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ABSTRACT

We propose CLoVE (Clustering of Loss Vector Embeddings), a novel algorithm
for Clustered Federated Learning (CFL). In CFL, clients are naturally grouped
into clusters based on their data distribution. However, identifying these clusters is
challenging, as client assignments are unknown. CLoVE utilizes client embeddings
derived from model losses on client data, and leverages the insight that clients in
the same cluster share similar loss values, while those in different clusters exhibit
distinct loss patterns. Based on these embeddings, CLoVE is able to iteratively
identify and separate clients from different clusters and optimize cluster-specific
models through federated aggregation. Key advantages of CLoVE over existing
CFL algorithms are (1) its simplicity, (2) its applicability to both supervised and
unsupervised settings, and (3) the fact that it eliminates the need for near-optimal
model initialization, which makes it more robust and better suited for real-world ap-
plications. We establish theoretical convergence bounds, showing that CLoVE can
recover clusters accurately with high probability in a single round and converges
exponentially fast to optimal models in a linear setting. Our comprehensive experi-
ments comparing with a variety of both CFL and generic Personalized Federated
Learning (PFL) algorithms on different types of datasets and an extensive array of
non-IID settings demonstrate that CLoVE achieves highly accurate cluster recovery
in just a few rounds of training, along with state-of-the-art model accuracy, across
a variety of both supervised and unsupervised PFL tasks.

1 INTRODUCTION

Federated learning (FL) has emerged as a pivotal framework for training models on decentralized data,
preserving privacy and reducing communication overhead (McMahan et al., 2017; Konečný et al.,
2016; Bonawitz et al., 2019). However, a significant challenge in FL is posed by the heterogeneity
of data distributions across clients (non-IID data) (Zhao et al., 2018), as this can adversely impact
the accuracy and convergence of FL models. To address this issue, Personalized Federated Learning
(PFL) (Tan et al., 2023; Hanzely & Richtárik, 2020) has developed as an active research area, focusing
on tailoring trained models to each client’s local data, thereby improving model performance.

Our research focuses on a variant of PFL known as Clustered Federated Learning (CFL). In CFL,
(Ghosh et al., 2020; Werner et al., 2023; Sattler et al., 2021; Mansour et al., 2020a; Chung et al.,
2022; Long et al., 2023; Duan et al., 2022; Vahidian et al., 2023), clients are naturally grouped into
K true clusters based on inherent similarities in their local data distributions. However, these cluster
assignments are not known in advance. The objective of CFL is to develop distinct models tailored
to each cluster, utilizing only the local data from clients within that cluster. To achieve this goal,
identifying the cluster assignments for each client is crucial, as it enables the construction of accurate,
cluster-specific models that capture the unique characteristics of each group.

Many existing approaches (Awasthi & Sheffet, 2012; Kumar & Kannan, 2010) that provide guarantees
on cluster assignment recovery often rely on the assumption that data of different clusters are well-
separated. However, this assumption is often violated in real-world datasets, as evidenced by the
modest performance of k-means on MNIST clustering even in a centralized setting. Its low Adjusted
Rand Index (ARI)1 of only approximately 50% (Treder-Tschechlov, 2024) can be attributed to the

1ARI is a measure of the level of agreement between two clusterings, calculated as the fraction of pairs of
cluster assignments that agree between the clusterings, adjusted for chance.
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high variance in the MNIST image data, resulting in many digits being closer to other clusters
than to their own digit’s cluster. Furthermore, in the federated setting, clustering approaches like
k-FED (Dennis et al., 2021) can recover clustering in one shot, but they also rely on the inter-cluster
separation conditions of Awasthi & Sheffet (2012). However, as we demonstrate (App. D.1.1), even
k-FED achieves low ARI on clustering common mixed linear regression distributions (Yi et al., 2014),
as the cluster centers of those distributions can also be very close, highlighting the limitations of
these approaches.

1.0

2.1

3.5

5.1

𝜃ଵ
∗ 𝜃ଶ

∗𝜃ଵ
 𝜃ଶ

 

Figure 1: Model parameters are on the
x-axis and model losses on the y-axis.
Blue and red curves depict losses for
clients of cluster 1 and 2 respectively.
θ∗1 and θ∗2 are optimal models for clients
of clusters 1 and 2 respectively. Initial
models are θ1 and θ2. Loss on model θ1
(θ2) is 1.0 (5.1) and 2.1 (3.5) for clients
of clusters 1 and 2, respectively. Loss
vectors are [1.0, 5.1] for clients of clus-
ter 1 and [2.1, 3.5] for clients of cluster
2. In IFCA, all clients select model θ1,
as it minimizes their loss. Consequently
they all get assigned to cluster 1. More-
over, because of this assignment, model
θ2 receives no updates, and therefore its
loss stays high; as a result, no clients
ever select it in future rounds. Ultimately,
this leads to all clients converging to the
same cluster, failing to recover the true
client clusters. In contrast, clustering
based on loss vectors achieves accurate
client partitioning, as the loss vectors of
clients from different clusters are highly
distinct.

An alternative way to recover cluster assignments is to
leverage the separation of cluster-specific models. For
instance, the Iterative Federated Clustering Algorithm
(IFCA) (Ghosh et al., 2020) assigns clients to clusters
based on the model that yields the lowest empirical loss.
However, IFCA has a significant limitation: it requires
careful initialization of cluster models, ensuring each
model is sufficiently close to its optimal counterpart.
Specifically, the distance between an initial model and
the cluster’s optimal model must be strictly less than half
the minimum separation distance between any two optimal
models. In practice, achieving this distance requirement
can be challenging. For example, in our experiments with
the MNIST dataset, IFCA often failed to recover accu-
rate cluster assignments. As shown in Fig. 1, this issue
typically occurs when clients from two or more clusters
achieve the lowest loss on the same model, and thus get
assigned to the same cluster. This, in turn, causes the
algorithm to get stuck and fail to recover accurate clusters.

In this paper, we propose the Clustering of Loss Vector
Embeddings (CLoVE) PFL algorithm, a novel approach
to tackle both the challenges of constructing accurate
cluster-specific models and recovering the underlying clus-
ter assignments in a FL setting. Our solution employs
an iterative process that simultaneously builds multiple
personalized models and generates client embeddings, rep-
resented as vectors of losses achieved by these models
on the clients’ local data. Specifically, we leverage the
clustering of client embeddings to refine the models, while
also using the models to inform the clustering process.
The underlying principle of our approach is that clients
within the same cluster will exhibit similar loss patterns,
whereas those from different clusters will display distinct loss patterns across models. By analyzing
and comparing these loss patterns through the clustering of loss vectors, our approach effectively
separates clients from different clusters while grouping those from the same cluster together. This, in
turn, leads to improved models for each cluster, as each model predominantly receives updates from
clients within its corresponding cluster, thereby enhancing accuracy and robustness.

CLoVE exhibits a distinct advantage over existing CFL methods, including IFCA, CFL-S (Sattler
et al., 2021), k-FED, FlexCFL (Duan et al., 2022), and FeSEM (Long et al., 2023). Notably, CLoVE
achieves robust clustering results even from random initializations, a significant advantage over
IFCA, which requires careful model initialization. Unlike k-FED, CLoVE does not rely on any
assumptions on the data distribution. Compared to CFL-S, which often necessitates hundreds of
communication rounds to reach convergence, CLoVE achieves clustering in fewer than ten rounds
while reliably handling sparse client participation and stragglers. This accelerated convergence results
in substantially lower computation and communication overhead compared to both IFCA and CFL-S.
Unlike FlexCFL, which produces a static clustering in a single round, CLoVE dynamically refines
its cluster assignments, offering the dual benefits of low-cost operation and the capacity to improve
clustering quality over time. Moreover, CLoVE’s loss vector-based cluster recovery approach avoids
the local optima issues inherent in expectation maximization approaches such as FeSEM, thereby
ensuring optimal cluster recovery with high probability.
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We conduct a comprehensive evaluation of our approach, demonstrating its ability to recover clusters
with high accuracy while constructing per-cluster models in just a few rounds of FL. Furthermore,
our analytical results show that our approach can achieve single-shot, accurate cluster recovery with
high probability in the case of linear regression, thereby establishing its efficacy and robustness.

Our technical contributions can be summarized as follows:

• Introduction of the CLoVE PFL algorithm: We propose a novel approach that simultane-
ously builds multiple personalized models and generates client embeddings based on model
losses, enabling effective clustering of clients with unknown cluster labels.

• Simplicity and wide applicability: Our method, unlike most others, extends to both
supervised and unsupervised settings, handling a variety of data distributions, sparse client
participation, and stragglers through a simple, loss-based embedding approach.

• Robustness against initialization: Unlike existing methods, CLoVE does not require careful
initialization of cluster models, thereby mitigating the risk of inaccurate cluster assignments
due to initialization sensitivities.

• Theoretical guarantees for cluster recovery: We provide analytical results showing that,
in the context of linear regression, CLoVE can achieve single-shot, accurate cluster recovery
with high probability.

• Efficient cluster recovery and model construction: We demonstrate through comprehen-
sive evaluations that CLoVE can recover the true clusters with high accuracy and construct
per-cluster models within a few rounds of federated learning in a variety of settings.

2 RELATED WORK

A primary challenge in FL is handling heterogeneous data distributions (non-IID data) and varying
device capabilities. Early optimization methods like FedAvg (McMahan et al., 2017) and FedProx (Li
et al., 2019) mitigate some issues by allowing multiple local computations before aggregation, yet
they typically yield a single global model that may not capture the diversity across user populations
(Zhao et al., 2018).

Personalized Federated Learning (PFL) (Hanzely & Richtárik, 2020; Tan et al., 2023) aims to
deliver client-specific models that outperform both global models and naïve local baselines. Various
strategies have been proposed, including fine-tuning global models locally (Fallah et al., 2020)
or performing adaptive local aggregation (Zhang et al., 2023), meta-learning (Jiang et al., 2023),
multi-task learning (Smith et al., 2017; Xu et al., 2023), and decomposing models into global and
personalized components (Deng et al., 2020; Mansour et al., 2020b). However, these methods operate
in a supervised setting and require labeled data.

Clustered Federated Learning (CFL) is an emerging approach in PFL that involves clustering clients
based on similarity measures to train specialized models for each cluster (e.g. IFCA based on model
loss values, (Werner et al., 2023; Kim et al., 2024) and FlexCFL based on gradients). The CFL-S
algorithm utilizes federated multitask learning and gradient embeddings in order to iteratively form
and refine clusters. Vahidian et al. (2023)’s PACFL algorithm derives a set of principal vectors from
each cluster’s data, and FedProto (Tan et al., 2022) constructs class prototypes, which allow the server
to identify distribution similarities.

Traditional clustering methods, such as spectral clustering and k-means, have also been adapted for
federated scenarios. In FeSEM, personalization is achieved by deriving the optimal matching of
users and multiple model centers, and in Chen et al. (2023) through spectral co-distillation. Licciardi
et al. (2025) is a hierarchical approach like Sattler et al. (2021), and as such the number of rounds
for clustering can be very large. Despite their effectiveness, these methods often require complex
similarity computations, additional communication steps, or additional amount of state kept at the
server.

Recent advancements in CFL have focused on enhancing convergence and reducing reliance on
initial cluster assignments. Improved algorithms (Vardhan et al., 2024) address some limitations of
earlier approaches that require careful initialization like IFCA, but their methods are complex. Our
CLoVE algorithm overcomes these drawbacks using a simple method that utilizes robust loss-based
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embeddings, converges quickly to the correct clusters, eliminates the need for precise initialization,
and operates in a variety of both supervised and unsupervised settings.

3 EMBEDDINGS-DRIVEN FEDERATED CLUSTERING

The typical FL architecture consists of a server and a number of clients. Let M be the number
of clients, which belong to K clusters. Data for clients of cluster j ∈ [K] follow a distinct data
distribution Dj (where the notation [K] denotes the set {1, 2, ...,K}). Each client i ∈ [M ] has ni

data points. Let f(θ; z) : Θ → R be the loss function associated with data point z, where Θ ⊆ Rd is
the parameter space. The goal in CFL is to simultaneously cluster the clients into K clusters and train
K models to minimize the population loss function Lj(θ) ≜ Ez∼Dj

[f(θ; z)] for each cluster j ∈ [K].
The empirical loss for the data Zi of client i is defined as Li(θ;Zi) ≜ (1/|Zi|)

∑
z∈Zi

f(θ; z).

