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ABSTRACT

Large Multimodal Models (LMMs) have achieved remarkable results across var-
ious tasks, but they still face challenges in complex multimodal reasoning that is
typically performed via chain-of-thought (CoT). Recent studies also start to ex-
plore the retrieval-augmented few-shot setting to alleviate this problem. However,
existing methods still lack tailored retrieval strategy and effective utilization of
demonstrations in complex multimodal reasoning scenarios, resulting in limited
reasoning improvements. In this paper, we introduce a novel framework, termed
CoT-Guided Meta Test-Time Training (CoT-MT3), to enhance LMMs’ few-
shot multimodal reasoning ability by employing a CoT-guided Weighted Retrieval
(CWR) strategy and a Meta Test-Time Training (MT3) paradigm. To provide more
relevant demonstrations, CWR employs a retrieval-specific CoT to highlight key
information and deep reasoning of the test query for problem-solving. Retrieval
is then performed based on the weighted similarity of both the original query and
the derived CoT cues. Moreover, to fully leverage retrieved demonstrations, MT3

introduces a context-based meta-learning paradigm by constructing multiple train-
ing samples per query with varying context sizes and combinations using few-shot
demonstrations. Experiments across three benchmarks show that our CoT-MT3

achieves a significant relative improvement of up to 4.82% on MathVerse and
8.38% on We-Math in the 4-shot setting. Notably, we observe that our CoT-MT3

demonstrates exceptional robustness across different context sizes, highlighting
its effectiveness and generalization to few-shot reasoning scenarios.

1 INTRODUCTION

Large Multimodal Models (LMMs) (Wang et al., 2024b; Liu et al., 2024; Li et al., 2024a) have
achieved notable advances in recent years across a wide range of domains. However, they still strug-
gle in solving out-of-distribution questions (Zhang et al., 2024c; Han et al., 2023), especially in
complex multimodal reasoning (Zhang et al., 2024a; Wang et al., 2024a) that is typically performed
via chain-of-thought (CoT). To alleviate this issue, recent studies (Wang et al., 2023; Zuo et al.,
2025; Muennighoff et al., 2025; Snell et al., 2024b; Akyürek et al., 2024) explore test-time scaling
strategies, which improves model performance by incorporating additional inference-time compute
or task-specific information during inference. Among these strategies, retrieval-augmented meth-
ods (Dong et al., 2024; Hübotter et al., 2024) have emerged as a promising direction, which retrieve
few-shot demonstrations (also including CoT) at test time to boost the performance of LMMs.

However, these retrieval-augmented approaches remain underexplored in complex reasoning scenar-
ios, which still fall short in achieving accurate retrieval and fully leveraging the retrieved few-shot
demonstrations, thus yielding limited improvements. Firstly, existing retrieval mechanisms (Liu
et al., 2023; Dong et al., 2024; Tan et al., 2024) primarily rely on question-based similarity between
the test query and candidate questions, while overlooking the deep reasoning behind the test query
(i.e, the relevant mathematical principles and possible solution strategies). As shown in Figure 1,
retrieval solely based on the question leads to the selection of reasoning-level inconsistent demon-
strations, and thus fails to provide sufficient support for problem solving. This bias significantly
hinders performance on tasks demanding complex multi-step reasoning (Fu et al., 2022).

Furthermore, the complexity of multimodal data also poses significant challenges in leveraging the
retrieved few-shot demonstrations. There are two main strategies to leverage these demonstrations:
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Step 1 (30-60-90 triangle properties): In a 30-60-90
right triangle ……
Step 3 (Pythagorean Theorem): According to the
Pythagorean Theorem, 𝐴𝐵! 	= 	𝐴𝐶! + 	𝐵𝐶!.
Answer: 2 3

Step 1 (Pythagorean Theorem): According to the
Pythagorean Theorem, for the right triangle, we have
25! 	= 	 7! 	+ 	𝑝!. ……
Step 6 (Square root calculation): x = 24.
Answer: 24

As shown in the right angled triangle, can you
calculate the length of the unknown sides of each
right-angled triangle?

As shown in the figure, in the right-angled triangle
ABC, ∠C= 90°, ∠A = 30°, BC = 2cm, calculate the
length of the right-angle side AC.

25
7

p

The given information is:
The triangle is a right-angled triangle.
- The marked angle is 30°.
- The diagonal side has a length of P.
The unknowns are:
- The length of the diagonal side (P).
The relevant mathematical theorem is the 30-60-90 
triangle properties ……
Step-by-step reasoning approach:
1. Identify the sides of the. right-angled triangle.
2. Apply the Pythagorean theorem to solve for the 
unknown side (P).

Step2: CoT-Guided RetrievalStep1: Retrieval Specific CoT

Question-Based Retrieval

B

AC

Step 1 (30-60-90 triangle properties): In a 30-60-
90 right triangle……
Step 2 (Calculate hypotenuse): Let the hypotenuse
be denoted as h. According to the property, h = 2 *
8.5 = 17.
Step 3 (Pythagorean Theorem): According to the
Pythagorean Theorem, 𝑃!	= ℎ! - 𝑙𝑒𝑔!	.
……
Step 8 (Calculate square root): P≈14.7 .
Answer:

Test-Time Training

14.7

Test Query

In the right angled triangle, the marked angle
is 30°, the marked right angled side has a
length of 8.5, and the diagonal side has a
length of P. Solve for the unknown P.

8.5
P

30°

Meta Test-Time Training

17

Step 1 (30-60-90 triangle properties): In a 30-60-
90 right triangle, the hypotenuse is twice the
length of the shorter leg.
Step 2 (Determine the hypotenuse length): Since
the marked angle is 30° and the marked right
angled side has a length of 8.5, the hypotenuse P
= 2 * 8.5 = 17.
Answer:

Figure 1: Comparison between different retrieval strategies and training paradigms. It can be seen
that CoT-guided retrieval can more effectively search demonstrations with higher similarity in both
problem formulation and problem-solving approaches than question-based retrieval. Moreover, sim-
ple fine-tuning approach tends to overfit to the retrieval demonstration and copy their reasoning pat-
terns directly, which otherwise can be alleviated by meta test-time training.

1) In-Context Learning (ICL) that provides demonstrations in prompts for reference (Liu et al., 2023;
Dong et al., 2024; Tan et al., 2024; Jiang et al., 2024; Qin et al., 2023), and 2) Test-Time Training
(TTT) that fine-tunes the model with these lightweight demonstrations at test time (Hardt & Sun,
2024; Hübotter et al., 2024). However, ICL methods struggle to understand complex multimodal
prompts with multiple interleaved images and texts. As the number of demonstrations increases,
ICL methods even actually harm the reasoning performance (Qin et al., 2024; Liu et al., 2023).
Meanwhile, TTT methods tend to overfit to the limited number of demonstrations, causing the model
to copy the pattern of the demonstration directly, which leads to incorrect answers (Hübotter et al.,
2024). Overall, both groups of retrieval-augmented approaches (i.e., ICL and TTT) fail to fully
leverage the retrieved few-shot demonstrations in boosting the reasoning ability of LMMs.

