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ABSTRACT

In decentralized federated learning (DFL), the presence of abnormal clients, often
caused by noisy or poisoned data, can significantly disrupt the learning process
and degrade the overall robustness of the model. Previous methods on this issue
often require a sufficiently large number of normal neighboring clients or prior
knowledge of reliable clients, which reduces the practical applicability of DFL.
To address these limitations, we develop here a novel adaptive DFL (aDFL) ap-
proach for robust estimation. The key idea is to adaptively adjust the learning rates
of clients. By assigning smaller rates to suspicious clients and larger rates to nor-
mal clients, aDFL mitigates the negative impact of abnormal clients on the global
model in a fully adaptive way. Our theory does not put any stringent conditions
on neighboring nodes and requires no prior knowledge. A rigorous convergence
analysis is provided to guarantee the oracle property of aDFL. Extensive numeri-
cal experiments demonstrate the superior performance of the aDFL method.

1 INTRODUCTION

Motivation. Decentralized federated learning (DFL) is an effective solution to handle large-scale
datasets by distributing computation across multiple clients (Beltran et al., [2023)) in a decentralized
way. Different from centralized federated learning (CFL), DFL eliminates the need for a central
server and enables clients to collaborate in a peer-to-peer manner. The decentralized structure im-
proves scalability, robustness, and privacy preservation, making it an appealing solution for large-
scale data analysis (Li et al.,[2021)). Nevertheless, DFL also faces a serious challenge. DFL systems
may involve unreliable or undesirable clients that degrade the overall performance of the learning
process. One typical example is Byzantine failure, which refers to transmitting incorrect information
to the whole network (Blanchard et al., 2017; |Yin et al., [2018}; |/ Tu et al., 2021b). In addition, some
clients may hold low-quality or even corrupted data, contain information irrelevant to the target task,
exhibit severe distribution shifts, or suffer from unstable communication and computation. These
issues could negatively impact the training process by introducing noise or bias into the model up-
dates, which is especially problematic for DFL, as the lack of a central server makes it more difficult
to detect and correct abnormal behaviors (Wu et al.,|2023b; Zhang & Wang, [2024)).

Challenge. To address the abnormal clients in DFL, various robust learning methods have been
proposed; see Section [2]for a more detailed discussion. Nevertheless, existing methods suffer from
at least one of the following two limitations. First, many existing methods require for each client a
sufficiently large number of normal neighborhood clients. Otherwise, a robust and reliable summary
(e.g., median) of neighborhood gradients/estimators cannot be obtained (Yang & Bajwa,[2019;/Su &
Vaidya, 2020; |[Fang et al.| |2022). Second, many other methods require prior knowledge of reliable
clients, which is an even more stringent condition for most practical applications (Peng et al., 2023}
Wau et al.| 2023b; |[Zhang & Wang| [2024).

Contributions. To solve those aforementioned problems, we propose here an adaptive decentralized
federated learning (aDFL) approach for robust estimation. The key idea of aDFL is to dynamically
adjust the learning rates of individual clients based on their behavior in the DFL process. Intuitively,
those clients with suspicious behavior in their estimated gradients should be given smaller learning
rates. In contrast, larger learning rates should be given to those clients who behave more normally
in their gradients. The consequence is that the negative effect of those abnormal clients can be
well controlled and minimized in a fully automatic way. Compared with existing methods, our
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theory does not put any stringent conditions on neighboring clients and requires no prior knowledge.
In summary, we make the following contributions in this work. Methodologically, we develop
here a novel aDFL approach for robust learning. This method adapts to diverse DFL settings and
data scenarios. Additionally, it does not rely on the assumption of homogeneous data distribution
across clients, which overcomes a key limitation of many existing approaches (Yang & Bajwa,[2019;
Fang et al.| 2022} |Peng et al., |2023; |Q1an et al.,|2024) and improves the applicability to real-world
heterogeneous scenarios. Theoretically, the convergence rate of the aDFL algorithm is rigorously
analyzed. Our results show that, aDFL can achieve the oracle property (i.e., the same asymptotic
efficiency as the estimator computed by normal clients only) under appropriate regularity conditions.

2 RELATED WORK

Decentralized federated learning. The literature about DFL can be classified into two categories.
The first one is decentralized consensus optimization methods, which enforce consensus among
neighboring estimators to ensure global consensus. These methods include proximal gradient (Wu
et al.,|2017; |Li et al., |2020), ADMM (Li et al.,|2019b; [Liu et al., |2022b) and gradient tracking (Xu
et al.L[2017;Tang et al.|[2018} L1 et al., | 2019d; |Song et al.,2022aib). The second one is decentralized
gradient descent methods, which mainly apply (stochastic) gradient descent after obtaining averaged
neighborhood estimators. Typical works include [Jiang et al.| (2017), |Sirb & Ye (2018)), |Li et al.
(2019c), (Xu et al.| (2021)), L1u et al.|(2022a), and |Wu et al.|(2023al). More discussions can be found
in Beltran et al.| (2023). Note that the proposed aDFL method falls under the second category but
can be extended to the first category without difficulty; see Appendix [A.4]for detailed discussion.

Robust centralized learning. It focuses on minimizing the impact of abnormal participants in
a centralized distributed machine learning system (Blanchard et al., 2017} |Chen et al., [2017; |Yin
et al, |2018). The literature in this regard can be classified into two approaches. The first approach
aims to mitigate the impact of abnormal clients by designing robust aggregation rules, which are
closely related to the robust estimation techniques in statistics (Shi et al.| 2022)). The most typical
technique is to replace the sample mean of the local gradients/estimators by its robust counterpart,
such as the trimmed mean (Yin et al.| [2018)), median (Chen et al., [2017; |Yin et al.l 2019), and
quantile (Tu et al.|[2021a). Another approach tries to first identify the abnormal clients by analyzing
and detecting abnormal patterns, and then exclude them from the subsequent updating process. The
methods include discrepancy comparison (Blanchard et al., 2017), reputation scores (Xia et al.,
2019; Xie et al.l 2019), and anomaly detection (Li et al. 2019a)). Notably, this line of work is
also closely related to outlier detection in statistical domain, where various methods have been
developed to detect abnormal samples (Filzmoser et al., 2008; Zimek et al., 2012; [Ro et al., [2015)).
One representative work in the federated learning regime is|Qian et al.|(2024)), which leverages false
discovery rate (FDR) control and sample splitting techniques to identify abnormal clients.

Robust decentralized learning. In DFL, the absence of a central server makes it significantly more
difficult to identify and mitigate the influence of abnormal clients. As a result, most existing work
on robust DFL extends techniques originally developed for CFL, but often at the cost of stronger
assumptions, such as requiring enough trustworthy neighbors. A common line of work includes
various robust aggregation rules, such as clipping and trimming (Yang & Bajwal 2019; |He et al.,
2022; |Su & Vaidya, 2020). Various variance reduction techniques are also used, including the TV-
norm regularization and related techniques (Peng et al., 20215 [2023; [Hu et all [2023). Another
widely used idea is to evaluate the consistency or credibility of each client by comparing its model
with those of its neighbors, and then down-weight or exclude those that behave abnormally. This
leads to techniques such as performance-based filtering (Guo et al., 2021} |[Elkordy et al.| 2022)) and
credibility-aware aggregation (Hou et al.,2022)). These methods rely on local information exchange
and are tailored to the decentralized setting where global oversight is unavailable.

3 STANDARD DECENTRALIZED FEDERATED LEARNING

3.1 PROBLEM DESCRIPTION

We begin by introducing the model setup and notation. Due to page limitations, a complete list
of notation is provided in Appendix Assume a total of N instances denoted as (X;,Y;) for
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1 <4 < N.Here, X; = (X;;) € RP is the feature vector and Y; € R is the associated uni-
variate response. We next consider a total of M clients indexed by M = {1,2,...,M}. Let
Sr = {1,2,..., N} represent the whole sample set, and let S,,, denote the sample collected by
the mth client. We then should have Sg = J,,, Sm and Sy, (| S, = 0 for any my # my. For
simplicity, we assume that |S,,,| = N/M = n for every 1 < m < M. In federated learning, data
across different clients often exhibit considerable heterogeneity, which may arise from varied data
collection environments. Despite the heterogeneity here, we assume that all normal clients share
a common underlying regression relationship. To be more precise, denote the joint distribution of
(z,y) € X x Y by P(z,y). Then we allow the marginal distributions P (z) and P(y) to be hetero-
geneous but basically require the conditional distribution P(y | ) must be the same across different
clients. The common parameter of interest is denoted as 6 € RP. Next, let £(z,y; ) be a loss

function with parameter § € RP. Define a global loss function as £(§) = N~} Zfil 0(X;,Y5;0).
It can be decomposed as £(6) = M1 Zf\f:l Lm(0), where L,,(0) = n~" 3, s (X, Y3;0) is
the loss function defined on the mth client. Next define § = argming £() as the whole sample
estimator and §m = arg ming £, () as the local estimator computed on the mth client.

In this work, we consider the data-contaminated adversary setting, where all of the clients are
assumed to follow the learning protocol but the local data on the abnormal client may be corrupted
(Biggio et al 2012} [Fang et al., 2020} Jagielski et al 2018} [Li et al., [2016). Specifically, define
for each client a binary variable a,, € {1, 0} to indicate whether the mth client is abnormal or not.
Collect the indices of abnormal clients by A = {m : a,, = 1}. Let p = | A|/M € [0,1/2) be the
fraction of abnormal clients. Accordingly, we assume that as n — oo,

V(0 = 00) —a N(0, ) ifm ¢ A,
V(O — 0,) —a N(0,%,,) with 6,, # 6y if m € A.

for some positive definite matrix ¥, € RP*P. Since 6,, # 6y for any m € A, including those
abnormal clients .4 in DFL without effective control should cause seriously biased results.

3.2 THE DFL FRAMEWORK

We start with a standard DFL framework involving two key steps (Yuan et all 2016; Wu et al.|
2023a). First, each client aggregates information from its neighbors to derive a neighborhood-
averaged parameter estimator. Next, it updates this estimator by the method of gradient descent
based on the data placed on the local client. Specifically, assume M clients are connected through
a communication network represented by an adjacency matrix A = (@ m,) € RM*M . Here,
Gm,m, = 1 if client m; can receive information from client mg, and G, m, = 0 otherwise. De-
fine in-degree dn, = >, @mym,. We assume that d,,, > 0 for every 1 < m; < M. Define

the weighting matrix W = (W, m,) € RM*M with W, my = Gmym,/dm,. Let 9(m) be the

estimator obtained on the mth client at the tth iteration. Then, the update formula at the (¢ + 1)th
iteration is:

M
gltm) — Zwmkg(t,k); gl+lm) — gltm) _ o f ('gv(t,m)). 3.1
k=1

Here £,,(8) € RP denotes the first order derivative of £,,(-) with respect to 6, and o € R*
denotes the learning rate. Under appropriate regularity assumptions and assuming o = 0, Wu et al.
(2023a) showed that, with a sufficiently small o and a relatively balanced network structure W,

6t:m) should converge numerically to an asymptotically efficient estimator of 6. However, it is
unclear what would happen if some of the clients are abnormal (i.e., ¢ > 0). We are thus inspired to

study the theoretical properties of ™) under the assumption with o > 0.

To this end, define SE*(W) = M~'||W 13, — 1,]|> which measures the balance of network
structures. In the most ideal situation with doubly stochastic I¥ in the sense that ILW = IL
(Lian et al.l 2018} [Li et al.l 2019d), we have SE(W) = 0. Then we have the following regularity
conditions.

Assumption 1 (Parameter space). Assume the parameter space © is a compact and convex subset
of RP. Let int(@®) be the set of interior points of ©. Assume 0,, € int(®) form € AU {0}
Moreover, define r = supyce maxy, ||6 — 0,,|| > 0 as a rough measure for the radius of ©.
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Assumption 2 (Covariates distribution). Assume (X,;,Y;) from the mth client, i.e., i € S, are
independently and identically generated from a probability distribution P,, .

Assumption 3 (Local strong convexity). Define ,,(6) = E,, [Z(XZ-,YZ-;G)] for m € M, where
U(x,y;0) € RP*P denotes the second order derivative of {(x,y;0) with respect to 0. Assume
that for m € M, we have )\min{Qm(f)m)} > Amin for some positive constant A\pi,, and
minm infgee )\min{im (9)} 2 0

Assumption 4 (Smoothness). Assume that there exists some constcmt Chax > 0 such that for m €
M, supeee Em{HE Xi, Y33 0) —En {0(X;,Y3;0) }|| } < C8 s and supgee Enm {||0(X;,Y:;0) —

HQ} < C8. .. Moreover, for any (X;,Y;) € Spm, €(X;,Y3;0) and ((X;,Y;;0) are Lipschitz
contmuous in the sense that for any 0’0" € ©, the following inequality holds

160X, Y3 0') — £(X,, Vs 67)|| < L(X3, Y2) |07 = 60
for some positive function L(X;,Y;) and constant L,y such that IEm{L8 X, Y5) } <L3..