Algorithm 1: Clustering of Loss Vector Embeddings (CLoVE) algorithm for PFL

Input: # of clients M , upper bound on # of models K̂, # of data points ni for client i, i ∈ [M ],
participation rate ρ

Hyperparameters : learning rate γ, # of rounds T , # of local epochs τ (for model averaging)
Output: number of clusters K(T ), final model parameters

{
θ
(T )
j , j ∈ [K(T )]

}
1 Server: initialize model parameters θ(0)j for each of the K(0) models j ∈ [K(0)], where K(0) = K̂
2 for round t = 0, 1, ..., T − 1 do
3 M (t) ← random subset of ρ fraction of the clients (deals with partial participation/stragglers)
4 if clustering has not stabilized then
5 Server: broadcast model parameters θ(t)j of all K̂ models j ∈ [K̂] to all clients in M (t)

6 for each client i ∈M (t) in parallel do
7 Run client i’s data through all K̂ models and get the losses Li,(t) ≜

(
Li(θ

(t)
j )

)
, j ∈ [K̂]

8 Send loss vector Li,(t) to the server
9 Server (clustering step):

10 – K(t+1) = selectBestK(L(t), K̂), where L(t) ≜ {Li,(t), i ∈ [M (t)]} is the loss matrix
11 – Run clustering alg. to group the set of vectors {Li,(t), i ∈ [M (t)]} to form K(t+1) client clusters
12 – Map client clusters to models using min-cost matching and assign each client i ∈M (t) to the

corresponding model κi ≡ κ
(t)
i ∈ [K(t+1)] of its client cluster

13 else
14 Server:
15 For new clients: assign them a model using models and centroids saved at stability
16 Send updated model parameters of its assigned model κi to each client i ∈M (t)

17 for each client i ∈M (t) in parallel do
18 – Option I (model averaging): Compute new model parameters θ̃i = LocalUpdate(i, θ(t)κi , γ, τ)

for model κi and send them to the server
19 – Option II (gradient averaging): Compute stochastic gradient gi = ∇̂Li(θ

(t)
κi ) using model κi

and send it to the server
20 Server (averaging step):
21 Clients that were assigned to model j at round t: C(t)

j ≜ {i ∈M (t) s.t. κ(t)
i = j}

22 – Option I (model averaging): ∀ j ∈ [K(t+1)] s.t. C(t)
j ̸= ∅, θ(t+1)

j =

∑
i∈C

(t)
j

niθ̃i∑
i∈C

(t)
j

ni

23 – Option II (gradient averaging): ∀ j ∈ [K(t+1)] s.t. C(t)
j ̸= ∅, θ(t+1)

j = θ
(t)
j − γ

∑
i∈C

(t)
j

nigi∑
i∈C

(t)
j

ni

24 return K(T ),
{
θ
(T )
j , j ∈ [K(T )]

}
The pseudocode of our Clustering of Loss Vector Embeddings (CLoVE) PFL algorithm is shown in
Alg. 1. The algorithm operates as follows. Initially, the server creates K̂ models, where K̂ is the
upper bound on the number of models, given as an input (line 1). Until cluster stability is reached, it
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sends all K̂ models to a randomly selected fraction ρ of the participating clients in round t (lines 3,
5). Each of these clients runs its data through all models and gets the losses, which form one loss
vector of length K̂ per client. These loss vectors are then sent to the server (lines 6-8). The server, if
needed, determines the number of clusters K(t+1) for the next round (e.g. via searching over a range
of values and choosing the one that yields the highest silhouette score, or using the elbow method) by
calling Alg. 2. It then groups clients into K(t+1) clusters (line 11) by clustering their loss vectors
(e.g. using k-means). It then assigns clients to those models to which their clusters get matched via
a minimum-cost matching (line 12). For this, a bipartite graph is created, with the nodes being the
client clusters on the left and the models on the right, and the weight of each edge being the sum of the
losses of the clients in the cluster on the left on the model on the right. Min-cost bipartite matching is
found using well known methods (e.g. max-flow-based (Munkres, 1957; Lovász & Plummer, 2009);
(Jonker & Volgenant, 1987)). Subsequently, each client trains its assigned model κi locally on its
private data (lines 17-19) by running gradient descent denoted by the function LocalUpdate(·) for
τ epochs, starting with model κi’s parameters, and sends its updates (model parameters in Option
1 and gradients in Option II) to the server. Then, the averaging step follows: the server aggregates
and applies all the received updates for each model j from the set C(t)

j of clients that updated it
(lines 20-23). In the next iteration, the server sends the computed updated parameters once again
to the clients (line 5), and the process continues, until the clustering (i.e. assignment of clients to
clusters/models) stabilizes.

Algorithm 2: Selection of the number of clusters

Input: Loss matrix L, initial # of models K(0)

Output: Best number of clusters Kbest

1 selectBestK(L, K(0))
2 best_score = −1
3 for K = 2, ...,K(0) do
4 ZK = Clustering of the loss vectors (rows of L) using a clustering algorithm, e.g. Agglomerative

Clustering, into K clusters
5 score = silhouette_score(L, ZK)
6 if score > best_score then
7 best_score = score
8 Kbest = K

9 return Kbest

Checking for cluster stability can be done as follows, in a way that the server does not need to keep
any client-specific state. Each client can keep the history of its assignment to models over the different
rounds. Once a client determines that its historical assignments have been stable for a set number of
rounds required for stability, the client declares to the server that it has reached stability. The server
at each round checks whether all (or a desired percentage) of the participating clients have reached
stability, and if so, it decides that universal stability has been achieved.

After the algorithm reaches a stable state, the server no longer needs to compute loss vectors or
perform clustering. Instead, it can simply send the already assigned (single) model to each client
(line 16). For any client that does not yet have an assigned model, the server assigns it the model
whose cluster centroid is closest to the client’s loss vector using the models and centroids saved at the
point of stability (line 15). At this stage, the algorithm behaves like standard FedAvg, so both the
communication and the computational overhead are minimal.

If the number of clusters is unknown a priori, then the choice of K(t+1) at each round happens as
follows, as per Alg. 2. A range of candidate K values is examined, up to a predetermined upper
bound K̂. For each candidate K, the loss vectors are clustered and the silhouette score of the resulting
clustering is computed. Eventually, the value of K with the highest silhouette score is returned. Note
that this procedure is not necessary when the number of clusters K is known a priori.

4 THEORETICAL ANALYSIS OF CLoVE’S PERFORMANCE

We now provide theoretical evidence supporting the superior performance of CLoVE. In the following
we omit all proofs, which can be found in Appendix A. To analyze the efficacy of CLoVE, we consider

5
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a mixed linear regression problem (Yi et al., 2014) in a federated learning setting (Ghosh et al., 2022).
In this context, each client’s data originates from one of K (where K is fixed and known a priori)
distinct clusters, denoted as C1, C2, . . . , CK . Within each cluster Ck, the data pairs zi = (xi, yi) are
drawn from the same underlying distribution Dk, which is generated by the linear model:

yi = ⟨θ∗k, xi⟩+ ϵi.

Here, the feature xi follows a standard normal distribution N (0, Id), and the additive noise ϵi follows
a normal distribution N (0, σ2) (σ ≪ 1), both independently drawn. The loss function is the squared
error: f(θ;x, y) = (⟨θ, x⟩ − y)

2
. Under this setting, the parameters θ∗k ∈ Rd are the minimizers of

the population loss for cluster Ck.

At a high level, our analysis unfolds as follows. We demonstrate that by setting the entries of a client’s
loss vector (SLV) to the square root of model losses, CLoVE can accurately recover client clustering
with high probability in each round. This, in turn, enables CLoVE to accurately match clients to
models with high probability by utilizing the minimum-cost bipartite matching between clusters
and models. Consequently, we show that the distance between the models constructed by CLoVE
and their optimal counterparts decreases exponentially with the number of rounds, following the
application of client gradient updates, thus implying fast convergence of CLoVE to optimal models.

For our analysis we make some assumptions, including that all θ∗i ∈ Rd have unit norms and their
minimum separation ∆ > 0 is close to 1. We also assume the number of clusters K is small in
comparison to the total number of clients M and the dimension d. We assume that each client of
cluster k uses the same number nk of i.i.d. data points independently chosen at each round.

For a given model θ, the empirical loss Li
k(θ) for a client i in cluster k is:

1

nk

nk∑
j=1

(⟨θ, xj⟩ − yj)
2
=

1

nk

nk∑
j=1

(⟨θ∗k − θ, xj⟩+ ϵj)
2

For a given collection of models, θ = [θ1, θ2, · · · ], the square root loss vector (SLV) of a client
i of cluster k is aik(θ) = [F i

k(θ1), F
i
k(θ2), . . .]. Here F i

k(θ) =
√
Li
k(θ) ∼ α(θ,θ∗

k)√
nk

χ(nk), where

α(θ, θ∗k) =
√
∥θ − θ∗k∥2 + σ2, and χ(nk) denotes a standard chi random variable with nk degrees

of freedom. Let ck(θ) =
[
E[F i

k(θ1)],E[F i
k(θ2)], . . .

]
denote the distribution mean of the SLVs for a

cluster k. In the following mk denotes the number of clients in cluster k and n = mink nk.

We say a collection of K models θ = [θ1, θ2, · · · θK ] is ∆-proximal if each θk is within a distance at
most ∆/4 of its optimal counterpart θ∗k. For our analysis we assume CLoVE is initialized with a set θ
of d randomly drawn (hence nearly ortho-normal) models. One of our key results is the following.
Theorem 4.1. For both ortho-normal or ∆-proximal models collections, k-means clustering of SLVs,
with suitably initialized centers, recovers accurate clustering of the clients in one shot. This result
holds with probability at least ξ = 1− δ − 1

polylog(M)
, for any error tolerance δ.

We prove this by showing that, for such model collections, the mixture of distributions formed by
the collection of SLVs from different clients satisfies the proximity condition of Kumar & Kannan
(2010). Specifically, it is shown in Theorem A.9 that when the number of data points across all clients
is much larger than d,K, then for any client i, with probability at least ξ:

∀ j′ ̸= j, ∥aij(θ)− cj′(θ)∥ − ∥aij(θ)− cj(θ)∥ ≥
(
c′K

mi
+

c′K

mj

)
∥A(θ)− C(θ)∥

Here c′ is a large constant and client i is assumed to belong to cluster j. Theorem 4.1 then follows
directly from the result of Kumar & Kannan (2010).

The proof of Theorem A.9 is based on a sequence of intermediate results. In particular, Lemma A.1
and Lemma A.2 demonstrate that, for the ortho-normal and ∆-proximal model collections, the means
of the SLV distributions across distinct clusters are sufficiently well-separated:

For any i ̸= j, ∥ci(θ)− cj(θ)∥ ≥ ∆
c . Here, c ≈ 2.

Furthermore, Lemma A.4 shows that with high probability, SLVs of each cluster are concentrated
around their means. We use these results, combined with a result of Dasgupta et al. (2007) to prove
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Lemma A.7 which establishes that the norm of the matrix X(θ) of “centered SLVs”, whose i-th

row is ais(i)(θ) − cs(i)(θ), is bounded. That is, for γ =
√

d 1
2n (9 + σ2), with high probability:

∥X(θ)∥ ≤ γ
√
Mpolylog(M). By combining these results, we are able to derive the proximity

condition of Theorem A.9.

Next, we prove our second key result, that models constructed by CLoVE converge exponentially fast
towards their optimal counterpart. Let θi denote model collection at round i.
Theorem 4.2. After T rounds, each model θk ∈ θT satisfies ∥θk − θ∗k∥ ≤ ∆

cT1
, with high probability,

for a constant c1.

In the first round, the models θ1 for CLoVE are initialized to be ortho-normal, ensuring accurate cluster

recovery by Theorem 4.1. Under the assumption that for all clusters k, nkmk

(
ρ

ρ+1

)2
≫ polylog(K),

where ρ = ∆2/σ2, Lemma A.16 shows that the min-cost bi-bipartite matching found by CLoVE
yields an optimal client-to-model match with probability close to 1. Furthermore, Lemma A.13
demonstrates that as a consequence of this optimal match, the updated K models θ2, obtained by
applying gradient updates from clients to their assigned models, are ∆-proximal with high probability,
provided that the learning rate η is suitably chosen.

In subsequent rounds, the ∆-proximality of the models θ2 enables the application of a similar
argument, augmented by Corollary A.14. With high probability, this implies that the updated K
models θ3 not only remain ∆-proximal, but also have a distance to their optimal counterparts that is
a constant fraction c1 times smaller, resulting from the gradient updates from their assigned clients.
Thus, by induction, the proof of Theorem 4.2 follows, provided δT ≪ 1.

5 PERFORMANCE EVALUATION

We now show how our algorithms compare to the state of the art in both supervised and unsupervised
settings. In the unsupervised setting in particular, which is understudied in the context of CFL, our
evaluation is, to the best of our knowledge, the first extensive one. The datasets, models and data
distributions we use follow the ones used by the state of the art (Vahidian et al., 2023; Duan et al.,
2022; Xu et al., 2023; Zhang et al., 2023; Ghosh et al., 2020).

5.1 EXPERIMENTAL SETUP

Datasets and Models We evaluate our method on three types of tasks – image classification, text
classification, and image reconstruction – using six widely-used datasets: MNIST, Fashion-MNIST
(FMNIST), CIFAR-10, FEMNIST, Amazon Reviews, and AG News. For the classification tasks,
we use three different convolutional neural networks (CNNs): a shared CNN model for MNIST,
FMNIST and FEMNIST, a deeper CNN for CIFAR-10, a TextCNN for AG News, and an MLP-based
model (AmazonMLP) for Amazon Reviews. For the unsupervised image reconstruction tasks on
MNIST and FMNIST, we use a simple autoencoder, while a convolutional autoencoder is employed
for CIFAR-10. Further details about these datasets and model architectures can be found in App. C.
Dataset Partitioning As in the state of the art, we extensively cover many high variance and high
overlap data heterogeneity scenarios through random data partitioning, without replacement, with
various types of label and feature skews, as well as concept shifts. For label skew, we consider many
non-overlapping and overlapping label distributions. We present only some of the results here (rest
are in App. D.1.2 and D.1.3). In case Label skew 1, clients within each cluster receive data from
only two unique classes, with no label overlap between clients in different clusters. Conversely, in
case Label skew 2, each client within each cluster receives samples from U classes, with at least
V labels shared between the labels assigned to any two clusters. For the AG News dataset, we use
U = 2 and V = 1, while for all image datasets we use U = 4 and V = 2. As is standard practice
in the FL literature, for Label skew 1 and 2 (and 3 in App. D.1.2), the data of a class is distributed
amongst the clients that are assigned to that class by sampling from a Dirichlet distribution with
parameter α = 0.5. For instance, suppose the clients are divided into three clusters, and a particular
class contains L data points. First, we draw three proportions p1, p2, p3 from a Dirichlet distribution
with concentration parameter α = 0.5 (by construction, p1 + p2 + p3 = 1). Then we randomly select
Lp1 points of the class for the clients in cluster 1, Lp2 points for the clients in cluster 2, and the
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remaining Lp3 points for the clients in cluster 3. The selected points are assigned randomly among
the clients within each respective cluster.

To simulate feature distribution shifts, we apply image rotations (0°, 90°, 180°, 270°) to the MNIST,
CIFAR-10 and FMNIST datasets. Each client within a cluster is assigned data with a specific rotation.
Concept shift is achieved through label permutation: all labels are distributed across all clusters, but
clients within each cluster receive data with two unique label swaps. Both test and train data of a
client have the same distribution. No data mixing is employed for the Amazon Review dataset, i.e.
we use its original data classes.