To address the above limitations, we propose a novel framework, termed CoT-Guided Meta Test-
Time Training (CoT-MT3), to enhance LMMs’ complex multimodal reasoning performance during
test time. The proposed framework consists of two key components: a CoT-guided Weighted Re-
trieval (CWR) strategy and a Meta Test-Time Training (MT3) paradigm. As shown in Figure 1,
the CWR strategy improves retrieval accuracy through two modules: retrieval-specific CoT and
CoT-integrated weighted retrieval. The retrieval-specific CoT decomposes the reasoning process
into multiple predefined sub-tasks, guiding the original LMM to highlight key problem information
and task-specific knowledge for solving problems, such as relevant mathematical theorems, as illus-
trated by the green text on the left side of Figure 1. The CoT-integrated weighted retrieval strategy
then selects target demonstrations based on the weighted score of question similarity and reasoning
similarity (computed between the CoT output and the derived CoT cues).

Built upon CWR, our MT3 paradigm introduces a context-based meta-learning paradigm designed
to improve LMMs’ reasoning ability at test time. Rather than directly fine-tuning on the fixed
set of retrieved demonstrations, MT3 constructs a series of few-shot training samples with varying
context sizes and diverse combinations. Each demonstration is treated as the target in turn, while
the remaining demonstrations are selected, mixed up and utilized to form its prompt context. This
training process encourages the model to learn how to recognize useful information under diverse
multimodal prompt conditions. In this way, our method fully leverages the potential of the retrieved
demonstrations in mete-learning way to achieve robust reasoning of LMMs at test time.
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Our contributions are summarized as follows: 1) We propose CoT-Guided Weighted Retrieval
(CWR) strategy that combines retrieval-specific CoT with a CoT-integrated weighted mechanism to
retrieve demonstrations with higher accuracy. 2) We introduce MT3, a context-based meta-learning
paradigm that improves the model’s robustness across varying few-shot settings and facilitates effec-
tive reasoning at test time. 3) Extensive experiments show that the proposed CoT-MT3 significantly
improves LMMs’ complex reasoning ability, and outperforms other competing methods across most
settings, demonstrating its effectiveness in retrieval-augmented reasoning scenarios.

2 RELATED WORK

Multimodal Reasoning. With the growing attention on multimodal reasoning, a variety of meth-
ods (Peng et al., 2024; Shi et al., 2024; Gao et al., 2023) and benchmarks (Zhang et al., 2024a;
Lu et al., 2024; Qiao et al., 2024; Wang et al., 2024a; 2025a) have been introduced, contributing
to advancements in the field. Most existing approaches (Shi et al., 2024; Li et al., 2024b) rely on
fine-tuning LMMs using large-scale multimodal datasets to enhance their reasoning abilities. Due
to the scarcity of high-quality multimodal data, fine-tuning on synthetic data (Zhang et al., 2024b;
Gao et al., 2023) has emerged as a widely adopted strategy, yielding some improvements in model
performance. Recently, test-time scaling techniques have gained traction as an alternative approach
to enhance reasoning performance (Muennighoff et al., 2025; Guan et al., 2025; Ye et al., 2025;
Snell et al., 2024a; Dong et al., 2024). Among them, retrieval-augmented approaches have demon-
strated effectiveness (Dong et al., 2024; Liu et al., 2023; Tan et al., 2024). However, their appli-
cation in complex multimodal reasoning remains largely unexplored. Developing techniques that
can effectively leverage retrieved few-shot demonstrations and adapt LMMs to complex multimodal
reasoning tasks during inference remains a critical challenge.

Test-Time Training. Test-Time Training (TTT) (Sun et al., 2020; Hardt & Sun, 2024) is a general
approach for enhancing model performance when training and test data come from different distri-
butions. Recent works on TTT have extended this paradigm to LLMs (Hardt & Sun, 2024; Akyürek
et al., 2024; Wang et al., 2024c; Hübotter et al., 2024) by fine-tuning on retrieved demonstrations,
demonstrating its effectiveness on novel tasks. TTT-NN (Hardt & Sun, 2024) improves language
modeling task performance by fine-tuning top-N nearest neighbors retrieved from each test query.
Similarly, TTT-ICL (Akyürek et al., 2024) constructs context-based demonstrations according to
few-shot data for fine-tuning, achieving strong results on the ARC Challenge. However, TTT hasn’t
been explored in complex multimodal reasoning scenarios, particularly in terms of demonstration
multimodal retrieval and effectively reasoning under few-shot conditions.

Chain-of-Thought Reasoning. Chain-of-Thought (CoT) (Wang et al., 2025b; Wei et al., 2022;
Chen et al., 2025) has significantly advanced LMMs’ reasoning abilities, leading to notable progress
in solving multi-step reasoning tasks. Apart from fine-tuning approaches, existing works explicitly
generate intermediate steps or decompose the problem into manageable subproblems, thereby en-
abling models to tackle complex tasks in a interpretable manner (Zhang et al., 2023; Zheng et al.,
2023; Sun et al., 2025). Recent works (Qin et al., 2023; Trivedi et al., 2022) also propose to leverage
the model’s initial CoT outputs to retrieve relevant demonstrations and enhance downstream tasks
through retrieval-augmented methods. However, these methods overlook the explicit optimization
of the CoT reasoning process for retrieval purpose. In this work, we propose a retrieval-specific CoT
that highlights key information to support tailored demonstration retrieval.

3 METHODOLOGY

3.1 PRELIMINARY

In the retrieval-augmented few-shot setting, given a test query qt = {iq, tq}, where iq denotes the
image and tq denotes the question text, along with a demonstration pool D, the first step is to retrieve
the most relevant m demonstrations from D. This is achieved via a similarity function S(xq, x) that
ranks each candidate x ∈ D based on its relevance to the test query xq:

X = {x1, x2, . . . , xm} = top-m(D,S(xq, ·)), (1)

where each retrieved demonstration xi = {qi, ri} consists of a question qi and a corresponding
response ri, and the function top-m(D,S) denotes the most relevant m demonstrations from D
according to the similarity function S(xq, ·).

3
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You are a mathematics expert. I will now provide you with a multimodal math problem.
Your task is to:
1. Understand the problem and list the information.  2. Identify the key information and unknowns.
3. Identify relevant mathematical theorems. 4. Reason step-by-step based on your understanding.
The problem you need to solve is: {𝑞!}

Prompt for Retrieval-Specific CoT

Retrieval Demonstrations

…	𝑥!= (𝑞!, 𝑟!) 	𝑥% = (𝑞%, 𝑟%) 𝑥$ = (𝑞$, 𝑟$) 𝑥' = (𝑞', 𝑟')

CoT-Guided Weight Retrieval Meta Test-Time Training

<Given information> :
- AB is a diameter of the circle……
<Unknowns> :
- The radius of the circle.
<Relevant mathematical theorems> :
- The Pythagorean theorem
- Properties of a circle
<Step-by-step reasoning> :
1. Since AB is the diameter……

Retrieval-Specific CoT

AB is a diameter, AC = 8, and BC = 
15. Find the radius of the circle.

Test Q𝐮𝐞𝐫𝐲	𝒒𝒕

BA

C

L
M

M

❄

1 - 𝑤 = 0.3
CoT
Index

Σ
𝑤 = 0.7

Query
Index

Response 𝒓𝒕 Using the Pythagorean theorem ……The answer is 8.5.

