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Abstract

Bilevel optimization is widely applied in many
machine learning tasks such as hyper-parameter
learning, meta learning and reinforcement learn-
ing. Although many algorithms recently have
been developed to solve the bilevel optimization
problems, they generally rely on the (strongly)
convex lower-level problems. More recently,
some methods have been proposed to solve
the nonconvex-PL bilevel optimization problems,
where their upper-level problems are possibly
nonconvex, and their lower-level problems are
also possibly nonconvex while satisfying Polyak-
Lojasiewicz (PL) condition. However, these meth-
ods still have a high convergence complexity or
a high computation complexity such as requir-
ing compute expensive Hessian/Jacobian matrices
and its inverses. In the paper, thus, we propose an
efficient Hessian/Jacobian-free method (i.e., HJF-
BiO) with the optimal convergence complexity to
solve the nonconvex-PL bilevel problems. Theo-
retically, under some mild conditions, we prove
that our HIFBiO method obtains an optimal con-
vergence rate of O(+:), where T" denotes the num-
ber of iterations, and has an optimal gradient com-
plexity of O(e™!) in finding an e-stationary so-
Iution. We conduct some numerical experiments
on the bilevel PL game and hyper-representation
learning task to demonstrate efficiency of our pro-
posed method.

1. Introduction

Bilevel optimization (Colson et al., 2007; Liu et al., 2021a),
as an effective two-level hierarchical optimization paradigm,
is widely applied in many machine learning tasks such as
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hyper-parameter learning (Franceschi et al., 2018), meta
learning (Franceschi et al., 2018; Ji et al., 2021) and rein-
forcement learning (Hong et al., 2020; Chakraborty et al.,
2023). In the paper, we consider a class of nonconvex bilevel
optimization problems:

min z,y) + ¢(x),
Jepiin f(z,y) + o(z)

st.y’(z) = arg min g(z,y),

(Upper-Level) (1)
(Lower-Level)

where the upper-level function f(x,y) with y € y*(z)
is possibly nonconvex, and ¢(x) is a convex but possi-
bly nonsmooth regularization such as ¢(x) = 0 when
x € X C R with convex set X’ otherwise o(x) = 400,
or ¢(x) = ||z||1. The lower-level function g(z,y) is possi-
bly nonconvex on any y and satisfies Polyak-Lojasiewicz
(PL) condition (Polyak, 1963), which relaxes the strong con-
vexity. The PL condition is widely used to some machine
learning models such as the over-parameterized deep neu-
ral networks (Frei & Gu, 2021; Song et al., 2021). In fact,
Problem (1) widely appears in many machine learning tasks
such as meta learning (Huang, 2023b) and reinforcement
learning (Chakraborty et al., 2023).

The inherent nested nature of bilevel optimization gives
rise to several difficulties in effectively solving these bilevel
problems. For example, compared with the standard single-
level optimization (i.e., g(x,y) = 0 in Problem (1)), the
main difficulty of bilevel optimization is that the minimiza-
tion of the upper and lower-level objectives are intertwined
via the minimizer y*(z) € argmin, g(z,y) of the lower-
level problem. To deal with this difficulty, recently many
bilevel optimization methods (Ghadimi & Wang, 2018;
Hong et al., 2020; Ji et al., 2021; Huang et al., 2022; Chen
et al., 2023b) have been proposed by imposing the strong
convexity assumption on the Lower-Level (LL) problems.
The LL strong convexity assumption ensures the unique-
ness of LL minimizer (i.e., LL Singleton), which simpli-
fies both the optimization process and theoretical analy-
sis, e.g., hyper-gradient VF'(x) of the upper-level objective
F(z) = f(x,y*(z)) has a simple closed-form:

—V2,9(z,y" (2))V2,9(z, y* () 'V, f (2,5 (2)).

Based on the above form of hyper-gradient V F'(x), some
gradient-based methods (Chen et al., 2022; Dagréou et al.,
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Table 1: Comparison of gradient (or iteration) complexity between our method and the existing methods in solving bilevel
problem (1) for finding an e-stationary solution (|[VF(z)||? < € or its equivalent variants, where F'(z) = f(z,y) with
y € y*(x)). Here g(x, -) denotes function on the second variable y with fixing variable 2. SC stands for strongly convex.
H.J.F. stands for Hessian/Jacobian-Free. L.H. stands for Lipschitz Hessian condition. The Prox-F?>BA and F?BA methods
rely on some strict conditions such as Lipschitz Hessian of function f(x,y). Note that the GALET (Xiao et al., 2023)
method simultaneously uses the PL condition, its Assumption 2 (i.e., let 0 = inf, , {of. (V2, g(a: y))} > 0forall (x,y))
and its Assumption 1 (i.e., Vyy g(x,y) is Lipschitz continuous). Clearly, when Hessian matrix Vyy g(z,y) is singular, its
Assumption 1 and Assumption 2 imply that the lower bound of the non-zero singular values o is close to zero (i.e., 04 — 0),
_ Lya + \/70251'0 — 400
used in its Lemmas 6 and 9. Under the other case, the PL condition, Lipschitz continuous of Hess1a$111 and its Assumptlon 2
(the singular values of Hessian is bounded away from 0, i.e., o4 > 0) imply that GALET assumes strongly convex (Detailed

under this case, the convergence results of the GALET are meaningless, e.g., the constant L,

discussion in the Appendix B).

Algorithm Reference g(x,-) L.H.on f(-,") Complexity Loop(s) | H.J.F.
BOME (Liu etal,, 2022) | PL/local-PL O(c 13)70(¢ 2) | Double | +/
V-PBGD | (Shen & Chen, 2023) | PL /local-PL O(e=19)710(e719) Double N
GALET (Xiao et al., 2023) SC/PL O(e~ 1)/ Meaningless | Triple
SLM (Lu, 2023) PL /local-PL O(e73%)/0(¢=35) | Double vV
Prox-F°BA | (Kwon et al., 2023) | Proximal-EB vV O(e 1)/ (6*1 ®) Double vV
F?°BA (Chen et al., 2024) | PL/local-PL vV O(e ) /10(e7h Double Vi
MGBIiO (Huang, 2023b) PL /local-PL O(e 1) 10(e7 1) Single
AdaPAG (Huang, 2023a) PL /local-PL O(eH/0(eh Single
HJFBiO Ours PL / local-PL O(e 1) 70(e7h) Single v

2022) require an explicit extraction of second-order informa-
tion of g(z,y) with a major focus on efficiently estimating
its Jacobian and inverse Hessian. Meanwhile, the other
gradient-based methods (Li et al., 2022; Dagréou et al.,
2022; Sow et al., 2022b; Yang et al., 2023b) avoid directly
estimating its second-order computation and only use the
first-order information of both upper and lower objectives.

Recently, to relax the LL strong convexity assumption, an-
other line of research is dedicated to bilevel optimization
with convex LL problems, which bring about several chal-
lenges such as the presence of multiple LL local optimal
solutions (i.e., Non-Singleton). Under this case, there does
not exist the above hyper-gradient form (2). To handle this
concern, some effective methods (Sow et al., 2022a; Liu
etal., 2023; Lu & Mei, 2023; Cao et al., 2023) recently have
been developed. For example, (Sow et al., 2022a) developed
the primal-dual algorithms for bilevel optimization with
multiple inner minima in the LL problem. Subsequently,
(Lu & Mei, 2023) studied the constrained bilevel optimiza-
tion with convex lower-level. Meanwhile, (Liu et al., 2023)
proposed an effective averaged method of multipliers for
bilevel optimization with convex lower-level.