Compared Methods We compare the following baselines: Local-only, where each client trains its
model locally; FedAvg, which learns a single global model; clustered federated learning methods,
including CFL-S, IFCA, FlexCFL, FeSEM, and PACFL (Vahidian et al., 2023); and general PFL
methods FedProto (Tan et al., 2022), Per-FedAvg (Fallah et al., 2020), FedALA (Zhang et al., 2023),
and FedPAC (Xu et al., 2023). The source code we used for these algorithms is linked in Table 7.

Training Settings We use an Adam (Kingma & Ba, 2017) optimizer, a batch size of 64 and a
learning rate γ = 10−3. The number of local training epochs is τ = 1 and the number of global
communication rounds is T = 100. For supervised classification tasks we use cross-entropy loss, and
for unsupervised tasks we use the MSE reconstruction loss. We vary the number of clients between
20 and 1000. In most cases, the training data size per client is set to 500. However, for the Amazon
Reviews and AG News datasets, we use 1000 and 100 samples, respectively. Details on the number
of clients and training data sizes for all experiments is provided in App. C.

Result reporting We report the average performance of the models assigned to the clients on
their local test data. Specifically, we report test accuracies for supervised classification tasks and
reconstruction losses for unsupervised tasks. In addition, we report the accuracy of client-to-cluster
assignments as the Adjusted Rand Index (ARI) between the achieved clustering and the ground-truth
client groupings. To account for randomness, we run each experiment for 3 values of a randomness
seed and report the mean and standard deviation. In this section, we only report results for full
participation, known number of clusters, and no early stopping of clustering. The results for the other

Table 1: Supervised test accuracy results for MNIST, CIFAR-10 and FMNIST

Algorithm Data
mixing MNIST CIFAR-10 FMNIST Data

mixing MNIST CIFAR-10 FMNIST

FedAvg

L
ab

el
sk

ew
1

87.4± 0.9 34.0± 3.6 64.7± 1.2

C
on

ce
pt

sh
if

t

52.4± 0.3 63.1± 1.7 49.1± 0.1
Local-only 99.5± 0.1 85.4± 1.6 98.8± 0.1 94.8± 0.3 45.1± 0.4 78.3± 0.4

Per-FedAvg 97.8± 0.2 75.0± 0.7 97.0± 0.1 80.2± 1.0 34.9± 0.7 70.4± 1.0
FedProto 99.2± 0.0 83.0± 0.3 98.6± 0.0 95.0± 0.4 40.8± 0.3 78.4± 0.3
FedALA 98.9± 0.1 80.0± 0.6 97.8± 0.0 96.7± 0.2 42.0± 1.0 81.1± 0.3
FedPAC 94.4± 0.7 78.3± 0.4 91.7± 1.2 90.7± 1.3 39.0± 1.0 73.8± 0.6

CFL-S 82.5± 21.8 87.4± 0.4 65.8± 22.4 97.5± 0.2 35.7± 3.2 83.7± 0.5
FeSEM 73.2± 0.8 11.2± 1.6 41.8± 0.7 46.2± 0.1 12.7± 0.5 39.7± 0.6
FlexCFL 99.4± 0.0 73.2± 0.3 99.0± 0.1 97.4± 0.1 17.8± 2.1 86.1± 0.2
PACFL 99.1± 0.1 79.1± 1.0 98.7± 0.1 93.3± 0.1 26.8± 1.2 72.6± 1.2
IFCA 99.1± 0.5 85.7± 6.5 97.8± 1.9 80.0± 0.2 52.7± 4.7 67.0± 6.2
CLoVE 99.8± 0.0 90.5± 0.1 99.1± 0.0 97.6± 0.1 58.4± 0.6 84.3± 0.2

FedAvg

L
ab

el
sk

ew
2

76.4± 0.3 47.7± 4.0 55.2± 1.6

Fe
at

ur
e

sk
ew

90.0± 0.6 52.4± 2.5 76.5± 0.3
Local-only 94.2± 0.2 55.9± 1.8 86.1± 0.4 93.0± 0.1 38.5± 1.6 75.8± 0.2

Per-FedAvg 94.9± 0.6 48.2± 0.9 78.2± 1.0 87.8± 0.5 22.8± 0.1 66.7± 0.4
FedProto 94.4± 0.2 56.8± 0.8 82.1± 0.9 92.3± 0.3 34.1± 0.2 74.0± 0.3
FedALA 95.1± 0.3 50.1± 1.6 81.6± 0.7 90.2± 0.6 22.3± 0.4 68.1± 0.5
FedPAC 91.9± 0.5 40.7± 5.2 77.6± 1.2 87.6± 0.4 24.6± 0.2 67.4± 0.2

CFL-S 97.3± 0.3 62.1± 0.4 87.2± 1.2 95.1± 0.2 61.6± 5.1 77.8± 3.5
FeSEM 89.1± 1.6 15.3± 2.5 51.4± 0.2 79.5± 0.4 10.7± 0.5 67.6± 0.5
FlexCFL 95.6± 0.3 43.6± 0.6 88.7± 0.2 96.7± 0.1 12.2± 0.4 85.2± 0.2
PACFL 92.0± 1.1 40.4± 1.0 81.1± 0.5 89.3± 0.1 17.1± 0.6 70.6± 0.6
IFCA 96.8± 0.2 63.4± 3.4 89.4± 1.3 95.9± 2.0 50.8± 7.0 83.5± 0.3
CLoVE 97.1± 0.3 66.8± 2.3 90.1± 0.3 97.7± 0.1 57.1± 1.8 85.1± 0.2
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Table 2: Supervised ARI results for MNIST, CIFAR-10 and FMNIST

Algorithm Data
mixing MNIST CIFAR-10 FMNIST Data

mixing MNIST CIFAR-10 FMNIST

CFL-S

L
ab

el
sk

ew
1 0.71± 0.20 1.00± 0.00 0.86± 0.20

C
on

ce
pt

sh
if

t 1.00± 0.00 0.00± 0.00 1.00± 0.00
FeSEM 0.18± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.22± 0.24 1.00± 0.00
PACFL 0.39± 0.07 0.60± 0.09 1.00± 0.00 0.00± 0.02 0.00± 0.00 0.00± 0.00
IFCA 0.83± 0.12 0.91± 0.13 0.92± 0.12 0.68± 0.00 0.76± 0.17 0.55± 0.18
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

CFL-S

L
ab

el
sk

ew
2 0.00± 0.00 0.72± 0.00 0.57± 0.00

Fe
at

ur
e

sk
ew

0.48± 0.00 0.89± 0.15 0.16± 0.23
FeSEM 0.18± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.11± 0.08 1.00± 0.00
PACFL 0.35± 0.12 0.32± 0.11 0.55± 0.03 0.00± 0.00 0.00± 0.00 0.68± 0.11
IFCA 0.83± 0.12 0.81± 0.13 0.92± 0.12 0.67± 0.28 0.71± 0.22 0.55± 0.10
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

cases, as well as scaling experiments and ablation studies, are provided in App. D and show that
CLoVE performs well even in these settings.

5.2 NUMERICAL RESULTS Table 3: Supervised test accuracy
results for Amazon Review and AG
News

Algorithm Amazon AG News

FedAvg 99.0± 0.1 40.2± 0.1
Local-only 81.2± 0.4 51.4± 1.1
Per-FedAvg 87.7± 0.4 48.0± 1.1
FedProto 81.3± 0.1 18.9± 1.5
FedALA 88.3± 0.3 49.6± 0.1
FedPAC 88.2± 0.2 42.4± 2.9
CFL-S 87.7± 0.8 48.4± 2.7
FeSEM 50.9± 0.2 19.1± 1.5
FlexCFL 84.1± 0.8 60.2± 5.5
PACFL 82.1± 0.3 51.1± 1.9
IFCA 85.5± 0.5 51.3± 3.3
CLoVE 86.8± 0.4 55.1± 0.2

The test accuracies for image classification tasks are reported
in Table 1. The results demonstrate that CLoVE performs
consistently well across various data distributions, including
label and feature skews, as well as concept shifts. While some
baseline algorithms exhibit strong performance in specific cases,
CLoVE is the only algorithm that consistently ranks among
the top performers in almost all scenarios.

Table 2 presents the clustering accuracies of different CFL algo-
rithms for the image datasets under the same experimental setup.
CLoVE achieves optimal performance in all cases. Although
FlexCFL also shows near-optimal performance, its accuracy
declines when faced with concept shifts, especially on CIFAR-
10, as it neglects label information in similarity estimation. In
contrast, loss-based approaches like CLoVE excel in this metric,
as model losses can effectively account for various types of skews. Results for additional types of
label skews (e.g. dominant class (Xu et al., 2023)) are included in App. D.1.2.

The test accuracies for the textual classification tasks are reported in Table 3 (more metrics in
App. D.1.3). While CLoVE exhibits good performance here as well, the baseline FedAvg performs
especially well on the Amazon Review dataset. One reason is that while the dataset is split by product
categories, the underlying language and sentiment cues are still fairly similar across all 4 categories
and can provide a good signal for classification. On AG News, CLoVE outperforms all baselines
except FlexCFL.

Table 5 presents the clustering recovery speed for the image classification datasets under different
client data distributions. The first 3 columns show the ARI reached within 10 rounds for each
algorithm. CLoVE outperforms all baselines here. The next 3 columns show the first round at which
an ARI of 0.9 or higher is achieved (dashes mean 0.9 ARI is never achieved). As can be seen, CLoVE
consistently reaches such high accuracy within 2-3 rounds, unlike any other baseline.

Table 4: Unsupervised test loss results for MNIST,
CIFAR-10 and FMNIST

Algorithm MNIST CIFAR-10 FMNIST

FedAvg 0.032± 0.001 0.026± 0.000 0.030± 0.000
Local-only 0.019± 0.000 0.022± 0.000 0.170± 0.000
IFCA 0.024± 0.005 0.019± 0.000 0.020± 0.002
CLoVE 0.014± 0.000 0.021± 0.000 0.016± 0.000

Unsupervised Setting Unlike many of the
baselines, CLoVE is equally applicable to
unsupervised settings, as it relies solely on
model losses to identify clients with similar
data distributions. Another loss-based ap-
proach, IFCA, serves as a natural point of
comparison in this context. As shown in Ta-
ble 4, CLoVE exhibits consistently good per-
formance compared to IFCA and other baselines in unsupervised settings on image reconstruction
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tasks using autoencoders, further highlighting its versatility and effectiveness. More experiments in
an unsupervised setting can be found in App. D.2.

1 2 3 4 5 6 7 8 9 10
Round

0.00

0.25
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Ad
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CLoVE (init:d, first:e)
IFCA (init:d, first:e)
CLoVE (init:d, first:r)
IFCA (init:d, first:r)

Figure 2: Clustering accuracy of
CLoVE and IFCA over time for
the initialization experiments

Robustness to initialization Our results indicate that one key
reason CLoVE outperforms related baselines such as IFCA is its
robustness to initialization. We evaluate this by varying two factors:
the initialization of model parameters and the first round client-to-
model assignment strategy. For model initialization, we consider
two settings: (1) all models begin with identical parameters (init:s
– same), and (2) each model is initialized independently using
PyTorch’s default random initialization (init:d – different). For
the first round client-to-model assignment, we also explore two
approaches: (1) assigning clients to models at random (first:r –
random), and (2) assigning clients by clustering their loss vectors
(first:e – evaluation-based), followed by bipartite matching as in
Alg. 1. Fig. 2 compares CLoVE and IFCA on unsupervised
MNIST image reconstruction with 10 clusters, each containing 5 clients with 500 samples. The
results show that CLoVE maintains high performance across different initialization methods, unlike
IFCA.

Table 5: Convergence behavior for MNIST, CIFAR-10 and FMNIST

Data
mixing Algorithm

ARI reached in 10 rounds First round when ARI ≥ 0.9

MNIST CIFAR-10 FMNIST MNIST CIFAR-10 FMNIST

L
ab

el
sk

ew
1 CFL-S 0.00± 0.00 0.00± 0.00 0.00± 0.00 — 41.3± 2.1 —

FeSEM 0.18± 0.00 0.00± 0.00 0.00± 0.00 — — —
FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.0± 0.0 1.0± 0.0 1.0± 0.0
PACFL 0.39± 0.07 0.60± 0.09 1.00± 0.00 — — 1.0± 0.0
IFCA 0.83± 0.12 0.72± 0.00 0.83± 0.12 — — —
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.0± 0.0 2.0± 0.0 2.0± 0.0

C
on

ce
pt

sh
if

t CFL-S 0.00± 0.00 0.00± 0.00 0.00± 0.00 60.0± 9.4 — 43.0± 5.7
FeSEM 0.00± 0.00 0.00± 0.00 0.00± 0.00 — — —
FlexCFL 1.00± 0.00 0.22± 0.24 1.00± 0.00 1.0± 0.0 — 1.0± 0.0
PACFL 0.00± 0.02 0.00± 0.00 0.00± 0.00 — — —
IFCA 0.68± 0.00 0.76± 0.17 0.55± 0.18 — — —
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.0± 0.0 2.3± 0.5 2.0± 0.0

6 CONCLUSION

We introduced CLoVE, a simple loss vector embeddings-based framework for personalized clustered
federated learning with low communication and computation overhead that avoids stringent model
initialization assumptions and substantially outperforms the state of the art across a range of datasets
and in a variety of both supervised and unsupervised settings. Further discussion of the overheads
and the privacy properties of CLoVE is provided in App. B. In the future, we plan to further explore
privacy, as well as fairness and adversarial behavior aspects. Overall, CLoVE’s design offers a
promising and robust approach to scalable model personalization and clustering under heterogeneous
data distributions.