Few-shot Test Query

…	𝑥!= (𝑞!, 𝑟!) 	𝑥% = (𝑞%, 𝑟%) 𝑥) = (𝑞', 𝑟') 𝑞*

Fine-Tuned LMM❄

L
M

M
🔥

Training Data

Figure 2: Overview architecture of our proposed CoT-MT3. It consists of two novel components:
(1) CoT-Guided Weight Retrieval: Given the test query qt, the original LMM first generates a
retrieval-specific CoT that captures task-specific information. This information combined with the
test query is utilized in a weighted retrieval mechanism to retrieve top-m relevant demonstrations.
(2) Meta Test-Time Training: Built upon the retrieval demonstrations {x1, x2, ...xm}, the model
is fine-tuned using a series of few-shot training samples. For each query with question qi, multiple
training samples ranging from 0-shot to k-shot are constructed by random sampling different subsets
of the retrieved demonstrations. During inference, the fine-tuned LMM leverages the test query with
k-shot retrieved demonstrations to obtain the final response rt.

The objective of retrieval-augmented few-shot learning is to: (1) optimize the selection of relevant
demonstrations and (2) maximize the model’s ability to generate accurate predictions conditioned
on the selected demonstrations. This can be formulated as:

max
X⊂D

P (rq | xq, X), (2)

where P (rq | xq, X) denotes the probability of generating the response rq for the query xq , condi-
tioned on the retrieved demonstrations X .

3.2 OVERALL ARCHITECTURE

Our goal is to enhance LMMs’ reasoning performance under retrieval-augmented few-shot setting.
As illustrated in Figure 2, the proposed framework comprises two key components: CoT-guided
Weighted Retrieval (CWR) and Meta Test-Time Training (MT3). CWR improves retrieval quality by
employing a retrieval-specific CoT that decomposes the initial reasoning process into multiple sub-
tasks, guiding the model to highlight key information and task-specific knowledge. A CoT-integrated
weighted retrieval mechanism is then employed to select demonstrations by combining question-
based similarity and reasoning-based similarity. In the test-time training stage, we propose MT3,
a context-based meta-learning paradigm to improve LMMs’ reasoning ability at test time. Rather
than simple fine-tuning, MT3 constructs few-shot training samples with varying context sizes and
combinations, encouraging the model to learn how to recognize valuable information and achieve
effective reasoning from multimodal context. We describe the details of each module below.

3.3 COT-GUIDED WEIGHTED RETRIEVAL

3.3.1 RETRIEVAL-SPECIFIC COT

In multimodal reasoning tasks, retrieving highly relevant demonstrations requires precise under-
standing and deep analysis of the problem content. A natural solution is to leverage the model’s
preliminary Chain-of-Thought (CoT) reasoning output as auxiliary information to improve the re-
trieval precision (Dong et al., 2024; Qin et al., 2023). However, basic CoT prompting strategies
(e.g., “Let’s think step by step”) focus solely on solving the target problem, making it difficult to
extract the key reasoning information for effective retrieval. The mismatch between CoT objectives

4
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and retrieval-specific reasoning demands causes basic CoT prompting to fall short in addressing
retrieval-specific requirements.

You are a mathematics expert. I will now provide you with a multimodal
math problem.
Your task is to:
1. Understand the problem and list the information:
- List all the given information and elements from the text and the image in
the problem.
2. Identify the key information and unknowns:
- Extract critical information for solving the problem and highlight any
unknowns that need to be determined.
3. Identify relevant mathematical theorems:
- Identify the relevant mathematical theorems that form the basis for
solving the problem.
4. Reason step-by-step based on your understanding
- Based on your understanding of the problem, attempt to break it down
into logical steps and provide a step-by-step reasoning approach to solving
the problem.
The problem you need to solve is:
<image>
<question>

Retrieval-Specific COT

Figure 3: Illustration of retrieval-specific
CoT for multimodal mathematical reasoning,
which decomposes the reasoning process into
predefined sub-tasks that guide the model to
highlight task-relevant information.

To address this issue, we propose a retrieval-
specific CoT, which structures the model’s ini-
tial reasoning into a sequence of predefined sub-
tasks aimed at uncovering the deep reasoning be-
hind the test query. As illustrated in Figure 3,
retrieval-specific CoT decomposes the reasoning
into four key stages: understanding and listing
the problem statement, identifying key information
and unknowns, identifying relevant mathematical
theorems, and performing step-by-step reasoning
based on above understanding. This structured ap-
proach simplifies reasoning by breaking the prob-
lem into manageable components while highlight-
ing retrieval-critical elements.

In contrast to basic CoT prompting which primar-
ily generates calculations steps to reach the final
answer, our approach emphasizes both the model’s
understanding and reasoning patterns of the prob-
lem. By explicitly guiding the model to construct a
retrieval-specific representation of the problem, retrieval-specific CoT ultimately improves the re-
trieval precision. Moreover, the structure of retrieval-specific CoT can be flexibly adapted to other
domains (e.g., physics) to better capture domain-specific knowledge.

3.3.2 COT-INTEGRATED WEIGHTED RETRIEVAL

After obtaining the retrieval-specific CoT output, we aim to incorporate both the question content
and the generated reasoning information into the retrieval process. However, the question’s visual
and textual descriptions already occupy substantial token space, while the generated CoT reasoning
steps tend to be also detailed. As a result, embedding all components into a unified representation
leads to degraded retrieval quality. Furthermore, as different tasks emphasize question and reasoning
to different extents, a task-adaptive weighted mechanism is required to balance their contributions.

To this end, we adopt a weighted retrieval strategy that separately computes similarities from ques-
tion and reasoning, and then dynamically adjusts their influence during retrieval. Specifically, given
a test query xq and the generated retrieval-specific CoT rsq , we compute two types of similarity:
question-based similarity and reasoning-based similarity. Let sim(·, ·) denote a similarity function.
The question-based similarity sq is computed between the encoded features of the test query and the
candidate demonstration xi = {ii, ti}:

sq = sim (f(xq), f(xi)) (3)

where f(xq) and f(xi) denote the joint multimodal feature embedding of the test query and the
candidate demonstration, respectively. The reasoning-based similarity sr is calculated using the
retrieval-specific CoT output rsq and the response ri of the candidate demonstration:

sr = sim(f(rsq), f(ri)). (4)

To balance their contributions, we define a weighted similarity:

s = w · sq + (1− w) · sr, (5)

where w ∈ [0, 1] is a hyperparameter controlling the trade-off between question-based similarity
and reasoning-based similarity. This weighted design provides fine-grained control over retrieval
relevance, leading to more accurate selection of demonstrations.

3.4 META TEST-TIME TRAINING

Although retrieval-augmented methods provide relevant demonstrations at test time, effectively uti-
lizing them to improve multimodal reasoning ability remains challenging. To mitigate this limita-
tion, we propose Meta Test-Time Training (MT3), a context-based meta-learning paradigm. To fully
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leverage the retrieved demonstrations, MT3 fine-tunes the model in a meta-learning paradigm using
a series of few-shot training instances with varying context sizes and combinations. This enables
LMMs to efficiently acquire domain-specific reasoning capabilities at test time, thereby enhancing
the overall performance on complex multimodal reasoning tasks.