In fact, the bilevel optimization problems with noncon-
vex LL problems frequently appear in many machine tasks
such as hyper-parameter learning in training deep neural
networks. Since the above bilevel optimization methods
mainly rely on the restrictive LL strong convexity or con-
vexity assumption, clearly, they can not effectively solve

the bilevel optimization problems with nonconvex LL prob-
lems. Recently, some bilevel approaches (Liu et al., 2021b;
2022; Chen et al., 2023a; Liu et al., 2023; Huang, 2023b;a;
Kwon et al., 2023; Chen et al., 2024) studied the bilevel
optimization with non-convex lower-level. For example,
(Liu et al., 2022) proposed an effective first-order method
for nonconvex-PL bilevel optimization, where the lower-
level problem is nonconex but satisfies PL condition. (Shen
& Chen, 2023) designed an effective penalty-based gradi-
ent method for the constrained nonconvex-PL bilevel op-
timization. (Kwon et al., 2023) studied the nonconvex
bilevel optimization with nonconvex lower-level satisfy-
ing proximal error-bound (EB) condition that is analogous
to PL condition. Meanwhile, (Huang, 2023b) proposed a
class of efficient momentum-based gradient methods for
the nonconvex-PL bilevel optimization, which obtain an
optimal gradient complexity but rely on requiring compute
expensive projected Hessian/Jacobian matrices and its in-
verses. Subsequently, (Xiao et al., 2023) proposed a gener-
alized alternating method (i.e., GALET) for nonconvex-PL
bilevel optimization, which still relies on the expensive
Hessian/Jacobian matrices. Unfortunately, the convergence
results of the GALET method are meaningless (please see
Table 1). Thus, there exists a natural question:

Could we propose an efficient Hessian/Jacobian-
free method for the nonconvex-PL bilevel opti-
mization with an optimal complexity?
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In the paper, we affirmatively answer to this question, and
propose an efficient Hessian/Jacobian-free method to solve
Problem (1) based on the finite-difference estimator and a
new projection operator. Our main contributions are given:

(i) We propose an efficient Hessian/Jacobian-free method
(i.e., HIFBiO) based on the finite-difference estimator
and a new useful projection operator. In particular,
our HIFBiO method not only uses low computational
first-order gradients instead of high computational Hes-
sian/Jacobian matrices, but also applies the low com-
putational new projection operator to vector variables
instead of matrix variables. Thus, our HIFBiO method
has a lower computation at each iteration.

(i) We provide a solid convergence analysis for our HJF-
BiO method. Under some mild conditions, we prove
that our HJIFBiO method reaches the best known iter-
ation (gradient) complexity of O(e~!) for finding an
e-stationary solution of Problem (1), which matches
the lower bound established by the first-order method
for finding an e-stationary point of nonconvex smooth
optimization problems (Carmon et al., 2020).

(iii) We conduct some numerical experiments includ-
ing bilevel Polyak-Lojasiewicz game and hyper-
representation learning to demonstrate efficiency of
our proposed method.

Meanwhile, (Chen et al., 2024) proposed a F?BA method for
the nonconvex-PL bilevel optimization, which also obtains
the best known gradient complexity O(e~1) for finding an
e-stationary solution of Problem (1), but it relies on some
stricter conditions such as Lipschitz Hessian of the upper
function f(z,y). Under these strict conditions, although the
F2BA method (Chen et al., 2024) obtains a gradient com-
plexity O(e~1), this is not an optimal gradient complexity
(Detailed discussion in the Appendix B).

Notations

Given function f(z,y), f(z,-) denotes function w.r.z. the
second variable with fixing x, and f(-,y) denotes function
w.r.t. the first variable with fixing y. V, denotes the partial
derivative on variable z. Let V2, = V,V, and V;, =
VyVy. || - || denotes the ¢5 norm for vectors and spectral
norm for matrices. (z,y) denotes the inner product of two
vectors x and y. I; denotes a d-dimensional identity matrix.
a; = O(b;) denotes that a; < cb; for some constant ¢ > 0.
The notation O(-) hides logarithmic terms.

S(u,1,][-] denotes a projection on the set {X € R4 : <
0(X) < Ly}, where o(-) denotes the eigenvalue function.
Siu,1,) can be implemented by using Singular Value De-
composition (SVD) and thresholding the singular values.
P, (+) is a projection onto set {v € R? : ||v|| < r, > 0}.

2. Preliminaries

In this section, we provide some mild assumptions and
useful lemmas on the above Problem (1).

2.1. Mild Assumptions

Assumption 2.1. The function g(z, -) satisfies the Polyak-
Lojasiewicz (PL) condition, if there exist ;1 > 0 such that
for any given z, it holds that

IVyg(z,y)I? > 2p(g(z,y) — min g(z,y)), ¥y € R”.

Assumption 2.2. The function g(z,y) is nonconvex and
satisfies

o(V3,9(2y"(2)) € i, Ly, 3)
where y*(z) € argminy g(z,y), and o(-) denotes the
eigenvalue (or singular-value) function and L, > 11 > 0.

Assumption 2.3. The functions f(z,y) and g(x, y) satisfy

1) For all x,y, we have
Cry, IV2y9(z, )l < Cyay:

2) The partial derivatives V f(x,y) and V, f(z,y) are
L ¢-Lipschitz continuous;

IVyflz, 9l <

3) The partial derivatives V,g(z,y) and V,g(z,y) are
L4-Lipschitz continuous.

Assumption 2.4. The partial derivatives Viyg(:v, y) and
V2 ,9(x,y) are Lgg,-Lipschitz and Lg,,-Lipschitz, e.g., for
all 2,21, 29 € R*and y, y1, 92 € RP

IV2,9(x1,y) = V2,9(x2,y) || < Lgayllz1 — 22|,

IV2,9(z,y1) — V2,0(2,52)|| < Layllyr — v2l-

Assumption 2.5. The function ®(x) = F(z) + ¢(z) is
bounded below in z € RY, i.e., ®* = inf,cpa ®(2) > —o0.

Assumption 2.1 is commonly used in bilevel optimization
without the lower-level strongly convexity (Liu et al., 2022;
Shen & Chen, 2023; Huang, 2023b). Assumption 2.2
ensures that the minimizer y*(r) = argmin, g(z,y) is
unique, which imposes the non-singularity of szg(x, Y)
only at the minimizers y*(x) € argmin,g(x,y), as
in (Huang, 2023b). Based on Lemma G.6 of (Chen et al.,
2024) given in the Appendix B, our Assumption 2.2 is
reasonable when has an unique minimizer. Meanwhile,
we also study the case that min, g(z,y) has multiple lo-
cal minimizers in the following section 4.2. Note that
since y*(x) € argmin, g(x,y), we can not have neg-
ative eigenvalues at the minimizer y*(x), so Assump-
tion 2.2 assumes that o(V32,g(z,y*(z))) € [u, L] in-
stead of o(V2,g(z,y*(x))) € [~Lg, —p] U [, Ly]. Since
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Viyg(x, y) is a symmetric matrix, its singular values are
the absolute value of eigenvalues. Hence, we also can use
o(+) to denote the singular-value function.

Assumption 2.3 is commonly appeared in bilevel optimiza-
tion methods (Ghadimi & Wang, 2018; Ji et al., 2021; Liu
et al., 2022). Meanwhile, the BOME (Liu et al., 2022)
uses the stricter assumption that |V f(z, )|, |Vg(z,v)],
|f(z,y)| and |g(x, y)| are bounded for any (z, y) in its As-
sumption 3. Assumption 2.4 is also commonly used in
bilevel optimization methods (Ghadimi & Wang, 2018; Ji
etal., 2021). Assumption 2.5 ensures the feasibility of the
bilevel Problem (1).

For example, we consider a nonconvex-PL bilevel problem

i _ .2 2 .2
xe[l,g]r};réy*(x){f(x’y) =" +y" +3rsin (y)}, ()

s.t. y*(z) = min {g(x, y) = zy* + x51112(y)}7
yeR

which can be rewritten as

pein (x){f (z,y) + cb(w)}, ©)
sty (z) = min {9(177 y) = zy° + xsin?(y)},

where ¢(z) = 0 when = € [1,2] otherwise ¢(x) = +o0.
From the above bilevel problem (5), we can easily obtain
y*(z) = 0,V2, g(x,y) = z(2+2 cos®(y) —2 sin®(y)). and
then we have szg(x y*(z)) =42 > 0duetoz € [1,2].
Since V2yg(a; y*(x)) = 42 > 0, our Assumption 2.2 holds.
Meanwhile V2 g(z,y) = x(2+ 2 cos?(y) — 2sin’(y)) for
any y € R may be zero or negative such as V2 g(x, 7/2) =

0. Meanwhile, for any y € R, clearly | f(z, y)| and |g(x,y)|
are not bounded. Thus, the assumptions used in (Liu et al.,
2022; Xiao et al., 2023; Kwon et al., 2023) may be not
satisfied.

2.2. Useful Lemmas

In this subsection, based on the above assumptions, we give
some useful lemmas.

Lemma 2.6. ((Huang, 2023b)) Under the above Assump-
tion 2.2, we have, for any x € R,

VF(z) =V, f(z,y"(z))

V2,0l (@) V20 @)V, ey (@),

From the above Lemma 2.6, we can get the same form of
hyper-gradient V F'(x) as in (2). Since the Hessian matrix
Viyg(x,y) for all (z,y) may be singular, as in (Huang,
2023b), we define a useful hyper-gradient estimator:

Vi, y) = Vaf(z,y)
~V2,9(2,9) (Sjp0,) [V2,9(x,9)]) Vot (2,y),

which replaces the standard hyper-gradient estimator
V f(z,y) used in (Ghadimi & Wang, 2018; Ji et al., 2021)
for the strongly-convex lower-level optimization,

ﬁf(x’y) = sz(x,y)

—V2,9(2,9)(V2,9(z,9)) "'V, f(a,y).

