ̂∗(t+1)
A − θ̄

∗(t)
A ∥ ≤

{
ρ+ 2ρLmaxα+ SE(W )

}
∥θ̂∗(t)A − θ̄

∗(t)
A ∥+ 2αLmax∥θ̄∗(t)A − θ̂∗A∥

+α
√
M ŜE. (B.16)
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We start with θ̂∗(1). For simplicity, we consider all the clients start from the same initializer with
∥θ̂(0,m) − θ̂A∥ ≡ δ̂(0), and assume δ̂(0) is sufficiently small with δ(0) < R. Then equation (B.16)
could be simplified as

∥θ̄∗(1)A − θ̂∗A∥ ≤
(
1−

αω̄ϱ
Nλmin

2

)
∥θ̄∗(0)A − θ̂∗A∥+ α

√
MSEω.

∥θ̂∗(1)A − θ̄
∗(1)
A ∥ ≤ 2αLmax∥θ̄∗(0)A − θ̂∗A∥+ α

√
M ŜE.

if α and δ0 are suffciently small such that (1−αω̄ϱ
Nλmin/2)δ

0+αSEω ≤ R, and α(2LmaxR+ŜE) ≤
R, then we have ∥θ̄∗(1)A − θ̂∗A∥ ≤

√
MR and ∥θ̂∗(1)A − θ̄

∗(1)
A ∥ ≤

√
MR.

Subsequently, assume that for any t > 0, we have ∥θ̄∗(t)A − θ̂∗A∥ ≤
√
MR and ∥θ̂∗(t)A − θ̄

∗(t)
A ∥ ≤√

MR. Similar to equation (B.8), we have(
δ̂∗(t+1)

δ̄∗(t+1)

)
≤ Ht+1

(
δ̂∗(0)

0

)
+

(
8
√
M

(1− ρ)ω̄ϱ
Nλmin

)(
α
(
ω̄ϱ
NλminŜE/2 + 2LmaxSEω

){
2αLmax + SE(W )

}
ŜE + (1− ρ)SEω

)
.

We first analyze δ̂∗(t+1), it could be verified that

δ̂∗(0)δ̂∗(t+1) ≤ (δ̂∗(0))2 (1, 0)Ht+1

(
1
0

)
+ δ̂∗(0)

(
8
√
M

(1− ρ)ω̄ϱ
Nλmin

)
α
(
ω̄ϱ
NλminŜE/2 + 2LmaxSEω

)
.

This yields

δ̂∗(t+1) ≤
(
1−

αω̄ϱ
Nλmin

8

)t+1√
Mδ̂0 +

√
Mα

(
8

(1− ρ)ω̄ϱ
Nλmin

)(
ω̄ϱ
NλminŜE/2 + 2LmaxSEω

)
.

As long as we have(
1−

αω̄ϱ
Nλmin

8

)t+1

δ̂0 + α

(
8

(1− ρ)ω̄ϱ
Nλmin

)(
ω̄ϱ
NλminŜE/2 + 2LmaxSEω

)
≤ R.

We have δ̂∗(t+1) ≤
√
MR. We subsequently analyze δ̄∗(t+1), by equation (B.16), it could be shown

that

∥θ̂∗(t+1)
A − θ̄

∗(t)
A ∥ ≤ ρ

√
MR+

{
2ρLmaxα+ SE(W )

}√
MR+

2α
√
MLmax

{(
1−

αω̄ϱ
Nλmin

8

)t
δ̂0 +O(α)

}
+
√
MαŜE.

As long as we have{
2Lmaxα+ SE(W )

}
R+ α

{
2Lmax

(
1−

αω̄ϱ
Nλmin

8

)t
δ̂0 + ŜE

}
≤ (1− ρ)R/2.

This leads to δ̄∗(t+1) ≤
√
MR.

Combining the above results, we have proved that ∥θ̂∗(t)A − θ̂∗A∥ ≤ δ/2 for any t. Applying the above
results, using similar techniques as those utilized in Appendix B.3, we have

M−1/2
∥∥θ̂∗(t)A − θ̂∗A

∥∥ ≲
(
1−

αω̄ϱ
Nλmin

8

)t
δ̂0 +

αLmax + SE(W )

(1− ρ)λminω̄
ϱ
N

{( log n
n

)1/2
Lmax +

( |A|
M

)1/2
♭
A

2

}
+(ω̄ϱ

Nλmin)
−1
{ |A|
M

♭
A

2 ω
A
2 + ∆̄2

(
logN

N

)1/2

+ Lmax∆̄2∥θ̂A − θ0∥
}
.