7 REPRODUCIBILITY STATEMENT

Our code, together with detailed instructions on how to reproduce our experiments, will be open-
sourced. For the purposes of the reviewing process, after the discussion forums open, we will make
a comment directed to the reviewers and area chairs and put a link to an anonymous repository
containing our code, as mentioned in the Author Guide webpage of the conference (https://
iclr.cc/Conferences/2026/AuthorGuide). Proofs for our theoretical claims are in App.
A. All datasets we are using are already public. We have provided detailed implementation details in
Section 5 of the main paper and Appendices C and D.
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A THEORETICAL ANALYSIS

A.1 BACKGROUND

We consider a mixed linear regression problem (Yi et al., 2014) in a federated setting (Ghosh et al.,
2022). Client’s data come from one of K different clusters, denoted as C1, C2, . . . , CK . Cluster k’s
optimal model θ∗k ∈ Rd is a vector of dimension d.

Assumptions: We assume all clients of a cluster Ck use the same number nk of independently drawn
feature-response pairs (xi, yi) in each federated round. These feature-response pairs are drawn from
a distribution Dk, generated by the model:

yi = ⟨θ∗k, xi⟩+ ϵi,

where xi ∼ N (0, Id) are the features, and ϵi ∼ N (0, σ2) represents additive noise. Both are
independently drawn. We assume σ is very small. Specifically, σ ≪ 1.

We use notation [K] for the set {1, 2, ...,K}.

The loss function f(θ) is defined as the square of the error:

f(θ;x, y) = (⟨θ, x⟩ − y)
2
.

The population loss for cluster k is:

Lk(θ) = E(x,y)∼Dk

[
(⟨θ, x⟩ − y)

2
]
,

Note that the optimal parameters {θ∗k}Kk=1 are the minimizers of the population losses {Lk}Kk=1, i.e.,

θ∗k = argmin
θ

Lk(θ) for each k ∈ [K].

We assume these optimal models have unit norm. That is ∥θ∗k∥ = 1 for all k. We also assume the
optimal models are well-separated. That is, there exists a ∆ > 0 such that for any pair i ̸= j:

∥θ∗i − θ∗j ∥ ≥ ∆

For a given θ, the empirical loss for client i in cluster k is:

Li
k(θ) =

1

nk

nk∑
j=1

(⟨θ, xj⟩ − yj)
2
=

1

nk

nk∑
j=1

(⟨θ∗k − θ, xj⟩+ ϵj)
2
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Let
α(θ, θ∗k) =

√
∥θ − θ∗k∥2 + σ2.

Note Li
k(θ) ∼

α(θ,θ∗
k)

2

nk
χ2(nk). That is, it is distributed as a scaled chi-squared random variable with

nk degrees of freedom, with scaling factor α(θ,θ∗
k)

2

nk
. In the following, we denote the square root of

the empirical loss by F i
k(θ). That is, F i

k(θ) =
√
Li
k(θ). Note:

F i
k(θ) ∼

α(θ, θ∗k)√
nk

χ(nk),

where χ(nk) denotes a chi-distributed random variable with nk degrees of freedom.

Using Sterling approximation, E[χ(n)] =
√
n− 1

[
1− 1

4n +O
(

1
n2

)]
. Also, Var[χ(n)] = (n −

1)− E[χ(n)]2 = n−1
2n

[
1 +O( 1n )

]
. Therefore:

E
[
F i
k(θ)

]
= α

[
1− 1

4nk
+O

(
1

n2
k

)]
≈ α(θ, θ∗k).

Var(F i
k(θ)) =

α2

nk

(
nk − 1

2nk
+O

(
1

nk

))
≈ α(θ, θ∗k)

2

2nk
.

For N models θ = [θ1 θ2 · · · θN ], the square root loss vector (SLV) of a client i of cluster k
is aik(θ) = [F i

k(θ1), F
i
k(θ2), . . . F

i
k(θN )]. Let ck(θ) = [c1k, c

2
k, . . . c

N
k ] be the mean of k-th cluster’s

SLVs. Note that cjk = E[F i
k(θj)] = α(θj , θ

∗
k) =

√
∥θj − θ∗k∥2 + σ2.

All the model collections θ considered in this work are assumed to be one of two different types: a)
N = d ortho-normal models, such as d models drawn randomly from a d-dimensional unit sphere,
since such vectors are likely to be orthogonal, and b) N = K, ∆-proximal models in which each θk
is within a distance at most ∆/4 of its optimal counterpart θ∗k. Furthermore, the norm of any model
in these model collections is required to be bounded. Specifically, ∥θ∥ ≤ 2 for any model θ ∈ θ.

A.2 RESULTS

We prove that the mean of different cluster SLVs are well-separated for our choice of model
collections. We first show this for a N = d ortho-normal θ model collection.

Lemma A.1. For ortho-normal models θ, for any i ̸= j, ∥ci(θ)− cj(θ)∥ ≥ ∆

c
, where c ≈ 2.

Proof. First, we show the result for the following ortho-normal models:

θi = (0, 0, . . . , 1, . . . , 0) with the 1 in the i-th position.

Note, ∣∣∥θ∗i − θk∥2 − ∥θ∗j − θk∥2
∣∣ = 2

∣∣⟨(θ∗i − θ∗j ), θk⟩
∣∣ = 2 |tk| ,

where tk is the k-th component of θ∗i − θ∗j . Thus∣∣∣(cik)2 − (cjk)
2
∣∣∣ = ∣∣∥θ∗i − θk∥2 − ∥θ∗j − θk∥2

∣∣ = 2 |tk| .

Also, since ∀i, ∥θ∗i ∥ = 1 and ∀k, ∥θk∥ = 1, it follows for any k, i that cik =
√
∥θk − θ∗i ∥2 + σ2 ≤√

4 + σ2. Thus, ∣∣∣cik − cjk

∣∣∣ ≥ |tk|√
4 + σ2

Thus, since
∑

k t
2
k = ∥θ∗i − θ∗j ∥2:

∥ci(θ)− cj(θ)∥2 ≥
∑
k

(
|tk|√
4 + σ2

)2

≥
∥θ∗i − θ∗j ∥2

4 + σ2
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However, since ∀i ̸= j, ∥θ∗i − θ∗j ∥ ≥ ∆, it follows:

∥ci(θ)− cj(θ)∥2 ≥ ∆2

4 + σ2

since, by assumption, σ ≪ 1. Thus, for c ≈ 2,

∀i ̸= j, ∥ci(θ)− cj(θ)∥ ≥ ∆

c
. (1)

It is easy to see that the proof holds for any set θ of ortho-normal unit vectors. Specifically, since
vectors drawn randomly from a d-dimensional unit sphere are nearly orthogonal, for large d, the
result holds for them as well.

We now prove an analogue of the Lemma A.1 for the K models of θ that satisfy the proximity
condition.

Lemma A.2. Let θ be collection of K models that satisfy the ∆-proximity condition. Then, for any

i ̸= j, ∥ci(θ)− cj(θ)∥ >
∆

2
.

Proof. Recall, ck(θ) = [c1k, c
2
k, . . . c

N
k ], where cjk = E

[
F i
k(θj)

]
= α(θj , θ

∗
k) =

√
∥θ − θ∗k∥2 + σ2.

Since ∥θi−θ∗i ∥ ≤ ∆
4 and since ∥θ∗i −θ∗j ∥ ≥ ∆, by triangle inequality it follows that ∥θi−θ∗j ∥ ≥ 3∆

4 .
Likewise, ∥θj − θ∗j ∥ ≤ ∆

4 and ∥θj − θ∗i ∥ ≥ 3∆
4 . Thus, since σ ≪ ∆

4 :

|cij − cii| =
∣∣∣∣√∥θi − θ∗j ∥2 + σ2 −

√
∥θi − θ∗i ∥2 + σ2

∣∣∣∣
≥

∣∣∣∣∣∣∥θi − θ∗j ∥2 −

√
∥θi − θ∗i ∥2 +

(
∆

4

)2
∣∣∣∣∣∣ ≥ 3−

√
2

4
∆

Likewise,

|cji − cjj | =
∣∣∣∣√∥θj − θ∗i ∥2 + σ2 −

√
∥θj − θ∗j ∥2 + σ2

∣∣∣∣ ≥ 3−
√
2

4
∆

Since:
∥ci(θ)− cj(θ)∥2 ≥ |cij − cii|2 + |cji − cjj |

2,

it follows:

∥ci(θ)− cj(θ)∥2 ≥ 2

(
3−

√
2

4

)2

∆2.

Thus,

∥ci(θ)− cj(θ)∥ >
∆

2

Any ortho-normal model, by definition, satisfies ∥θ∥ = 1 < 2. Now we show the same for any
∆-proximal model.

Lemma A.3. ∥θ∥ < 2, for any ∆-proximal model θ.

Proof. This follows from our assumption ∥θ∗k∥ = 1 for all k ∈ [K] and since there exists a k ∈ [K]
such that ∥θ − θ∗k∥ ≤ ∆/4, where ∆ < 2. Therefore, by triangle inequality, ∥θ∥ < 2.
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Since, for all models, ∥θ∥ < 2, this implies ∥θ − θ∗k∥ ≤ 3, for all k ∈ [K]. Thus, it follows, for all
k ∈ [K]:

1

2nk

(
∥θ − θ∗k∥2 + σ2

)
≤ 1

2nk

(
9 + σ2

)
(2)

All our results below hold for any ortho-normal or ∆-proximal models collection θ, unless noted
otherwise.

The Lemma below establishes that SLVs of a cluster are concentrated around their means and this
result holds with high probability.

Lemma A.4. Let client i be in cluster s(i). Let Varj(ais(i)) be the variance of the j-th entry of its

SLV ais(i)(θ). Then, for t = 9
2 log

2 NM
δ and for any error tolerance δ < 1:

P
[
∀i, ∥ais(i)(θ)− cs(i)(θ)∥2 ≤ tmax

j
Varj(ais(i))

]
≥ 1− δ.

Proof. In what follows, we use k to denote the cluster assignment s(i) for client i. Let

aik(θ) =
[
F i
k(θ1), F

i
k(θ2), . . . F

i
k(θN )

]
,

and therefore
ck(θ) =

[
E[F i

k(θ1)],E[F i
k(θ2)], . . . ,E[F i

k(θN )]
]
.

We start by focusing on the j-th component F i
k(θj) of aik(θ). For notational convenience, we will

omit the index j and refer to this component as F i
k(θ) in the following proof.

Recall

Li
k(θ) =

(
F i
k(θ)

)2
=

1

nk

nk∑
j=1

(⟨θ∗k − θ, xj⟩+ ϵj)
2
.

Li
k(θ) is scaled chi-squared random variable with nk degrees of freedom (i.e. ∼ α(θ,θ∗

k)
2

nk
χ2(nk)).

Thus, its mean and variance are:
E
[
Li
k(θ)

]
= α(θ, θ∗k)

2

Var(Li
k(θ)) =

2

nk
α(θ, θ∗k)

4

Note
Li
k(θ) ∼

∑
j

1

nk
α(θ, θ∗k)

2y2j

where yj ∼ N (0, 1). Thus,

Li
k(θ) ∼

∑
j

E
[
Li
k(θ)

]
nk

y2j

Let γ =

√∑
j

(
E[Li

k(θ)]
nk

)2

= 1√
nk

E
[
Li
k(θ)

]
. Let α =

E[Li
k(θ)]
nk

. We apply Lemma 1, Section 4

of Laurent & Massart (2000) to get:

P
[
Li
k(θ)− E

[
Li
k(θ)

]
≥ 2α

√
x+ 2γx

]
≤ e−x

Here

2α
√
x+ 2γx = E

[
Li
k(θ)

](2
√
x

nk
+

2x√
nk

)
Note that 3x√

nk
> 2

√
x

nk
+ 2x√

nk
for x > 1 (specifically for any x > 4

nk
). Thus:

P
[
Li
k(θ)− E

[
Li
k(θ)

]
≥ E

[
Li
k(θ)

] 3x√
nk

]
≤ e−x
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With 3x = 2(1 + β):

P
[
Li
k(θ) ≥ E

[
Li
k(θ)

](
1 + 2(1 + β)

1
√
nk

)]
≤ e−

2
3 (1+β)

Recall Li
k(θ) =

(
F i
k(θ)

)2
and

E
[
Li
k(θ)

]
= α(θ, θ∗k)

2 = E
[
F i
k(θ)

]2
Thus:

P
[
F i
k(θ)

2 ≥ E
[
F i
k(θ)

]2(
1 + 2(1 + β)

1
√
nk

)]
≤ e−

2
3 (1+β)

Since

1 + 2(1 + β)
1

√
nk

≤
(
1 + (1 + β)

1
√
nk

)2

,

P
[
F i
k(θ) ≥ E

[
F i
k(θ)

](
1 + (1 + β)

1
√
nk

)]
≤ e−

2
3 (1+β)

or

P

[(
F i
k(θ)− E

[
F i
k(θ)

])2 ≥ (1 + β)2
E
[
F i
k(θ)

]2
nk

]
≤ e−

2
3 (1+β)

Since

Var
(
F i
k(θ)

)
=

α(θ, θ∗k)
2

2nk
=

E
[
F i
k(θ)

]2
2nk

,

P
[(
F i
k(θ)− E

[
F i
k(θ)

])2 ≥ 2(1 + β)2Var
(
F i
k(θ)

)]
≤ e−

2
3 (1+β)

We set t = 2(1 + β)2. Then:

P
[(
F i
k(θ)− E

[
F i
k(θ)

])2 ≥ tVar
(
F i
k(θ)

)]
≤ e−

√
2t
3

Note that this result holds for a single component F i
k(θj) of Ai(θ). By using union bound over all of

its N components:

P

 N∑
j=1

(
F i
k(θj)− E

[
F i
k(θj)

])2 ≥ tmax
j

Var
(
F i
k(θj)

) ≤ Ne−
√

2t
3

or

P
[∥∥aik(θ)− ck(θ)

∥∥2 ≥ tmax
j

Var
(
F i
k(θj)

)]
≤ Ne−

√
2t
3 .