Lemma 2.7. ((Huang, 2023b)) Under the above As-
sumptions 2.1-2.4, the functions (or mappings) F(x) =
[y @), G@) = g@y'(@) ad y'(x) e
arg mingege g(x,y) satisfy, for all 1, z2 € RY,

ly*(21) — " (22)|| < Kllwy — a2,

IVy*(x1) = Vy* (22) || < Lyllwr — 22,
IVE(z1) = VF(22)]| < Lp||z1 — 22,
IVG(z1) = VG(22)|| < Lallzr — 2|,

where k = Cyyy/p, Ly = (szg‘gyy + 9“’)(1 + g”)

Lp= (Lf—ﬁ-Lf/i—Fny(M + 1”))(1—1—,%) and

Lg = (Lg + Lok + Cy (Sozupom —ijy))(l + k).

Lemma 2.8. ((Huang, 2023b)) Let VF(z) =
Vf(z,y*(z)) and Vf(z,y) = Vaf(z,y) —
V2,9@,y) (S, [Vi9@9)]) Vyf(z,y), we
have

2

N 2L .
IVf(z,y) = VF(@)|* < T(Q(w,y) —ming(z,y)),
72 _ 2 qT? Cfv qm C?Tqu? L3 C?’I‘U
where L* = 4(Lf + uj + ’ e vo4 e )

3. Efficient Hessian/Jacobian-Free Bilevel
Optimization Method

In the section, we propose an efficient Hessian/Jacobian-
free method to solve the nonconvex-PL bilevel Problem (1)
based on the finite-difference estimator and a new projection
operator. Here we first define a useful projection operator:

Definition 3.1. Given matrix H € RP*? and vector v €
R?, and Sy, ,1[] is a projection operator on the set { H €
RP*P : < o(H) < Lg} where o(+) denotes the eigenvalue
function, and P, (+) is a projection operator onto the set

{v € RP : ||v|| < ryp}, then we define a new projection
operator M, (-,-) onset {H € RP*P y € RP : ||Ho| <
r1, }, which satisfies

Mo, (H,v) = S, [HPr, (v), ©)
where 0 < rp, <7, L.
For notational simplicity, let M, (H,v) = M,, (Hv) in

the following.
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Algorithm 1 Hessian/Jacobian-free Bilevel Optimization
(i.e, HIFBiO) Algorithm

1: Input: 7', learning rates A > 0, v > 0, 7 > 0, and
tuning parameters 6. > 0, 7, > 0, r;, > 0, and initial
input z; € R%, 35 € RP and v; € RP ;

2: fort=1,2,...,Tdo
3:  Compute u; = Vyg(z¢,yt), and update y; 41 = Yy —
Augs

4. Compute w; = 6Jc(wtaytavt) = Vaf(ze,u) —

j(xt, Yt, U, O ), and update x; 1 = ]P’;(_) (xt, wt);
1L = VUR(CUt, Yt Ut) =
M., (H(fm Yt Ut, 55)) - vyf(xtv Yyt), and up-
date vi41 = Pr, (vt — Tht);
6: end for
7: Output: Chosen uniformly random from {z;}7_;.

5. Compute hy

From the above Lemma 2.6, the hyper-gradient V F'(x)
takes the form of

VF(z) = V. f(z,y" (z)) %)
— V2, 9(x,y* () [V2,9(2,y" ()] TV, f(z, 5" (2)).

In the above problem (1), the lower objective function
g(x,y) on variable y is not strongly convex, so its Hes-
sian matrix V2, g(z,y) for all (z,y) may be singular. As
in (Huang, 2023b), we define a useful hypergradient estima-
tor:

~

Vi(z,y) = Vaf(z,y) ®)
-1
Since the above hypergradient (8) requires computing the ex-

pensive projected Hessian inverse, as in (Yang et al., 2023b),
we define a new hypergradient surrogates as follows:

ﬁf(x,y,v) = V:rf(xvy) - Viyg(:ﬂ,y)v, (9)

where v € RP is an auxiliary vector to approx-
imate the projected Hessian-inverse vector product

-1 . .
(Sir,1 [Vayg(z,y)]) Vyf(z,y) in (8), which can be
rewritten as a solution of the following linear system:

v = (Sp, [V2,9(,9)]) TV, £z, y) (10)

. 1
= arg min {gvTS[u,Lg] [Vf/yg(a:, y)]v — UTVyf(a:, y)}

veERP

Under this case, we can use the following new iterations to
solve the nonconvex-PL bilevel problem (1): for¢ > 1,

Yt+1 = Yt — )\vyg(ﬂfta Yt)s
Ti41 = P;() (xtavf(xtayhvt))a (]1)
vir1 = Pr, (Ut - TVvR(CEm Yt 'Ut))7

where A > 0,y > 0 and 7 > 0 are learning rates, and the
proximal operator defined as: given vectors z, w; € R?,

]P’(Z(.)(xtawt)

1
= arg;rel]iRr}i {{wy, ) + gﬂm —nlP+o(2)}. 12

In particular, on updating variable v € RP, we use a pro-
jection P, (-) onto the set {v € R? : |jv]| < r,} with
0<r, < % to obtain the bounded variable v. Here we
use the function

1
R((E, Y, U) = §UTS[H,LQ] [ngg(l', y)]’l) - ”UTvyf(:L', y)a

and then we have V, R(x, y,v) = S, 1] [szg(x, y)|v—

In the high-dimensional setting, clearly computing Hes-
sian matrix V2 g(z,y) and Jacobian matrix V2, g(z,y)
is expensive. To approximate this hypergradient effi-
ciently, we further use the finite-difference technique to esti-
mate the Hessian-vector V2, g(x,y)v and Jacobian-vector
Viyg(x, y)v products. Specifically, given a small constant
dc > 0, we define two finite-difference estimators to esti-
mate V3, g(z,y)v and V2, g(x,y)v respectively, defined
as:

~ Vyg9(x,y+6v) — Vyg(x,y — )

H(x7y7v7 56) = 26 b
(13)

~ Vaeg(x,y + 6:0) — Vaeg(x,y — dev

T, y,0,6.) = g9(z,y )25 g9(z,y )
(14)

Then we can use the following Hessian/Jacobian-free iter-
ations to solve the nonconvex-PL bilevel problem (1): at
(t + 1)-th iteration,

Yt+1 = Yt — Avy.gv(xta yt)7
Ti41 = P;() (xta Vf<xtayt7vt))7 (15)
vir1 = Pr, (Ut - TVUR(%, Yt, Ut))7

where A > 0, v > 0 and 7 > 0 are learning rates, and

%f(xtu yt7vt) = fo(l'tyil/t) - j(xtayta vt766)7
VoR(@e,ye,v0) = Mo, (H (e ye,v,00)) = Vy f (0, 92)-

Based on the above iterations (15), we give a procedure
framework of our HIFBiO algorithm in Algorithm 1. When
¢(x) = 0, in updating the variable x, we have x;11 =
Ty —ywy = T4 — YV (T4, Yr, 1)

Note that in our Algorithm 1, we use two low computational
finite-difference estimators (13) and (14) instead of com-
puting high computational Hessian matrix szg(x, y) €
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R%*¢ and Jacobian matrix V2, g(z,y) € R**?. More-

over, we also use a low computational projection opera-
tor {||H(z,y,v,8.)|| < ra} on vector H(z,y,v,d.) in-
stead of computing high computational projection operator
S, [V2,9(x,y)] used in (Huang, 2023b;a). Thus, our
HJFBiO algorithm only requires a low computational com-
plexity of O(p + d) at each iteration.