M−1/2 lim
t→∞

∥∥θ̂∗(t)A − I∗θ̂A
∥∥ ≲

1

ω̄ϱ
N

[{
α+ SE(W )

}{ 1√
n
+
( |A|
M

)1/2}
+
( |A|
M

ωA
2 +

∆̄2√
N

)]
with probability tending to 1. This finishes the proof.
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B.8 PROOF OF THEOREM 4.2

To prove Theorem 4.2, it suffices to show that under the local strong convexity assumption 3, the
following term, defined in PART 1 of the proof of Theorem A.3 in Appendix B.4, satisfies:

∆
(2)
1 =

{
1

|A|
∑
m∈A

exp
(
− 6λn∥L̇m(θA)− L̇m(θm)∥

)}1/3

≤ exp(−c),

for some positive constant c > 0 with high probability.

To this end, we begin by verifying the strong convexity of Lm(θ) in a neighborhood of θm. For all
θ ∈ B(θm, δ̃), with δ̃ = λmin/(4Lmax), we have:

λmin

(
Ωm(θ)

)
≥ λmin

(
Ωm(θm)

)
− Lmax∥θ − θm∥ ≥

3

4
λmin.

Recall the events:

E2,m =
{
∥L̈m(θ)− ΩA(θ)∥ ≤ λmin/4

}
, E6 =

{
∥θA − θ0∥ ≤ min

m∈A
∥θm − θ0∥/2

}
,

which jointly occur with probability at least 1−O(M/n4). Hence, it suffices to analyze ∆(2)
1 under

the joint occurrence of these events. Under these good events, we have:

L̈m(θ) ≥ 1

2
λmin, for all θ ∈ B(θm, δ̃).

Next, define:
θ̃ = θm + η̃u, where u = θA − θm, η̃ = min{1, δ/∥u∥}.

If ∥u∥ ≤ δ, then clearly θ̃ = θA. Otherwise, if ∥u∥ > δ, then θ̃ lies on the line joining θm and θA
with ∥θ̃ − θm∥ = δ. Under Assumption 3, it can be verified that:[

L̇m(θ̃)− L̇m(θm)
]⊤

u ≥ λmin

2
η̃∥u∥2 =

λmin

2
∥u∥min{δ, ∥u∥}.

Define a scalar function: gm(η) = Lm(θm + ηu). It is straightforward to verify that gm(η) is a
convex function on R. Hence, we have: ġm(1) ≥ ġm(η̃). Since ġm(η) =

{
L̇m(θm + ηu)

}⊤
u, it

follows directly that: {
L̇m(θA)

}⊤
u ≥

{
L̇m(θ̃)

}⊤
u.

This leads to {
L̇m(θA)− L̇m(θm)

}⊤
u ≥ λmin

2
∥u∥min{δ, ∥u∥}.

From the above inequality, we obtain:

∥L̇m(θA)− L̇m(θm)∥ ≥ λmin

2
min{δ, ∥u∥} ≥ λmin

2
min

{
δ,
minm∈A ∥θm − θ0∥

2

}
.

Combining the above results, we finally arrive at:

∆
(2)
1 ≤ exp

(
−λnλmin

2
min

{
δ,
minm∈A ∥θm − θ0∥

2

})
,

which completes the proof.

C TECHNICAL LEMMAS

In this Appendix, we define several “good events” and provide some useful technical lemmas for the
theoretical analysis.
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We first define the following “good events”, where the definitions of L̈w(θ) and Ωw
A(θ) are provided

in equation (B.3).

E1,m =

{
1

n

∑
i∈Sm

L(Xi, Yi) ≤ 2Lmax

}
; E1 =

{
1

N

N∑
i=1

L(Xi, Yi) ≤ 2Lmax

}
;

E2 =

{∥∥∥L̈(θ)− ΩA(θ)
∥∥∥ ≤ λmin

2

}
; Eω2 =

{
∥L̈w(θ)− Ωw

A(θ)∥ ≤
ω̄λmin

2

}
;

E3,m =
{
∥L̇(m)(θ0)− Emℓ̇(x, y; θ0)∥ ≤ ∥♭m∥

∣∣∣m ∈ A} ;