Since k = s(i) and Var(F i
k(θj)) = Varj(ais(i)):

P
[∥∥∥ais(i)(θ)− cs(i)(θ)

∥∥∥2 ≥ tmax
j

Varj(ais(i))
]
≤ Ne−

√
2t
3 .

Applying union bounds for all M clients and by noticing that for t = 9
2 log

2 NM
δ :

MNe−
√

2t
3 = δ

we get

P
[
∀i,
∥∥∥ais(i)(θ)− cs(i)(θ)

∥∥∥2 ≥ tmax
j

Varj(ais(i))
]
≤ δ

or

P
[
∀i,
∥∥∥ais(i)(θ)− cs(i)(θ)

∥∥∥2 ≤ tmax
j

Varj(ais(i))
]
≥ 1− δ.
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For models θ, Let A(θ) be the M × N matrix of the SLVs of all M clients and let C(θ) be the
corresponding M ×N matrix of SLV means. Thus, X(θ) = A(θ)− C(θ) is the matrix of centered
SLVs for all clients. Let Xi(θ) = Ai(θ)−Ci(θ) be the i-th row of A(θ)−C(θ), with Ai(θ) being
the SLV of the i-th client and Ci(θ) the mean of that SLV.

We now establish a bound on the directional variance of the rows of A(θ)−C(θ). First we show the
following:

Lemma A.5. Let X be an N -dimensional vector with components xi such that E[xi] = 0 for all i,
and let v be any N -dimensional vector. Then

E
[
⟨X, v⟩2

]
≤

(
N∑
i=1

|vi|
√

Var(xi)

)2

. (3)

Proof. Note

E
[
⟨X, v⟩2

]
=

N∑
i=1

N∑
j=1

vivjE[xixj ] ≤
N∑
i=1

N∑
j=1

|vivjE[xixj ]| .

Splitting the sum into diagonal and off-diagonal terms:

E
[
⟨X, v⟩2

]
≤

N∑
i=1

v2i E[x2
i ] +

∑
i̸=j

|vivjE[xixj ]| .

Applying the Cauchy-Schwarz inequality to the off-diagonal terms:

|E[xixj ]| ≤
√

E[x2
i ]E[x2

j ] for i ̸= j.

Thus,

E
[
⟨X, v⟩2

]
≤

N∑
i=1

v2i E[x2
i ] +

∑
i̸=j

|vivj |
√
E[x2

i ]E[x2
j ].

Thus,

E
[
⟨X, v⟩2

]
≤

(
N∑
i=1

|vi|
√
E[x2

i ]

)2

.

We substitute E
[
x2
i

]
= Var(xi) (since E[xi] = 0) to express the bound in terms of variances:

E
[
⟨X, v⟩2

]
≤

(
N∑
i=1

|vi|
√

Var(xi)

)2

.

Lemma A.6. Let Xi(θ) = Ai(θ) − Ci(θ) be the i-th row of A(θ) − C(θ), with Ai(θ) being the
SLV of i-th client and Ci(θ) the mean of that SLV. Let i-th client be in in cluster k.

max
v:∥v∥=1

E
[
⟨Xi(θ), v⟩2

]
≤ N

1

2nk

(
9 + σ2

)
(4)

Proof. Applying Equation 3 of Lemma A.5, it follows:

max
v:∥v∥=1

E
[
⟨Xi(θ), v⟩2

]
≤ max

v:∥v∥=1

 N∑
j=1

|vj |
√

Var(Xi(θj))

2

,

where Xi(θj) is the j-th component of Xi(θ), which is the centered square root loss of client i on
model θj . That is Xi(θj) = Ai(θj)− E[Ai(θj)]. Therefore, Var(Xi(θj)) = Var(Ai(θj)). Hence:

max
v:∥v∥=1

E
[
⟨Xi(θ), v⟩2

]
≤ max

v:∥v∥=1

 N∑
j=1

|vj |
√

Var(Ai(θj))

2
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Combining with Equation 2:

Var(Ai(θj)) =
1

2nk

(
∥θj − θ∗k∥2 + σ2

)
≤ 1

2nk

(
9 + σ2

)
.

Thus
max

v:∥v∥=1
E
[
⟨Xi(θ), v⟩2

]
≤ N

1

2nk

(
9 + σ2

)
since maximum happens when all vj = 1√

N
.

Using a similar argument, it follows:

E
[
∥Xi(θ)∥2

]
≤ N

1

2nk

(
9 + σ2

)
(5)

We now establish a bound on the matrix operator norm ∥X(θ)∥ = ∥A(θ)−C(θ)∥. Let n = mink nk

be the smallest number of data points any client has. Let γ =
√
N 1

2n (9 + σ2). Then we can show
the following bound:

Lemma A.7. With probability at least 1− 1

polylog(M)
:

∥X(θ)∥ ≤ γ
√
Mpolylog(M) (6)

Proof. With abuse of notation, we will use Xi to refer to i-th row of X(θ) and use Xij to denote the
j-th entry of this row. Since Var(∥Xi∥) ≤ E[∥Xi∥2], then by applying Equation 5 and by definition
of γ, it follows Var(∥Xi∥) ≤ E[∥Xi∥2] ≤ γ2. Thus, by Chebyshev’s inequality:

P
[
∥Xi∥ ≥ γ

√
Mpolylog(M)

]
≤ γ2

Mγ2polylog(M)

Thus by union bound

P
[

max
i=1,...,M

∥Xi∥ ≥ γ
√
Mpolylog(M)

]
≤ 1

polylog(M)

Thus with probability at least 1− 1

polylog(M)
:

max
i=1,...,M

∥Xi∥ < γ
√
Mpolylog(M)

Now for any unit column vector v

vTE
[
X(θ)TX(θ)

]
v =

M∑
i=1

E
[
vTXT

i Xiv
]
=

M∑
i=1

E
[
∥Xiv∥2

]
=

M∑
i=1

E
[
⟨Xi, v⟩2

]
Thus from Equation 4 of Lemma A.6 and by definition of γ, it follows:

max
v:∥v∥=1

vTE
[
X(θ)TX(θ)

]
v ≤ γ2M

Since E
[
X(θ)TX(θ)

]
is symmetric, its spectral norm equals its largest eigenvalue, which is what is

bounded above. Thus ∥∥E [X(θ)TX(θ)
]∥∥ ≤ γ2M

We now use the following fact (Fact 6.1) from Kumar & Kannan (2010) that follows from the result
of Dasgupta et al. (2007).

Lemma A.8. Let Y be a n × d matrix, n ≥ d, whose rows are chosen independently. Let Yi

denote its i-th row. Let there exist γ such that maxi ∥Yi∥ ≤ γ
√
n and ∥E

[
Y TY

]
∥ ≤ γ2n. Then

∥Y ∥ ≤ γ
√
npolylog(n).
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Thus, it follows that with probability at least 1− 1

polylog(M)
:

∥X(θ)∥ ≤ γ
√
Mpolylog(M)

We now establish one of our main results, that the SLVs satisfy the proximity condition of Kumar &
Kannan (2010), thereby proving that k-means with suitably initialized centers recovers the accurate
clustering of the SLVs (i.e. it recovers an accurate clustering of the clients).

Recall that for client i of cluster k, its SLV is aik(θ) =
[
F i
k(θ1), F

i
k(θ2), . . . F

i
k(θN )

]
. Also ck(θ) =[

ck1 , c
k
2 , . . . c

k
N

]
, is the mean of k-th clusters SLVs, where cjk = E

[
F i
k(θj)

]
. Recall X(θ) =

A(θ)− C(θ) is the matrix of centered SLVs for all clients. Also, Xi(θ) = Ai(θ)− Ci(θ) denotes
the i-th row of A(θ)− C(θ). Let mk denote the number of clients in cluster k.
Theorem A.9. When nM , which is a lower bound on the the number of data points across all clients,
is much larger in comparison to d,K, and specifically when

dK4 polylog(M) = o(nM), (7)

then for all ortho-normal or proximal models θ, the following proximity condition of Kumar &
Kannan (2010) holds for the SLV of any client i, with probability at least 1− δ − 1

polylog(M)
, for

any error tolerance δ :

∀ j′ ̸= j,
∥∥aij(θ)− cj′(θ)

∥∥− ∥∥aij(θ)− cj(θ)
∥∥ ≥

(
c′K

mi
+

c′K

mj

)
∥A(θ)− C(θ)∥

for some large constant c′. Here it is assumed that client i belongs to cluster j.

Proof. Since Var(Ai(θj)) = 1
2nk

(
∥θi − θ∗k∥2 + σ2

)
, it follows that ∀ i, j, Var(Ai(θj)) ≤

1
2n

(
9 + σ2

)
= γ2/N , where n = mink nk. Combining this with Equation A.4 established in

Lemma A.4, it follows with high probability (at least 1− δ):

∀ i, ∥Ai(θ)− Ci(θ)∥2 ≤ 9

2
log2

NM

δ
max

j
Var(Ai(θj)) ≤

9

2
log2

NM

δ

γ2

N
,

where Ai(θ) and Ci(θ) are the i-th rows of matrices A(θ) and C(θ) respectively.

Without loss of generality, let the SLV of client i belonging to cluster j be in the i-th row of the
matrix A(θ). Thus, it follows:∥∥aij(θ)− cj(θ)

∥∥ = ∥Ai(θ)− Ci(θ)∥ ≤ 3√
2

1√
N

log
NM

δ
γ.

Let
ζ =

3√
2

1√
N

log
NM

δ
γ

Since models in θ collection are ortho-normal or ∆-proximal, from Lemma A.1 and Lemma A.2 it
follows that for any j′ ̸= j, ∥cj′(θ)− cj(θ)∥ ≥ ∆/c, where c ≈ 2.

Thus, by triangle inequality, for any j′ ̸= j:∥∥aij(θ)− cj′(θ)
∥∥− ∥∥aij(θ)− cj(θ)

∥∥ ≥ ∆

c
− 2ζ (8)

We now show that:
∆

c
− 2ζ ≥

(
c′K

mi
+

c′K

mj

)
γ
√
Mpolylog(M)

By assumption, N ≤ d ≪ M . Thus, in

2ζ+

(
c′K

mi
+

c′K

mj

)
γ
√
Mpolylog(M) =

3√
2

1√
N

log
NM

δ
γ+

(
c′K

mi
+

c′K

mj

)
γ
√
Mpolylog(M),
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the second term dominates. Also, we make the assumption that number of clients in each cluster is
not too far from the average number of clients per cluster M/K. That is, there exists a small constant
c′′ such that the number of clients mk in any cluster k is at least 1

c′′
M
K . Hence:

2ζ +

(
c′K

mi
+

c′K

mj

)
γ
√
Mpolylog(M) = O

(
γ
K2

√
M

polylog(M)

)
Since σ ≪ 1 is very small and K ≤ N ≤ d, it follows that γ ≤

√
2d
n . Thus:

2ζ +

(
c′K

mi
+

c′K

mj

)
γ
√
Mpolylog(M) = O

(√
d√
n

K2

√
M

polylog(M)

)

Since by assumption ∆ is close to 1 and

dK4 polylog(M) = o(nM),

it follows that ∆
c (where c ≈ 2) is much larger than O

(√
d√
n

K2
√
M

polylog(M)
)

.

This establishes, with probability at least 1− δ:

∆

c
≥ 2ζ +

(
c′K

mi
+

c′K

mj

)
γ
√
Mpolylog(M)

Applying Equation 6 of Lemma A.7, it follows with probability at least 1− δ − 1

polylog(M)
that:

∆

c
− 2ζ ≥

(
c′K

mi
+

c′K

mj

)
∥A(θ)− C(θ)∥

Combining with Equation 8, the proximity result follows. That is, with probability at least 1− δ −
1

polylog(M)
:

∀ j′ ̸= j,
∥∥aij(θ)− cj′(θ)

∥∥− ∥∥aij(θ)− cj(θ)
∥∥ ≥

(
c′K

mi
+

c′K

mj

)
∥A(θ)− C(θ)∥

This yields one of our main results:

Theorem A.10. For ortho-normal or ∆-proximal models collection θ, with probability at least

1− δ − 1

polylog(M)
, k-means with suitably initialized centers recovers the accurate clustering of

the SLVs (and hence an accurate clustering of the clients) in one shot.

Proof. Follows from Lemma A.1 and Theorem A.9 and by applying the result of Kumar & Kannan
(2010).

Remark A.11. There have been further improvements to the proximity bounds of Kumar & Kannan
(2010) (e.g. Awasthi & Sheffet (2012)) that can be used to improve our bounds (Equation 7). However,
since our goal in this work is mainly to establish feasibility, we leave any improvements of those
bounds for future work.
Remark A.12. In the proof above we used loss vectors of square roots of losses (SLV). This is because
it allows us to recover the accurate clustering of SLVs in one round of k-means. For loss vectors (LV)
formed by losses instead of square roots of losses, we are only able to prove that the distance bound
as established in Lemma A.4 holds for a large fraction of the rows A(θ), which means that k-means
can recover accurate clustering of not all but still a large number of clients. This is still fine for our
approach, since we do not need to apply updates from all clients to build the models for the next
round. However, it does mean that the analysis gets more complex and we therefore leave that for
future work.
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In the following, let the set of clients in cluster k be denoted by Qk. Let i ∈ Qk be a client in cluster k.
Let Hi

k denote the set of nk data points and additive noise values (xj , yj , ϵj) of client i. Its empirical
loss is

Li
k

(
θ;Hi

k

)
=

1

nk

∑
(xj ,yj ,ϵj)∈Hi

k

(⟨θ, xj⟩ − yj)
2
=

1

nk

∑
(xj ,yj ,ϵj)∈Hi

k

(⟨θ∗k − θ, xj⟩+ ϵj)
2

Let Hk be the mknk × d matrix with rows being the features of clients in cluster k:

Hk =

xj : (xj , yj , ϵj) ∈
⋃

j∈Qk

Hj
k


Note that all rows of Hk are drawn independently from N (0, Id). Let ξk be the mknk × 1 column
vector of additive noise parameters of clients in cluster k:

ξk =

ϵj : (xj , yj , ϵj) ∈
⋃

j∈Qk

Hj
k


Note that all entries of ξk are drawn independently from N (0, σ2).