From Algorithm 1, since v; = P, (v;), we have

M., (H (@, yr,ve,00))
1
=M,, (g (Vyg(xt, Yt + 5evt) - Vyg(l"t, Yt — 5&%)))

1
=M,, (ﬁ (Vyg(xta Yt +0evi) — Vyg(e, yt)

+ Vyg(ze,yt) — Vyg(ae, yr — 5evt)))
1

1
- M., (5 Vo9 o+ Kk

1o,
+ o5 /k Vit k;éevt)éevtdk>
1 1
= M’rh ((2 o Vyyg(xt7 Yt + k(sEUt)dk

1 1
+ 5 szg(xt, Yt — k(sEUt)dk)’l}t>
k=0

1
= S[/L,Lg] |:§ /k—O vzyg(xtv Yt + k(sevt)dk
1 1
+ 5/ Viey9(@e,ye — kaevt)dk)}vta (16)
k=0

where the last equality holds by v;
definition 3.1. Thus, we have

= P, (v¢) and the above

hm M’!‘h( ($t7ytavt75 ))

. 1,
= 616130 Siu,L,] [5 /k:o Vyyg(xt, Yy + kdevy)dk

1

1
+ § v;yg(l’t, Yt — k’éevt)dk)}vt
k_

=S, [Viy (@, ye) v (17)

Then we can obtain lims, 0 %UR(xhyt,vt) =

VvR(l‘t, Yt 'Ut>-

4. Convergence Analysis

In the section, we study convergence properties of our HJF-
BiO algorithm under some mild assumptions. Given x;
from Algorithm 1, we define a useful gradient mapping

1
g(:L't,VF(ZL't),"}/) = ;(It - It+1)7 (13)

where F(z) = f(z,y*(x)) with y*(z) € argmin, g(z,y),
and z;41 is generated from

1‘t+1 J}t,VF(J)t))

((
= arg min { (VF(x),
z€R?

2)+ 5l — @il + ().

When ¢(x) = 0, based on (18), we have ;41 =
x¢ — YV F(x), and then we obtain G(z¢, VF (x¢),y) =

4.1. Convergence Properties of Our Algorithm on
Unimodal g(z,y)

In the subsection, we study the convergence properties of
our HJFBIO algorithm when g(z, -) satisfies the global PL
condition for all z € R%, i.e., it has a unique minimizer
y*(x) = argmin, g(x,y). We first give three useful lem-
mas.

Lemma 4.1. Suppose the sequence {x;,y;,v: }1_, be gen-
erated from Algorithm 1. Under the above Assumptions,

given) < 17 < 6L , we have

o1 — Ut+1|\2 (1- *)H Vg — *H2 Hvt+1 - th2

2,452 2
2T L g0 @(& gynyw)(HfEtJrl —x4))?
64 3 pt
+ [yes1 — ytIIQ), (19)
where v} = v* (X, Yt) =

(S[M,Lg] [ngg(‘rtvyt)])_ Vyf(@e, yi) forall t > 1.

Lemma 4.2. Assume the sequence {x, yt, v Y, be gen-

erated from Algorithm 1, given 0 <y < 5 L , we have

(i41) < Bar) - gugm,wm)ll?
12’y

+6’7 g:cyHUt vt“2+27Lgmy562 37
where ®(z) = F(x) + ¢(x) and G(xt,wt,y) = %(xt -
xtJr]).

Lemma 4.3. Suppose the sequence {xy,y;,v; }1_, be gen-
erated from Algorithm 1. Under the above Assumptions 2.1-

2.3, given v < min{lé‘T“G,w%} and 0 < \ <
g
have

2L 57, we

9(Tey1,Yer1) — G(241)
A 1
< (1= 5oy = ) + g llre — P

1
= o lveer = well® + MVyg(ae,y) —wel® - 20)
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where G(zy) = g(@e,y*(24))
arg miny g(z,y) forall t > 1.

with y*(zy) €

Based on the above useful lemmas, we give the convergence
properties of our HIFBiO method in the following.

Theorem 4.4. Assume the sequence {xi,yi, v}l ;

be generated from our Algorithm 1. Under
the above Assumptions 2.1-2.5, let 0 < v <
: 1 A 3 T TP
mm (2LF’ T6Lg 16‘22’ 16012’ 3oggzy’ 30(L2 2Lz )
0<)\§m1n(2L 780Lz)ana’0<7'< 5L, ——, we have
1 Z
T Z 1G (e, VF(2:),7)|)?
t=1
_ 8(®() +g(er0) — Clan) + oy — vi |2~ &)
< T~
1007L2,, ris?
2012 6%rd w, 21
+ gxy“e Ty 3’7” ( )
where [2 = Lf + 79“0“

Remark 4.5. Wlthout loss of generality, let 7 = O(1), A =

. 1 A 2] _3
O(1) and v = min (QLFa T6Lg’ T6L2° 160L2°

A
007 ) SO(LZ 4122 ) = O(1). Furthermore, let 6, =

gzy my)
we have

1
O<fmax(L2 qyy/y.)’l‘Z)’

gzry’ v

1 & 1
=SNG (e, V), I < O().

Let O(#) = €, we obtain T = (e~!). Since requiring seven
first-order gradients at each iteration, our HJFBiO algorithm
can obtain an optimal gradient (or iteration) complexity
of 7-T = O(e!) in finding an e-stationary solution of
Problem (1), which matches the lower bound established by
the first-order method for finding an e-stationary point of
nonconvex smooth optimization (Carmon et al., 2020).

When ¢(z) = 0, based on (18), we have
G(x+,VF(zt),v) = VF(x¢). Thus our HIFBiO al-
gorithm still obtains an optimal gradient complexity of
7-T = O(e!) in finding an e-stationary solution of
Problem (1) (i.e., minj<;<7 ||[VEF (24)]|? < €).

4.2. Convergence Properties of Our Algorithm on
multimodal g(z, y)

In this subsection, we study the convergence properties
of our HJFBiO method when g¢(z,-) satisfies the local
PL condition for all z, i.e, it has multi local minimizers
y°(x,y) € argmin, g(x,y). As in (Liu et al., 2022), we
define the attraction points.

Definition 4.6. Given any (z,y), if sequence {y; }7°, gen-
erated by gradient descent y; = y¢—1 — AV, g(x, y;—1) start-

ing from yo = y converges to y°(z,y), we say that y°(z, y)
is the attraction point of (z, y) with step size A > 0.

An attraction basin be formed by the same attraction point
in set of (z,y). In the following analysis, we assume the
PL condition within the individual attraction basins. Let
Fo(x) = f(z,y°(z,y)).

Assumption 4.7. (Local PL Condition in Attraction
Basins) Assume that for any (z,y), y°(z,y) exists. g(z, -)
satisfies the local PL condition in attraction basins, i.e., for
any (z,y), there exists a constant y > 0 such that

IVyg(z, 9)|I> > 2u(g(z,y) — G°(x)),  (22)

where G°(x) = g(x, y°(z,y)).
Assumption 4.8. The function g(:c, y°(z, y)) satisfies

o(V2,9(z,y°(x,y))) € 1 Ly), (23)

where y°(x,y) is the attraction point of (x,y), and o(-)
denotes the eigenvalue (or singular-value) function and
Ly>p>0.

Assumption 4.9. The function ®°(x) = F°(x) + ¢(z) is
bounded below in R?, i.e., ®° = inf,cpa P°(x) > —o0.
Theorem 4.10. Assume the sequence {xy,yi,vi}i_,

be generated from our Algorithm 1. Under the above
Assumptions 4.7, 4.8, 2.3, 2.4, 4.9, let 0 < ~v <

. 1 A 3 T w3
min (2L ) 165@’ 16#L2’ 16002’ 3053“1’ 30(L2+rgL?”y)>’
0< )\gmln(u ,80‘12) and 0 < 17 < 6L ——, we have
1 X
T D NG (e, VE (24), 7)1
t=1
o 8(®°(w1) + g(w1,p1) — Glan) + [Jor — vi||* — ©°)
< T
1007L2, 1452
+ 2012, 2 4 0 D0 (24)
gry 3%u
o _ o v2 Lf qyucfa"
where ®°(x) = F°(z) + ¢(x) and L + s

Remark 4.11. The proof of Theorem 4.10 can fol-
low the proof of Theorem 4.4. Let further 6. =

O( \/Tfnax(ngy, T ) our HJFBiO algorithm can also

obtain an optimal gradient (or iteration) complexity of
7-T = O(e™!) in finding an e-stationary solution of Prob-
lem (1) under local PL condition.

5. Experiments

In the section, we conduct bilevel PL game and hyper-
representation learning tasks to demonstrate efficiency of
our method. In the experiments, we compare our method
with the existing methods given in Table 1. Meanwhile,
we add a baseline: BVFSM (Liu et al., 2021b). For fair
comparison, since only the AdaPAG (Huang, 2023a) uses
adaptive learning rate, we exclude it in the comparisons.
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Figure 1: PL Game: norm of gradient vs number of iteration
under d = 100 (Left) and d = 200 (Right).