E4 =

∥∥∥ 1

M − |A|
∑
m/∈A

∆mL̇(m)(θ0)
∥∥∥ ≤ ( 1

M−|A|
∑

m/∈A ∆2
m

)1/2√
log(N − n|A|)√

N − n|A|

 ;

E5 =

{
M−1

M∑
m=1

∥∥∥L̇(m)(θ0)− Emℓ̇(x, y; θ0)
∥∥∥2 ≤ log n

n

}
. (C.1)

Lemma C.1. For the good events we defined in (C.1), the following inequalities hold:

(i) : P
(
Ec1
)
≲

1

N4
; P

(⋃
m

Ec1,m
)

≲
M

n4
.(ii) : P

(
Ec2
)
≲

C8
max

λ8
minN

4
;P
{(
Eω2
)c}

≲
C8

max

ω̄8λ8
minN

4
.

(iii) : P
(⋃

Ec3,m
)

≲
|A|
n4

. (iv) : P
(
Ec4
)
≲

C8
max{

log(N − n|A|)
}4 . (v) : P(Ec5) ≲ C8

max

(log n− C2
max)

4
.

Proof. We omit similar proofs for brevity.

Proof of (i): It could be proved that

P
(⋃

Ec1,m
)
≤

M∑
m=1

P(Ec1,m) ≲
M

n4
.

The second inequality follows from Markov’s inequality and Assumptions 1 – 4.

Proof of (ii): Assumptions 1 – 4 hold and note that E
{
∥L̈(θ)−ΩA(θ)∥8

}
≲ N−4C8

max (see detailed
proof in Lemma 7 in Zhang et al. (2013)). It could be verified that P(Ec2) ≲ C8

max/(λ
8
minN

4) by
Markov’s inequality. In addition, note that λmin

{
Ωω

A(θ)
}
≥ ω̄λmin since for any vector x ∈ Rp

satisfies x⊤x = 1, we have

x⊤Ωω
A(θ)x = M−1

M∑
m=1

ωm

{
x⊤Ωm(θ)x

}
≥M−1

M∑
m=1

ωmλmin = ω̄λmin.

This leads to P
{
(Eω2 )c

}
≲ C8

max/(ω̄
8λ8

minN
4).

Proof of (iii) – (v): Similarly, it could be shown that

P
(⋃

Ec3,m
)
≤

∑
m∈A

P
(
∥L̇(m)(θ0)− Emℓ̇(x, y; θ0)∥ > ∥♭m∥

)
≲
|A|
n4

.

P
(
Ec4
)

≲

(
1

M−|A|
∑

m/∈A ∆2
m

)4
C8

max{
log(N − n|A|)

}4( 1
M−|A|

∑
m/∈A ∆2

m

)4 .
P
(
Ec5
)
≤ P

(
M−1

M∑
m=1

(
∥Zm∥2 − E∥Zm∥2

)
>

log n

n
− C2

max

n

)
≲

C8
max

(log n− C2
max)

4
.

Here Zm = L̇(m)(θ0)− Emℓ̇(x, y; θ0). This finishes the lemma proof.

Lemma C.2. Let θ̂(t,m) denote the DFL estimator at the tth iteration on the mth client. Define
θ̃(t,m) =

∑
wmkθ̂

(t,k) as the neighborhood-averaged estimator, and let θ̄(t) = M−1
∑M

m=1 θ̂
(t,m)
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represent the averaged estimator at the tth iteration. The stacked DFL estimator and averated
estimator at the tth iteration are denoted by θ̂∗(t) = ((θ̂(t,1))⊤, . . . , (θ̂(t,M))⊤)⊤, and θ̄∗(t) =
I∗θ̄(t), respectively. For any t, we have

(i) : ∥(W ⊗ Iq)(θ̂
∗(t) − θ̄∗(t))∥ ≤ ρ∥θ̂∗(t) − θ̄∗(t)∥.

(ii) : ∥M−1
M∑

m=1

θ̃(t,m) − θ̄(t)∥ ≤M−1/2 SE(W )∥θ̂∗(t) − θ̄∗(t)∥.

Proof. The proof is given in Lemmas 6 and 7 in Wu et al. (2024).