Lemma A.13. After applying gradient updates of clients belonging to a cluster k to a model
θ, ∥θ∥ ≤ 2, the new model θk satisfies ∥θ∗k − θk∥ ≤ ∆/c with probability at least 1− c6e

−c7d, for
some constants c6, c7. Furthermore, with probability at least 1− c6Ke−c7d, ∥θ∗k − θk∥ ≤ ∆

c , for all
clusters k. Here learning parameter η is assumed to be at most 1

2

(
1− ∆

3c

)
.

Proof. Note that

∇Li
k

(
θ;Hi

k

)
=

1

nk

∑
(xj ,yj)∈Hi

k

(
2xjx

T
j (θ − θ∗k)− 2xjϵj

)
Gradient updates from clients Qk of cluster k on model θ for learning rate η yield model θk:

θk = θ − η

mk

∑
i∈Qk

∇Li
k(θ;H

i
k)

Thus, as rows of matrix Hk contain features of all clients in cluster k, and since entries of vector ξk
contain corresponding additive noise parameters of those clients:

θk = θ − η

mknk

(
2HT

k Hk(θ − θ∗k)− 2HT
k ξk

)
Thus,

θk − θ∗k = θ − θ∗k − 2η

mknk
HT

k Hk(θ − θ∗k) +
2η

mknk
HT

k ξk

Or

θk−θ∗k = θ−θ∗k−
2η

mknk
E[HT

k Hk](θ−θ∗k)+
2η

mknk

(
E[HT

k Hk]−HT
k Hk

)
(θ−θ∗k)+

2η

mknk
HT

k ξk

Note E
[
HT

k Hk

]
= mknkI . Therefore:

θk − θ∗k = (1− 2η) (θ − θ∗k) +
2η

mknk

(
E
[
HT

k Hk

]
−HT

k Hk

)
(θ − θ∗k) +

2η

mknk
HT

k ξk

Taking norms:

∥θk − θ∗k∥ ≤ |1− 2η|∥θ − θ∗k∥+
2η

mknk

∥∥E [HT
k Hk

]
−HT

k Hk

∥∥ ∥θ − θ∗k∥+
2η

mknk

∥∥HT
k ξk

∥∥
We now bound the various terms on the RHS.
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Since ∥θ∥ ≤ 2 and ∥θ∗k∥ ≤ 1:
∥θ − θ∗k∥ ≤ 3.

As shown in Ghosh et al. (2022), following the result of Wainwright (2019), with probability at least
1− 2e−

d
2 , the operator norm of the matrix E

[
HT

k Hk

]
−HT

k Hk is bounded from above:∥∥E [HT
k Hk

]
−HT

k Hk

∥∥ ≤ 6
√
dmknk.

By assumption d ≪ mknk. Therefore,∥∥E [HT
k Hk

]
−HT

k Hk

∥∥ = o(mknk).

and therefore 2η
mknk

∥∥E[HT
k Hk]−HT

k Hk

∥∥ ∥θ − θ∗k∥ ≤ c2∆, for some c2 ≪ 1.

As shown in Ghosh et al. (2022), with probability at least 1− c4e
−c5d, for some constants c4, c5.∥∥HT ξk

∥∥ ≤ c1σ
√

dmknk = o(σmknk),

for some constant c1. Since σ ≪ 1, 2η
mknk

∥∥HT
k ξk

∥∥ ≤ c3∆, for some c3 ≪ 1.

Combining all the bounds, with probability at least 1− c6e
−c7d, for some constants c6, c7:

∥θk − θ∗k∥ ≤ 3|1− 2η|+ (c2 + c3)∆.

For η ≤ 1
2

(
1− ∆

3c

)
, 3|1 − 2η| ≤ ∆

c . Thus, with appropriate choice of η, with probability at least
1− c6e

−c7d:

∥θk − θ∗k∥ ≤ ∆

c
+ (c2 + c3)∆ <

∆

c
.

Thus, by applying union bound, it follows that with probability at least 1−c6Ke−c7d, ∥θ∗k−θk∥ ≤ ∆
c ,

for all clusters k.

We set c = 4 and η = 1
2

(
1− ∆

12

)
. Thus, ∥θ∗k − θk∥ ≤ ∆

4 for all clusters k with probability at least
1− c6Ke−c7d.

Corollary A.14. After applying the gradient updates as in Lemma A.13, with probability at least
1 − c6Ke−c7d, ∥θk − θ∗k∥ is a constant fraction smaller than ∥θ − θ∗k∥ . The result applies to all
models θ whose norm is less than 2.

Proof. Note that Equation A.2 can be restated as:

∥θk − θ∗k∥ ≤ |1− 2η|∥θ − θ∗k∥+ (c2 + c3)∆.

For our choice of η,

∥θk − θ∗k∥ ≤ ∆

3c
∥θ − θ∗k∥+ (c2 + c3)∆.

Since ∆ is close to 1 and since c ≥ 4, and since (c2 + c3)∆ is negligibly small, it follows that
∥θk − θ∗k∥ is a constant fraction smaller than ∥θ − θ∗k∥, as long as ∥θ − θ∗k∥ is much larger than
(c2 + c3)∆.

In the following, s(i) ∈ [1,K] denotes the ground-truth cluster assignment for client i. Let Q be a
clustering of the clients. That is, Q = [Q1, Q2, . . . , QK ], where Qk is the set of clients in the k-th
cluster of Q. Let G(Q;θ) = (U ∪ V,E) be a fully-connected bi-partite graph. Here, U and V are
sets of nodes of size K each, where k-th node of U (or V ) corresponds to the k-th cluster of Q. E is
the set of edges, with weight w(k, j) of edge (k, j) set to the total loss of clients in Qk on model θj
of θ. That is:

w(k, j) =
∑
i∈Qk

Li
s(i)(θ;H

i
s(i)).
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Assumption A.15. nkmk(
ρ

ρ+1 )
2 ≫ polylog(K), for ρ = ∆2

σ2 . In the following,
θ = [θ1 θ2 · · · θK ] refers to a collection of K models that satisfy the ∆-proximity
condition ∀k ∈ [K], ∥θk − θ∗k∥ ≤ ∆

c , for c ≥ 4.

Lemma A.16. Let θ be a collection of K models that satisfy the ∆-proximity condition. Let Q be an
accurate clustering of clients to clusters. Then, the probability that min-cost perfect matching M of
G(Q;θ) is M = {(k, k) : Qk ∈ Q} is at least 1− c1e

−c2
1

log K2 nkmk(
ρ

ρ+1 )
2

.

Proof. Let clients of a cluster Qk achieve lower loss on a model θj than on model θk, for j ̸= k.
Note that the probability of this is:

P

∑
i∈Qk

Li
s(i)

(
θj ;H

i
s(i)

)
<
∑
i∈Qk

Li
s(i)

(
θk;H

i
s(i)

)
Since

∑
i∈Qk

Li
s(i)(θ;H

i
s(i)) is scaled chi-squared random variable with nkmk degrees of freedom

(i.e. ∼ mk

nk
(∥θ − θ∗k∥2 + σ2)χ2(nkmk)), this probability is:

P
[
∥θj − θ∗k∥2 + σ2)χ2(nkmk) < (∥θk − θ∗k∥2 + σ2)χ2(nkmk)

]
Since ∥θk − θ∗k∥ ≤ ∆

4 = ∆
2 − ∆

4 and since ∥θ∗k − θ∗j ∥ ≥ ∆, by triangle inequality it follows that
∥θk − θ∗j ∥ ≥ 3∆

4 = ∆
2 − ∆

4 . Thus, from the result of Ghosh et al. (2022), which is obtained by
applying the concentration properties of chi-squared random variables (Wainwright, 2019), it follows
that for some constants c1 and c2:

P
[
(∥θj − θ∗k∥2 + σ2)χ2(nkmk) < (∥θk − θ∗k∥2 + σ2)χ2(nkmk)

]
≤ c1e

−c2nkmk(
ρ

ρ+1 )
2

Hence:

P

∑
i∈Qk

Li
s(i)

(
θj ;H

i
s(i)

)
≤
∑
i∈Qk

Li
s(i)

(
θk;H

i
s(i)

) ≤ c1e
−c2nkmk( ρ

ρ+1 )
2

Thus, by union bound it follows:

P

∃ k ̸= j s.t.
∑
i∈Qk

Li
s(i)

(
θj ;H

i
s(i)

)
≤
∑
i∈Qk

Li
s(i)

(
θk;H

i
s(i)

) ≤ K2c1e
−c2nkmk( ρ

ρ+1 )
2

Thus:

P

∀ k ̸= j,
∑
i∈Qk

Li
s(i)

(
θk;H

i
s(i)

)
<
∑
i∈Qk

Li
s(i)

(
θj ;H

i
s(i)

)
≥ 1−K2c1e

−c2nkmk( ρ
ρ+1 )

2

≥ 1− c1e
−c2

1
log K2 nkmk( ρ

ρ+1 )
2

Thus, with probability close to 1, clients in cluster Qk, achieve lowest loss on model θk, for all k.

A.3 COMPARISON WITH IFCA

We demonstrate that the cluster recovery condition of IFCA implies loss vector separation for CLoVE.
We assume a gap of at least δ > 0 between the loss a client achieves on its best model and its second
best model. The following Lemma shows that vectors of clients belonging to different clusters are at
least

√
2δ apart.
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Lemma A.17. Let clients i and j achieve lowest loss on models k1 and k2 respectively (k1 ̸= k2).
Let there be at least a δ gap between the lowest loss and the second lowest loss achieved by a client
on any model. Then ∥Li − Lj∥ ≥

√
2δ, where Li and Lj are the loss vectors for clients i and j.

Proof. Let l(x, y) denote loss of client x on model y. Then:

∥Li − Lj∥2 ≥ (l(i, k1)− l(j, k1))
2
+ (l(i, k2)− l(j, k2))

2

However, because of δ loss gap:
l(i, k2) ≥ l(i, k1) + δ

and
l(j, k2) ≤ l(j, k1)− δ

Thus:
∥Li − Lj∥2 ≥ (l(i, k1)− l(j, k1))

2 + (l(i, k1)− l(j, k1) + 2δ)2

The right side is minimized when (l(i, k1) − l(j, k1))
2 = (l(i, k1) − l(j, k1) + 2δ)2, or when

l(i, k1)− l(j, k1) = −δ. Thus:

∥Li − Lj∥2 ≥ 2δ2

Hence, the result follows.

Note that in IFCA the best model for each cluster is initialized to be close to its optimal counterpart.
Consequently, δ can be much larger than 0. Lemma A.17 therefore implies significant distance
between the loss vectors of clients of different clusters.

B DISCUSSION

B.1 COMMUNICATION AND COMPUTATION COSTS

Compared with other PFL methods like IFCA that exchange only model weights, CLoVE additionally
sends the loss vectors. The size of the loss vectors is Θ(K) per client. This is small compared to
the model weights themselves, which are Θ(K ∗ R) per client, where R is the number of model
parameters (or gradients). Also, in practice, K is usually small. So the overhead of communicating
the loss vectors is not significant.

Furthermore, thanks to CLoVE’s early stopping feature, all models need only to be sent to all clients
for the rounds until stability is reached. As shown in our experiments (see App. D.1.5), stability is
achieved in a few rounds with high probability. After that, only a single model needs to be sent to
each client. From then on, each cluster performs regular FedAvg, so the cost is similar to FedAvg,
which is the best possible (other baselines also have a computation and communication cost at least
as high as that of FedAvg).

Another technique for further reducing the size of the communicated models in the first few rounds is
to leverage weight-sharing techniques from multi-task learning, as suggested also in IFCA: the K
models can share a few initial layers that are meant to learn the common properties of the data, and
the rest of the layers are meant to learn the distinct features of each cluster. This way, when the server
sends the models to each client, it needs to only send the common part once alongside the distinct
parts, thus achieving savings in communication costs.

Finally, one might argue that CLoVE might result in high peak memory usage, due to clients evaluating
all the models before cluster stability is reached. This can be alleviated as follows: the K models do
not need to be evaluated by the client all at the same time. Instead, if memory is a constraint, the
client can be requesting and evaluating each of the K models sequentially one at a time, storing in
memory only the loss produced by each model. This way, it can form the loss vector while only
holding one model in memory at a time.
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B.2 PRIVACY

Although privacy is not the focus of this paper, it is an important concern in FL and we now briefly
discuss it. Compared to standard FL algorithms such as FedAvg that share model weights/gradients,
clients in CLoVE additionally share the average model losses. Importantly, these loss values are
not the raw model outputs; they are computed based on the output and the (unknown to the server)
input or labels, and also averaged for all datapoints of the client before being sent to the server.
While this aggregate measure is generally not considered privacy-sensitive, its privacy implications
remain underexplored. Further research is needed to assess whether, and under what conditions,
such aggregate statistics could lead to unintended information leakage, not with regard to CLoVE in
particular, but more generally. Moreover, several baselines (e.g. Tan et al. (2022); Xu et al. (2023);
Vahidian et al. (2023)) similarly share 1-D vectors or summaries of client data (we only send losses,
not summaries of data). This process is deemed irreversible by those baselines, and they even mention
that further privacy-preserving techniques can be employed.

B.3 COMPARISON WITH FEDGWC PAPER

Licciardi et al. (2025) is a hierarchical approach like Sattler et al. (2021), and as such the number
of rounds for clustering can be very large, as is also evident from the analytical guarantees that are
only in the asymptotic regime as the number of rounds grows without bound; in contrast, CLoVE
achieves correct clustering in 2-3 rounds, as shown both analytically and empirically. Moreover, in
their approach, amount of state kept at server is quadratic in number of clients. With our approach,
the amount of state at the server is not a function of the number of clients, but rather it is linear on the
number of clusters, which is typically much smaller than number of clients. Additionally, FedGWC’s
clustering happens on the basis of losses computed on a single model. Specifically, the vectors used
in Eq. 4 for computing entries of matrix W are based on the losses (and rewards) of clients on the
single model that is sent to the clients in that round. On the other hand, CLoVE performs clustering
by comparing clients’ losses across multiple models. This can be more effective, as losses of multiple
models amplify the difference in data distributions among clients belonging to different clusters. This
is why CLoVE is able to recover clusters so much faster.