5.1. Bilevel Polyak-L.ojasiewicz Game

In this subsection, as in (Huang, 2023b), we apply the bilevel
Polyak-Lojasiewicz game task to verify efficiency of our
algorithm, defined as:

1
min —z7 Pz + xTRly, (25)
z€R 2

1
s.t. min —y? Qy + 2T R?y,
yeR4 2

where P = 5 500 pi(p)". Q= 33 i1 4il@)", R =
Iy 0.0lr (rHT and R2 = i S 0.01r2 (r?)T.
Speciﬁcally, samples iy, {a}y, {ritr, and
{r?}"_, are independently drawn from normal distribu-
tions N(O Yp), N(0,2g), N(0,Xg:) and N(0, X ge), re-
spectively. Here we set Xp = U'DY(U')7T, where U €
R¥*! (I < d) is column orthogonal, and D' € R"*! is diag-
onal and its diagonal elements are distributed uniformly in
the interval [p, L] with 0 < p < L. Let £ = U2D*(U?)7,
where U? € R?*! is column orthogonal, and D? € R!*!
is diagonal and its diagonal elements are distributed uni-
formly in the interval [, L] with 0 < p < L. We also set
Yt = 0.001VH(VHT and Y2 = 0.001V2(V2)T, where
each element of V!, V2 € R%* is independently sampled
from normal distribution N(0, 1). Since the covariance ma-
trices X p and X are rank-deficient, it is ensured that both
P and @ are singular.

In the experiment, we set | = 50, n = 50 - d, d = 100
and d = 200. For fair comparison, we set a basic learning
rate as 0.01 for all algorithms. In our HIFBiO method, we
set 5. = 107°. Figure 1 provides the results on norm of
gradient vs iteration, where the iteration denotes iteration
at outer loop in all algorithms. Here these results verify
that our HIFBiO algorithm outperforms all comparisons. In
particular, our HIFBiO method has a lower computation at
each iteration than the MGBiO method.

7000 . - -
—&—HJFBIO (ours)
MGBIO

—+—BOME
V-PBGD
——GALET
SLM
©_BVFSM

o HJFBIO (ours)

6000
5000

3 4000 |

B 3000 \*:\’7;
2000

1000

100 15 200 250 300 350 400
lterations

Figure 2: Distances of the algorithms under the case of
d = 100 (Left) and d = 200 (Right).

5.2. Hyper-Representation Learning

In this subsection, as in (Huang, 2023b), we consider
the hyper-representation learning on matrix sensing task
to verify efficiency of our method. Specifically, given
n sensing matrices {C; € R¥>4}"_ and n observations
0; = (C;, H*) = trace(CI H*), where H* = U*(U*)T
is a low-rank symmetric matrix with U* € R?*", the goal
of this task is to find an optimal matrix U*, which can be
defined as the following problem:

((C,, UUTY —0,)%. (26)

L\')M—l

min E 4(U) =
UGRdXT‘ ’,’L

Next, we consider the hyper-representation learning in ma-
trix sensing task, which be rewritten the following bilevel
optimization problem:

4i( 27
ﬁewxmm“; (@, @7

s.t.y()Eargmln Zé z,Y),
|Dt‘ 1€ Dy

where U = [y; 2] € RY*" is a concatenation of = and y.
Here we define variable x to be the first 7 — 1 columns of
U and variable y to be the last column. Meanwhile, D,
denotes the training dataset, and D,, denotes the validation
dataset. The ground truth low-rank matrix H* is generated
by H* = U*(U*)", where each entry of U* is drawn from
normal distribution N(0, 1/d) independently. We randomly
generate n = 30 - d samples of sensing matrices {C;}?_;
from standard normal distribution, and then compute the
corresponding no-noise labels o, = (C;, H*). We split all
samples into two dataset: a train dataset D; with 40% data
and a validation dataset D, with 60% data.

In the experiment, for fair comparison, we set the basic learn-
ing rate as 0.01 for all algorithms. In our HIFBiO method,
wesetd, = 107°. Let {(U) = 5= ((Cl,UUT> )2
denote the loss, and |UUT — H*||2 /||H*HF denotes the

distance. Figures 2 and 3 show that our HIFBiO method
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Figure 3: Losses of the algorithms under the case of d = 100
(Left) and d = 200 (Right).

outperforms all the comparisons on the distance vs iteration,
where the iteration denotes iteration at outer loop in all algo-
rithms. While our HIFBiO method is comparable with the
MGBiO method on the loss vs iteration. In particular, our
HIJFBiO method has a lower computation at each iteration
than the MGBiO method.

6. Conclusions

In the paper, we proposed an efficient Hessian/Jacobian-free
bilevel method to solve the nonconvex-PL bilevel problems
based on the finite-difference estimator and a new projec-
tion operator. Moreover, under some mild assumptions, we
proved that our HIFBiO method obtains the best known
convergence rate O(%) and gets an optimal gradient (or
iteration) complexity of O(e~!) in finding e-stationary solu-
tion under global and local PL condition, respectively.
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A. Detailed Convergence Analysis

In this section, we provide the detailed convergence analysis of our algorithms. We first review some useful lemmas.

Lemma A.1. ((Nesterov, 2018)) Assume that f(x) is a differentiable convex function and X is a convex set. x* € X is the
solution of the constrained problem min,¢cx f(x), if

(Vf(z*),z —x*) >0, Vz € X. (28)

Lemma A.2. ((Karimi et al., 2016)) The function f(z) : RY — R is L-smooth and satisfies PL condition with constant i,
then it also satisfies error bound (EB) condition with p, i.e., for all x € R4

Vi@ = pllz™ — x|, (29)
where x* € argmin, f(x). It also satisfies quadratic growth (QG) condition with p, i.e.,

f(@) = min f(@) > "~ al* (30)

A.1. Convergence Analysis of HJFBiO Algorithm for Bilevel Optimization with Regularization

In this subsection, we detail the convergence analysis of our HIFBiO algorithm for bilevel optimization. We give some
useful lemmas.

Lemma A.3. (Restatement of Lemma 4.1) Suppose the sequence {xy,y:, vt}thl be generated from Algorithm 1. Under the

above Assumptions 2.1-2.4, given 0 < 7 < 6%, we have
g

WT 3
lve41 — Uf+1||2 <(1- Z)H”t - Ut*||2 - 1||Ut+1 - Ut||2

257L2 ris2 o9 L2 L2 (2
gyy v'e / 9yy ~ fx 2 2

6y g\ 2T 1 - ; 31
64 3 (,u2 14 ) (lzeer = 2el” + lyeer — vell?) (31)

-1
where v} = v* (T, yr) = (S[H’Lg} [Vf/yg(mt, yt)D Vo f(xe,ye) forallt > 1.

Proof. Since the function R(z,y,v) = 3078y, 1) [VZ,9(x,y)]v — vV, f(z,y) is p-strongly convex on variable v, we
have

R(x¢,ys,v) (e, Yt ve) + (Vo R(2t, Yt, ve), v — vg) + gHU —v)?

>R
= R(%y@/t»”t) + <ht, v — Ut+1> + <V’L}R(mt7yt7vt) — h¢, v — Ut+1>
+ (VR (xs, Y1, 01), Vg1 — ve) + %”U —ve)?. (32)

Since the function R(z, y,v) is Lg-smooth on variable v, we have
Ly 2
R(xy, ye, vi1) < R(we, ye,v¢) + (Vo R(@e, yr, ve), vep1 — ve) + 7||Ut+1 —ve]|” (33)
By combining the about inequalities (32) with (33), we have

R(x¢,yt,v) > R(xe,yt, veg1) + (he, v — vep1) + (Vo R(2, Ye, 0) — by v — Ve g1)

L
+ Sllo = vl = 22 o — vl (34)

According to the line 5 of Algorithm 1, we have v,y = Py, (v; — Thy) = argmin,ey, {(ht, v =)+ 5|lv— vt||2}
with A, = {v € R? |||v|| < r,}. According to the above Lemma A.1, given v € A,,, we have

1
<ht + ;(Ut-‘rl — ’Ut),U — Ut+1> Z O (35)

11
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By plugging the inequalities (35) into (34), we have

1 1
R(we,40,0) 2 R(we,yo, vegr) + — (e = 0,00 = 0) + g — ve)?