Lemma C.3. Define a 2× 2 matrix

H =

[
ρ+ 2αρLmax + SE(W ) 2αLmax

2αρLmax + SE(W ) 1− αω̄λmin/2

]
with α, λmin, Lmax,SE(W ) > 0, ω̄ ∈ [0, 1], and ρ ∈ (0, 1). Denote ρH = max |λ(H)|. For
the sake of simplicity in the proof, we choose a sufficiently large Lmax in Assumption 4 such that
λmin ≤ Lmax. Subsequently, we assume that

2αLmax + SE(W ) <
(1− ρ)w̄λmin

16Lmax
. (C.2)

Then
0 < ρH < 1− αω̄λmin

8
. (C.3)

Proof. Note that for any 2 × 2 matrix (a, b; c, d) with a, b, c, d > 0, its maximum eigenvalue is
given by

{
(a + d) +

√
(a− d)2 + 4bc

}
/2. Then we have ρH = O1/2 + O2/2, where O1 =

ρ+2αρLmax+SE(W )+(1−αω̄λmin/2), andO2 =
{
ρ+2αρLmax+SE(W )−(1−αω̄λmin/2)

}2
+

8αLmax{2αρLmax + SE(W )}. Then it fould be verified that

O1

2
=

ρ+ 1

2
+ αρLmax +

SE(W )

2
− αω̄λmin

4
. (C.4)

O2
2 =

{
1− ρ− 2αρLmax − SE(W )

}2

+
(αω̄λmin

2

)2
−
{
1− ρ− 2αρLmax − SE(W )

}
×

αω̄λmin + 8αLmax

{
2αρLmax + SE(W )

}
.

To show equation (C.3), we first verify the following inequality:

O2
2 ≤

{
1− ρ− 2αρLmax − SE(W )

}2

+
(αω̄λmin

2

)2
. (C.5)

Under assumption (C.2), it could be proved that{
2αρLmax + SE(W )

}(
1 +

ω̄λmin

8Lmax

)
<

ω̄λmin

8Lmax
(1− ρ)

=⇒ 2αρLmax + SE(W ) <
ω̄λmin

8Lmax

{
1− ρ− 2αρLmax − SE(W )

}
=⇒ 8αLmax

{
2αρLmax + SE(W )

}
<
{
1− ρ− 2αρLmax − SE(W )

}
αω̄λmin.

The first inequality holds because ω̄λmin/(8Lmax) < 1, which follows from the facts that ω̄ ≤ 1
and λmin ≤ Lmax. This yields equation (C.5).

Combining the results of (C.4) and (C.5), we have

ρH <
1 + ρ

2
+αρLmax+

SE(W )

2
−αω̄λmin

4
+
[{1− ρ

2
−αρLmax−

SE(W )

2

}2

+
(αω̄λmin

4

)2]1/2
.

Under assumption (C.2), we have 1− αω̄λmin/2 > 0, which yields ρH > 0. Next, we are going to
prove equation (C.3). To this end, it could be proved that under assumption (C.2), we have

3αω̄λmin

16
<

1− ρ

4
and αρLmax +

SE(W )

2
<

1− ρ

4
.
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This yields
3

4

αω̄λmin

4
<

1− ρ

2
− αρLmax −

SE(W )

2
.

Define δ1 = (1− ρ)/2− αρLmax − SE(W )/2, and δ2 = αω̄λmin/8. Then it could be verified that
3

4
(2δ2) < δ1 =⇒ 2δ1δ2 + 4δ22 − δ22 < 4δ1δ2 =⇒ 2δ1δ2 + 2

αω̄λmin

4
δ2 − δ22 < 2δ1

αω̄λmin

4
=⇒

δ21 +

(
αω̄λmin

4

)2

<

(
δ1 +

αω̄λmin

4
− δ2

)2

=

(
1− δ2 −

1 + ρ

2
− αρLmax − SE(W )

2
+

αω̄λmin

4

)2

.

This yields

1 + ρ

2
+αρLmax +

SE(W )

2
− αω̄λmin

4
+
[{1− ρ

2
−αρLmax −

SE(W )

2

}2

+
(αω̄λmin

4

)2]1/2
< 1− δ2,

which leads to ρH < 1− δ2. This finishes the proof.

D COMPLETE EXPERIMENTAL DETAILS AND RESULTS

D.1 IMPLEMENTATION DETAILS

Experiments compute resources. For all experiments, we use an NVIDIA Tesla P100 GPU with
16GB GPU memory and 8 Intel(R) Xeon(R) Gold 6271 CPUs, equipped with a total of 64GB of
RAM and 500GB of storage. The experiments are implemented using Python 3.8 and PyTorch 1.7.1,
and the computational time required to generate each figure is approximately 6 to 8 hours.