Training Set Construction. As illustrated in Figure 2, we construct a series of few-shot samples for
meta test-time training by varying the number and combination of context demonstrations per query.
Specifically, given the retrieved demonstration set X = {x1, x2, . . . , xm}, where each xi = {qi, ri},
we generate k+1 training samples for each target xi ∈ X . Each sample is assigned a unique context
size from the set {0, 1, . . . , k}, where k ≤ m−1 is a predefined maximum context size. For each
context size c, the prompt P (c)

i for target xi is formed by randomly sampling c demonstrations from
the remaining set:

∀xi ∈ X, ∀c ∈ {0, 1, . . . , k}, P (c)
i ⊂ X \ {xi}, |P (c)

i | = c. (6)

Notably, for edge cases such as c = 0, there only exist m unique samples. Therefore, we uniformly
sample m training samples for each context size to ensure balanced training across context sizes.
Additionally, we ensure that each demonstration is used equally as both the target and part of the
context, promoting balanced participation and reducing overfitting to specific demonstrations.

Meta Test-Time Training and Inference. At test time, we adapt the model using pre-constructed
samples generated from retrieved demonstrations. Each training sample consists of a target question
paired with a context with size c. The training objective is defined as:

L(xi, P
(c)
i ) = − logP (ri | qi, P (c)

i ), (7)

where P (ri | qi, P (c)
i ) denotes the probability of generating the correct response ri for the target

question qi, conditioned on its associated context P (c)
i . The diversity of multimodal prompt condi-

tions in the few-shot training samples enables the model to learn how to identify useful information
and enhance reasoning capabilities during meta-training.

Final inference is performed by the fine-tuned model. Following Flamingo (Alayrac et al., 2022), we
construct few-shot test query by concatenating original test query and all retrieved demonstrations,
sorted by descending similarity to the test query. The fine-tuned model then performs more accurate
and robust reasoning based on the retrieval-augmented multimodal context.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We focus on the multimodal mathematical reasoning, which serves as one of most
challenging tasks for multimodal reasoning. Our method is evaluated on three multimodal mathe-
matical reasoning benchmarks: MathVerse (Zhang et al., 2024a), MathVista (Lu et al., 2024), and
We-Math (Qiao et al., 2024), using the testmini sets of each. For MathVerse, we focus on four mul-
timodal subsets: Text Dominant (TD), Text Lite (TL), Vision Dominant (VD), and Vision Intensive
(VI), which all involve both textual and visual inputs. We exclude the Text Only and Vision Only
subsets to ensure that test queries and retrieved demonstrations share the same input modalities. For
MathVista, we evaluate on the Geometric Problem Solving (GPS) subset, and for We-Math, we use
the full set. A more detailed description of these benchmarks is provided in Appendix B.1.

Baselines. Our method is compared against a range of baseline methods under 2, 4 and 6-shot
settings: (1) Zero-shot: direct inference without any demonstrations. (2) Random: ICL with ran-
domly sampled demonstrations from the candidate pool. (3) RICES: retrieval-based in-context ex-
ample selection (Alayrac et al., 2022), which retrieves demonstrations using visual similarity to the
query. (4) QBICL: ICL using question-based retrieval, incorporating both the image and question
text in the similarity computation. (5) TTT-NN: TTT on nearest retrieved demonstrations, following
the setup in Hardt & Sun (2024). (6) TTT-ICL: TTT using in-context demonstrations, where we
follow the leave-one-out construction strategy in Akyürek et al. (2024). Note that both TTT-NN
and TTT-ICL adopt question-based retrieval to ensure consistency in comparison.

Implementation Details. For the retrieval component, we employ Vista (Zhou et al., 2024), a
multimodal hybrid retriever capable of processing long input sequences. All retrieval tasks are
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Table 1: Comparative results on MathVerse under 2-shot, 4-shot, and 6-shot settings. Accuracy (%)
is used as the evaluation metric. The best score for each setting is bolded. All compared methods
employ the same backbone Qwen2-VL-7B.

Methods
TD TL VI VD Avg

2-shot 4-shot 6-shot 2-shot 4-shot 6-shot 2-shot 4-shot 6-shot 2-shot 4-shot 6-shot 2-shot 4-shot 6-shot

Zero-shot 32.49 32.49 32.49 27.41 27.41 27.41 23.73 23.73 23.73 24.49 24.49 24.49 27.03 27.03 27.03

Random 31.35 30.33 31.60 27.03 25.89 25.63 22.59 22.34 25.00 23.22 24.37 25.13 26.05 25.73 26.84
RICES 33.50 36.17 34.39 28.30 29.57 28.55 24.37 26.65 25.76 22.59 22.72 24.62 27.19 28.78 28.33
QBICL 36.80 36.80 37.69 27.92 29.19 27.66 24.49 25.12 25.76 23.98 25.63 23.60 28.30 29.19 28.68
TTT-NN 37.06 38.96 36.80 28.55 29.19 29.19 24.75 24.87 27.03 24.11 26.40 26.40 28.62 29.86 29.86
TTT-ICL 37.06 37.06 38.07 28.93 31.47 27.92 25.00 27.53 25.63 25.76 26.52 23.35 29.19 30.65 28.74
CoT-MT3 34.77 40.36 39.97 30.46 31.60 33.88 27.28 27.66 27.16 24.87 27.79 27.79 29.35 31.85 32.20

Table 2: Comparative results on MathVista (GPS subset) under 2-shot, 4-shot, and 6-shot settings.
Accuracy (%) is used as the evaluation metric. The best score for each setting is bolded.

Shots Zero-shot Random RICES QBICL TTT-NN TTT-ICL CoT-MT3

2-shot 46.15 42.31 42.31 48.56 49.52 52.40 57.21
4-shot 46.15 40.87 49.04 46.63 54.81 56.25 60.58
6-shot 46.15 39.42 50.96 45.67 55.77 53.37 59.62

conducted from the MultiMath-300K (Peng et al., 2024) corpus, a high-quality multimodal bilingual
dataset with detailed CoT annotations. To preserve linguistic consistency and semantic alignment,
we retrieve demonstrations in the corresponding language of the input query. We employ LoRA (Hu
et al., 2022) fine-tuning with a rank of 8 and a scaling factor α = 16. The model is optimized using
the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.0002 and a weight decay of 0.1.
The w for CWR is set to 0.7 and the k for MT3 is defined as ⌊m/2⌋, where m represents the number
of retrieved demonstrations. All experiments are conducted on 4 NVIDIA A800 GPUs.

4.2 MAIN RESULTS

4.2.1 RESULTS ON MATHVERSE AND MATHVISTA

Effectiveness of CoT-MT3. As shown in Tables 1 & 2, our CoT-MT3 consistently achieves the
best or near-best performance across all subsets and few-shot settings. For example, on the TD
subset, our CoT-MT3 outperforms TTT-ICL by 3.30% and zero-shot baseline by up to 7.87% under
the 4-shot setting. Similarly, on the GPS subset, it exceeds TTT-ICL by 4.33% and surpasses zero-
shot baseline by up to 14.43%. Across all 18 evaluation settings ((5 subsets + 1 avg) × 3 few-shot
settings), our CoT-MT3 achieves the highest score in 16 out of 18 settings (including the aver-
age evaluation settings). These results highlight the strong generalization ability of our CoT-MT3,
establishing it as a effective framework for retrieval-augmented multimodal reasoning. Further ex-
perimental results on general multimodal reasoning benchmark can be found in Appendix B.7.

Potential of TTT-Based Methods. TTT-based methods exhibit strong potential in retrieval-
augmented reasoning tasks. Among them, TTT-NN that performs direct fine-tuning on retrieved
demonstrations, shows consistent gains as the number of retrieved demonstrations increases. How-
ever, it only employs simple fine-tuning paradigm and thus shows only limited improvement, in
comparison with TTT-ICL and CoT-MT3 which incorporate retrieved demonstrations as context.