L
+ (Vo R(2t, Yt, v¢) — e, v — vp1) + gHU —ve)? - 7g||7ft+1 — vl (36)

-1
Letv = v} = v*(z¢, 1) = (S[H,Lg] V2, g(xy, yt)]) V., f(z¢,y;), then we have

1 L

* 1 .
R(xe, ye,vf) = R(@e, ye, ver) + ;<Ut+1 — Vg, v — V) + (; - 79)||vt+1 —u)?
+ <vvR(33t7yt’Ut) - ht7’l)£k - Ut+1> + g”v: — Ut||2- (37)
Due to the strongly-convexity of R(z,y, ") and v; = argminyea, R(z¢,y¢,v) with r,, = C;J:y, we have R(x, vy, v;) <
R(x4,ys,vs11). Thus, we obtain
L o 1 L
0> (o1 — w00 —vf) + (= = ZH)ore — vl
+ (Vo R(@e, Y, v0) = he, v — v41) + g”vi‘ TS (38)

Consider the term (vy1 — vg, v; — v; ), we have

1 Ly 1 |
(Ver1 — v, ve = vp) = S llvers — vy [ Pl [ S lloera = vl (39)
Consider the upper bound of the term (V, R(x¢, yi, v¢) — he, vF — viy1), we have

(Vo R(zt,yt,vt) — he, vf — ve41)
= (Vo R(xt, Y1, vt) — heyvf — i) + (Vo R(Tt, Yr, v¢) — ey v — Veg1)

1 . 1
> *;HVvR(%t,yt,vt) — hy|? = g”lft —ve|® - EIIVUR(xt,yt,vt) — he? - %Hvt — v |?

2 *
=~ IVuBG g v) = bl = lof = ol = Gl — v P

212 rﬁéz
> -2 Bt 2 = B — vl “o

12
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where the last inequality holds by the following inequality:

IVoR(xe, e, ve) — ht||2

= [|[VoR(x¢, ye, ve) — 6vR(ztayuUt)HQ

= HS[;,L,LQ] [viyg(xb yt)] Ut — Vyf(xtv yt) - M’r‘h (f[(ﬂft, Yt, Ve, 66)) + vyf(xta yt)”2
= 1Sy, [Viyg (e, y) | ve — Mo, (H(we, ye, v, 0 )H

= HS[H,LQ] [szg($t7 yt):l Uy — Mrh, (Vyg(xt, Yt + 55”1&) - vyg(xta Yt — 5(—:'025))) ||2

= HS[M,LQ] [V?,yg(ft» yt)]vt (Vyg(l"m Yt +0cvt) — Vyg(ze,ye) + Vyg(e, ye) — Vyg(ae, ye — 5eUt))) ||2

1 /!
/ Vyyg(xt, Yt + kocve)de 2(5 Vyyg(xt, Yt — k‘(5€vt)5€ytdk> H2

M
= HS[H’LQ] [vf/yg(xh yt)] UVt — MT
= HS[“ng] [viyg(xtv yt)] Ut M

1 1
1 2
| Vgt koot 5 [0 g~ ko)) o
k

(
(4)
22,1 (V50 )] = Sy [5 -

(i1)
< r2HVyyg .'lft,yt / Vyyg(xt,yt + ké Ut k — */ Vy,qg(l't,yt ké ’Ut)dk')H

7"3 ! 2 2 3 2 2 2
< 5(/]~C ||Vyyg($t,yt) = Viy9(@e, ye + kdevt)||dk> + 3(/}6:0 Hvyyg(xhyt) = Vi 9(@e, e — k5evt)||dk)
< L2, redc, (41)

where the above equality (i) holds by v; = P, (v;) and the above definition 3.1, and the above inequality (ii) holds by
[[og]] < 7.

By plugging the inequalities (39) and (40) into (38), we obtain

s 01 < e~ o =il 4 (4 20 Ly g 2
<~ o= ot P (P28 = Dy — wf? 4 2o
— (e~ = (o L= By e i
< (= o o7 = o =+ @)

where the second inequality holds by Ly > p, and the last inequality is due to 0 < 7 < 6%. It implies that

, Tl 23 A2, rie?
s =712 < (1= ED)lloe =12 = Flloesn — vl 4 =227 @)

—1

Since vy = (S[M,Lg] [viyg(xhyt)]) Vyf(@e, ) = argmingen, R(xe, yi,v) withr, = % and

13
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1
Vihq = (S[M,Lg} [Viyg(xt+17yt+1)]) Vyf(@t41,Ye41) = argmingen, R(2q1, Yer1,v), we have

-1 -1 2
loter = i 12 = || (Shwr (V30 )]) Vol @ vee) = (S V3,900 w)]) - Vol @em)

—1 -1
= H (S[ﬂ,Lg] [szg(ﬂftﬂ,ytﬂﬂ) Vo f(Tes1, yer1) — (S[M,Lg] [szg(%‘tﬂ,ytﬂ)}) Vy f(xt,yt)

-1 -1 2
(S (V2,96 5040)]) oy = (Spwr, [V3,06nu)])  Vuf o)

4L% 412 C2,
< (7 + =) (lzen = @il + s = ). (44)

Next, we decompose the term ||vi41 — vy, 4 [|* as follows:
Joess = v 2 = loess — v + 5 — v | 45)
= llveser = 7117 + 2(ver — v, 07 — o) + oy = vip|?
uT 4
<+ Plver =2+ (1+ E)Ilvf L
2 2 2
ur i 4 ALy 4Ly, C%,
<+ 2 - 14+ —) (L 4 i
<(1+ 1 Nvegr —vf 17+ (1 + #7')( 2 1

where the first inequality holds by Cauchy-Schwarz inequality and Young’s inequality, and the second inequality is due to
the above inequality (44).

)71 — zel” + lyess — well®),

By combining the above inequalities (43) and (45), we have

" BT Wt " BT 3
lovss = viall? < (04 B0 = ED)lloy = uf P = (14 ED) S s — wil?
2 452 2 2 2
UT 47L T’)(S6 4 4L 4], C
+ 0+ P2 1) (g + ) (e — il + v = well).
Since 0 < 7 < z7—and Ly > pi, we have 7 < 51— < &. Then we have
2.2
uT UT UT  UT T UT
1+ - =1- 420 = <1-
A+ =) SE R et
ur. 3 3
—_(1+EYE <2
a+5)T <-4,
(1+E)4l (1+i)4l_2577
47 p 247 6p
1+i§§
ur 3
Thus we have
« Wt . 3
[ve41 = via|* < (1 - o — vt [ v — vel|?
25702, ris? 90, L% L2 C2,
o+ 3 g ) (e — @l + v — wil). (46)

O

Lemma A.4. (Restatement of Lemma 4.2) Assume the sequence {x;,y;, v }i_, be generated from Algorithm 1, given
0<vy< ﬁ we have

Y 124
D(x441) < P(2y) — §Hg(xtawt77)”2 + T(L? + T?;ngy) (9(ze,y0) — G(zy))
+ Gvogzzvat —vf||? 4+ 2yL2,, 6202

gzy“e’ vy

where ®(x) = F(x) + ¢(x) and G(x¢,w,y) = %(mt — Tpq1)-

14
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Proof. By the line 4 of Algorithm 1, we have

_ 1
Tyyq = ]P’;(‘)(xt,wt) = arg min {(wt,x) + ﬂHx — x|+ (b(x)} 47

Then we define a gradient mapping G (x¢, w;,y) = %(mt — xy41). By the optimality condition of the subproblem (47), we
have for any z € R?

1
(wy + §($t+1 — @) + Vg1, 2 — x11) 20, “9)

where ﬂt-{-l S 8¢(mt+1).

Let z = x¢, and by the convexity of ¢(x), we can obtain

1
(we, ¢ — Tp41) > ;||$t+1 — 2|+ (Deg1, To1 — 24)
1
> §||$t+1 — zy||? + d(we1) — d(ay). (49)

According to the Lemma 2.7, function F'(z) has Lg-Lipschitz continuous gradient. Let G(x¢, we,y) = = (2¢ — T441), We

have

1
v

L
F(zen1) < Flan) + (VF (), 2eer = 20) + o — el

2
L
= F(z¢) + (e, 2441 — 24) + Y(VF(20) — we, G, w, 7)) + VTFHg(xt,wt,y)HQ

v?Lp

< F(20) = Y16 (@0, we, NIP = dl@n) + dlwe) + A{VE(w0) = wi, G, we, 7)) + 5= G, we, )

(id)
< Flae) = 219 (e, we )2 = dlarer) + o) +llwn = V)|, (50)

where the second last inequality holds by the above inequality (49), and the last inequality holds by 0 < v < ﬁ and the
following inequality

(VF(zy) — wi, G2, wy, 7))

IN

lwr = VE () |[[|G (e, we, )l

p 2 1 2
=|we — VF(x)||* + =G (z¢, we,y
2 s~ VEGIP + ol[Gre w07

IN

1
Hwt—VF(xt)||2+ZIIG($t,wtﬁ)H2, D

where the above inequality holds by Young inequality with p = 2.