Implementation details of competitors.

• DFL (Wu et al., 2023a): The standard DFL algorithm without considering abnormal clients. The
resulting DFL estimator is used as the initial value for aDFL.

• BRIDGE (Fang et al., 2022): A robust method to aggregate neighbors’ parameter estimates and
run local gradient descent. Coordinate-wise median (BRIDGE-M) and coordinate-wise trimmed
mean (BRIDGE-T) are used for robustness.

• SLBRN (Zhang & Wang, 2024): A robust gradient tracking algorithm, which aggregates both
the parameter estimates and gradients from neighbors. Coordinate-wise median (SLBRN-M) and
coordinate-wise trimmed mean (SLBRN-T) as used.

• ClippedGossip (Karimireddy et al., 2021; He et al., 2022): This algorithm utilizes ClippedGossip
as the robust aggregation rule. Furthermore, local momentums are also used.

For the BRIDGE-T and SLBRN-T algorithms, we use ϱ as the trimming proportion for the trimmed
mean operation. For the ClippedGossip algorithm, we employ the adaptive clipping strategy pro-
posed by He et al. (2022) to determine the clipping radius, with the hyperparameter δmax = 2ϱ.
Additionally, the momentum parameter is set to 0.9 to align with that in He et al. (2022).

Implementation details in simulation. For all algorithms, we adopt a fixed learning rate of α =
0.01 and set the maximum number of iterations to T = 500. For the aDFL algorithm, we implement
the two-stage aDFL algorithm as detailed in Appendix A.4. In addition, we apply the DCV algorithm
in Appendix A.5 to select λn from a candidate set of 5 grid points in the range [log(n)/25, log(n)/5].

Networks. The details of the two network structures are as follows:

• Directed Circle Network: Assume that the clients are arranged in a fixed sequence with an in-
degree dm1

= D > 0 for each 1 ≤ m1 ≤ M . The network adjacency matrix A = (am1m2
)

is then defined with am1m2 = 1 if m2 =
{
(m1 + d − 1) mod M

}
+ 1 for 1 ≤ d ≤ D, and

am1m2 = 0 otherwise. Here, a mod b denotes the remainder when the integer a is divided by
the integer b. The resulting network structure should be of a circle type Wu et al. (2023a).

• Undirected Erdős–Rényi Graph: Consider an undirected Erdős–Rényi graph represented by a
symmetric adjacency matrix A = (am1m2

), where am1m2
= am2m1

for all 1 ≤ m1,m2 ≤ M .
We generate each entry am1m2

for 1 ≤ m1 < m2 ≤ M independently, with P (am1m2
= 1) = q

and P (am1m2 = 0) = 1 − q, where q ∈ (0, 1] is the link probability. Subsequently, we ensure
symmetry by setting am2m1 = am1m2 for m1 > m2, and set am1m2 = 0 for m1 = m2.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

D.2 ADDITIONAL SIMULATION RESULTS

In the simulation experiments on synthetic data, the averaged values and confidence bands of MSEs
under the Undirected Erdős–Rényi Graph are present in Figure D.1.
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Figure D.1: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the
Undirected Erdős–Rényi Graph in the homogeneous scenario. Different algorithms are evaluated
under different corruption types and two link probabilities (q).

To further evaluate performance under heterogeneous data distributions, we conduct simulation ex-
periments using synthetic data distributed in a heterogeneous manner across clients. Specifically,
for each client m (1 ≤ m ≤ M ), feature vectors Xis are generated from the multivariate normal
distribution Np(µm,Σm). Here, the mean vector µm ∈ Rp is constructed by sampling each element
independently from the uniform distribution U(−0.5, 0.5). The covariance matrix Σm ∈ Rp×p is
defined as Σm =

(
ρ
|j1−j2|
m

)
, where ρm is sampled from U(0.2, 0.3). All other simulation settings

remain identical to those described previously. The simulation results under two different network
structures in the heterogeneous scenario are presented in Figures D.2 and D.3, respectively. Similar
to the findings from the homogeneous scenario, the aDFL algorithm exhibits competitive perfor-
mance compared to the competing methods.