Assumption 5 (Network structure). There exists some constant p € (0,1) such that ||[W T (In; —
M= 1y 1)W| + SE(W) < p.

Assumption 6 (Non-vanishing bias). Define b, = Em{f(Xi, Yi;00)}, Assume ming,e 4 ||bm| >
bmin fOr some constant b5, > 0.

Remark 1. Assumption |l| defines the parameter space for 6, with m € AU {0}. Similar con-
ditions are also used inZhang et al.|(2013) and Jordan et al|(2019). Assumption 2| addresses the
distribution of the data {(X;,Y;) : © € Sk}, allowing the data distributions to vary across different
clients. This relaxes the homogeneous data condition commonly assumed in existing approaches
(Fang et al.| 2022} |Qian et al.| 2024). Assumption |3|requires only local strong convexity of the loss
functions rather than the global strong convexity typically assumed in existing literature (Karim-
ireddy et al.| |202 1| Kuwaranancharoen & Sundaram| 2023} |Zhang & Wang| |2024). This makes our
theoretical results applicable to a broader class of loss functions. For completeness, we also provide
theoretical results for our proposed method under the standard global strong convexity assumption;
see Appendix[A.2|for details. Assumption[requires the local loss functions to be sufficiently smooth,
which is a classical regularity condition in convex optimization (Jordan et al.| 2019) and federated
learning (Zhang & Wang,| |2024). Assumption P|is a condition about the network structure. This
assumption is weaker than the commonly assumed doubly stochastic assumption in the literature (Li
et al 2019d; |Song et al| 2023). Assumption [6|forces abnormal clients to be distinguishable from
normal clients since ||b,, || = 0 for any m ¢ A.

We start with the properties of the whole-sample estimator 0 with o > 0. This leads to the following
Theorem [3.1] about the mean-squared error (MSE) of 6.

Theorem 3.1 (MSE of é\). Assume Assumptions E] hold. Further assume that g < € for some
sufficiently small butﬁxed e depending on (Limax, Amin, p). Then we have EH9 0o H =V (O)+|pal

B(), where V(0) < L2 /[{(1 = 0)Amin}2N] + O (N72), NV(8) — tr {Q3'S405"} as
N — o0, and

PPal (24 LY < p@) <ol + L + ).

max

Hereb 4 = |AI7! Y mea Pm- The detailed formulas of Q 4 and ¥ 4 are given in Appendix

By Theorem [3.1] we know that the MSE of 8 is mainly determined by two terms. The first term
V(H) reflects the variance with its leading term given by N ! tr {Q AlZ A9 Al} The second term
reflects the bias with its leading term of the same order as ¢||b4||. If o — 0, f remains to be a
consistent estimator for 6y. However, for 0 to achieve a root-N convergence rate, we need to have
0% = o(N~1). This leads to n/M = o(|.A|~2). Otherwise, # may exhibit a non-negligible bias.
However, this condition is not always achievable in practice. Consider for example a situation with
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each client representing a local hospital. In this case, each client (e.g., a hospital) might hold a
sufficiently large amount of data. Nevertheless, the total number of clients (hospitals) is typically
quite limited. According to classical results on DFL, under suitable assumptions, the difference
between the standard DFL estimator and 0 is statistically ignorable; see Propositionin Appendix
for details. However, Theoremindicates that @ itself might be biased. Consequently, the DFL
estimator is also expected to suffer from the same bias. This motivates us to develop a robust DFL.
algorithm, so that the negative effects due to the abnormal clients can be well controlled.

4 RoBUST DFL

4.1 WEIGHTED DECENTRALIZED FEDERATED LEARNING

By Theorem 3.1} we know that the key reason responsible for the poor performance of the standard
DFL estimator is the existence of the abnormal clients (i.e., .A). Unfortunately, a standard DFL algo-
rithm treats those abnormal clients and normal clients equally without differentiating their relative
trustworthiness. One natural solution is to revise « slightly so that different learning rates can be
used for different clients according to their trustworthiness. Intuitively, larger learning rates should
be given to clients, which are more likely to have a,,, = 0. In contrast, significantly reduced learning
rates should be given to those which are more likely to have a,, = 1. Accordingly, the bias due to
those abnormal clients in .A can be greatly reduced.

Let @j’m) be an estimator obtained on the mth client at the ¢th iteration. We are motivated to modify
the standard DFL updating formula (3.T) as:

§(j+1,m) _ §j’m)—awm£(m)(§%m)) @D

with gﬁ,m) => wmké\(j’k). Here, w,, € [0, 1] is a data-driven weight that reflects the trustwor-
thiness of the mth client. Intuitively, w,,, should be larger for trustworthy clients. Conversely, w,,
should be smaller for those suspicious clients.

Subsequently, we analyze the theoretical properties of the algorithm (@.I)) with general w,,s. In
particular, we are eager to understand the role played by the adaptive weights w,,s. To this end,
define A} = MM Lw, — (1 - am)}2 as the mean squared distance between w,, and
the oracle weight 1 — a,,. Write @9 = M~! Pomgawm > w3 = (A7, c4 w2,)/? and
by = (|71 Y, m|2) /2. Further denote 974" = {(85™) T, (0%")T}T € RMP as the
stacked estimator obtained from Equation (4.1)) at the ¢th iteration. For theoretical purposes, define
an oracle estimator as the estimator obtained by using data from the trustworthy clients only. Denote

this oracle estimator by 04 = argming 4 4 Lm(6). Let 3\64 = max,, ||§(£’m) — §A|| We then
have the following Theorem .1}

Theorem 4.1 (Convergence property of 5;{”). Assume that Assumptions |I|— E] hold, Further as-
sume that o + SE(W) < € and the initial value 52(0)
that ||§f4(0) — I*§A|| < ¢ for some sufficiently small but fixed € depending on (Lmax, Amin, p)-

Then, with probability at least 1 — O(M/n* + 1/(logn)*), we have M’1/2||§f4(t) —I* §A|| <
Erry 4+ Erry + Errg, where

is sufficiently close to "0 4 in the sense

by = (- 5 ., e S (b)),
Erry = ﬁmn [ngwé“JrAz{ (lo;g\,N)% + L [[04 — 90||H . “2)

Assume M = o(n*) asn — oo. Then with probability tending to 1, we have M~1/? Hé\;(w) —I*é\A ||
upper bounded by

& ot sEon} (w724 02) + (a8 + \%)} : (43)

Compared to the classical results on DFL (see Proposition [A.T] for details), the main difference of
Theoremis the inclusion of an additional statistical error term Errs. If oracle weights (1 — a,,)s



Under review as a conference paper at ICLR 2026

are employed, we then have @9 = 1 — pand A, = w3 = 0. Accordingly, the influence of abnormal

clients on gjt) can be eliminated completely, as long as the learning rate « is sufficiently small and
the network structure W is sufficiently balanced.

For 0. 4 to achieve the oracle property, the right-hand side of Equation should be of an
0,(1/v/'N) order. This conclusion holds if the following three conditions can be satisfied. They are,
respectively, (1) {a + SE(W)}{1/v/n + 0'/?} /@9 = o(1/VN), (2) w3 /@9 = 0,(1/(0VN)),
and (3) Az/w9 = 0,(1). The first condition can be satisfied by setting a reasonable @9, and a
sufficiently small & and SE(W). Both conditions (2) and (3) require w,,, to approximate the oracle
weights (1 —a,,) closely. However, since the status of the clients is unknown in advance, we need to
develop an effective estimator for w,,, so that both conditions (2) and (3) can be practically satisfied.

4.2 ADAPTIVE DECENTRALIZED FEDERATED LEARNING

To this end, an effective measure for the trustworthiness of a client is necessarily needed. Note that
a trustworthy client should have a small gradient norm at a reasonably accurate parameter estimator.
In contrast, an abnormal client tends to exhibit a larger gradient norm. Thus, the size of the gradient
norm might serve as a natural indicator of trustworthiness. Based on this idea, we develop below a
two-stage algorithm.

STAGE 1. We start with assuming for each client m an initial estimator, denoted by é?:ilt), which may
not be statistically efficient but must be consistent. For example, one might use the standard DFL
estimator as described in Section [3.2]to serve this purpose, if condition o — 0 can be well satisfied.

STAGE 2. Once the initial estimator @(r?;t) is obtained, the adaptive weight for the mth client can be
computed as

- W{)‘ H‘C(m) lnlt))’ }’ (4'4)
where 7(-) € [0,1] is an approprlately selected and monotonously decreasing mapping function.
For example, we use 7(x) = exp(—=) in this work. Moreover, ), is a positive tuning parameter,
which controls the gradient scale. It is important to note that the selection of \,, plays a critical

role in this algorithm. Specifically, A, ||£(m)( it )|| should not be too low. Otherwise, &y, cannot
shrink to 0 quickly for those abnormal clients. Conversely, this product should not be too large
either. Otherwise, &,, might not give sufficient trust to those trustworthy clients. Subsequently, the
updating step in Equation (#.I)) can be executed by replacing w,, with @, in @4). This leads to a
practically feasible aDFL estimator 05371?])4 for the mth client at the tth iteration W1th 1/9\;%?13 é?:;t).
The pseudo code for the aDFL algorithm is described below in Algorithm T}

Algorithm 1: Adaptive Decentralized Federated Learning

Require: Network W, learning rate o, max iteration 7.

Ensure: aDFL estimator {AgFT) }m 1

)for1<m<M

init

1: Compute initial estimators { lmt M_, and set GaDFL = 0!
2: for0<t<T—-1do
3:  for 1 < m < M (distributedly) do

)

4 Compute the neighborhood-averaged estimator GS)FL =k Wmkb,5rL-
5: Compute JL5E0™ = glbm) — o5 m L (m) (6%5m)), where @y, is given by (@4).
6:  end for
7: end for

We next study the theoretical properties of the proposed aDFL estimator 6 H;L Denote the stacked
aDFL estimator at iteration ¢ as Ha](m);L = AS;DlF?L) ) (ég%ﬂé } € RMP_ Write the corre-

sponding estimators of @y, Ay,and @9 based on Equation [@4) as ws', AQ and @Y, respectively. We
then have the following Theorem

Theorem 4.2 (Convergence rate of the aDFL). Assume that Assumptions[I|-[6] hold. Let 7(x) =
exp(—x), and set the initial value é\( ™) as the standard DFL estimator. Assume that logN < A, S
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V/nM~Y/8, Then, with probability at least 1 — O(M/n* + 1/1log N), we have: (1) &5 < 1/V/N,

(2) 13 < o/VN + /\n(l/\/ﬁ + Hﬁ— Ooll), and (3) 1/09 < exp(c)\an— Ooll). Further assume
M — oo with M = o(n*), o = o(1) and o + SE(W) is sufficiently small as n — oc. Then, with

*(oo

probability tending to 1, we have M~1/2 0. 5FL — 1*5,4 || upper bounded by

C'exp (c)\n|§—90||){)m||?ﬁ]_veo||+0(\/lﬁ)}. 4.5)

From Theorem [4.2] the statistical error introduced by abnormal clients (4.5)) can be further reduced

to be of the order 0,(1/v/N), if we can further assume that \,, ||§f 6o|| = op(1). Here, recall that 0
denotes the whole-sample estimator. This result implies that the aDFL estimator achieves the same

asymptotic efficiency as §A, as long as a suitable tuning parameter \,, can be used.

The validity of Theorem [4.2]relies on the assumption that an initial estimator of a reasonable quan-
tity be provided. It can be easily satisfied as long as there exists a statistically consistent (but not
necessarily efficient) initial estimator. As shown by our Theorem [3.1] and Proposition [A.T] a stan-
dard DFL estimator can serve the purpose with ¢ = o(1). In practice, one might also consider other
decentralized robust estimators (Karimireddy et al.,[2021; Fang et al., |2022; Zhang & Wang, [2024)

as initial estimators 91:1?3 with ¢ € [0,1/2) under appropriate regularity conditions. We summarize
this result in the following Corollary 4.1}

Corollary 4.1 (General initial estimator). Assume that Assumptions [I| —[6 and [A.1] hold. Let
n(z) = exp(—x). Assume M — oo with M = o(n*) and o + SE(W) is sufficiently small as
n — oo. Further assume log N < N\, < /nM~Y3, Then, with probability tending to 1, we

have M— 1/2||9*(°o) i I*QAH upper bounded by C exp (C)\n”éinit — 00||){/\n\|§init — QOH/\/NJr
(1/\/7)} with gmlt = Zm 1 )\1(:11)

We find that aDFL estimator should have the oracle property as long as A, [|finit — 0o = 0,(1).