Furthermore, although TTT-ICL generally outperforms TTT-NN in the 2- and 4-shot settings, its
performance declines in the 6-shot scenario. This degradation is likely due to a mismatch between
the context length used during training and those encountered at test time. Specifically, the leave-
one-out construction strategy of TTT-ICL treats each retrieved demonstration as a test instance, with
the rest forming its context, leading to shorter training inputs. Such a mismatch may hinder the
model’s adaptation to longer and more complex test-time prompts.

In comparison, our proposed CoT-MT3 achieves consistently strong performance across all few-shot
configurations. This robustness can be attributed to its meta-learning paradigm, which enhances the
model’s ability to generalize by adapting to varying multimodal prompt conditions.
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Table 3: Comparative results on We-Math. Five evaluation metrics are reported: IK (insufficient
knowledge), IG (inadequate generalization), CM (complete mastery), RM (rote memorization), and
Avg (loose overall average scores). The best score for each setting is bolded.

Methods
IK (↓) IG (↓) CM (↑) RM (↓) Avg (↑)

2-shot 4-shot 6-shot 2-shot 4-shot 6-shot 2-shot 4-shot 6-shot 2-shot 4-shot 6-shot 2-shot 4-shot 6-shot

Zero-shot 56.19 56.19 56.19 12.95 12.95 12.95 25.14 25.14 25.14 18.52 18.52 18.52 31.62 31.62 31.62

Random 57.90 61.90 57.33 9.90 10.10 11.43 26.86 24.38 25.90 16.57 12.93 17.07 31.81 29.43 31.62
RICES 60.19 58.86 56.00 11.43 9.14 9.71 22.67 26.10 30.48 20.13 18.45 11.11 28.38 30.67 35.33
QBICL 56.76 60.00 55.81 7.81 8.00 10.48 29.33 26.48 27.81 17.20 17.26 17.51 33.24 30.48 33.05
TTT-NN 54.67 53.52 56.76 10.86 12.29 10.67 29.14 29.52 27.62 15.47 13.89 15.20 34.57 35.62 32.95
TTT-ICL 58.29 52.76 55.62 7.62 10.67 8.95 27.62 30.48 31.43 18.99 16.67 11.29 31.43 35.81 35.90
CoT-MT3 55.81 49.90 53.52 9.14 10.67 8.95 30.48 34.67 32.19 13.04 12.08 14.21 35.05 40.00 36.67

Zero-shot
QB + ICL

CWR + ICL

CWR + TTT-NN

CWR + TTT-ICL
CWR + MT3
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Figure 4: Ablation results for different compo-
nents of CoT-MT3 on MathVista (GPS).
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Figure 5: Ablation results for different w values
in the CWR strategy on MathVista (GPS).

Validity of Reasoning Information for Retrieval. RICES relies solely on visual input and per-
forms well in vision-intensive subsets but struggles in text-centric subsets (e.g., MathVerse TD). In
contrast, QBICL considering both textual and visual components, yields more balanced performance
across different subsets, consistent with findings from prior work (Qin et al., 2024). Built on this,
our CoT-MT3 further integrates reasoning information into the retrieval, guiding demonstration se-
lection based not only on question content but also on underlying reasoning semantics. According to
Tables 1 & 2, the reasoning-guided retrieval proves particularly effectiveness for complex multi-step
reasoning problems. Overall, it suggests that progressively enriching the retrieval information (from
visual, to multimodal, to CoT-guided), substantially improves the relevance of demonstrations.

4.2.2 MORE RESULTS ON WE-MATH

Table 3 presents the evaluation results on We-Math across five diagnostic metrics. Our CoT-MT3

consistently achieves the highest average score across all few-shot settings, with a peak value of
40.00% in the 4-shot setting, significantly outperforming all baselines. In particular, it consistently
achieves the highest scores in CM across all few-shot settings, reflecting the model’s improved abil-
ity to generate complete and well-reasoned solutions. Moreover, our CoT-MT3 maintains competi-
tive performance in IK and RM, indicative of reduced fundamental misunderstandings, suggesting
that the combination of CWR and MT3 strengthens the model’s overall reasoning capacity while
enhancing its conceptual clarity. While TTT-ICL and TTT-NN demonstrate strong results in se-
lected metrics (e.g., TTT-ICL achieves the best IG score at 2-shot), they suffer from less consistent
performance across few-shot settings and evaluation dimensions. These results indicate the effec-
tiveness of our CoT-MT3 in achieving a balanced trade-off between accuracy, reasoning depth, and
generalization, making it a robust solution for complex multimodal reasoning tasks.

4.3 ABLATION STUDY

Effect of Different Components. As shown in Figure 4, we conduct ablation studies to inves-
tigate the contribution of each component in our proposed CoT-MT3 under the 4-shot setting on
the MathVista GPS subset. Specifically, according to CWR+ICL vs. QB+ICL, CWR surpasses
question-based (QB) retrieval by an improvement of about 2%, confirming that integrating reasoning
information leads to more relevant and reasoning-aligned demonstrations. Moreover, all TTT-based
methods (including CWR+TTT-NN, CWR+TTT-ICL, and CWR+MT3) outperform the ICL-based
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Figure 6: Ablation results for different k values
for 4-shot setting in MT3 on MathVista (GPS).
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Figure 7: Ablation results for different k values
for 6-shot setting in MT3 on MathVista (GPS).

method (i.e., CWR+ICL), showing that TTT is indeed effective for few-shot multimodal reasoning.
Particularly, among all TTT-based methods, our CWR+MT3 yields the highest performance, outper-
forming both TTT-NN and TTT-ICL by substantial margins (> 8.18%), which clearly demonstrates
the effectiveness of the meta test-time training paradigm. Overall, these ablation results highlight
the effectiveness and flexibility of both CoT-guided weighted retrieval and meta test-time training
(two key components of our method) in boosting few-shot multimodal reasoning.

Effects of w in CoT-Guided Weighted Retrieval. Figure 5 presents an ablation study on the
impact of the weighting parameter w in the CWR strategy, evaluated under the 4-shot setting on
the MathVista GPS subset. The parameter w modulates the balance between question-based and
reasoning-based similarity during CoT-guided weighted retrieval. As w increases from 0.1 to 0.7,
the performance of our model steadily increases, peaking at w = 0.7, where the model achieves an
optimal trade-off between semantic relevance and reasoning alignment on multimodal mathematical
reasoning tasks. Beyond this point, the performance of our model gradually declines, indicating that
overemphasizing either similarity signal may compromise overall retrieval effectiveness.

Effects of k in Meta Test-Time Training. Figures 6 and 7 report an ablation study on the im-
pact of the predefined maximum context size k in the MT3 paradigm, evaluated on the MathVista
GPS subset. Both figures demonstrate that increasing k initially leads to enhanced performance;
however, beyond a certain point, accuracy begins to decline. Specifically, peak accuracy is achieved
at k = 2 in the 4-shot setting and at k = 3 in the 6-shot setting, as shown in Figure 6 and 7.
These results indicate that while moderate meta-training samples can enhance the generalization
effectively, excessively large k can introduce redundancy, complicating training and reducing the
model’s adaptability at test time. Based on these empirical results, we select the optimal value of k
as ⌊m/2⌋, where m is the number of retrieved demonstrations.