Since w; = %f(mt, Y, v¢) in Algorithm 1, we have

[we — VE(x)|? = |V (e, s, 00) — VF ()]
<2V (@, yeve) = VE()|2 + 2V f (20, 40, 00) = VF (e, yr,01) |2
12
< ;(L? +7r2L? )(g(sct,yt) — G(mt)) +6C2 ||vy — UZ‘HZ + 212 5%t (52)

v gy gzy gzy“e’ v

where the last inequality holds by the following inequalities (53) and (54).

15
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Considering the term ||V f (¢, 3¢, v;) — VF(z¢)|2, we have

||§f($t; Y, Vt) — VF(%)HQ
= Vo f(@e, ) — qu:yg(‘rtayt)vt - VF(»Tt)”2
= Vaf(@e,y:) — Vo g(@e,ye)ve — Vo f (me,y" (20) + Va,g(ze, y* (z:))vf ||
= IVaf(@e,ye) = Vaf (e, y" (1)) — Viyg(xt,yt)vt + Viyg(xt,y*(xt))vt
— Va9, v (@))ve + Vi 9(ze, y* (w0) vy |

< (3L?‘ + 3r12)L52]zy) ||yt - y*(wt)”Z + 3C§zy|‘vt - UZHZ

6 .
< S (L34 7320, alow) — Glan) + 805 o — i

where the last inequality holds by the above Lemma A.2.

Considering the term ||V f (¢, ys, v;) — V f (¢, ye, v1)||2, we have

Hﬁf(xtvytavt) - §f(xt7ytﬂ}t)”2

= [IVaf(@e,ye) — j(xtvytvvtv 0e) = Vaf(we,ye) + Vf;yg(fft»yt)vt||2

Vaeg(xe, ye + 6cvy) — Vaog(xs, ye — Oev
_ H 9(x, e t)25 g(ze, Yyt t) *Viyg(ﬂ?t,yt)vt

2

1
= | Vag(@e, ye + 6eve) — Vag(@e, ye) — 6V 2, 9(e, ye)vr
+ Vzg(l't,yt) - Vmg(xt,yt — 5(—:'025) — 6€v33yg(xt,yt)’l)t“2

1
< @HVM(%&,% +0cvt) — Vag(@e, ye) — 66Viyg(xt7yt)vt“2

1 2
+ TQHVIQ(%, Y1) = Vag(@e,ye — 6cvi) — 0V, 9(ze, yi)ui|

1 ! )
— @’ /k:O (viyg(xtvyt + kdevy) — Viyg(xhyt))éevtdkH
1 ' 2 5 2
+ 252 / (szg(xu Yt — kéev) — Vi, 9(x4, yt))c?evtdkH
1 ' 2 9 2
< TE(/k:o V2, 9(ze, e + kdevy) — wag(xt7yt)’|||vt||55dk)

1 1 )
+ o / V2,960, e = koewn) = V2, g(we,uo)|oe0cdk)
€ k=0
< L2, 8 Nve* < L2, 0%,
where the last inequality holds by ||v;|| < 7.

By combining the above inequalities (50) with (52), we can obtain

12
D(x441) < Pay) — %Hg(xt,wtﬁ)HQ + TW(L? +roL2,,) (9(ze, ye) — Glze))

+ GWC’gzwavt —vf||* +2vL2,, 82t

grye’v*

(53)

(54)

O

Lemma A.5. (Restatement of Lemma 4.3) Suppose the sequence {4, y;,v; } 1, be generated from Algorithm 1. Under the

16
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above Assumptions 2.1-2.3, given v < min {16)\75@’ ﬁ} and 0 < \ < i we have

2
+ A Vyg(ze, y) — uel?, (55)
where G(z¢) = g(z¢,y* (x¢)) with y*(z;) € arg miny g(z,y) forall t > 1.

A 1 1
9(eesn o) = Glaea) < (1= ) (gl ) = Gla) + gl = il = g llvers = wil

Proof. Using the Assumption 2.3, i.e., L,-smoothness of g(x, -), such that
L
9(@e1, Y1) < 9(@ev1, ) + (Vyg(@e1, ye), yerr — o) + 7g||yt+1 —uil*. (56)

Since y;1 = argminyere { (U, y) + 55 (¥ — ¥¢)* (¥ — w) } = y¢ — Auy, we can obtain

(Vyg(@eq1,yt), Yer1 — Yt)
= _)\<Vy9($t+1’yt),ut>

A
= *5(||Vyg(fﬂt+1, y)|I? + Nluell® = IVyg(@it1, ve) — Vyg(e, ye) + Vyg(ae, ye) — Ut||2)
A 1
< —5|\Vyg(:rt+1,yt)||2 - ﬁ”ytﬂ =yl + AL |eqr — mel|” + M Vyg(ze, o) — we?
1
< = Au(9(@eg1, ) — Glae)) — ﬁ“yt+1 —yel? + AL w1 — 2e|? + A Vyg(@e, ye) — wel?, (57)

where the last inequality is due to the quadratic growth condition of p-PL functions, i.e.,
IVyg(zess, yo)lI> > 20(g(zir1, v) — H}/i,ng(xt—&-la Y)) = 2u(9(zit1, ) — G(we41)). (58)

Substituting (57) into (56), we have
1
9(@i1, Y1) < g(@er1,90) = Me(9(@eg1,90) — Glaesn)) — oy lyes = Yol + ALY [lze1 — 4

L
+ M Vyg(ze, ye) —Ut|\2+7g||yt+1 —uel?, (59)

then rearranging the terms, we can obtain
9(@ei1,ye41) — Glaeen) < (1= M) (9(@eg1, 90) — Gap1)) — %Hytﬂ —yel® + AL [zeq1 — e
NIV = wll? + 22 s — wil (60)
Next, using L4-smoothness of function f(-, ), such that

9(@er1,yt) < 9(xe, Y1) + (Vag(@e, Yt), Tep1 — ) + %Hﬂﬁtﬂ — )%, (61)
then we have
9(Te+1,9t) — 9(Tt, Y1)
<AVag(Te, Y1), Tep1 — o) + %thﬂ — 4)?

L
= (Vag(z,yr) — VG(21), 241 — x¢) + (VG(21), Tpp1 — 1) + 7g||xt+1 - $t||2

1 L
< g”xtﬂ — z||* + 29| Vag(@e, ) — VG(20)||> + (VG(x1), 2441 — 3¢) + 79||$t+1 — z)?

1 L L
< @H%H — 2?4+ 2Ly lye — v (@)1 + G(weg1) — Gla) + TGH%H —x? + 7g||33t+1 — zy?
4L§’y 1 9
< (9(ze,ye) — G(241)) + Glaes1) — Glay) + (g + La)l|werr — 24, (62)

17
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where the second last inequality is due to L -smoothness of function G(x), and the last inequality holds by Lemma A.2 and
Ly < Lg. Then we have

9(@e11,Ye) — G(Te41) = 9(Tev1,yt) — 9(we, y) + g(2e, yt) — G(we) + G(24) — G(2441)

< (14 =) o) = Glen) + (g + Lol — il (©3)
Substituting (63) in (60), we get
9(@e1, Y1) — G(2e41)
2
0 1
< (1= ML+ =) garan) = Glan)) + (1= Mg + Lafoers —
1 L
=~y —well® + >\L3||$t+1 — z|® + M Vyg(ze, i) — wil + ?g”yt+1 —uel?
L2'y 1 A
=(1-A)(1+ Tg)(g(xt,yt) - G(z)) + (a +Lg— 8—: — LeAp + Lz/\)thH —z?
1,1
- g(x — Lg) |lyt1 — vl + A Vyg(@e, o) — uel)?
A 1 o 1 2 2
- tyYt) — t o NTt+1 — Tt — S~ IYt+1 — Yt y tsYt) — Ut
=== )(9(ze,y0) — Gla)) + 8,ny zel” = Yell® + AMIVyg(@e, ye) — ue| (64)
where the last inequality holds by v < min { 1é‘L , 16L2 } Le > Lg(1+ + k)% and A < i forallt > 1,1i.e.,
A 16L 16L A AL
< s Y S Bl 4 2y s g2y = O s TR0
16Lg 1 1% 2 1%
. Al p } Al 2
< = —>1IL LA
v < min { 160 16125 7 8y =767
1 1
)\SQL = A>L9,Vt21. (65)
O