Remark 2. The numerical convergence speed and statistical efficiency of Algorithm |(I| can be im-
proved in two ways. First, Theorem indicates a convergence rate of 1 — O(cf)g). Thus, after
computmg W, each cllent can obtam Wmax = Max,, Wy, by a DFL algorithm and then update
Wi ¢ Wi /Wmax SO that @Y can be increased. Second, both Theorem n and Corollaryreveal
that the error bound depends on |0y, — 0o||. Then the aDFL estimator can be used as a new initial
estimator for Algorithm[I|repeatedly. The multi-stage aDFL algorithm is provided in Algorithm[A.1]

5 EXPERIMENTS

In this section, we examine the finite-sample performance of the proposed aDFL method. We com-
pare our aDFL algorithm with the following alternatives: DFL (Wu et al) [2023a), BRIDGE-M,
BRIDGE-T (Fang et al., [2022), SLBRN-M, SLBRN-T (Zhang & Wang] [2024)) and ClippedGossip
(Karimireddy et al., [2021). In aDFL method, we use cross-validation for the practical selection of
M. To investigate the effect of the number of neighboring nodes, we further consider two different
network structures: the Directed Circle Network Wu et al.|(2023a) with varying in-degree D, and the
Undirected Erd6s—Rényi Graph (Erdds & Rényi, [1959) with varying link probability q. Complete
implementation details of the algorithms and network structures are provided in Appendix

5.1 SIMULATION EXPERIMENTS ON SYNTHETIC DATA

Following |Qian et al.| (2024}, we consider the linear regression model Y; = XiT 0y + €;, where
g; ~ N(0,1) and 6y = (1],0,...,0)T € RP with s = |0.2p|. For the distribution of X;, we
study two scenarios: a homogeneous scenario with X; ~ N, (0, I,,), and a heterogeneous scenario
in which each client generates X; from distinct multivariate normal distributions. See Appendix
for details. We consider the case where the data on abnormal clients is corrupted. Inspired
by |[Karimireddy et al.| (2021), Zhang & Wang| (2024) and |Qian et al.| (2024), three types of data
corruption are investigated:

* Bit-Flipping (BF): The response variables Y;’s on abnormal clients are replaced by Y; = Y.
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* Out-of-Distribution (OOD): Features X;’s on abnormal clients are replaced by X i = 0.7X,;4+V,,
where entries of V}, € RP are independently generated from a uniform distribution 2/(0, 1).

* Model-Parameter Corruption (MP): The parameters on abnormal clients are set as 6. =
(1s,,0,..., 0)" € RP with s, = [0.1p].

We fix the feature dimension as p = 50, the number of clients as M = 100, and the local sample
size as n = 100. Thus, the total sample size is given by N = M x n = 10,000. We ran-
domly select | oM | clients as abnormal clients. We then use MSE on normal clients to assess the
performance of estimators computed by different algorithms. Specifically, the MSE is defined as
MSE = |A¢|7LS e [100™) — 6|2, where 6™ € RP is the resulting estimator obtained on the
mth client. For all algorithms, we replicate the experiments 20 times in each setting. The averaged
values and confidence bands of these MSEs under the Directed Circle Network are shown in Figure
while those under the Undirected Erd6s—Rényi Graph are present in Appendix[D.2] The additional
simulation results of the heterogeneous scenario can also be found in Appendix [D.2] Moreover, to
further strengthen our simulation study, we explore additional experiments involving (1) two more
realistic network structures, (2) two more complex data corruption types, and (3) a dynamic corrup-
tion scenario under specific settings. Across these settings, the results consistently demonstrate the
robustness and effectiveness of our approach; see Appendix [D.2]for details.
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Figure 1: The logarithm of MSE values versus the fraction of abnormal clients (g) under the Directed
Circle Network and the homogeneous scenario. Different algorithms are evaluated under different
corruption types and two in-degrees (D).

Generally, the results under the two network structures show similar patterns, from which we obtain
the following observations. First, under this directed network structure, we find that the two SLBRN
algorithms fail to converge, so the corresponding results are not reported. Second, as the abnormal
fraction (p) increases, the MSE of all algorithms increases significantly except for the aDFL algo-
rithm. Furthermore, various abnormal robust algorithms exhibit a smaller MSE compared to the
standard DFL algorithm. Moreover, the aDFL algorithm achieves the smallest MSE among all these
algorithms. Lastly, we find that the performances of various robust algorithms improve in terms of
MSE under the same Byzantine corruption type when the D increases from 5 to 30. This is expected
because more information can be transmitted with a larger number of neighboring clients.

5.2 APPLICATION TO REAL DATA

In this section, we empirically evaluate the effectiveness of our proposed aDFL method on two
classical datasets: MNIST (LeCun et al. [1998) and CIFAR10 (Krizhevsky et al., | 2009). MNIST
contains 60,000 training and 10,000 testing images, whereas CIFAR10 contains 50,000 training
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and 10,000 testing images. In this experiment, we distribute all training data equally to M = 50
clients. We consider two data distribution scenarios: (1) a homogeneous scenario, where images
are randomly distributed; and (2) a heterogeneous scenario, where each client holds images from
only a subset of labels. For abnormal clients, we implement both OOD and label-flipping (LF)
corruption (Karimireddy et al.l [2021). We train LeNet5 (LeCun et al., [1998) on MNIST using
Xavier uniform initializer, and fine-tune a pre-trained VGG16 (Simonyan, 2014)) on CIFAR10. To
speed up convergence, we adopt a constant-and-cut learning-rate scheduling strategy (Lang et al.,
2019). Further implementation details are provided in Appendix We also extend the real data
analysis by exploring (i) a more heterogeneous scenario and (ii) the more challenging CINIC10
dataset (Darlow et al. |2018). The results again confirm the robustness and effectiveness of our

approach; see Appendix [D.3]|and Figure for details.

At the tth iteration, we evaluate the performance of the mth client on the testing set. We then
evaluate the performance of the mth client at the tth iteration using testing loss and accuracy. We
plot the averaged values and confidence bands of these results on normal clients. In addition to the
competing methods discussed above, we include the oracle estimator as a reference. In the main text,
we present results for the CIFAR10 dataset under the heterogeneous scenario with LF corruption
using a Directed Circle Network; see Figure[2] Additional results are provided in Appendix [D.3]

From Figure[2] we find that as the fraction of abnormal clients increases or the number of neighbors
decreases, the performances of competing methods decline significantly. Compared to competitors,
our aDFL method achieves the best performance, which is comparable to that of the oracle across
all situations. This highlights aDFL’s strong ability to be adaptive to different scenarios.
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Figure 2: The testing accuracy over iterations for CIFAR10 in the heterogeneous scenario. Different
methods are evaluated with varying link probabilities (g) and the fraction of abnormal clients (o)
under the LF corruption and Erdés—Rényi Graph.

6 CONCLUSION

In this work, we propose aDFL, a robust decentralized federated learning method that dynamically
adjusts each client’s learning rate based on training behavior. It preserves the original network topol-
ogy and requires no stringent assumptions on neighbors or prior knowledge. We provide theoretical
guarantees, and extensive experiments corroborate its effectiveness. However, several limitations
remain. First, the current design primarily targets noisy/poisoned data; extending it to more general
settings reqruies further study. Second, aDFL communicates every training round, which can be
costly in large networks. Alleviating this via combining with local updating techniques is a key
direction. Moreover, privacy mechanisms are not yet integrated, but our key technique (the intro-
duction of w,,) can be easily extended to the existing privacy-preserving DFL methods. Lastly, our
analysis assumes bounded gradients, which may not always hold; future work could consider using
gradient clipping (Pascanu et al., 2013; Zhang et al., 2019) to relax this assumption.
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REPRODUCIBILITY STATEMENT

All numerical experiments and real-data analyses are fully reproducible using the code provided in
the anonymized supplementary materials.
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A ADDITIONAL DISCUSSIONS AND RESULTS

A.1 THE PROPERTIES OF THE STANDARD DFL ESTIMATOR

Denote §*®) = {(§t:D)T, (G(t M))TAT ¢ RMP be the stacked standard DFL estimator ob-
tained at the th iteration, and let 8o = max,, ||9(0 m) 9|| be the initial distance. The numerical
convergence property of the standard DFL algorithm is elaborated by the following Proposition[A.T]
Proposition A.1 (Convergence Property of the Standard DFL). Assume that Assumptions[I|—[6|hold.

Further assume that o + SE(W) < € and 3\0 < € for some sufficiently small but fixed € depending
on (Luax, Amin, p). Then, with probability at least 1 — O(M /n*), the following relationship holds.

il < (1 ol - Q))‘min)t’\ a+ SE(W)

o) — So + .
8 0 (1 - p)(l - Q)Amin

M—1/2‘

Proposition suggests that the discrepancy between the DFL estimator 6*() obtained in the tth
step and the whole-sample estimator 7*6 is upper bounded by: (1) the optimization error {1 —
(Amin)/8} and (2) the statistical error {a + SE(W } / {)\mm — } By the time of numerical

convergence with ¢ — oo, we obtain M’1/2||0*(°°) I*9H < {a + SE(W) }/{ Amin(1 — p) }.

Therefore, to have the difference between 6*(>) and 6 to be statistically ignorable, we should have
a+SE(W) = o(1/N). Moreover, we can combine the conclusions of Theorem[3.1]and Proposition

to obtain an explicit bound on ||§*(>) — I*67| in terms of n, M, and p as

JakSEW) 1 1o (elhal)Y? 1
St g o ol )

with probability at least 1 — § for some small constant § > 0.

M_I/Q‘ é\*(oo 1*90

A.2 THE THEORETICAL RESULTS UNDER GLOBAL STRONG CONVEXITY ASSUMPTION
Assumption 3’ (Global Strong Convexity). Assume there exists a fixed positive constant Ay, such
that minm inf@e@ /\min{Qm } > >\rnin

Theorem A.1 (MSE of 9) Assume Assumpttonsl l and I @hold Then we have IEHH 0o H

V(O + bl B(B), where V(0) L2, /(A2:,N) + O (N=2), NV(8) — tr {Q' D40, } as
N — o0, and

PPal (24 L) < p@) < 0@l + £ + ).

Herebq = |A|7'Y] bim. The detailed formulas of Q4 and X 4 are given in Appendix

meA

Since 6. 4 is computed based solely on trust-able data, its properties can be directly derived by ex-
tending the classical properties of M -estimators (Van der Vaart, 2000; [Serfling, [2009; Zhang et al.,
2013). We then have the following proposition.

PropositionAZ(MSE of 0 A). Assume thatAssumptionsI .andlhold. Then we have EHHAA—
00| = V(0.) + B(O.a), where V(04) < {N25N(1—0)}~ 2Lmax, NV (0.4) — tr [{(M —
LA™ 3 g Qi (00)} (M =A™ 3,4 B (00) H(M = [A)T 3,, 4 O (00)} 1] and
B() = O(N"2(1-0) ).
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By comparing Proposition[A.2]with Theorem[A.T] we find that using only trustworthy clients should
result in a superior estimator, as compared with the estimator computed based on all clients.

Theorem A.2 (Convergence Property of §jft>). Assume that Assumptions — and 4| — @ hold,
and o + SE(W) < ¢ for some sufficiently small but fixed € depending on (Lmax, Amin, P)-
Then, with probability at least 1 — O(M/n* + 1/(logn)*), we have M’1/2||9f4(t) —I"04| S
Erry 4+ Erry + Errg, where

= (), e S ) )

1 - - (/log N\3 ~
EI“I'3 = T [Qb?@?%—Az{( o8 )2 + LmaxHeA - 90”}} .

WAmin N

Assume M = o(n*) asn — oo. Then with probability tending to 1, we have M ~1/? HIQ\;(OO) 71*,9:4 ||

upper bounded by
E[{arsmon (724 07) + (i + 22))

Theorem A.3 (Convergence Rate of the aDFL). Assume that Assumptions — and — @ hold.
Let w(x) = exp(—x), and set the initial value 0™ as the standard DFL estimator. Assume that
logN <\, S fM_l/g Then, with probability at least 1 — O(M /n* + 1/1og N), we have: (1)

ot < 1/\F (2) A2 < Q/\F+A,L(1/f+\|o Ool)), and (3) 1/& < exp(chn||0—6o||). Further
assume M — oo Wlth M= o(n*), 0 = o(1) and o+ SE(W ) is sufficiently small as n — oo. Then,

*(oo

with probability tending to 1, we have M~1/?||0 DFL — I*0A|| upper bounded by

Cexp (e |0 — 90”){W + 0(%)}

A.3 THE ASSUMPTION FOR COROLLARY [4.1]

Assumption A.1 (Consensus Convergence). Denote élmt = M1 Zm 1 mlt Assume that (1)
An[Bini — Ooll = Op(1), and (2) Xy M~ S0, 017 — éinitl\Q = 0p(1/N?).