Furthermore, this pattern also highlights a key strength of our MT3 paradigm: it can achieve robust
few-shot multimodal reasoning using only a small set of training samples, even as the number of
demonstrations increases. As k increases, the growth in truly distinct and informative demonstration
combinations is sublinear. Overall, MT3 maintains strong data efficiency by leveraging a limited yet
diverse set of samples to effectively support test-time training in a meta learning paradigm.

5 CONCLUSION

In this paper, we introduced CoT-MT3, a novel retrieval-augmented framework for improving mul-
timodal complex reasoning performance. We devise a CoT-guided Weighted Retrieval (CWR) strat-
egy that integrates question content and deep reasoning from the query into a weighted retrieval
process to retrieve more relevant demonstrations. In addition, we introduce a meta Test-Time Train-
ing (MT3) paradigm that constructs tasks with varying context sizes and combinations, allowing the
model to generalize across complex multimodal prompt conditions. Extensive experiments across
three multimodal reasoning benchmarks demonstrate that our proposed CoT-MT3 substantially im-
proves both retrieval quality and reasoning performance across diverse few-shot settings. Our ap-
proach offers a unified and effective framework for retrieval-augmented multimodal complex rea-
soning, with broad applicability beyond conventional retrieval-augmented scenarios.
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This work adheres to the ICLR Code of Ethics, ensuring ethical compliance throughout all stages
of the research. Our research is focused on the design and evaluation of algorithms for multimodal
reasoning. All experiments were conducted on publicly available, pre-existing datasets, and we
did not collect any new data or involve human subjects. The scope of our work is confined to
algorithmic development and does not present foreseeable risks of misuse, generation of harmful
content, or societal biases. We have no conflicts of interest to declare.

REPRODUCIBILITY STATEMENT

This work presents a well-defined and easily implementable algorithm. For research reproducibility,
all experimental data and source code will be publicly available upon acceptance. Additionally,
we provide comprehensive descriptions of the experimental setups and implementation details as
shown in Section 4 and Appendix B.1. Moreover, the detailed prompts for performance evaluation
are provided in Appendix B.2.
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A LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized LLMs as an assistive tool. The LLMs’ role is
primarily focused on academic writing and language polishing. Note that the core research concepts,
experimental methodology, and data analysis are all conceived and executed by the human authors.
The LLMs’ main usage include: 1) Using the LLMs to improve clarity and grammar in draft text.
2) Using the LLMs to debug LaTeX code for tables, figures, and layouts.

B MORE DETAILS AND EXPERIMENTAL RESULTS

B.1 BENCHMARKS

We evaluate CoT-MT3 on three multimodal mathematical reasoning benchmarks: MathVerse, Math-
Vista, and We-Math. For each benchmark, we describe the dataset characteristics, explain the ratio-
nale behind data selection, and outline the evaluation protocols.

MathVerse is constructed to systematically evaluate the visual reasoning abilities of LMMs by
varying the information composition of each problem instance. Specifically, each original problem
is transformed into six curated versions with different combinations of textual and visual content,
enabling fine-grained control over the modality reliance. In this study, we focus exclusively on the
four multimodal variants, Text-Dominant, Text-Lite, Vision-Intensive, and Vision-Dominant, which
progressively reduce textual redundancy and increase reliance on visual understanding.

GPS MWP TQA VQA FQA

Task
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Figure 8: The box plot of similarity dis-
tributions between each MathVista sub-task
query and its top-2 retrieved demonstrations
(CWR, m = 2).

MathVista is a multimodal mathematical reason-
ing benchmark comprising 6,141 examples, split into
testmini (1,000 examples) and test (5,141 examples).
The testmini subset is designed for model develop-
ment and low-resource evaluation, while the full test
set supports standard benchmarking via an online
evaluation platform, with answers withheld to prevent
data leakage.

Specifically, Mathvista focus on five primary sub-
tasks: FQA (Figure Question Answering), GPS (Ge-
ometry Problem Solving), MWP (Math Word Prob-
lem), TQA (Textbook Question Answering) and
VQA (Visual Question Answering). As illustrated
in Figure 8, other subsets (e.g., FQA, TQA) show
extremely low similarity to the retrieval corpus. In
such cases, retrieval-augmented methods fail to pro-
vide useful demonstrations, regardless of the retrieval
strategy. Therefore, we focus our evaluation on
the GPS, which enables a meaningful assessment of
retrieval-based improvements.

We-Math is a diagnostic benchmark designed to evaluate LMMs on problem-solving principles
rather than the result-oriented performance. It focuses on the underlying problem-solving process by
decomposing multi-step mathematical problems solutions into sub-problems based onthe knowledge
concepts. Each problem is grounded in a hierarchical structure of textbook knowledge, enabling
systematic analysis across independent concepts and their compositional relationships. To further
support evaluation, model responses are categorized into four metrics:

(1) Insufficient Knowledge (IK), where errors occur in sub-problems and the final answer, reflecting
a lack of basic concept understanding;
(2) Inadequate Generalization (IG), where sub-problems are correct but the final answer is wrong,
indicating failure to integrate known concepts for complex reasoning;
(3) Complete Mastery (CM), where both sub-problems and the final answer are correct, demonstrat-
ing reliable and coherent reasoning;
(4) Rote Memorization (RM), where the model answers the final question correctly despite sub-
problem errors, suggesting shortcut-based or unstable reasoning.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are a math expert. You will be given a math problem with an image. Follow the instructions 
carefully.
The problem you need to solve is:
<image>
<question>
Please reason step by step, and put your final answer within \\boxed{}.
Each step is placed on a new line, using the following format: 
Step X (Mathematical theorem/basis used): Detailed solution steps. 
Answer: \\boxed{}.

Zero-shot prompt 

Figure 9: Illustration of the zero-shot prompt template used for multimodal mathematical reasoning.
The template guides the model to solve a given math problem based on an accompanying image and
question, encouraging step-by-step reasoning. Each step follows a structured format specifying the
mathematical principle used, culminating in a boxed final answer.

B.2 EVALUATION

For evaluation, we adopt the official evaluation protocols provided by the benchmark authors, which
utilize GPT-4o-mini as the evaluation model.1 These tools are used to assess both answer cor-
rectness and reasoning quality in a consistent and standardized manner across all datasets.

B.3 RETRIEVAL CORPUS

MultiMath-300K (Peng et al., 2024) is a large-scale bilingual multimodal dataset comprising
298,670 K-12 mathematical problems. Each example includes a problem image and accompany-
ing question text in both English and Chinese, spanning a wide range of topics such as arithmetic,
algebra, geometry, and algorithm derivation. In addition to problem statements, the dataset pro-
vides vision-language alignment annotations and step-by-step chain-of-thought (CoT) solution in-
structions. Owing to its rich semantic and multimodal structure, MultiMath-300K can serve as an
effective retrieval corpus for supporting few-shot reasoning in multimodal settings.

To support retrieval-augmented reasoning, we retain only those samples whose English and Chinese
versions are semantically aligned and complete, ensuring consistency across languages. We sep-
arately construct bilingual retrieval indices using FAISS (Johnson et al., 2019), allowing efficient
nearest-neighbor search within each language domain. During retrieval, we compute the cosine
similarity between a test query xq and each candidate x in the corpus:

S(xq, x) = cos(f(xq), f(x)), (8)

where f(·) is the multimodal encoding function used to generate dense representations of the input.