C DETAILS ON DATASETS, MODELS AND COMPUTE USED

Datasets We use the MNIST dataset (LeCun et al., 1998), containing handwritten digit images
from 0 to 9 (10 classes; 60K points training, 10K testing), the CIFAR10 dataset (Krizhevsky, 2009),
containing color images from 10 categories (airplane, bird, etc.) (50K points training, 10K testing),
and the Fashion-MNIST (FMNIST) image dataset (Xiao et al., 2017), containing images of clothing
items from 10 categories (T-shirt, dress, etc.) (60K points training, 10K testing). Beyond image
datasets, we also use two text datasets: Amazon Review Data (Ni et al., 2019) (denoted by Amazon
Review), containing Amazon reviews from 1996-2018 for products from 4 categories (2834 for
books, 1199 for DVDs, 1883 for electronics, and 1755 for kitchen and houseware) and the consumer
sentiment for each product based on the reviews (binary – positive/negative), and AG News (Gulli;
Zhang et al., 2015), containing news articles (30000 training and 1900 testing) from 4 classes (world,
sports, business, and science). Finally, we use the Federated EMNIST (FEMNIST) dataset (Caldas
et al., 2019), an FL dataset with data points being handwritten letters or digits from a particular
human writer. All these datasets are also used by the baselines.

Models For MNIST and FMNIST unsupervised image reconstruction, we used a fully connected
autoencoder with Sigmoid output activation. For CIFAR-10 unsupervised image reconstruction,
we used a Convolutional Autoencoder with a fully connected latent bottleneck and a Tanh output
activation. For supervised MNIST, FMNIST and FEMNIST image classification we used a simple
convolutional neural network (CNN) classifier designed for grayscale images. Each convolutional
layer uses: 5×5 kernels, Stride 1 (default) followed by ReLU and 2×2 max pooling. Its output is
a logit vector. For CIFAR-10 image classification, we used a deep convolutional neural network
classifier, designed for 32×32 RGB images. It uses batch normalization for stable training and dropout
in fully connected layers to reduce overfitting. For AG News we used a TextCNN with an embedding
layer, and for Amazon News we used a simple multi-layer perceptron (MLP) model.
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Note that we are the first to propose an algorithm that can cluster correctly using autoencoders in a
fully unsupervised setting. The datasets we use can all be clustered successfully using simple models,
thanks to CLoVE’s superior ability to separate the clients, so there is no need to employ heavier
models for these tasks. (If a task requires a certain type of model, CLoVE should again work well, as
it is only based on the loss that the model outputs and the model itself is used as a black box).

Experiment setup We provide the details on the number of clients and datapoints used for each of
our experiments in Table 6.

Table 6: Details on number of clients and datapoints (S: Supervised, U: Unsupervised)

Experiment
Number of clients Number of datapoints per client

MNIST CIFAR-10 FMNIST MNIST CIFAR-10 FMNIST

S: Label skew 1 25 15 25 500 500 500
S: Label skew 2 25 15 25 500 500 500
S: Label skew 3 25 25 25 500 500 500
S: Label skew 4 50 30 50 500 500 500
S: Feature skew 40 20 40 500 500 500
S: Concept shift 20 12 20 1000 1000 1000

S: Amazon Review 20 1000
S: AG News 30 100
S: Ablation (CIFAR-10) 25 500
U: Initialization (MNIST) 50 500
U: Linear 25 1000
U: Everything else 50 1000

GitHub links The GitHub links for the code for each of the baseline algorithms used in the paper
are shown in Table 7.

Table 7: GitHub links for comparison algorithms
Algorithm Source code

Per-FedAvg https://github.com/TsingZ0/PFLlib
FedProto https://github.com/TsingZ0/PFLlib
FedALA https://github.com/TsingZ0/PFLlib
FedPAC https://github.com/TsingZ0/PFLlib
CFL-S https://github.com/felisat/clustered-federated-learning
FeSEM https://github.com/morningD/FlexCFL
FlexCFL https://github.com/morningD/FlexCFL
PACFL https://github.com/MMorafah/PACFL
FedAvg self-implemented
Local-only self-implemented
IFCA self-implemented
CLoVE self-implemented

Compute used We train the neural networks and run all our evaluations on a server with 98 cores
with Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz, and 256GB RAM. For our experiments, we
used Python 3.12 and PyTorch (Paszke et al., 2019), version 2.7.0.

28

https://github.com/TsingZ0/PFLlib
https://github.com/TsingZ0/PFLlib
https://github.com/TsingZ0/PFLlib
https://github.com/TsingZ0/PFLlib
https://github.com/felisat/clustered-federated-learning
https://github.com/morningD/FlexCFL
https://github.com/morningD/FlexCFL
https://github.com/MMorafah/PACFL


1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL SUPERVISED RESULTS

D.1.1 MIXED LINEAR REGRESSION EXPERIMENTS: COMPARISON WITH K-FED

We conduct a study to evaluate the impact of closeness of the different clusters optimal model
parameters on CLoVE’s clustering performance. We select a supervised setting, where each cluster’s
data is generated by a linear model, as described in Sec. 4. We randomly select optimal model
parameters θ∗k ∈ Rd from a unit d-dimensional sphere, ensuring that the pairwise distance between
them falls within the range [∆, 5∆]. Our experimental setup consists of K = 5 clusters and M = 25
clients; each client has n = 1000 data points, and we use τ = 25 local epochs. Figure 3(a) illustrates
the clustering accuracy of CLoVE over multiple rounds, with ∆ varying from 0.0003 to 1.0.

1 2 3 4 5
Round

0.00

0.25

0.50

0.75

1.00

Ad
ju

st
ed

 R
an

d 
In

de
x

CLoVE ( =1.0)
CLoVE ( =0.1)
CLoVE ( =0.01)
CLoVE ( =0.001)
CLoVE ( =0.0003)

(a) Clustering accuracy of CLoVE over time
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Figure 3: Linear regression experiment results

As shown, CLoVE consistently recovers the correct cluster assignment. Moreover, as expected, the
convergence rate of CLoVE slows down when the optimal model parameters are closer together
(i.e. when ∆ is smaller). In contrast, the performance of k-FED (Dennis et al., 2021) on the same
data, even with Awasthi-Sheffet’s k-means enhancements (Awasthi & Sheffet, 2012), is significantly
worse (Fig. 3(b)). This discrepancy can be attributed to the fact that the cluster centers (i.e. the mean
of their data) are very close to the origin, highlighting the limitations of k-FED in such scenarios.
Our results demonstrate that CLoVE outperforms k-FED, especially when the cluster centers are not
well-separated.

D.1.2 ADDITIONAL LABEL SKEWS

Table 8 presents image classification test accuracy results for MNIST, FMNIST, CIFAR-10 datasets
on additional types of label skews. The corresponding ARI accuracy results are presented in Table 9
and the clustering convergence results in Table 10. These results include two cases Label skew 3
and Label skew 4. The case Label skew 3 is a data distribution in which there is significant overlap
between labels assigned to clients of different clusters. Specifically, there are 5 clusters with 5 clients
each. Among the first 4 clusters, all clients of a cluster get samples from all 10 classes except one.
The missing class is uniquely selected for each of the 4 clusters. The clients of the 5th cluster get
samples from all 10 classes. The case Label skew 4 is a data distribution in which s% of data (we use
one third) for clients belonging to a cluster is uniformly sampled from all classes, and the remaining
(100 − s)% comes from a dominant class that is unique for each cluster (Xu et al., 2023). Each
cluster has 5 clients each of which is assigned 500 samples. For Label skew 3, the data of a class is
distributed amongst the clients that are assigned that class by sampling from a Dirichlet distribution
with parameter α = 0.5, according to the procedure described in Section 5.

We observe that in some cases for Label skew 3 and Label skew 4, FedAvg is achieving the highest
test accuracy. This can be attributed to the fact that under these cases, each client holds data from
almost every data class, which makes the client distributions very similar. Thus, naturally, the single
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model that FedAvg trains is also a good model for the individual clients. Moreover, the model of
FedAvg is trained on the data of all clients, while the other algorithms only use the data of a single
cluster to train each of their models. This gives FedAvg an advantage, as it trained on much more data
for the same number of rounds.

Table 8: Supervised test accuracy results for MNIST, CIFAR-10 and FMNIST
Data

mixing Algorithm MNIST CIFAR-10 FMNIST
L

ab
el

sk
ew

3
FedAvg 99.0± 0.0 84.1± 0.5 88.8± 0.3
Local-only 85.9± 0.6 41.1± 1.5 71.1± 0.4

Per-FedAvg 95.3± 0.3 41.6± 0.7 74.9± 0.7
FedProto 88.8± 0.2 39.9± 0.4 74.1± 0.2
FedALA 94.7± 0.3 40.0± 0.7 75.1± 0.5
FedPAC 95.6± 0.2 41.4± 0.6 75.5± 0.8

CFL-S 97.9± 0.1 61.2± 0.6 84.3± 1.2
FeSEM 94.0± 0.2 13.3± 0.2 72.2± 1.9
FlexCFL 92.2± 0.3 20.8± 0.5 79.7± 0.5
PACFL 82.8± 0.9 27.1± 3.8 68.1± 2.1
IFCA 94.2± 0.2 57.3± 1.9 80.6± 1.0
CLoVE 94.2± 0.2 56.9± 0.5 79.5± 0.5

L
ab

el
sk

ew
4

FedAvg 98.5± 0.1 60.7± 0.8 85.9± 0.2
Local-only 94.8± 0.2 67.1± 0.5 85.5± 0.1

Per-FedAvg 95.6± 0.1 63.7± 0.8 83.7± 0.1
FedProto 93.3± 0.2 45.3± 0.7 76.5± 0.3
FedALA 96.8± 0.1 69.8± 0.3 87.3± 0.1
FedPAC 96.1± 0.2 66.3± 0.5 84.8± 0.3

CFL-S 97.8± 0.1 71.3± 1.1 88.2± 0.4
FeSEM 94.9± 0.3 11.9± 1.5 80.6± 1.1
FlexCFL 97.2± 0.1 66.8± 0.0 89.5± 0.1
PACFL 93.4± 0.2 67.4± 0.3 84.1± 0.2
IFCA 98.0± 0.1 64.3± 0.9 89.4± 0.2
CLoVE 97.8± 0.2 72.6± 0.3 89.9± 0.1

Table 9: Supervised ARI results for MNIST, CIFAR-10 and FMNIST
Data

mixing Algorithm MNIST CIFAR-10 FMNIST

L
ab

el
sk

ew
3 CFL-S 0.00± 0.00 0.77± 0.18 0.00± 0.00

FeSEM 0.18± 0.00 0.00± 0.00 0.00± 0.00

FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00
PACFL 0.20± 0.08 0.00± 0.00 0.15± 0.13
IFCA 0.92± 0.12 0.69± 0.08 0.65± 0.15
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00

L
ab

el
sk

ew
4 CFL-S 0.00± 0.00 0.61± 0.03 0.29± 0.02

FeSEM 0.12± 0.00 0.00± 0.00 0.11± 0.02

FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00
PACFL 0.53± 0.06 0.66± 0.07 0.92± 0.02
IFCA 0.55± 0.03 0.36± 0.22 0.50± 0.05
CLoVE 0.60± 0.10 1.00± 0.00 0.95± 0.07
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Table 10: Convergence behavior for MNIST, CIFAR-10 and FMNIST

Data
mixing Algorithm

ARI reached in 10 rounds First round when ARI ≥ 0.9

MNIST CIFAR-10 FMNIST MNIST CIFAR-10 FMNIST
L

ab
el

sk
ew

2 CFL-S 0.00± 0.00 0.00± 0.00 0.00± 0.00 — — —
FeSEM 0.18± 0.00 0.00± 0.00 0.00± 0.00 — — —
FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.0± 0.0 1.0± 0.0 1.0± 0.0
PACFL 0.35± 0.12 0.32± 0.11 0.55± 0.03 — — —
IFCA 0.83± 0.12 0.72± 0.00 0.92± 0.12 — — —
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.0± 0.0 2.0± 0.0 2.0± 0.0

L
ab

el
sk

ew
3 CFL-S 0.00± 0.00 0.00± 0.00 0.00± 0.00 — — —

FeSEM 0.18± 0.00 0.00± 0.00 0.00± 0.00 — — —
FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.0± 0.0 1.0± 0.0 1.0± 0.0
PACFL 0.20± 0.08 0.00± 0.00 0.15± 0.13 — — —
IFCA 0.92± 0.12 0.69± 0.08 0.65± 0.15 — — —
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.0± 0.0 2.0± 0.0 2.0± 0.0

L
ab

el
sk

ew
4 CFL-S 0.00± 0.00 0.00± 0.00 0.00± 0.00 — — —

FeSEM 0.12± 0.00 0.00± 0.00 0.11± 0.02 — — —
FlexCFL 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.0± 0.0 1.0± 0.0 1.0± 0.0
PACFL 0.53± 0.06 0.66± 0.07 0.92± 0.02 — — —
IFCA 0.54± 0.03 0.70± 0.12 0.50± 0.05 — — —
CLoVE 0.90± 0.07 1.00± 0.00 1.00± 0.00 2.0± 0.0 2.0± 0.0 2.0± 0.0

Fe
at

ur
e

sk
ew

CFL-S 0.00± 0.00 0.00± 0.00 0.00± 0.00 — — —
FeSEM 0.00± 0.00 0.00± 0.00 0.00± 0.00 — — —
FlexCFL 1.00± 0.00 0.11± 0.08 1.00± 0.00 1.0± 0.0 — 1.0± 0.0
PACFL 0.00± 0.00 0.00± 0.00 0.68± 0.11 — — —
IFCA 0.67± 0.28 0.71± 0.22 0.55± 0.10 — — —
CLoVE 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.0± 0.0 4.3± 0.9 2.0± 0.0

Table 11: Supervised ARI results for Amazon Review and AG News
Algorithm Amazon Review AG News

CFL-S 0.07± 0.08 0.39± 0.07
FeSEM 0.00± 0.01 0.14± 0.00
FlexCFL 0.00± 0.02 0.02± 0.00
PACFL 0.00± 0.00 0.00± 0.00
IFCA 0.29± 0.20 0.64± 0.12
CLoVE 0.73± 0.24 0.94± 0.09

D.1.3 ADDITIONAL DETAILS FOR TEXT CLASSIFICATION

The ARI accuracy and speed of convergence results for the Amazon Review and AG News datasets
are presented in Table 11 and Table 12, respectively.