Remark 3. Assumption requires that the initial estimators {é\i(:ilt)}m have a clear consensus
in the sense that their sample variance is of the order 0,(1/(v/A,N)). Moreover, their consensus
should be of a reasonable quality in the sense that \,||0inis — 0o|| = Op(1). Such types of initial
estimators can be easily obtained by, for example, (1) a standard DFL algorithm with a sufficiently
small o + SE(W) value; or (2) a gradient tracking algorithm of |Shi et al.|(2015) on a symmetric
doubly stochastic W.

A.4 MULTI-STAGE ADFL ALGORITHM

It is worth noting that in Algorithm the key step of the aDFL method involves computing
adaptive weights using Equation (#.4). These weights adjust each client’s training contribution
based on its behavior. Consequently, our proposed aDFL method can be smoothly extended to many
existing DFL frameworks. Moreover, with an appropriate choice of A, one can expect to achieve
nearly oracle performance.

A.5 THE CHOICE OF )\,

We propose here a method of decentralized cross validation (DCV) for an automatic selection of
An. Spemﬁcally, for any 1 < m < M, we split S,, into a training set S{™™ and a valida-
tion set Syal. The training set UmS“am is then used to obtain the aDFL estimator under dif-
ferent \,, values, while the validation set UmS,‘;?l is used to evaluate the aDFL estimator’s per-
formance. In the presence of Byzantine attacks in DFL, the most ideal global metric should be

LAU{0m1,,) = |A~? Zm L1 = am) Y egvm £(X;,Y3;00™)), which is the validation losses

computed on all trustworthy clients. By leveraging the aDFL estimator 5ng and the adaptive

15



Under review as a conference paper at ICLR 2026

Algorithm A.1: Multi—stage Adaptive Decentralized Federated Learning

M

A(mlt ) mj\ll >
T,m

Ensure: aDFL estimator {6,/ }m:l

1: for s < S'do
2 Set 9 = 0" for 1 < m < M
for0 <t<T —1do
for 1 < m < M (distributedly) do
Compute the neighborhood-averaged estimator Giﬁ)gﬁ) = kWil /E]t){fﬁ
Update parameter estimator by

Require: initial estimator {9 max iteration 7; number of stages .S’

AR A

O™ = Ouprt — 0B L) (Oopi),
where @,, is computed as ({#.4)
7 end for
8:  end for
9: end for

weights {0, }.,, produced by the aDFL algorithm on the training data, we can construct an estima-
tor for the ideal loss function. Specifically, it is defined as

M 1/2
PV (T T,m 1/2 ~
L) = z B 30 UK Y0 + (3) ang 2 (S 82)

€S m=1
Here nyy = |Sya| and A represents a penalty on the adaptive weights to balance the estimation

value and the variance of LA'VZ“(@?I()EL)). We observe that A is not highly sensitive in our algorithm.

In practice, we set A\ = 1.64. Then the DCV algorithm can be executed for each A in a two stage
manner:

In the first stage, each client m executes Algorithm |l| to obtain the aDFL estimator agl’{l) and

Om) and
0,m) _

{@m }m. Based on this estimator, every client calculates its validation loss, denoted as E(
recorded as the initial loss value. We also define the initial averaged adaptive weight as w(
.-

In the second stage, an iterative algorithm should be executed on the decentralized network, so that
an estimator for E“l( :égﬁ) with consensus can be obtained. To this end, assume that client m has

obtained the loss value Esaim) and averaged adaptive weight ("™ at iteration ¢. At the (¢ + 1)th
iteration, the loss value and averaged adaptive weight are updated as follows:

M
A(t+1,m) ~(t,k) . 2 (t+1,m) _ ~ (t,k
L g WinkLyg 3 &l )—g wmkw( ).
k,f

Then, by similar technique of Yuan et al| (2016) and [Wu et al.| (2023a)), it can be proved that

L™ 5 o9~ MY M 29 and ™) 5 &% &~ G as t — oo under appropriate

regularity conditions. Finally, the optimal A, is selected as Ay = argminy e ary, £35/@0>
Subsequently, we present the complete DCV algorithm in Algorithm ’

B PROOF OF THE MAIN THEORETICAL RESULTS

We first show that under the assumption of global strong convexity, the theorem presented in Section
[A.2]holds. We then extend this result to the setting of local strong convexity.

B.1 NOTATIONS AND PRELIMITS

Let I, be the p x p identity matrix. Define 15y = (1,...,1)" € RM and I* = 1, ® I, € RMP*P,
For a sequence {a(t)}, define a(>) = lim;_,o. a®®. For two positive sequences {an} and {b,},

16
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Algorithm A.2: DCV for Choosing A,

Require: candidate sets {\* },, training set {S""} and validation set {SY¥'}, tuning parameter \;

Ensure: \"

1: for A in {\*}, do

2:  Obtain 9:157};2 and {&p, }om by Algorithmon {Strainy .

3:  for1 < m < M (distributedly) do

4: Compute initial estimators @2Om) @fn @om)  — W and z\‘(/gl,m) =

T,n
Wi, Zies;';;' (X, Y3 é:(IDFI:L))'

5:  end for

6: for0<t<T—1do

7: for 1 < m < M (distributedly) do

8: Update estimators by w?(+1: m)k— S W @2 GELm) = S ™)

1,m
and ﬁsﬁ )= Zk 1 wmkﬁgﬂ g
9: end for
10:  end for N N
11:  For each m, we have &2(T:m) = &™) 5(Tm) = &™) and L™ = L) for sufficiently
large T Denote W), &(T) ﬁ(T) as W2 M (AEY), oM (AF), Z‘g)(Ak)

12: end for R 7 _1 y
13: Obtain \;* = arg minkﬁe{)\mk(M@(T) 1{‘6\(131 (M%) + An,, / (M2 (\EY)/21,

write a, < b, or a, = o(b,) if a,/b, — 0asn — oco. Write a,, < b, or a, = O(by,) if
an/b, < C < oo asn — oo. For a vector z € RP, denote its Euclidean norm by ||z||. For a
symmetric matrix B € RP*P, denote its smallest and largest eigenvalues by A\pin(B) and Apax(B),

respectively. For an arbitrary matrix B € RP'*P2, define its £3-norm as || B|| = )\Il«n/fX(B TB). For
a set S, denote its cardinality by | S| and represent its complement by S¢. Denote E,, () stands for
the expectation with respect to a probability distribution P,,,. The generic absolute constants ¢ and
C may vary from line to line.

For simplicity of notation, write ¢(X;,Y;;6) as £;(6), denote e (0) = E,{¢;(0)}. De-
fine 04 = argmingM ! Zm L€ (0) represents pseudo-true parameter. Denote & =

_ . . . . T

MY, wm’ EA(9) = MY [En{di(0) = En(fi(9)}{4(0) — En(fs(6))} ] and
QA(G) = Mﬁ m 1 {Q }

B.2 PROOF OF THEOREM[A.I]AND PROPOSITION[A D]

Proof of Theorem We decompose E||6 — 6|2 = V(9) + B(6), where V(0) = E[|6 — 6.4]|2,
and B(0) =2E(0 — 0.4) " (0.4 — 0o) + ||0.4 — 00||>. We next investigate the two terms separately.

STEP 1. We first study V/(#). Note that E{L(0)} = M~} Zm L €A (0). Additionally, since X;
and Y; are independently generated (though not identlcally distributed), based on Assumptions |-
[ along with the events £; and &, defined in Lemma[C.T] we can apply Equation (23) and employ
similar proof techniques from Appendix B of [Zhang et al.| (2013), specifically Sections B.01 and
B.02, then we obtain:

2 Lr2nax 1
V(0) =E||6 — 0.4]* < SN tTol 4= (B.1)
L ax 1
E|6 - HAHNNAS +O(N3) (B.2)

In addition, we have V( =E| - Q4 (04)L 2(04) H {1+ o(1)}. Then it could be verified that
E[[Q;" (0.4)£0.)]°

N N
QL' (04)E {Nl Zéi(aA)} {Nl > é:(aA)} QAl(gA)]
i=1 =1

= tr

17
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N

4 (04) {N 12( ~E/; (GA))}{N1%(z@(fu)—E&(@))T}ﬂzlwml

=1

tr

= N7 {03 (000093 (eA)}.
This yields
NV( ) — tr {Q GA)EA(GA)Q;‘l(GA)} as N — oo.

STEP 2. We next investigate (64 — GO)TE@\— 6.4) and [|0.4 — 6o||2. By definition, we know that
IS M 64 (6 4) = 0, this leads to

~ 12{ (0.4) — ¢ (90)}+M12

m=1 m=1

By definition, we know that IE,,, {£;(6) } = 0 for m ¢ A, then it can be verified that

M=1NT éA (6, |A| Y b= |“4|bA (B.3)

m=1 meA

We subsequently establish both the upper and lower bounds for ||6 4 — 6p||. First, it could be verified
that for any 0 € ©, Apin {€%(0)} = Amin{2m(0)} > Amin by Assumption Then we have

0 = MY {er0a - ko) 0o+ A6 T0a— )

m=1

60T 04— 00).

This yields [|64 — 6o|| < A1, [A|M~1(|b4]|. In addition, it could be proved that for any §’, 6" € ©,
leA(0) — eA(0")|| < Limax||6” — 0”]| by definition and Assumphon@ Then we have

Y

)\minHe.A - OOHQ

3 |A| JA|
—1 - A N . A _ 77
HM mZZI{em.(o.A) em(ﬂo)}H HMbAH — ||b I
M
< MY Lanallf4 = O0ll = Lmasl|.4 — o]l
m=1

As a consequence, we can obtain

A Al
AL L aalball < 04— 0ll < At ol (B.4)
Combining the results of (B.2) and (B.4), we know
~ b
(64~ 00)7BE - 0.0 5 AL 5+ 0(124]), ®.5)

Combining the results of (B4) and (B-3)), we have

AP 7 |A\
M? -

Lozl all* = 2][ (0.4 = 60) "E(8 — 0.0)[| < B(O) < Sz ALt lball” +2][ (6.4 — 60) TE(D — 0.4)]]-

Simplify Q.4(04) and X 4(6.4) to Q4 and 3 4. Further note that o = |A|/M, this finishes the
theorem proof.

Proof of Proposition [A.2; The proof of Proposition [A.2]is similar to that of Theorem [A:T] Thus,
we omit the detailed proof here.

18
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B.3 PROOF OF THEOREM [A.2] AND PROPOSITION [A.1]

We first introduce some notations. Denote w), = 1 — a,, represents the oracle weight, A,,, =

—~2 . ~ — y . ~
Wy = wh, SE = M-lzﬁf 1 I10my @)1, and SEy = M550 (@ — @)L ()]

_ 1/2 5 _ /2
l}ecall that o = M ! Z _ywm, @y = (AT eawd) = (|AI* ZmeA 10m 1)
9%) Z t ™) represent the averaged estimator in the tth iteration. Let 6* W= 1" 0 As

70— 1)

We will work with the weighted loss function and weighted Hessian matrix defined as follows:

M
0) =M wnly(0)
. m:1 M
Q4(0) =E{L,(0)} =M™ wnn(0)

By Lemma n to prove Theorem [4.1} it suffices to study the upper bound of 9*(t+1 5 under
the good events (), £1.m (€5, 53 m [1€4()Es. Then the proof of this theorem is d1v1ded into

three steps In the first and second steps, we decompose 9*(t+1) 9:“4 to GZ(H_I) — 9;(”1) nd

92(“1) — 9:*4 and analyze these two terms separately. In the third step, we combine the results from
the first two steps to derive the final theorem.

STEP 1. We first study ||§*(t+1) - §f4|| It could be verified that

165 — b4 < [0 — 04— M~ 1Zwm GRS 1Z||wm o (05™)

m=1 m=1

M
i Lo @+ [M71305™ — 0D = Ay + Ag) + A

m=1

(i) Analysis of A ;) : Note that Apin(24(0)) > @Amin by definition and Assumption Then we
have

Agy = 109 =04 —alo@D)) < 10% - 04 — alu(8F) — ale,(0.)]]
M . o~ M . o~
Fa| MY wn L (04) = MY wi Lo (0.4)]]
m=1 m=1

< (1= 0@Amin/2)[|00) — 4] + oSE,,.
The second inequality holds since £,,(6) > @Amin/2 under £’ and Z Wi Lo (6.4) = 0.
(ii) Analysis of A 5) :

M
Ag/a = Zwmnc 05™) — L@ <23 wnLunax 0™ — 0|

m=1

< NMLWH(W 2 L)L = 037 < 2VM Lynasp0" — 65"
The first inequality holds under N,,,&; ,,, and the last inequality holds by Lemma@ (). Finally,
we have Az < M~1/2 SE(W)H@;M - éjt) || by Lemma(ii). This leads to

a N 7)\min o o — Ik A% o
105 = Ball < (1 - ‘”“’T) 185 = Bl + M2 2L + SEW) G — 350 + oSE...