B.4 EXAMPLE PROMPTS

Figure 9 and Figure 11 illustrate the prompt templates used in our evaluation under the zero-shot
and few-shot settings, respectively.

B.5 LATENCY ANALYSIS OF DIFFERENT METHODS

B.5.1 ANALYSIS OF TRAINING OVERHEAD

To comprehensively assess the computational efficiency of our proposed method, we analyze the
training overhead between different TTT methods on three benchmarks. As shown in Table 4, the

1Official evaluation tools are available at https://github.com/lupantech/MathVista,
https://github.com/ZrrSkywalker/MathVerse, and https://github.com/We-Math/
We-Math
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Table 4: Comparison of average accuracy (%) and training overhead (GPU time, minutes) for dif-
ferent TTT methods across few-shot settings

Method 2-shot 4-shot 6-shot

Acc. Time Acc. Time Acc. Time

Zero-Shot 34.93 0.000 34.93 0.000 34.93 0.000

TTT-NN 37.57 0.112 40.10 0.126 39.52 0.187
TTT-ICL 37.67 0.104 40.90 0.131 39.34 0.190
CoT-MT3 40.54 0.117 44.14 0.154 42.83 0.191

Table 5: Accuracy (%) of different backbone–method combinations on MathVista (GPS).

Shots
Qwen2-VL-2B Pixtral-12B

Zero-shot QBICL TTT-NN TTT-ICL CoT-MT3 Zero-shot QBICL TTT-NN TTT-ICL CoT-MT3

2-shot 37.98 39.90 33.65 40.87 44.23 39.90 48.56 44.71 51.92 52.40
4-shot 37.98 40.87 40.38 40.87 42.79 39.90 51.44 49.04 48.56 52.88

results highlight the efficiency of the TTT paradigm. All TTT-based methods significantly outper-
form the Zero-Shot baseline across all settings, yielding substantial improvements with only a minor
computational latency. This trade-off is especially valuable for accuracy-critical applications.

Furthermore, CoT-MT3 introduces only a marginal increase in training overhead compared to TTT-
NN and TTT-ICL (e.g., just 0.001 minutes more than TTT-ICL in the 6-shot setting), yet delivers
substantially higher performance (3.49% higher than TTT-ICL in the 6-shot setting). This accuracy-
latency trade-off highlights the efficiency of CoT-MT3, showing that it remains computationally
efficient while offering stronger performance.

B.5.2 ANALYSIS OF TOTAL LATENCY
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Figure 10: Comparisons of average accu-
racy and overall latency of different meth-
ods on three benchmarks.

Figure 10 shows the total latency of different few-shot
methods. Since the average latency of general ICL
approaches (e.g., RICES and QBICL) is comparable,
we uniformly denote them as ICL in the figure. A
key observation from Figure 10 is the evident trade-
off between computational latency and accuracy. As
expected, Zero-Shot and ICL methods achieve the low-
est latency but are restricted to a relatively low perfor-
mance range. In contrast, TTT-based methods (TTT-
NN and TTT-ICL) incur higher computational costs yet
yield improved performance.

Distinctly, our CoT-MT3 differs from conventional test-
time scaling methods, which often suffer from perfor-
mance saturation as latency increases. By introducing
CWR and MT3, CoT-MT3 translates additional compu-
tational overhead into sustained performance gains. Rather than exhibiting diminishing returns, it
achieves near-linear improvement with increasing latency, highlighting that our method enhances
reasoning ability systematically rather than simply scaling computation.

B.6 EFFECTS OF DIFFERENT BACKBONE MODELS

Table 5 reports the performance of different methods on the MathVista GPS subset using two LMMs
of varying scales: Qwen2-VL-2B (Wang et al., 2024b) and Pixtral-12B (Agrawal et al., 2024), un-
der 2- and 4-shot settings. Across both backbone models, we evaluate zero-shot baseline, QBICL,
and three test-time training strategies: TTT-NN, TTT-ICL, and our proposed CoT-MT3. Notably,
despite varying absolute accuracy across the two models, the relative performance trend remains
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Table 6: Accuracy (%) on GQA Benchmark (200 randomly sampled examples).
Shots Zero-shot QBICL TTT-NN TTT-ICL CoT-MT3

2-shot 54.00 59.00 63.00 60.00 65.50
4-shot 54.00 55.50 63.50 63.00 64.50
6-shot 54.00 54.00 59.50 62.50 64.50

consistent, i.e., CoT-MT3 maintains strong generalization regardless of model capacity. These re-
sults confirm that our method is model-agnostic and can be effectively applied across LMMs with
different parameter scales.

B.7 RESULTS ON GENERAL VISUAL REASONING BENCHMARK

To assess the transferability of our approach to general visual reasoning, we evaluate it on the GQA
benchmark (Hudson & Manning, 2019), which is designed for real-world visual reasoning tasks.
GQA focuses on answering questions that require complex reasoning over real-world images, in-
volving varied reasoning skills, with an emphasis on multi-step inference. This makes it a com-
prehensive benchmark for assessing general visual reasoning capabilities. Due to the limitations of
computing resources, we randomly sample 200 examples.

Table 6 reports the performance of different methods on GQA benchmark under different few-shot
settings. CoT-MT3 consistently achieves the best performance across all few-shot settings. These
results indicate that our method is not only excels in complex reasoning but also exhibits robust
performance on general multimodal reasoning tasks.

B.8 CASE STUDY

To determine the impact of CoT-MT3 in complex reasoning tasks, we show the successful reasoning
trajectories in Figure 12 and 13. Specifically, We find that CoT-MT3 is significantly particularly
beneficial for mitigating two main challenges in complex multimodal reasoning: reasoning errors
and perception errors, while other methods still struggle to address both challenges effectively.

For instance, as shown in Figure 12, both ICL and TTT-NN deviate from the correct calculation
path when applying geometric principles. The ICL method commits a reasoning error by incorrectly
applying the exterior angle theorem but still produces a final answer, while the TTT-NN method
repeatedly performs the same incorrect calculations and fails to move toward the correct solution.
In contrast, CoT-MT³ follows the correct core reasoning path, accurately applying the relevant the-
orems, establishing the correct equation, and solving for the key variable. This demonstrates that
CoT-MT³ constructs a more robust and accurate reasoning chain, avoiding the logical errors that
often compromise the performance of alternative methods.

C LIMITATION AND FUTURE WORK

Our proposed CoT-MT3 demonstrates strong improvement in complex multimodal reasoning. How-
ever, the two-stage design, where retrieval is followed by test-time training without direct feedback
between the stages, limits the potential for further refinement of the reasoning process. In particular,
the lack of iterative feedback may constrain the model’s ability to adapt dynamically to more com-
plex input during the test phase. Recent advances (Liu et al., 2025; Meng et al., 2025; Zuo et al.,
2025) in reinforcement fine-tuning demonstrate strong generalization and efficient use of limited su-
pervision, making it well-suited for low-resource test-time training scenarios. Therefore, exploring
such integrated and RL-driven approaches can further enhance the adaptability and robustness of
retrieval-augmented few-shot multimodal reasoning systems.
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You are an expert in math question answering. You will be given some retrieved example
triples of images, questions and answers. These examples may be relevant to the final problem.
When you respond, respond only with the solution of the final problem.
Retrieved Question 1:
<image>
<question>
Retrieved Answer 1:
<answer>
Retrieved Question 2:
<image>
<question>
Retrieved Answer 2:
<answer>
……
The above are some related questions and answers. You can refer to these questions and
answers to answer the current question.
The problem you need to solve is:
<image>
<question>
Please reason step by step, and put your final answer within \\boxed{}.
Each step is placed on a new line, using the following format:
Step X (Mathematical theorem/basis used): Detailed solution steps.
Answer: \\boxed{}.