We next consider two more realistic network structures. The first one is the scale-free network
generated by the Barabasi-Albert (BA) model (Barabási & Albert, 1999), a standard topology for
modeling real-world networks due to its power-law degree distribution. This structure is commonly
used in federated learning research (Bhattacharya et al., 2024; Palmieri et al., 2023). Table D.1
presents the results under this network topology with M = 200 clients. We also consider a larger-
scale case with M = 500 clients, whose results are shown in Table D.2. The second one is the
stochastic block structure network. To demonstrate this part, we conduct a simulation experiment
with M = 100 and ϱ = 0.3. We next construct a stochastic block structure network with two
equal-sized blocks. To mimic the unevenly distributed case of abnormal clients, we put all abnormal
clients in one block. The results are presented in Table D.3. These results show that our aDFL
method performs excellently in more complex network structures and larger scales.

We also consider two more complex data corruption types. They are FGSM (Goodfellow et al.,
2014) and PGD/iFGSM (Madry et al., 2017; Kurakin et al., 2018) attacks. We conduct experiments
using the heterogeneous scenario under the scale-free network generated by the BA model with pa-
rameter m = 5. The results for two corruption types are shown in Tables D.4 and D.5, respectively.
The results show that our aDFL method remains robust against these novel corruption types.
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Last, we explore the effectiveness of our method for the dynamic corruption case. Specifically, for
every round of gradient descent (GD) iteration, we randomly reassigned clients as either normal or
abnormal. The fraction of abnormal clients is set to be ϱ = 0.3. Concurrently, the aDFL algorithm
has to dynamically update its weights ω̂m by revising Equation (5) from ω̂m = π{λn∥L̇(m)(θ̂

(m)
init )∥}

to ω̂
(t)
m = π{λn∥L̇(m)(θ̂

(t,m)
aDFL)∥}. The corresponding results are presented in Table D.6, which

demonstrate the robustness of our aDFL method against dynamic corruption.

Table D.1: The averaged MSE (standard deviation in parentheses) of different methods under the
scale-free network generated by the Barabasi-Albert (BA) model with M = 200 (using the hetero-
geneous model setting with BA parameter m = 5).

Method ϱ = 0.1 ϱ = 0.15 ϱ = 0.2 ϱ = 0.25 ϱ = 0.3
DFL 0.250 (0.070) 0.479 (0.124) 0.719 (0.129) 0.961 (0.155) 1.235 (0.138)
aDFL 0.004 (0.001) 0.005 (0.001) 0.005 (0.001) 0.005 (0.001) 0.006 (0.001)
BRIDGE-M 0.008 (0.001) 0.011 (0.003) 0.017 (0.005) 0.030 (0.014) 0.082 (0.092)
BRIDGE-T 0.008 (0.002) 0.013 (0.005) 0.030 (0.024) 0.099 (0.096) 0.285 (0.189)
ClippedGossip 0.104 (0.037) 0.192 (0.067) 0.290 (0.076) 0.403 (0.100) 0.527 (0.095)
SLBRN-M 0.268 (0.061) 0.401 (0.067) 0.590 (0.085) 0.819 (0.137) 1.112 (0.113)
SLBRN-T 0.188 (0.036) 0.337 (0.053) 0.533 (0.080) 0.768 (0.118) 1.070 (0.101)

Table D.2: The averaged MSE (standard deviation in parentheses) of different methods under the
scale-free network generated by the Barabasi-Albert (BA) model with M = 500 and ϱ = 0.3 (using
the heterogeneous model setting with BA parameter m = 5).

DFL aDFL BRIDGE-M BRIDGE-T ClippedGossip SLBRN-M SLBRN-T
1.301 0.003 0.062 0.483 0.564 1.020 1.056

(0.086) (0.001) (0.020) (0.105) (0.065) (0.131) (0.066)

Table D.3: The averaged MSE (standard deviation in parentheses) of different methods under the
stochastic block network (using the heterogeneous model setting with the MP corruption and ϱ =
0.3).

DFL aDFL BRIDGE-M BRIDGE-T ClippedGossip SLBRN-M SLBRN-T
0.401 0.009 0.473 0.452 0.265 0.585 0.439

(0.022) (0.000) (0.031) (0.021) (0.012) (0.089) (0.042)

D.3 REAL DATA APPLICATION

Datasets. We consider the following datasets to evaluate the effectiveness of our proposed aDFL
method.

• MNIST (LeCun et al., 1998) consists of 70,000 handwritten digit images (0–9), with approxi-
mately 7,000 images per class. Among these, 60,000 are used for training and the remaining
10,000 are reserved for testing. For this dataset, we use the LeNet model with p = 61, 706 param-
eters. The initial values of the LeNet model are set using the Xavier uniform initializer.