As a result, we have

Sk Tk 7>\min Ak Tk Tk Ak (t <l
10 B < (1= 22522 ) 1050 = Bl + {2 Loy + SEG) B ~ 847 + oV TSE...
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STEP 2. We next study |67 — °"™||. It could be verified that |87 — g7

1/2

< (W L)@ -6 ||+a{Zme O%™) - ‘1Zwm ©%™) H} +VMAG)

< PIOLY = 03+ all£LO07)] + VM A
e (D) _ AT (1) T Gt T : :
Here £5(07") = {wiL{(0"),. mLo (00™)} . The first inequality holds because

Hé\*(t-&-l) ‘*(t+1)H <(WeI, )é\*(t) Ozﬁ*( *(t)) g ®) 4 I M1 Zm LWl (9(75 m))H +
[+ (M Z H(t ™) 55?)” and the second inequality holds because > | |wim £ (0“ m))
Z —1Wm 'm( g™y < Zm_l llcm Lo (0 S{m))HQ. Next, note that

m1|

1£m (@5 ™) < 2Lumax|0%™ = 09|l + 2Linax |05 — Ba]| + || £ (B)]-

Then it could be verified that || £ (6*(®))]|

M N 1/2 M N 2 oM o 1/2
{42wiLiax||05:’”>—eii>|2} +{4Zw3nL?m||ei?—eA||2} +{ wanncmww}
m=1

m=1 m=1

IN

1/2

M
2me{ Sl —a% ||2} + 2L |07 — 04 || + VMSE.
m=1

IN

By combining the above results with Lemma | we have ||9*(t+1) *(t) I

. _ Mo _ 12 _ . _
< 8L G40 + 20 Lo [{ S8 =881+ 1Y —e:zn] +avVMSE + VM A,
m=1
< {p + 2pLmaxr + SE(W)} 105D — 85O || + 20 Lanas |05 — %] + v/ MSE.

STEP 3. Finally, we establish the upper bound of 0*(t+1) 5* . To achieve this, we combine the

results from Steps 1 and 2. Let 6*(*+1) = ||9j<4(t+1) 6% and 5*(t+1) = ||§Z(t+l) - éjl(Hl)H. Using
these definitions, we obtain:

§r(t+1) 0+ 20pLpax + SE(W) 20 Lpax 5x(®) §E
(5*<t+1>> = { 20pLimas + SE(W) 1 — a@Agim/2| \g+@ ) TOVM \gg |- B0

Denote
H = [l ]on = |7+ 20PEmax + SE(W) - 20Lmas
- 1j12x2 — QOémeaX + SE(W) 1- a@/\min/Q ,

and py = max |\(H)]| represents the spectral radius of H. By Lemma[C.3] we have 0 < py <
1 — (@Amin)/8. Thus, the linear system in (B.6) converges. By recursion and noting that h;; > 0
for sufficiently small o, we derive the following.

Tr(t41) Tk (0) QR
(S =1 (G ) + vt -1 (F ). (B.7)
It could be calculated that,

(1'2 _ H)—l |: O[OJ)\mm/Q 2aLmax

20pLax + SE(W) 1 —p—2apLlpax — SE(W)] ’

Here ¢y > 0 and

1 @Amin
o= {{1 — p— 20p L — SE(W)} - 2Lmax{2LmaXap n SE(W)}]
w)\min (1 - ,0) (w>\min)2 (1 - p)'LD)\min
> 1—p) = LLTOMI O] I
= ‘“{ g (7r) 16 L o 8 Lomax
> (1 - p)UJAmin _ (1 - p)W)\min (DAmin > a(l B p)w)‘min
- 4 8 8Lmax ) — 8 ’
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Substituting the above results into equation (B.7), we obtain:

e+ 1 (55O VM (@AminSE/2 + 2LmaxSE.)
Z <H ~ -_— —~ [ . (B.
(5*<t+1> < 5 ) T A= orem {90 La + SE(W) }SE + (1 — p)SEL, (B8

Then, for p, = 1— (@@Amin)/8 € (pu, 1), by Gelfand’s formula (Johnson & Horn, [1985} Corollary
5.6.14), there exists some to € N such that for all ¢t > ¢¢:

—~ . g . VM ~ —~
1827 =03 5 ”%wmn+5wm+0((mw,>amemm
+2LyaxSEy)
n* D * * M oD
o N o (L R wHD-+<>((;»@A_)[{2aanx+-SE<ww}SE
(- p)@w}. (B.9)

By reorganizing the results in (B:9), we obtain the following inequality:

5 5 VM .
9*(t+1) _ 9 < t+1 5*(0) 5+(0) j. £ \SE
70 =020 5 2 UF O+ 15O +0( =53 — ) | {aLmas + 5BV |

+(1— p)SEw]. (B.10)

The inequality holds because (%) : a@Amin/2 + 2aLmax + SE(W) < {204Lmax + SE(W)} and
(7)) : (1 — p+2aLmax) S (1 — p). Next, we specify the forms of SE and SE,, to simplify equation

STEP 3.1. We first analyze SE,, recall that A3 = M~ "M Lo, — (1 - am)}2 we obtain:

F o< IS (o wOW+M41§j i) { £ (Ba) = £ (60) I

m=1

M
< ||]\471 Z (wm — w:n)ﬁ.m(%)” + 282 Linax][0.4 — bo-

m=1

It could be verified that [M " M AL, (00)| = IM P SN Ay [£ ) (00)—E{ L () (60) Y]+
MUY A
Analysis of the second term: |[M~'SM  Ab.ll = (MY, wmdml <

M1 ZmEA mebm”-

Analysis of the first term: Note that MM AL [Lon(60) — E{Lim)(00)}]
MY wm[Lomy(00) — B{Lumy (00)}] + M1 YA A Lm)(0o). First, under events

Mimea Es.m» we have [M~130 i [Lim)(00) = E{Lm)(00)}] | < MY, qwmllomll-
Second, it could be proved that under events &4,

A (lg(V = )y 25

. M—

m¢A (
Here A% = {(M — |A|)~! > mga(Wm — w*)2}1/2. Combining the above results, we have

_
SE. < M- Zwm”berO(\/log —n|Al) Y 1/2

meA mgA
+2A9 Linax |04 — 60|
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STEP 3.2. We next study SE. By the Cauchy-Schwarz inequality, we have

—~2

M M
SE. S {M_l ST L) 04) = Loy (80)]” + M1 ST 1L (o (80) — Eé(, y; 60)]1?
m=1 m=1

M
M [, i 60)] -
m=1
We study the three terms ieparately. First, under events N,,,,.1, we have M 1 Zﬁf:l H,C(m) (éA) —
E(m)(GO)HZ < 4L2, |64 — 6o||%. Second, under event &, we have M1 "M 1 £¢m)(00) —

Ef(x,y;00)||> < logn/n. Finally, it is obvious to show that M1 S"M_ |El(x,y;600)> =
M=% 4 llpm||?. Combining the above results, we have

—~ ~ \/1ogn
E < Ly, -
SE 5 L 04 — 0ol + ¥ 72 {|A| 2| o7}

Recall that wy' = (JA]7' Y, caw m)1/2 b, = (|A\_1 > e lbml? )1/2. Substituting the result
obtained from Step 3 into equation (B.10), and define ) = max,, HA(O ™) _ 9 4]|, we obtain

~ Liax + SE(W) [ logny1/2 |A[\1/2-a
< o =1
S Pudo+ (1 = p)Amin@ { ( n ) Lnax + ( M ) by

A ~ [log N\'? PN
-‘r(a})\min) {‘ |b272 +A2( A;gv ) +LmaxA2||6.A_90||}'

M

The first inequality holds because it could be proved that ||§ 4—0o|l < (log N/N)'/? with probability
at least 1 — O(1/(log N)*) by Lemma 6 in|Zhang et al.[(2013). Furthermore, as n — 0o, applying
Markov’s inequality readily demonstrates that

{aeseon {2+ (B} + (Klap + 22)

with probability tending to 1. The disappearance of logn and log N occurs because Markov’s
inequality can be directly applied in this context to derive upper bounds for |64 — 6],

IS M L (o (B0) — Eé(, y; 60)12, and [|[M 13 ALy (00)|. This finishes the the-
orem proof.

Proof of Proposition [A.T} The proof of Proposition can be found inWu et al/ (2023a). Thus,
we omit the details here.

— . Tk A 1
M2 i (750 - 1A 5 L

meA

B.4 PROOF OF THEOREM[A 3|

With a slight abuse of notation, we define (1)@ = M~ 1M &, 2) (@5)2 = JA| 7L 5, 4 B2,
and (3) A2 = M1 Zf\f:l {@m — (1= am)}Q. Furthermore, note that 1’9\1(:1? = §(>™) corresponds

to the standard DFL estimator, which we simply denote as gm) throughout this section. By apply-
ing the sample-splitting technique (Balakrishnan et al., 2017 (Chernozhukov et al., 2018}, we can
separately study the training process and the estimation of w,,. As a result, it remains to analyze (1)
— (3) in the following 3 parts, respectively.

PART 1. We first investigate (w3 )2. Recall that 8 denotes the whole sample estimator. By definition,
we have

@7 = o X e (= 2len@™1) < op 3 [exp (= 2allLnE™))
|A‘ meA | |m€.A

—exp (=201 Ln @) + |A\ > o (= 20len @) = 47 + 457
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Note that by mean value theorem, Lemma and under the events ﬂm &1,m. the following holds
with probability at least 1 — O (M /n?).

Al < A| > exp(=t) £m @) = 1w @)
< > 2o [0 = 0]| < 4LmaxAn > Jletm — )2
|A| = IAI e

IN

M1 & - 1/2
- _ (m) _ 2 <
ALnaxAn | Vi M;’:; 160m) — 8]2 < A, (|A|) {o+ SE(W)}.

Here &,,, is some positive constant for any 1 < m < M and exp(—¢,,,) < 1. The second inequality
holds under assumption[d The last equality holds by Proposition[A.T] Then we can set a sufficiently

small o and SE(W) such that (/\n/@)(M/MDl/Q{a + SE(W)} < M?/(JA]?N). As a result,
A(l) is an ignorable higher order term.

We next investigate A( ). Recall that A = argmingM 1 Zm 1 et (6) represents pseudo-true
parameter and 6,,, = arg mng £(X;,Y;;0). Then by triangle-inequality, we have
AP < S e (= 2lLn04) = £a(Ol) * exp CA£n(0)])

meA

x exp (22 [ L (0) — L1 (0.4)]))

1 ) . 130 4 . 1/3
< {M| S exp (= 6hn £ (60) —cm(emﬂl)} {|A| S exp (6An|£m<em>|)}
meA meA
1 YA ; 1/3 2) A (2) A (2
X{IAl 3 exp (6M]|Ln(8) — .cm(eA)ll)} = APAPAL. (B.11)
meA

The second inequality holds by Cauchy-Schwartz inequality. We then study the three terms in
equation (B.11]) separately.

Analysis of A?): Define good events: & ,, = {Hﬁ(m) (0) — Q4(0)] < )\mm/4} Using similar
techniques in Lemma it is easy to prove that P(U,,c 4 £5,,) S [AILS ./ (Aninn?). Further
define good event: & = {[|6.4 — bo|| < minp,e4 (|0 — 0ol|/2}. Using equation ( in Appendix
we can show that & holds when M > 2|.A|||b.4]l/(min,,e 4 [|@m — 00|/ Amin ). Then it suffices to
study A(12) under events () €2 1, () £6- It could be verified that with probability at least 1—O (M /n?),

1 1/3 >\n)\min .
AP < [W > exp { = 38X (Amin/2)]|0m — Ml}} <exp { — =5 min [0 — 6oll/2}-

meA

Analysis of A§2): Define good events: &3, = {An“ﬁ(m)(Hm)|| < C'} for some sufficient large

C > 0. Note that E{£ m)(ﬁm)} = 0. Then using similar techniques in proof of Lemma and
under Assumptions é} we have

P (E50)) < 141Gy

meA

Consequently, as long as \, < /7n(lA])~Y/%, we have max,, An|Lm(0m)| = O(1) under
Mo €5 ms this leads to ASY = O(1) with probability at least 1 — O(M/n*).

Analysis of A:(f): Under events () &1 ,,, defined in (C.I), it could be verified that

AP < Z exp {12Aanax|\§— 9A||}} v = exp {4)\an“||§7 9A||}.

{AI
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The first inequality holds under Assumption@ As a result, as long as \,, < v/N, by equation (B.1)
in Appendix we have Agz) = O(1) with probability at least 1 — O(M /n*).

Combining the above results, we know that as long as \,, < /nM /%, we have @5 < exp ( —
An Amin Min ||6,, — 60||/8) with probability at least 1 — O(M /n*), this finishes the first part.

PART 2. We next study A3 = M~1 M {@m — (1 - am)}2. Define G = A° represents the
indices of the trustworthy clients. By definition, we have

Ag: Zw —l—wam—

meA meg

First, by PART 1, we have M ! Y omea @ @02, S JAIM~Lexp ( — ApAmin min ||6,, — 90||/4). Then
it remains to study M~ Y o (@ — 1)%.