Few-shot prompt 

Figure 11: Illustration of the retrieval-augmented prompt template used for few-shot multimodal
mathematical reasoning. The model is first presented with a set of retrieved demonstration triplets,
each consisting of an image, a question, and a corresponding answer, which offer useful rationales
for solving the final problem. As the number of retrieved demonstrations increases, the number of
Retrieved Question and Retrieved Answer blocks in the prompt increases accordingly. It is then in-
structed to reason step by step and produce a final answer enclosed in \\boxed{} using a structured
format that specifies the mathematical basis of each step.
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Question: In the figure, for △ABC, AB = AC, BD is the bisector of ∠ABC, and ∠BDC = 75°. 
What is the measure of ∠A in degrees?
Choices: (A) 25° (B) 35° (C) 40° (D) 45°

Ground Truth: C

A

B C

D

CoT-𝑴𝑻𝟑 Solution:
Step 1 (Property of Isosceles Triangle): In △ABC, since AB = AC, it follows that ∠B = ∠C. 
Step 2 (Define a Variable): Let ∠DBC = x. Since ∠C = ∠B and BD is an angle bisector, then ∠ABC = 2x, and therefore ∠ACB = 2x. 
Step 3 (Angle Bisector Theorem): Since BD bisects ∠ABC, it follows that ∠ABD = x. 
Step 4 (Given Angle): It is given that ∠BDC = 75°. 
Step 5 (Angle Relationship): In △BDC, the sum of angles is 180°. So, ∠DBC + ∠BCD + ∠BDC = 180°. Substituting the variables gives 
x + 2x + 75° = 180°, which simplifies to 3x = 105°. 
Step 6 (Solve for x): Solving for x gives x = 35°. 
Step 7 (Find ∠ABD): Therefore, ∠ABD = 35°. 
Step 8 (Find ∠A): Using the exterior angle theorem on △ABD, ∠BDC is an exterior angle, so ∠BDC = ∠A + ∠ABD. Rearranging gives 
∠A = ∠BDC - ∠ABD = 75° - 35° = 40°. 
Answer: C

Problem

ICL Solution:
Step 1 (Application of Given Conditions): According to the given conditions in the problem, in△ABC, AB=AC, and BD is the bisector
of ∠ABC.
Step 2 (Angle Sum Calculation): Because BD is the bisector of ∠ABC, therefore ∠ABD = ∠CBD.
Step 3 (Angle Derivation): Since ∠BDC=75°, according to the triangle interior angle sum theorem, ∠BDC = ∠ABD + ∠CBD.
Step 4 (Angle Calculation): From this, it can be known that ∠ABD = ∠CBD = 37.5°.
Step 5 (Properties of Angle Bisector): Because BD is the bisector of ∠ABC, therefore ∠ABC = 2∠ABD = 75°.
Step 6 (Angle Derivation): According to the triangle interior angle sum theorem, ∠A + ∠ABC + ∠ACB = 180°.
Step 7 (Angle Calculation): From this, it can be known that ∠A = 180° - ∠ABC - ∠ACB = 180° - 75° - 75° = 30°.
Answer: 30° Reasoning Error

TTT-NN Solution:
Step 1 (Property of Isosceles Triangle): From the problem statement, AB=AC, so △ABC is an isosceles triangle. 
Step 2 (Angle Bisector Theorem): BD is the bisector of ∠ABC, so ∠ABD = ∠DBC. Step 3 (Property of Isosceles Triangle): Let ∠DBC 
= x, then ∠ABC = 2x. Step 4 (Define a Variable): Let ∠A = y. Step 5 (Given Angle): ∠BDC = 75°. 
Step 6 (Substitute Knowns): ∠BDC = ∠A + ∠ACD, which means 75° = y + 2x.
Step 7 (Property of Isosceles Triangle): ∠ACB = ∠A = y. 
Step 8 (Property of Isosceles Triangle): ∠ACB = ∠BDC, which means 2x = 75°. 
Step 9 (Solve for x): x = 37.5°. Step 10 (Solve for y): y = 75° - 2x. Step 11 (Substitute to find y): y = 75° - 2 × 37.5°. 
Step 12 (Calculate y): y = 75° - 75°. Step 13 (Calculate y): y = 0°. 
Step 14 (Conclusion): The measure of ∠A is 0°, but 0° is not in the options, which indicates an error in the calculation process. 
Step 15 (Recalculate): (The subsequent steps from 16 are a loop, repeating the same flawed calculation and concluding that y=0°.)
Answer: 0° Reasoning Error

Figure 12: The case study of different few-shot methods. We color the correct key reasoning step
in green, and the wrong key reasoning step in red. Both ICL and TTT-NN are disrupted by critical
reasoning errors, whereas CoT-MT³ successfully constructs a correct solution path, demonstrating
its superior few-shot reasoning ability.
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Problem

ICL Solution:
Step 1 (Triangle angle sum property): In triangle ABC, the sum of angles is 180°. 
Step 2 (Angle relation): Since AC is parallel to l, angle ACB = 120°. 
Step 3 (Calculation): Angle BAC = 180° - (120° + x) = 60° - x. 
Step 4 (Calculation): Angle BAC = 180° - (120° + x) = 60° - x.... 
(The same calculation is repeated from Step 4 through Step 31)
Answer: None

x°

120°(120 - k)°
A

B

C l

Question: In the figure above, side AC of triangle ABC is on line l.What is x in 
terms of k?
Choices: (A) 60-k (B) k (C) 60+k (D) 120-k (E) 120-2k

Ground Truth: A

TTT-NN Solution:
Step 1 (Triangle Sum Theorem): In△ABC, ∠A + ∠B + ∠C = 180°.
Step 2 (Angle Substitution): Since ∠C = 120°, ∠A + 120° + x° = 180°.
Step 3 (Solve for x): x° = 180° - 120° - 120° = 60°.
Step 4 (Substitute k into x): x = 60° - k°.
Answer: A

CoT-𝑴𝑻𝟑 Solution:
Step 1 (Triangle Sum Theorem): In△ABC, ∠A + ∠B + ∠C = 180°.
Step 2 (Relating ∠C): The exterior angle at C is 120°, so the interior angle ∠C = 180° − 120° = 60°.
Step 3 (Angle Substitution): ∠A + 60° + x° = 180°.
Step 4 (Solve for x): x° = 180° - 120° - 120° = 60°.
Step 5 (Substitute k into x): x = 60° - k°.
Answer: A

Perception Error

Perception Error and Reasoning Error

Figure 13: The case study of different few-shot methods. We color the correct key reasoning
step in green, and the wrong key reasoning step in red. Both ICL and TTT-NN methods produce
different perception errors, such as incorrectly identifying ∠C and the relationship between the
lines. Moreover, while TTT-NN method provides the correct final answer, it still exhibits significant
reasoning errors. Our CoT-MT³ method not only helps the model accurately recognize images but
also ensures that the correct reasoning path leads to the right answer.
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