D.1.4 THE CASE OF UNKNOWN NUMBER OF CLUSTERS K

As mentioned in Section 3, CLoVE does not necessarily require the true number of clusters to be
known in advance and given as an input, but it can converge to an appropriate number of clusters
during its execution. To demonstrate this feature of CLoVE, we perform the following experiment on
the FEMNIST dataset. We use M = 100 clients and assign to each client all of the data from one
of the human writers in FEMNIST. We use a CNN and random first-round weight initialization. In
this case, the number of true clusters (which human writers have a similar writing style) is unknown.
CLoVE searches over different possibilities for the number of clusters/models, achieving an accuracy
of 68.2± 1.3. This demonstrates the versatility of our algorithm in general settings where the number
of true clusters is not given as input.
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Table 12: Convergence behavior for the Amazon Review and AG News datasets

Algorithm
ARI reached in 10 rounds First round when ARI ≥ 0.9

Amazon AG News Amazon AG News

CFL-S 0.00± 0.00 0.00± 0.00 — —
FeSEM 0.00± 0.01 0.14± 0.00 — —
FlexCFL 0.00± 0.02 0.02± 0.00 — —
PACFL 0.00± 0.00 0.00± 0.00 — —
IFCA 0.29± 0.20 0.64± 0.12 — —
CLoVE 0.72± 0.04 0.94± 0.09 — 2.0± 0.0

D.1.5 EARLY STOPPING OF CLUSTERING

As mentioned in Section 3, CLoVE has the ability to stop clustering (and the associated sending of all
models by the server to each client and the inference by each client on all the models to generate the
loss vectors) early once it stabilizes, so as to save in communication and computation costs. In this
section, we demonstrate the fact that CLoVE indeed can reach a stable clustering within a few rounds.
We run the same supervised classification experiments on CIFAR-10 for different modes of data
mixing as before, but now allowing early stopping when the clustering stabilizes (we define stability
as 3 rounds of no change). In all experiments, CLoVE achieves an ARI of 1.0. The results for the test
accuracy and the round at which cluster stability is reached are shown in Table 13. We observe that
CLoVE is able to reach a stable client-to-cluster assignment within 4-7 rounds in all scenarios.

Table 13: Early stopping experiments (CIFAR-10)
Data mixing Test accuracy Round of stability

Label skew 1 90.7± 0.2 4.0± 0.0
Label skew 2 67.2± 1.5 4.0± 0.0
Feature skew 58.2± 1.2 6.3± 1.2
Concept shift 59.4± 0.4 4.0± 0.0

D.1.6 PARTIAL PARTICIPATION

We now experiment with different levels of client participation (parameter ρ). We use MNIST in
a supervised setting with a CNN, K = 5 clusters, M = 125 clients (25 per cluster), n = 100
datapoints/client, and random initialization of the model weights. The results are shown in Table
14. Note that for partial participation the ARI at each round is measured using only the clients that
participated in that round and comparing their clustering with the ground truth clustering projected
on those clients. We see that CLoVE very quickly and consistently achieves perfect ARI and almost
perfect accuracy even for very small (e.g. 10%) client participation rates.

Table 14: CLoVE’s performance under partial participation
Participation

rate ρ
Test accuracy Final ARI ARI reached

in 10 rounds
First round

when ARI ≥ 0.9

1.0 99.5± 0.1 1.00± 0.00 1.00± 0.00 2.0± 0.0
0.9 99.6± 0.1 1.00± 0.00 1.00± 0.00 2.0± 0.0
0.75 99.4± 0.2 1.00± 0.00 1.00± 0.00 2.0± 0.0
0.5 99.6± 0.1 1.00± 0.00 1.00± 0.00 2.0± 0.0
0.25 99.4± 0.1 1.00± 0.00 1.00± 0.00 2.0± 0.0
0.1 99.6± 0.2 1.00± 0.00 1.00± 0.00 3.0± 0.8

We also perform an experiment for the extreme case where participation is so low that the number of
participating clients is lower than the true number of clusters. We examine CLoVE’s behavior with
early stopping after cluster stability (Fig. 4(a)) and without early stopping (Fig. 4(b)). We use MNIST
with K = 10 clusters, m = 2 clients per cluster and ρ = 40% participation rate (so only 8 clients
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participate at each round, which is lower than the true number of clusters, 10). The ARI is evaluated
only for clients that have participated at least once in the training process until that round. In the first
few rounds, the ARI is higher, then it drops, and then again rises to the optimal. This is because in
the beginning very few clients have participated until that point, so there are not many wrong cluster
assignments. As more clients join, initially the number of incorrect assignments increases, but then,
as CLoVE enhances the assignments over time, the ARI increases once again. As can be seen, after a
few tens of rounds, CLoVE manages to almost reach optimal clustering, even though this setting is
very challenging.

Figure 4: ARI for very few participants – fewer than the number of clusters – with early stopping
(left) and without early stopping (right).

D.2 ADDITIONAL UNSUPERVISED RESULTS

For this section’s experiments, we have used a batch size of 64.

D.2.1 BENEFIT OF PERSONALIZATION

We now examine the reconstruction loss performance of the trained models and show the benefit
of our personalized models over traditional FL models. For MNIST and K = 10, M = 50 and
n = 250, we run 4 different algorithms: CLoVE, IFCA, FedAvg, Local-only. In FedAvg, i.e. the
original FL algorithm, a single model is trained and aggregated by all clients, regardless of their true
cluster (equivalently, FedAvg is CLoVE with K = 1). Local-only means federated models but no
aggregation: each client trains its own model only on its local data, and does not share it with the rest
of the system.

For this experiment, we consider that each of the 50 clients has a testset of the same data class of the
client’s trainset, and we feed its testset through all models (10 models for CLoVE and IFCA, 1 for
FedAvg and 50 for Local-only), creating the loss matrices shown as heatmaps in Fig. 5 (run for a single
seed value). The vertical axis represents clients, one selected from each true cluster, and the horizontal
represents the different models. Clients and models are labeled so that the diagonal represents the
true client to model/cluster assignment. Numbers on the heatmap express the reconstruction loss
(multiplied by a constant for the sake of presentation) for each client testset and model combination.
Very high values are hidden and the corresponding cells are colored red. For the local case, we only
show 10 of the 50 models, the ones that correspond to the selected clients.

We observe that in all cases, the reconstruction loss of each client’s assigned model by CLoVE (the
diagonal) is the smallest in the client’s row (i.e. the smallest among all models), which confirms that
the models CLoVE assigned to each client are actually trained to reconstruct the client’s data (MNIST
digit) well, and not reconstruct well the other digits. On the contrary, IFCA gets stuck and assigns
all clients to 3 clusters (models) – the first 3 columns. The rest of the models remain practically
untouched (untrained), hence their high (red) loss values on all clients’ data. The 3 chosen models
are not good for the reconstruction of MNIST digits, because they don’t achieve the lowest loss on
their respective digits.
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Figure 5: Heatmaps of reconstruction loss of MNIST digits by models clustered and trained by each
algorithm

Comparing CLoVE and FedAvg, we see that for each row (client from each cluster), the loss achieved
by CLoVE is lower than that achieved by FedAvg. This demonstrates the benefit of our personalized
FL approach over traditional FL: FedAvg uses a single model to train on local data of each client,
and aggregates updated parameters only for this single model. CLoVE, on the other hand, clusters
the similar clients together and trains a separate model on the data of clients belonging to each
cluster, thus effectively learning – and tailoring the model to – the cluster’s particular data distribution.
Finally, comparing CLoVE with Local-only, we see that the diagonal losses achieved by CLoVE on
the selected models for each client are lower than the corresponding diagonal losses by Local-only.
This shows the benefit of federated learning, as CLoVE models are trained on data from multiple
clients from the same cluster, unlike Local-only where clients only train models based on their limited
amount of private data.

D.2.2 MODEL AVERAGING VERSUS GRADIENT AVERAGING

In this experiment, we compare the two variants of our CLoVE algorithm, i.e. model averaging and
gradient averaging. We run an MNIST experiment with K = 10, M = 50 and n = 100, using both
averaging methods. The results are shown in Fig. 6. We observe that CLoVE is able to arrive at the
correct clustering with both methods, with gradient averaging needing slightly more rounds to do so
than model averaging.
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Figure 6: Clustering accuracy (ARI) of CLoVE over time (rounds) for MNIST for model averaging
vs gradient averaging.
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D.3 SCALING WITH THE NUMBER OF CLIENTS

In this experiment, we examine the effect of increasing the number of clients. We use 10 clusters,
and 100-200 datapoints per client. The results for MNIST, CIFAR-10 and FMNIST in the supervised
setting (using CNNs) are shown in Table 15, and for MNIST in the unsupervised setting (using
autoencoders) are shown in Table 16. In the supervised setting, we see that CLoVE’s final ARI is
always perfect, and both the ARI and the test accuracy of CLoVE consistently exceed those of IFCA,
no matter how big the number of clients is. Similarly, in the unsupervised setting we observe that
IFCA consistently achieves a bad ARI, while CLoVE always manages to reach perfect clustering
accuracy and scales successfully when the number of clients is large.

Table 15: Scaling with the number of clients – Supervised setting

Algorithm # of clients M
Final ARI Test accuracy

MNIST CIFAR-10 FMNIST MNIST CIFAR-10 FMNIST

IFCA

50 0.92± 0.11 0.85± 0.11 0.74± 0.22 99.2± 0.8 83.7± 5.3 96.8± 2.3
100 0.85± 0.11 0.65± 0.25 0.93± 0.11 99.1± 0.5 72.7± 12.7 97.4± 2.6
250 0.87± 0.18 0.85± 0.10 0.85± 0.10 99.4± 0.7 80.9± 7.7 98.6± 0.5
500 0.93± 0.10 0.85± 0.10 0.85± 0.10 97.1± 2.9 77.3± 5.8 89.2± 7.7

1000 0.85± 0.10 0.93± 0.10 0.75± 0.21 98.3± 1.0 78.0± 7.2 92.0± 3.6

CLoVE

50 1.00± 0.00 1.00± 0.00 1.00± 0.00 99.8± 0.0 90.8± 0.2 99.1± 0.0
100 1.00± 0.00 1.00± 0.00 1.00± 0.00 99.8± 0.0 90.3± 0.6 99.3± 0.0
250 1.00± 0.00 1.00± 0.00 1.00± 0.00 99.9± 0.0 91.2± 1.5 99.3± 0.0
500 1.00± 0.00 1.00± 0.00 1.00± 0.00 99.6± 0.1 82.3± 1.5 95.3± 4.4

1000 1.00± 0.00 1.00± 0.00 1.00± 0.00 99.6± 0.1 84.6± 1.2 96.5± 3.0

Table 16: Scaling with the number of clients – Unsupervised setting
Algorithm # of clients M Test loss Final ARI

IFCA

100 0.055± 0.001 0.091± 0.064
200 0.055± 0.001 0.079± 0.060
500 0.059± 0.002 0.210± 0.149
1000 0.067± 0.002 0.186± 0.137

CLoVE

100 0.065± 0.001 1.000± 0.000
200 0.063± 0.000 1.000± 0.000
500 0.065± 0.000 1.000± 0.000
1000 0.073± 0.000 1.000± 0.000
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D.4 CONVERGENCE DYNAMICS

We now show the convergence dynamics of CLoVE for MNIST in the unsupervised setting. We use
K = 10 clusters, and n = 100 datapoints per client. We vary the number of clients from 50 to 200.
The behavior of the ARI can be seen in Figure 7. We observe that CLoVE reaches a perfect ARI in
just a few rounds, for all values of the number of clients M .
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Figure 7: Clustering accuracy (ARI) of CLoVE over time (rounds) for MNIST for different numbers
of clients

D.5 ABLATION STUDIES

We analyze the impact of changing some of key components of CLoVE one at a time. This includes:

• No Matching: Order the clusters by their smallest client ID and assign models to them
in that order (i.e. cluster k gets assigned model k). This is in lieu of using the bi-partite
matching approach of Alg. 1.

• Agglomerative clustering: Use a different method than k-means to cluster the loss vectors.
• Square root loss: Cluster vectors of square roots of model losses instead of the losses

themselves.

Our experiments are for image classification for the CIFAR-10 dataset using 25 clients that are
partitioned uniformly among 5 clusters using a label skew with very large overlap. The clients of
the first four cluster are assigned samples from every class except one class which is chosen to be
different for each cluster. The clients of the fifth cluster are assigned samples from all classes. The
partitioning of the data of each class among the clients that are assigned to that class is by sampling
from a Dirichlet(α) distribution with α = 0.5. The test accuracy achieved is shown in Table 17. We
find that “No Matching” has the most impact, as it reduces the test accuracy by almost 4.3%± 1%.
Switching to Agglomerative clustering results in a slight improvement in the mean test accuracy, but
the result is not statistically significant. Likewise, square root loss results in no significant change in
performance. This shows that CLoVE is robust in its design.

Table 17: Ablation studies
Test accuracy

Original CLoVE 58.3± 1.4
No matching 55.8± 0.6
Agglomerative clustering 59.3± 1.5
Square root loss 58.1± 3.3
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