By Cauchy-Schwartz inequality, it could be proved that M~ 37 (@, — 1)°

= 5 3 Lo Mg @) -1}

meg
< Mmz:eg{{exp — AL (@ ’”))H)—exp(—An||£m(90)||)}2
+{exp (= MlLn () - exp (- AalELn 60D} ] B.12)
< 23 e (&ML @)~ €m0} + 1= 3 {exp(-&n)hall £nl6) .
meg meg

Here &, is some positive constant for any 1 < m < M and exp(—&,) < 1. The first
inequality holds because exp(—\,|E(L,,(00))||) = 1. The second inequality holds because

is upper bounded by 4M 1 5,,cq || exp(=An £ (@) = exp(—An | £m(B0) )] +

|exp(—An 1L (00)]]) — exp(=An [|ELy (60)]]) ” . The last inequality holds by mean value theorem.
Then under good events Ny, eg&1,m, it could be proved that

. . . Ao .
1 3 (o = 10 < 8Eada{ 57 S IE B+ 18- 60l } + 22 S (60l

meg meg meg

First, note that by Markov’s inequality, we have M1 o (||£,(60)]l — E| L (60)])
(v/Iog N /+/N) with probability at least 1 — O(1/log N). Assume log N < M, this yields

1 ; ; log N\ 1/2 1
M § H[’m(QO)H ~ EHLmGQ(GO)H + ( N ) ~ \/ﬁ

meg
As a results, as long as A, < +/7, which holds under the assumption )\, < /M ~'/® in
PART 1, we have 4\, M~ 3" - 1 £m(00)] < A /\f Furthermore, as long as « + SE(W)
are sufficiently small such that )\n{a + SE(W } = o(1), by Proposition . we can obtain that

AnMTEY g 16 — 8] < )xn\/M‘l S e — 0||2 is an ignorable higher order term.

Combining the above results, we know that as long as \, < /nM~'/% we have A3 <
|AIM? exp( — A Amin min [|f, — 90||/4) + An/v/T + Al — 66| with probability at least
— O(M/n* +1/log N), this finishes the second part.

PART 3. Finally, we next study @ = M~} Zm 1 wm Similar to the analysis in the previous two
parts, since we can make the flm) arbltranly close to § by choosing a sufficiently small o+ SE(W),
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it remains to study M ! Z _,exp(— An||[,m(§)||) It could be verified that under good events
Nmeg€1,m, we have

M
_ : S 1911
M3 exp(- A () S exp(=All £ B)])
~ = Mgl
m= meg
G| [ 1 . .
237 7l > exp(=Anll£m (B) = Lin(60)]) exp(Anl| £ (60)]])
meg
> I (2L M 6~ o)) = 37 expOrn o (B0)]) > 2] 3 exp (= 2Lmax a0 = b0 ).
M |g‘ meg
As aresult, % < exp (2Lmax)\n ||§— 0o ||) with probability at least 1 — O(M /n*). This finishes the
third part.
Combining the results from the three parts, we know that when X, < /nM ~1/8  we have

with probability at least 1 — O(M/n* + 1/1ogN)' (1) (|A|_1Zm€Aw W2 < exp( —
A Wit [0 = G0l/8), @) MU0 (@ = (1= @)} S MM exp (=
XeAin min [0 = B0ll/4) + Aa/VA + Mallf = 6oll, and (3) (MTPEN Gn) S
xp (2LmaxAn |0 — 6 ). Substituting the above equations into {#3), let a« + SE(W) = O(1/V'N),

there exists some positive constants ¢y, co such that M —1/2 ||§j4(°°) -1 *§A|| is upper bounded with
probability tending to 1 by

Cexp <01 X /\n||§—90||){0p(1/\/ﬁ) +0p{exp(— ca X )\n)} + \;%Hé\— 90}.

B.5 PROOF OF COROLLARY [4.1]

The proof of the corollary . is similar to that of Theorem |A.3|by replacing 8(m) with 5(;?3 and
with 8,,,;;. Thus, we omit the detailed proof here.

B.6 PROOF OF THEOREM [3.1]

Similarly to the proof of Theorem[A-T] to prove Theorem[3.1] we aim to verify that (1) The parameter

6 4 lies in a neighborhood of #y. (2) Loss function M ~! Z e (9) is strongly convex at 0 4.
Once these conditions are established, we can mimic Steps 1 and 2 of Proof [B:2] to complete the
proof of the theorem.

Proof of (1): Recall that M~ S _ ¢A(94) =0, and M~ S ¢A(0,) = ob 4 from equation
(B-3). Applying the integral form of the mean value theorem, we obtain:

12{ (00) — e (04 12/ (B0 4+ t(0.4 — 60)) (00 — 0.4)dt = 0b 4.

Denote Ag = 04 — 0y, and Qg = M1 Zm 1 0 é2(0y + tAg)dt. Then the above relation
simplifies to: B
004 = —QayvgAop. (B.13)

We now analyze Qay,. First, for each m € A and any vector z € R with 2" 2 = 1, by Assumption
[Bl we have

1 1
xT(/ e (0o + tAg)dt)x = / A (0 + tAg)zdt > 0.
0 0

Similarly, for each m ¢ A, using Assumption [3|again, we have

1 1
xT(/ m(ao + tAG)dt>l‘ - / xTQm (00 + tAQ)J?dt.

0 0
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Furthermore, according to Assumptions [3] @] and Wey!’s inequality, for any § € RP?. it follows that
for each m ¢ A:

Amin(Qm (9)) Z Amin - LmaxHo - 90| |

In particular, if |8 — 6p]| < Amin/ (27 Lmax), then Amin(,(0)) > Amin/2. Hence, we have for
m ¢ A

o7 ( /1 e (00 + tAg)dt)x
0

A
T lmax !
/ T T Qo (00 + )t + 27 T (0 + )zt
0

min
27 Lmax

. . 2
)\mln )\mln 0= A

min

- 2 QTLmax N 4TLmax ’

Combining the results above, the following equation holds for any € RP satisfying "z = 1,

2 Qg = M Z (/ 90+tA9)dt)a:+ 3 T(/lég(eﬁma)dt)x
meA

0
)\2 - A2
> 1— min 0=(1— min
- ( Q) 4rLinax + ( Q) 4r Lmax
This yields Amin (Qave) > (1—0)A2 ;. /(47 Limax ). Substituting this result back into equation (B.13),
we obtain:
- 4r Lax 1T
164 = Ool| = [120]] < A (Qave)llo2all < =371 = @) el buall. (B.14)

This completes the proof of (1).
Proof of (2): It could be proved that under Assumption[3] we have

M

)\min <M71 Z eé(QO)) Z M71 Z >\min = (1 - Q)Amin-

m=1 meA
In addition, for any 6, it could be shown that

M

M
>\min (M_l Z eé(e.A)) Z )\min (M_l Z 6é(90)> - LmaxHe.A - 90”
m=1 m=1
4rL2 .. 1T
> (1 =p)Amin — 22 (1-0) 1QHbA||‘
Assume that o is sufficiently small, such that o < {8LZ . r?} " { p)?A3 ;. }. Then we have
M
Min (M7 37 E4(0.4)) = (1= p)Ain /2. (B.15)
m=1

Applying equations (B:14) and (B:13). Using similar techniques as those employed in Appendix
we have

~ L? 1
< max
V()N( p)2N2. N+O<N2)'

min

NV( — tr {Q aA)EA(e.A)Q;\l(e.A)} as N — oo.

TN 2712 21k
o lball 0 1 ~ 16r° Ly .. 0°|ball 0 1

—o(L s )< < 24 ).
2 C( + )—B(e)—v 272, +O(N‘Lm)

max mln(1 - Q) min

This finishes the proof.
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B.7 PROOF OF THEOREM [4.1]

Similarly to the proof of Theorem [A2] to prove Theorem [4.1 we aim to verify that with high
probability: (1) the eigenvalues of L,,(6) are still bounded (by positive constants) when 6 lies in a

neighborhood of fy; and (2) the sequence {9 (¢ )} lies in the neighborhood of 6 for any ¢. Once
these conditions are established, we can mimic Proof @to complete the proof of the theorem.

Proof of (1): Define § = (0% /©0)Amin/(4Lmax), @% = M1 Y e Wm, and event
—Q
w! ~ w wN)\min
= — < ZN7min
&' = {I£u(0) - Q50 < 7= |

Using similar technique skills in the proof of Lemma we have P{(&)°} <
C8 s/ (@5)3A8, . N*). We first prove that

£w (0) Z i‘DJQ\])\min

under &5 for 6 € B(fy,d) with § = (@, /©) Amin/ (4Lmax)-
Recall that

w —1
= Ewmm

m=1

Under Assumption 3] we have

M
Qﬁ(ao) Z M71 Z W (0 + (1 - anl) m1n - -1 Z wm arn min — Qﬁf)\min-

m=1

Note that Q4 (6) — 24(60) = MM w0, {2,() — ,,(6p) }. Then it could be verified that
under Assumption ]

1€2:4(6) — Q4(60)[| < @Lmax]|0 — bo-
For any [|0 — 6| < (@3, /@) Amin/(4Lmax), under Assumptions and Wely’s inequality, we have
3
A (4(6)) 2 A (24(600)) — @10~ 0]l > S8 A

In addition, recall £,,(0) = M~ S _ w,,£,.(6). This yields

under &5’ for 6 € B(6p, 9).
Proof of (2): For any ||6 — 5,4“ < 0/2, we have
16— 0]l < 16— Ball + 8. — 6oll < 6
for sufficiently large N with probability at least 1 — O(1/N*) by Lemma 6 in|Zhang et al.[(2013).

Denote R = ¢/(4v M), we are going to verify that if Héz(t) - 5:*4” < VMR and Hé\;‘(t) *(t | <
VMR, then we have |07 — 8% || < VMR and |5 — 65+ || < VMR,

Note that now we have £w( ) >

[&1] we have
~x(t4+1 e
[raEA|

% ‘v Amin, using similar technique skills in the proof of Theorem

IN

79)\ . -~ ~ _
(1= 22hmin ) 50— G+ {2+ SEOV) HIL - L)

+aV MSE,,.
1050 =801 < {p+ 20Laxc + SEW) T = 0501 + 20 Linae 1847 —

+aV/MSE. (B.16)
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We start with 8*(1). For simplicity, we consider all the clients start from the same initializer with
010 — 0 4] = 6°), and assume (%) is sufficiently small with 6(°) < R. Then equation (B.16)
could be simplified as

—0
Ax(1 Tk aw Amin ~(0 ~ .
00 -3 < (1- 22 ) 4 - )+ aVATSE.,
1750 — O < 20 L0 — 7% + o/ MSE.

if o and 6° are suffciently small such that (1—a®@$ Amin/2)8°+aSE,, < R, and a(2LmaxR—|—§I\€) <
R, then we have ||9_j4(1) 0A|| < VMR and ||9*(1) *(1)|| <VMR.

Subsequently, assume that for any ¢ > 0, we have ||9A(t) - §f4|| < VMR and ||¢/9\jt) *(t
V' MR. Similar to equation (B.8), we have

g*(?i) . 5+(0) N 8V M (0§ AminSE/2 +£Lmax87Ew)7 |
Fr(t+1) 0 (1 — p)@% Amin {mLm + SE(W)}SE + (1 - p)SE,

We first analyze 5*(t+1) it could be verified that

I <

S (0)R ~ 1\ = 8V M —~ —
5O+t < (5+0)2 (1,0) H! ! O ) (@ AminSE/2 + 2LmaxSE,,).
> ( ) ( ’ ) 0 + (1 —P)(Dﬁf)\min O‘(WN S / + S )
This yields
~ 8 ~ —
Feen) < (1 Q9N Amin\ e (8 e AminSE/2 + 2L.1,.xSE,, ).
- ( 8 ) +VvMa ( p)@]{/)\min (WN / + )

As long as we have
n 8

af —=2
(1 - p)"‘_jﬁ/')‘min

We have 6*(+1) < v/M R. We subsequently analyze 6*(“+1), by equation (B.16), it could be shown
that

(1 _ aa)ﬁ//\min>t+1gg

3 )(wf-’vAminsAE/z + 2LmaxSE,) < R.

105D G0 < pVMR + {2pLunacr + SE(W)} VMR +

20V M Lunsn{ (1 - @)?ﬂ +0(a)} + VaTaSE,

As long as we have

—0
00y Amin

{2L a4 SE(W) LR + 0 2L (1 - T)t@ +SE} < (1-p)R/2

This leads to 6*(+1) < /MR.