• CIFAR10 (Krizhevsky et al., 2009) comprises 60,000 color images, evenly distributed across 10
classes. Of these, 50,000 images are used for training and 10,000 are used for validation. For
this dataset, we fine-tune the VGG16 model pre-trained on ImageNet dataset, with p = 5, 130
trainable parameters.

• We further explore a more challenging dataset CINIC10 (Darlow et al., 2018), which consists
of 270,000 images drawn from both CIFAR10 and downsampled ImageNet, evenly distributed
across 10 classes. We then conduct the experiment for CINIC10 in a similar way as for CIFAR10
in Section 5.2. The corresponding results are shown in Figure D.12 (ii). It shows that the results
remain encouraging and are qualitatively similar to those obtained on MNIST and CIFAR10.

Distribution Pattern. The following distribution scenarios are considered:

• Homogeneous Scenario: Images from the entire training dataset are randomly and uniformly
distributed across 50 clients.
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Table D.4: The averaged MSE (standard deviation in parentheses) of different methods under the
FGSM attack with ϵ = 0.5 (using the heterogeneous model setting).

Method ϱ = 0.1 ϱ = 0.15 ϱ = 0.2 ϱ = 0.25 ϱ = 0.3
DFL 0.250 (0.070) 0.479 (0.124) 0.719 (0.129) 0.961 (0.155) 1.235 (0.138)
aDFL 0.004 (0.001) 0.005 (0.001) 0.005 (0.001) 0.005 (0.001) 0.006 (0.001)
BRIDGE-M 0.008 (0.001) 0.011 (0.003) 0.017 (0.005) 0.030 (0.014) 0.082 (0.092)
BRIDGE-T 0.008 (0.002) 0.013 (0.005) 0.030 (0.024) 0.099 (0.096) 0.285 (0.189)
ClippedGossip 0.104 (0.037) 0.192 (0.067) 0.290 (0.076) 0.403 (0.100) 0.527 (0.095)
SLBRN-M 0.268 (0.061) 0.401 (0.067) 0.590 (0.085) 0.819 (0.137) 1.112 (0.113)
SLBRN-T 0.188 (0.036) 0.337 (0.053) 0.533 (0.080) 0.768 (0.118) 1.070 (0.101)

Table D.5: The averaged MSE (standard deviation in parentheses) of different methods under the
PGD/i-FGDM attack with ϵ = 0.5 and α = 0.05 (using the heterogeneous model setting with
ϱ = 0.3).

DFL aDFL BRIDGE-M BRIDGE-T ClippedGossip SLBRN-M SLBRN-T
1.316 0.006 0.150 0.505 0.565 1.245 1.191

(0.172) (0.001) (0.253) (0.240) (0.117) (0.274) (0.232)

Table D.6: The averaged MSE (standard deviation in parentheses) of different methods under dy-
namic corruption (using the heterogeneous model setting under BF corruption with ϱ = 0.3 and a
directed circle network with D = 5).

DFL aDFL BRIDGE-M BRIDGE-T ClippedGossip
3.556 0.010 1.267 2.100 3.305

(0.128) (0.002) (0.079) (0.094) (0.131)
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Figure D.2: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the
Directed Circle Network in the heterogeneous scenario. Different algorithms are evaluated under
different corruption types and two in-degrees (D).
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Figure D.3: The logarithm of MSE values versus the fraction of abnormal clients (ϱ) under the
Undirected Erdős–Rényi Graph in the heterogeneous scenario. Different algorithms are evaluated
under different corruption types and two link probabilities (q).

• Heterogeneous Scenario: Images are first grouped according to their labels, with each label
category evenly divided into 25 subsets. These subsets are then assigned such that each client
receives data from 5 subsets with different labels, ensuring that every client ultimately holds data
associated with 5 distinct labels.

• To increase heterogeneity, we explore a more challenging label distribution. Specifically, we
assume each client holds data from 10 different classes and the class distribution is highly imbal-
anced: one dominant label accounts for 64% of the client’s data, while each of the remaining 9
labels contributes only 4%. This introduces significant intra-client label imbalance and inter-client
diversity, as the dominant label varies across clients. The detailed results using the CIFAR-10
dataset are present in Figure D.12 (i). We find that, although our aDFL method performs slightly
worse than the oracle method, it exceeds all competing methods. These results demonstrate the
practical robustness of our method.