Combining the above results, we have proved that HO*(t) 5:‘“4 || < §/2 for any t. Applying the above
results, using similar techniques as those utilized in Appendix[B-3] we have

_ Tk e awg )\min 2 aLmax+SE(W) IOgn 1/2 |A| 1/27“4
M 1/2||9A(t)—9_,4||,§(1_4N8 ) 50+ (1—p)/\min@§, {( n ) Lmax""(ﬁ) bZ}

log N
N

forszn}{ g+ ()"} + (ot + 22)

with probability tending to 1. This finishes the proof.

i A za_ 7 1/2 N
+(G)§V)\min) 1{‘7]\4%;0.)5\ + AQ ( ) + LmaxA2||0.A — 60”}

— . T * 1
MV i 01T S
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B.8 PROOF OF THEOREM[4.2]

To prove Theorem [.2] it suffices to show that under the local strong convexity assumption [3| the
following term, defined in PART 1 of the proof of Theorem[A.3]in Appendix satisfies:

_ ' 1/3
Ag2) _ {|j‘| Z exp (— 6Ay[[Lim(04) — Em(ﬁm)H)} < exp(—c),

meA
for some positive constant ¢ > () with high probability.
To this end, we begin by verifying the strong convexity of £,,(6) in a neighborhood of 6,,,. For all
0 € B(0,n,9), with 6 = Apin/(4Lmax ), we have:

Amln(Qm(g)) Z )\mln(Qm(gm)) - Lmax”g - 9m|| 2 z/\min'

Recall the events:

E2.m = {ILm(0) = Qa(O)| < Amin/4}, € = {[|0.4 — b0l < min {|6,, — 6ol /2}

which jointly occur with probability at least 1 — O(M /n*). Hence, it suffices to analyze A(lz) under
the joint occurrence of these events. Under these good events, we have:

Lo (0) > %Amm, forall 6 € B(6,n,0).

Next, define:
0 =0, +nu, whereu=04—0p,, 7=min{l,d/|ul}.

If ||u|| < 4, then clearly § = 4. Otherwise, if ||u]| > 4, then @ lies on the line joining 6,, and 6.4
with [|0 — 6,,,]| = 0. Under Assumption , it can be verified that:

5 N 5 T )\min~ )\min .
[ () ~ L8] T > 22 u)? = 22 o min5, .

Define a scalar function: g, (1) = Lp, (6 + nu). It is straightforward to verify that g,,,(n) is a
convex function on R. Hence, we have: g, (1) > G (7). Since g (1) = {Lon (0 + nu)}Tu, it
follows directly that:
. T . ~ T
{Ln(04)} v={Ln()} u

This leads to

T

5 5 )\min .
{£m(02) = L (O} 0> 22 ] in{, ]}

From the above inequality, we obtain:

1L (0.4) = Lo (B)]| > A‘;““ min{s, [[ul]} > Af;i“ min {5, minmea 6 = ol } .

2

Combining the above results, we finally arrive at:

/\n)\min . i m 9m -0
A?) < exp (— 5 min {5, = EA! ol }) )

which completes the proof.

C TECHNICAL LEMMAS

In this Appendix, we define several “good events” and provide some useful technical lemmas for the
theoretical analysis.
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We first define the following “good events”, where the definitions of £, (#) and 2%4(0) are provided
in equation (B.3).

1

N
1
Em = {n > L(X,Y) < 2Lmax}; & = {N;MXZ»,E-) < 2Lmax};

1€ESm

a= {20 -0u0] <25 | e ={1u) - azon <

Esm = { 1L (00) = En(@,:00)]| < [omll|m € A}

1/2

1 2
1 , M—TA| Zm Am IOg(N - 71|AD
| 3 Smbimton] < T ZmeA )V ;
— M= N — n|A]
& = M‘liHﬁ (o) — Ennf( ~9)H2<1°g” C.1)
5 — ) (m)\Y0 me\T, Y; Vo =, . .
Lemma C.1. For the good events we defined in (C.1)), the following inequalities hold:
, c Chhax Chhax
()< P(E5) S o (Uﬁlm) S ) B(E) S 5 i F{(E) ) < e
e |A| Cgiax Cglax

(zm):IP’( Ecm) S —. () P(E () PES) S ———.

s nt PED) < {log(N — n|A|)}* (€)= Togn - Cay
Proof. We omit similar proofs for brevity.
Proof of (i): It could be proved that

M
c (& M
m=1

The second inequality follows from Markov’s inequality and Assumptions [T|—[4}
Proof of (ii): Assumptions[1|-J4]hold and note that E{[|£(6) —Q.4(8)[|*} < N~*C8,, (see detailed
proof in Lemma 7 in Zhang et al|(2013)). It could be verified that P(£5) < C8,. /(A8 N*) by

Markov’s inequality. In addition, note that Ayin{Q%(0)} > @Amin since for any vector z € R?
satisfies | ¢ = 1, we have

M
TQ“’ -1 Z wm{x Qm )x} >M! Z WmAmin = @Amin.

m=1
This leads to P{(£5)°} < C8 ../ (@38, . N*).

min

Proof of (iii) — (v): Similarly, it could be shown that
P ( U 5§7m>

P& <

. . A
5 P11 00) ~ Bl 35600 > ) 5 1.

meA

IN

(]\/171|A| ZmQ.A Al ) Cr8nax
{log(N — nl AN} (320 Comga A2)

M
¢ -1 2 2 logn Chax < Clnax
P(&5) < P(M > (12l —ElZn]?) > = n )~ (logn—C2

mwx)

m=1

Here Z,, = ﬁ(m) (80) — E,f(z, y; ). This finishes the lemma proof. O

Lemma C.2. Let 9(t™) denote the DFL estimator at the tth iteration on the mth client. Define
0™ = 5" 10,10 %) as the neighborhood-averaged estimator, and let 0 = M~! Z%Zl gt
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represent the averaged estimator at the tth iteration. The stacked DFL estimator and averated
estimator at the tth iteration are denoted by OO = (OENT ... (OEMNYTYT and 91 =
I0®), respectively. For any t, we have

(1) + [|(W @ I) (6" = 0| < plff? — (1.

M
(it) « (M3 g™ — g0 < M-V2SEW)||6*® — 5.

m=1

Proof. The proof is given in Lemmas 6 and 7 in|Wu et al.[(2024)). O

Lemma C.3. Define a 2 x 2 matrix

p+ QOL,OLmaX + SE(W) 20 Liyax
2apLax + SE(W) 1 — aAmin/2

with &, Amins Lmax, SE(W) > 0, @ € [0,1], and p € (0,1). Denote py = max |\(H)|. For
the sake of simplicity in the proof, we choose a sufficiently large L.y in Assumption 4| such that
Amin < Lmax. Subsequently, we assume that

|

(1 - p)w)‘min
2aL E _ 2
aLmax +SE(W) < 6L (C.2)
Then )
o<pH<1—%. (C.3)

Proof. Note that for any 2 x 2 matrix (a,b; ¢, d) with a,b,¢c,d > 0, its maximum eigenvalue is
given by {(a + d) + \/(a — d)? + 4bc} /2. Then we have py = O1/2 + 03/2, where O; =
p+20pLax+SE(W)+(1—awAmin/2), and Oz = {p—|—2oszmax—|—SE(W)—(l—a@)\min/Z)}2+
8aLmax{20pLimax + SE(W)}. Then it fould be verified that

01 p+1 SE(W)  awAnin
72 i + ameax + 9 4 : €4
9 2 QWA min \ 2
0; = {1—p—2ameax—SE(W)} +( 5 ) —{1—p—2ameaX—SE(W)}><

00 Amin + 80 Lmax {20pLmax + SE(W) }.
To show equation (C.3)), we first verify the following inequality:

2 7Amin 2
02 < {1 = 2apLaax — SE(W)} + (WQ ) . (C.5)
Under assumption (C.2), it could be proved that
WAmi W Ami
20p L + SE(W) (14 722 ) < S0min (1
{200k SEOV) (145700 ) < 1=

(D)\min

= 2apLya.x + SE(W) < {1 —p—20apLlgax — SE(W)}

8 max
— 8aLmaX{2ameax + SE(W)} < {1 —p—20pLyax — SE(W)}&@)\min.
The first inequality holds because @Amin/(8Lmax) < 1, which follows from the facts that @ < 1
and Apmin < Lax. This yields equation (C.3).
Combining the results of (C-4) and (C.3)), we have
SE(W)  a@Amin 1—p SE(W) 2  /a@Amin\211/2
- —apmw— g | () ]
2 T H g APEma A
Under assumption (C.2), we have 1 — aoApin/2 > 0, which yields pg > 0. Next, we are going to
prove equation (C-3). To this end, it could be proved that under assumption (C.2), we have
SE(W) 1-p
< —.
2 4

1+
PH < Tp+ameax+

30 Amin
16

1—
1 P and apLax +
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This yields
3awimin  1—0p SE(W)
— - mex - .
171 ST T e 2
Define §; = (1 — p)/2 — apLmax — SE(W)/2, and d3 = awAmin/8. Then it could be verified that
)\ )\min

2(252) <81 = 20105 + 462 — 62 < 46155 => 26162 + 2%52 — 62 < %CWT =

— 2 — 2 — 2
min min 1 E min
5§+<%> <<5l+%_52) :(1_52_#_WLW_S<W>+@W ) ,

4 2 4
This yields
L+ SE(W)  a@mm , [fl=p _SE(W)\? | fa@Amin\2V2
g ToPhmact T 1 +[{ 2 Phmax === b 4 )] <1
which leads to ppr < 1 — J2. This finishes the proof. O

D COMPLETE EXPERIMENTAL DETAILS AND RESULTS

D.1 IMPLEMENTATION DETAILS

Experiments compute resources. For all experiments, we use an NVIDIA Tesla P100 GPU with
16GB GPU memory and 8 Intel(R) Xeon(R) Gold 6271 CPUs, equipped with a total of 64GB of
RAM and 500GB of storage. The experiments are implemented using Python 3.8 and PyTorch 1.7.1,
and the computational time required to generate each figure is approximately 6 to 8 hours.

Implementation details of competitors.

* DFL (Wu et al.| 2023a)): The standard DFL algorithm without considering abnormal clients. The
resulting DFL estimator is used as the initial value for aDFL.

* BRIDGE (Fang et al., [2022): A robust method to aggregate neighbors’ parameter estimates and
run local gradient descent. Coordinate-wise median (BRIDGE-M) and coordinate-wise trimmed
mean (BRIDGE-T) are used for robustness.

* SLBRN (Zhang & Wangl [2024): A robust gradient tracking algorithm, which aggregates both
the parameter estimates and gradients from neighbors. Coordinate-wise median (SLBRN-M) and
coordinate-wise trimmed mean (SLBRN-T) as used.

* ClippedGossip (Karimireddy et al., 2021; He et al.,|2022): This algorithm utilizes ClippedGossip
as the robust aggregation rule. Furthermore, local momentums are also used.

For the BRIDGE-T and SLBRN-T algorithms, we use g as the trimming proportion for the trimmed
mean operation. For the ClippedGossip algorithm, we employ the adaptive clipping strategy pro-
posed by He et al|(2022) to determine the clipping radius, with the hyperparameter d,,x = 2p.
Additionally, the momentum parameter is set to 0.9 to align with that in He et al.| (2022).

Implementation details in simulation. For all algorithms, we adopt a fixed learning rate of o =
0.01 and set the maximum number of iterations to 7' = 500. For the aDFL algorithm, we implement
the two-stage aDFL algorithm as detailed in Appendix[A.4] In addition, we apply the DCV algorithm
in Appendix[A.5]to select \,, from a candidate set of 5 grid points in the range [log(n)/25,log(n) /5].

Networks. The details of the two network structures are as follows:

* Directed Circle Network: Assume that the clients are arranged in a fixed sequence with an in-
degree d,,, = D > 0 foreach 1 < m; < M. The network adjacency matrix A = (G, m,)
is then defined with ayy,m, = 1if mg = {(m1 +d —1) mod M} +1for1 < d < D, and
Gm,m, = 0 otherwise. Here, ¢ mod b denotes the remainder when the integer a is divided by
the integer b. The resulting network structure should be of a circle type |[Wu et al.|(2023a).

* Undirected Erdos—Rényi Graph: Consider an undirected Erd6s—Rényi graph represented by a
symmetric adjacency matrix A = (@pmymy)s WHere G m, = Gmam, forall 1 < mq,ms < M.
We generate each entry a,,,.m,, for 1 < m; < ms < M independently, with P(a,,,m, = 1) = ¢
and P(@pm,m, = 0) = 1 — ¢, where ¢ € (0, 1] is the link probability. Subsequently, we ensure
symmetry by setting Umomy = Amyms for my1 > msa, and set a,y,, me — 0 for m; = ma.
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D.2 ADDITIONAL SIMULATION RESULTS

In the simulation experiments on synthetic data, the averaged values and confidence bands of MSEs
under the Undirected Erd6s—Rényi Graph are present in Figure [D.1]

—e— DFL aDFL —4— BRIDGE-M —— BRIDGE-T —#— ClippedGossip —»— SLBRN-M SLBRN-T

BF Corruption | g=0.2 00D Corruption | g=0.2 MP Corruption | g=0.2
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w o w o w
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N
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w

Figure D.1: The logarithm of MSE values versus the fraction of abnormal clients (9) under the
Undirected Erdés—Rényi Graph in the homogeneous scenario. Different algorithms are evaluated
under different corruption types and two link probabilities (g).

To further evaluate performance under heterogeneous data distributions, we conduct simulation ex-
periments using synthetic data distributed in a heterogeneous manner across clients. Specifically,
for each client m (1 < m < M), feature vectors X;s are generated from the multivariate normal
distribution Np(fm, £ ). Here, the mean vector j,,, € R? is constructed by sampling each element
independently from the uniform distribution ¢/(—0.5,0.5). The covariance matrix X,, € RP*? js

defined as ¥, = (plﬁjl1 - 2'), where p,,, is sampled from 2/(0.2,0.3). All other simulation settings
remain identical to those described previously. The simulation results under two different network
structures in the heterogeneous scenario are presented in Figures and[D.3] respectively. Similar
to the findings from the homogeneous scenario, the aDFL algorithm exhibits competitive perfor-
mance compared to the competing methods.

We next consider two more realistic network structures. The first one is the scale-free network
generated by the Barabasi-Albert (BA) model (Barabasi & Albert, |1999), a standard topology for
modeling real-world networks due to its power-law degree distribution. This structure is commonly
used in federated learning research (Bhattacharya et al., 2024} |Palmieri et al., |2023). Table
presents the results under this network topology with M = 200 clients. We also consider a larger-
scale case with M = 500 clients, whose results are shown in Table [D:2} The second one is the
stochastic block structure network. To demonstrate this part, we conduct a simulation experiment
with M = 100 and ¢ = 0.3. We next construct a stochastic block structure network with two
equal-sized blocks. To mimic the unevenly distributed case of abnormal clients, we put all abnormal
clients in one block. The results are presented in Table These results show that our aDFL
method performs excellently in more complex network structures and larger scales.

We also consider two more complex data corruption types. They are FGSM (Goodfellow et al.|
2014) and PGD/iFGSM (Madry et al.| 2017; Kurakin et al., 2018)) attacks. We conduct experiments
using the heterogeneous scenario under the scale-free network generated by the BA model with pa-
rameter m = 5. The results for two corruption types are shown in Tables [D.4]and [D.3] respectively.
The results show that our aDFL method remains robust against these novel corruption types.
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Last, we explore the effectiveness of our method for the dynamic corruption case. Specifically, for
every round of gradient descent (GD) iteration, we randomly reassigned clients as either normal or
abnormal. The fraction of abnormal clients is set to be o = 0.3. Concurrently, the aDFL algorithm
has to dynamically update its weights &, by revising Equation (5) from &y, = 7{ A, || £, @1y
to &Y = W{An|\£(m) (E)g%?ﬂ)“} The corresponding results are presented in Table which
demonstrate the robustness of our aDFL method against dynamic corruption.

Table D.1: The averaged MSE (standard deviation in parentheses) of different methods under the
scale-free network generated by the Barabasi-Albert (BA) model with M = 200 (using the hetero-
geneous model setting with BA parameter m = 5).

Method 0=01 0=0.15 0=02 0=025 0=03
DFL 0.250 (0.070) 0.479 (0.124)  0.719 (0.129) _ 0.961 (0.155) _ 1.235 (0.138)
aDFL 0.004 (0.001)  0.005 (0.001)  0.005 (0.001)  0.005 (0.001)  0.006 (0.001)
BRIDGE-M  0.008 (0.001) 0.011 (0.003) 0.017 (0.005) 0.030 (0.014)  0.082 (0.092)
BRIDGE-T 0.008 (0.002)  0.013 (0.005)  0.030 (0.024)  0.099 (0.096)  0.285 (0.189)
ClippedGossip ~ 0.104 (0.037)  0.192 (0.067)  0.290 (0.076)  0.403 (0.100) ~ 0.527 (0.095)
SLBRN-M 0.268 (0.061)  0.401 (0.067)  0.590 (0.085) 0.819(0.137) 1.112(0.113)
SLBRN-T 0.188 (0.036)  0.337 (0.053)  0.533 (0.080) 0.768 (0.118)  1.070 (0.101)

Table D.2: The averaged MSE (standard deviation in parentheses) of different methods under the
scale-free network generated by the Barabasi-Albert (BA) model with A/ = 500 and ¢ = 0.3 (using
the heterogeneous model setting with BA parameter m = 5).

DFL aDFL ~ BRIDGE-M BRIDGE-T ClippedGossip SLBRN-M  SLBRN-T
1.301 0.003 0.062 0.483 0.564 1.020 1.056
(0.086)  (0.001) (0.020) (0.105) (0.065) (0.131) (0.066)

Table D.3: The averaged MSE (standard deviation in parentheses) of different methods under the
stochastic block network (using the heterogeneous model setting with the MP corruption and o =
0.3).

DFL aDFL ~ BRIDGE-M BRIDGE-T ClippedGossip SLBRN-M  SLBRN-T
0.401 0.009 0.473 0.452 0.265 0.585 0.439
(0.022)  (0.000) (0.031) (0.021) (0.012) (0.089) (0.042)

D.3 REAL DATA APPLICATION

Datasets. We consider the following datasets to evaluate the effectiveness of our proposed aDFL
method.

e MNIST (LeCun et al.l [1998) consists of 70,000 handwritten digit images (0-9), with approxi-
mately 7,000 images per class. Among these, 60,000 are used for training and the remaining
10,000 are reserved for testing. For this dataset, we use the LeNet model with p = 61, 706 param-
eters. The initial values of the LeNet model are set using the Xavier uniform initializer.

* CIFARI10 (Krizhevsky et al., 2009) comprises 60,000 color images, evenly distributed across 10
classes. Of these, 50,000 images are used for training and 10,000 are used for validation. For
this dataset, we fine-tune the VGG16 model pre-trained on ImageNet dataset, with p = 5,130
trainable parameters.

* We further explore a more challenging dataset CINIC10 (Darlow et al., 2018), which consists
of 270,000 images drawn from both CIFAR10 and downsampled ImageNet, evenly distributed
across 10 classes. We then conduct the experiment for CINIC10 in a similar way as for CIFAR10
in Section 5.2. The corresponding results are shown in Figure (i1). It shows that the results
remain encouraging and are qualitatively similar to those obtained on MNIST and CIFAR10.

Distribution Pattern. The following distribution scenarios are considered:
* Homogeneous Scenario: Images from the entire training dataset are randomly and uniformly

distributed across 50 clients.
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Table D.4: The averaged MSE (standard deviation in parentheses) of different methods under the
FGSM attack with € = 0.5 (using the heterogeneous model setting).

Method 0=01 0=0.15 0=02 =025 0=03

DFL 0.250 (0.070) 0.479 (0.124)  0.719 (0.129)  0.961 (0.155) _ 1.235 (0.138)
aDFL 0.004 (0.001)  0.005 (0.001)  0.005 (0.001)  0.005 (0.001)  0.006 (0.001)
BRIDGE-M  0.008 (0.001) 0.011(0.003) 0.017 (0.005) 0.030 (0.014)  0.082 (0.092)
BRIDGE-T 0.008 (0.002)  0.013 (0.005)  0.030 (0.024)  0.099 (0.096)  0.285 (0.189)
ClippedGossip ~ 0.104 (0.037)  0.192 (0.067)  0.290 (0.076)  0.403 (0.100) ~ 0.527 (0.095)
SLBRN-M 0.268 (0.061)  0.401 (0.067)  0.590 (0.085) 0.819(0.137) 1.112(0.113)
SLBRN-T 0.188 (0.036)  0.337 (0.053)  0.533 (0.080) 0.768 (0.118)  1.070 (0.101)

Table D.5: The averaged MSE (standard deviation in parentheses) of different methods under the
PGD/i-FGDM attack with ¢ = 0.5 and o = 0.05 (using the heterogeneous model setting with
o= 0.3).

DFL aDFL ~ BRIDGE-M BRIDGE-T ClippedGossip SLBRN-M  SLBRN-T
1.316 0.006 0.150 0.505 0.565 1.245 1.191
(0.172) ~ (0.001) (0.253) (0.240) (0.117) (0.274) (0.232)

Table D.6: The averaged MSE (standard deviation in parentheses) of different methods under dy-
namic corruption (using the heterogeneous model setting under BF corruption with o = 0.3 and a
directed circle network with D = 5).

DFL aDFL  BRIDGE-M BRIDGE-T ClippedGossip
3.556 0.010 1.267 2.100 3.305
(0.128)  (0.002) (0.079) (0.094) (0.131)
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Figure D.2: The logarithm of MSE values versus the fraction of abnormal clients (9) under the
Directed Circle Network in the heterogeneous scenario. Different algorithms are evaluated under
different corruption types and two in-degrees (D).
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Figure D.3: The logarithm of MSE values versus the fraction of abnormal clients (o) under the
Undirected Erd6s—Rényi Graph in the heterogeneous scenario. Different algorithms are evaluated
under different corruption types and two link probabilities (g).

* Heterogeneous Scenario: Images are first grouped according to their labels, with each label
category evenly divided into 25 subsets. These subsets are then assigned such that each client
receives data from 5 subsets with different labels, ensuring that every client ultimately holds data
associated with 5 distinct labels.

* To increase heterogeneity, we explore a more challenging label distribution. Specifically, we
assume each client holds data from 10 different classes and the class distribution is highly imbal-
anced: one dominant label accounts for 64% of the client’s data, while each of the remaining 9
labels contributes only 4%. This introduces significant intra-client label imbalance and inter-client
diversity, as the dominant label varies across clients. The detailed results using the CIFAR-10
dataset are present in Figure [D.12](i). We find that, although our aDFL method performs slightly
worse than the oracle method, it exceeds all competing methods. These results demonstrate the
practical robustness of our method.

Corruptions. Two kinds of data corruption are considered.

* OOD: The feature vectors X;’s on abnormal machines are replaced by 5(: = 0.3X; + 3V}, where
the entries of V,, € R? are independently generated from a standard normal distribution N (0, 1).

* Label-Flipping (LF): We encode the image labels as numerical values ranging from 0 to 9.

Subsequently, the response variables Y;’s on the abnormal machines are replaced by Y; =
(Y; + 1) mod 10.

Training strategy. We randomly distribute all training samples equally to M = 50 clients. To
speed up convergence, we adopt a constant-and-cut learning-rate scheduling strategy (Lang et al.,
2019). Specifically, for the MNIST dataset, a total of 6,000 iterations are executed with an initial
learning rate of a = 0.1. The learning rate decreases to 0.05 after 200 iterations and to 0.01 after
4,000 iterations. For the CIFAR10 dataset, we run a total of 9,000 iterations with an initial learning
rate of o = 1. The learning rate is reduced to 0.5, 0.2, and 0.01 after 200, 5,000, and 8,000 itera-
tions, respectively. For the proposed aDFL method, we recalculate the weights {&,, }.,, according to
equation (@.4)) whenever the learning rate is adjusted. In addition, we found that the ClippedGossip
and SLBRN methods are highly sensitive to the learning rate in our setting. Therefore, we carefully
adjusted the learning rate strategy for these methods separately.
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Results. We present additional results that were not included in the main text. Specifically, results
for real applications on MNIST and CIFAR10 under the homogeneous scenario are shown in Figures
D8] [D.11] Results under the heterogeneous scenario are shown in Figures[D.5]-[D.7} These results
exhibit patterns consistent with those in Figure 2] In addition, we observe that the two SLBRN
algorithms failed to converge in the Directed Circle Network. Therefore, the corresponding results
are not reported.
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Figure D.4: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario.
Different methods are evaluated with varying in-degrees (D) and fraction of abnormal clients (o)
under the LF corruption and Directed Circle Network.
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Figure D.6: The testing loss/accuracy over iterations for two datasets in the heterogeneous scenario.
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Figure D.8: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
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Figure D.9: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
Different methods are evaluated with varying in-degrees (D) and fractions of abnormal clients (o)
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Figure D.10: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
Different methods are evaluated with varying link probabilities (¢) and fractions of abnormal clients
(0) under the LF corruption and Erd6s—Rényi Graph.
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Figure D.11: The testing loss/accuracy over iterations for two datasets in the homogeneous scenario.
Different methods are evaluated with varying link probabilities (¢) and fractions of abnormal clients
(0) under the OOD corruption and Erdés—Rényi Graph.
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Figure D.12: Testing accuracy over iterations under the increasingly heterogeneous scenario (left
panel) and the homogeneous scenario (right panel). We fix the in-degree at D = 3 and set the
fraction of abnormal clients to ¢ = 25% under LF corruption on the Directed Circle Network.
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