Corruptions. Two kinds of data corruption are considered.

• OOD: The feature vectors Xi’s on abnormal machines are replaced by X̃i = 0.3Xi +3Vp, where
the entries of Vp ∈ Rp are independently generated from a standard normal distribution N(0, 1).

• Label-Flipping (LF): We encode the image labels as numerical values ranging from 0 to 9.
Subsequently, the response variables Yi’s on the abnormal machines are replaced by Ỹi =
(Yi + 1) mod 10.

Training strategy. We randomly distribute all training samples equally to M = 50 clients. To
speed up convergence, we adopt a constant-and-cut learning-rate scheduling strategy (Lang et al.,
2019). Specifically, for the MNIST dataset, a total of 6,000 iterations are executed with an initial
learning rate of α = 0.1. The learning rate decreases to 0.05 after 200 iterations and to 0.01 after
4,000 iterations. For the CIFAR10 dataset, we run a total of 9,000 iterations with an initial learning
rate of α = 1. The learning rate is reduced to 0.5, 0.2, and 0.01 after 200, 5,000, and 8,000 itera-
tions, respectively. For the proposed aDFL method, we recalculate the weights {ω̂m}m according to
equation (4.4) whenever the learning rate is adjusted. In addition, we found that the ClippedGossip
and SLBRN methods are highly sensitive to the learning rate in our setting. Therefore, we carefully
adjusted the learning rate strategy for these methods separately.
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Results. We present additional results that were not included in the main text. Specifically, results
for real applications on MNIST and CIFAR10 under the homogeneous scenario are shown in Figures
D.8 – D.11. Results under the heterogeneous scenario are shown in Figures D.5 – D.7. These results
exhibit patterns consistent with those in Figure 2. In addition, we observe that the two SLBRN
algorithms failed to converge in the Directed Circle Network. Therefore, the corresponding results
are not reported.
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(ii) CIFAR10 Dataset

Figure D.4: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario.
Different methods are evaluated with varying in-degrees (D) and fraction of abnormal clients (ϱ)
under the LF corruption and Directed Circle Network.
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Figure D.5: The testing loss over iterations for MNIST in the heterogeneous scenario. Different
methods are evaluated with varying link probabilities (q) and the fraction of abnormal clients (ϱ)
under the LF corruption and Erdős–Rényi Graph.
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(ii) CIFAR10 Dataset

Figure D.6: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario.
Different methods are evaluated with varying in-degrees (D) and fractions of abnormal clients (ϱ)
under the OOD corruption and Directed Circle Network.
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(ii) CIFAR10 Dataset

Figure D.7: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario.
Different methods are evaluated with varying link probabilities (q) and fractions of abnormal clients
(ϱ) under the OOD corruption and Erdős–Rényi Graph.
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Figure D.8: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
Different methods are evaluated with varying in-degrees (D) and fractions of abnormal clients (ϱ)
under the LF corruption and Directed Circle Network.
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Figure D.9: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
Different methods are evaluated with varying in-degrees (D) and fractions of abnormal clients (ϱ)
under the OOD corruption and Directed Circle Network.
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(ii) CIFAR10 Dataset

Figure D.10: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
Different methods are evaluated with varying link probabilities (q) and fractions of abnormal clients
(ϱ) under the LF corruption and Erdős–Rényi Graph.
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(ii) CIFAR10 Dataset

Figure D.11: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
Different methods are evaluated with varying link probabilities (q) and fractions of abnormal clients
(ϱ) under the OOD corruption and Erdős–Rényi Graph.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80 90
Iterations (× 100)

20

30

40

50

60

70

80

Te
st

in
g 

Ac
c 

(%
)

D = 3 |  = 25%

DFL
aDFL

BRIDGE-M
BRIDGE-T

ClippedGossip Oracle

(i) CIFAR10 Dataset

0 10 20 30 40 50 60 70 80 90
Iterations (× 100)

20

30

40

50

60

70

80

Te
st

in
g 

Ac
c 

(%
)

D = 3 |  = 25%

DFL
aDFL

BRIDGE-M
BRIDGE-T

ClippedGossip Oracle

(ii) CINIC10 Dataset

Figure D.12: Testing accuracy over iterations under the increasingly heterogeneous scenario (left
panel) and the homogeneous scenario (right panel). We fix the in-degree at D = 3 and set the
fraction of abnormal clients to ϱ = 25% under LF corruption on the Directed Circle Network.
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