Theorem A.6. (Restatement of Theorem 4.4) Assume the sequence {24, ys,v4 }1_| be generated from our Algorithm 1.
: : A 3 TN
Under the above Assumptions 2.1-2.5, let 0 < v < min 2LF’ 16};, 16’22, TR 3Og§1y, 50(L2 +TEL§ y)>, 0 <A<

(1 3
min (m, 80E2) and () <1< 6L , we have

T
1
23 G (e VF ). )
t=1
8(®(21) + g(z1,y1) — Gla1) + [Jor — vf|* — *) 2 2.4 1007 L3, y02
< 7 20D, 07l 4 (66)
— 2 _ Lf gyycfz
where ®(z) = F(x) + ¢(x) and L +

Proof. According to Lemma A.4, we have

P(2441) — P(2y) < —ZHQ(%’“’MV)HZ + HJ(L?“ + 75 Ligay) (920, y0) — Glzr))

+6vC2,, lve — vy |1* + 2ngzy63 . (67)

gry

18
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According to the line 3 of Algorithm 1, we have u; =V, g(z¢, yt). Then by using Lemma A.5, we have
9(@i41,yt41) — G(@er1) — (9(ze, yi) — G(xy))

A 1 1
< —?u(g(xt»yt) - G(Sﬂt)) + @me - $t||2 - ﬁ”ywl - yt”2 + )\Hvyg(xt,yt) - Ut||2

1
= *7(9(9%7%) — G(xy)) + %”g(xtawt”)’)Hz - ﬁ”ym—l — |, (68)

where the above equality holds by u, = V,g(z, y) and G(xy, we,7y) = %(xt — Tt1)-

By using Lemma A.3, we have

llver1 — U;-HHQ = |lve — U?HQ

T sz 3 257 L2, 162
s—%ww—wW—wmﬂ—mw+——%%4f
20 L2 CQ
g(fg gy::z; =) (wrer = 2l + lyerr — well?)

gyy

25702, ris? 20 .
6L + 3

T . 3 20 .
=~ llon = 17 = v = vl + LG @ we P+ 5 Ly —wl, (69)

where the above equality holds by [?= Lf + %C” and G(x¢, wy,y) = %(:zct — Tyy1).

Next we define a useful Lyapunov functlon (i.e. potential function) for any ¢ > 1
U, = O(xy) + glae, ye) — G(ay) + |Jvg — vf || (70)
By using the above inequalities (67), (68) and (69), we have
Vi1 — Uy = (we41) — P(01) + 9(@eg1, Yes1) — Glaegr) — (9(@e, 1) — Gar)) + [[vegr — vy I = [Joe — o7 |2

N
< =519 we I+ T(Lf + 10 Lgay) (9020 30) = G(ar)) + 67Cy, llor = i || + 29LT,, 07
A

1
= 5 (9 y) = Glan) + G e w DI = 55l = wil?

T 3 257L2 ris? 20 . 20 .
—Z”vt—”t ||2—1H0t+1—th 2729 3 L2’72”g(xtawtv )H2+§L2llyt+1 —ytHz
Ap o 12y Y Wt .
< —(7 - T(L + TELgmy)) (g(mhyt) - G(T/t)) - leg(xt,wm)llz - (Z - 6’YCg2my)||Ut — U ||2
257L2,  ris?
oy L2, 52t 4 T owv0c 71
+ B gxy“-e Ty 6/-1/ ) ( )
where the last inequality is due to 0 < v < 50 L2 and 0 < A < 0 L2
Let
1
v = By w, VE () = arg min {VF(w),2) + 5l = ol +6(2) | (72)
1
_ _ : g2
wu1 = By (i) = arg min { i, ) + -l = 2l + 6(2) . (73)

By the optimality conditions of (72) and (73), for any z € RY, there exist ¥, € d¢(z ) and ¥ € O¢(z¢41) such that

1
(VF(zy) + ;(x,jgl — )+ 01,2 —xf ) >0, (74)
1
<wt -+ ;(Zlft_;'_l — l't) + 192, z — $t+1> 2 0 (75)
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Putting z = ;41 into (74), by the convexity of ¢(x), we have

(VF(21),me41 — xf 1) > —(@f ) — 2, af) —2g) + (01,2, — 441)

>

2=~

(xfy — w2l —w) + 0(af ) — d(wei). (76)

Similarly, putting z = ;" 1 into (75), by the convexity of ¢(x), we have

1
(we, afy ) — xpy1) > §<$t+1 —xp, Tpp1 — &) + (Do, w1 — 1)
1
> §<$t+1 —zp, w41 — 24 0) + () — oz ). (77)
Summing up (76) and (77), we can obtain
1
IVE (1) = wellllzeer — 2y | > (VE(2e) = wi, 21 — 254) > ;thtd —aa . (78)
Then we have
1 + 1 2 Y
IVEG) = wil 2 Sy = el = - [l (e V@) =B (e w)| (79)

Since G (¢, we,y) = %(ift - ]P);(.)(xtth)) and G(xy, VF(21),7) = %(% - P;(.)(xta VF(%)))’ we have

12, VE(x0). ) < 206 (e, we, )2 + 26 (we, we, ) — Glarn, VE (), 1)
2
= 21G (e we )| + 5B e VE () ~ B (e,

(4)
< 2||G(m, wi, V)| + 2[|lwe — VF(24))]]?

24 *
< 2/|G (2, we, y)||2 + ;(Li +12L2,,) (9(ze, ye) — Gla)) + 12C3,, [lve — vf||?

+4L2 5%t (80)

gry“e’ v

where the inequality (i) holds by the above inequality (79). Then we can obtain

1 12 "
_||g(xt7wta7)”2 < _EHQ(CCD VF(xt)77)||2 + ;(L? + TgLfm’y) (g(xt’yt) - G(xt)) + GngyHUt — U H2

4212, §%h (81)

gry“e’v*
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Plugging the above inequalities (81) into (71), we can further get

\Ijt+1 - \Ilt
A 12y 272 2l 2 HT 2 |2
< _(? - T(L +rng:cy))(g(xtayt) - G(xt)) - Z“g(xtth77)|| - ( 4 ngcy)”vt — Uy ”
257L2  ris?
2 4 9gyy T'y0¢
4—271)57“/6E » T
Ap 12y 272 i 2
(G = (B +7205,)) (e ) = Glan)) = GG (e, VE (), y)]
3 3yC? . yL2, 8%rd
+ %(L roL ) (g(ze, ye) — Glzy)) + 2g$y loe — v |1> + W#y
257L2  ris?
2 2 4 gyy v-e
- (Z - GVan:y)Hvt — Uy H + 27Lqmy6€ v T
Ap 15y 272 2l 2
= (7 B T(Lf + quzy))( (@4, 9¢) = G(xt)) o 7Hg($t’vF(xt)’,Y)H
_ (ﬂ %)HU o2+ VLG 02Ty | 257LG,, 507
4 2 e 2 64
2,.4 2 452
v 2, 57qu56 v 25TLY, ri0;
< —— F
< = 2)G(a0, VF (@), P + T2 e
2
where the last inequality holds by 0 < v < (SOC;f’Iy’ 30(L2+T/;)L§M))'
Based on the inequality (82), we have
T 2 452
\Ilt+1 1007L 1)
VF 2< = 2012, 52 4 —— w0
TZ”Q Tt (ﬂft || —Tz:: + gry“e'v 3,%“
(2 8(Vy — @7) L 90L2 824 4 1007 LG, ry0¢
- Ty goylels 3yp
_ 8(@@1) + glarpn) — Glan) + o —viP= @) oy
T’Y gry“e Ty
2 452
N 1007Lg,,r U(Se’
3
where the above inequality (i) holds by Assumption 2.5.
Set ., = O(ﬁmax(ngy,ng/u)rﬁ ) we can obtain
1
. 2 2
in [[G(@e, V(@) )] < ZHQ (e, VE(2e), v)II” < O(7)-

A.2. Convergence Analysis of of HJFBiO Algorithm for Bilevel Optimization without Regularization

(82)

(83)

(84)

In this subsection, we provide the convergence analysis of our HJFBiO algorithm for bilevel optimization without Regular-

ization.

Lemma A.7. Assume the sequence {x;,y;,v; }1_, be generated from Algorithm 1, given 0 < v < 57 o L ,

F(ry) < Fla) - Z||VF( DlI? — *\\Vf(xt,yt,vt)||2 + LGy, 07
+ ;(Lf +T3L§ry)( (‘rtuyt) - G(mt)) + 37C’gzy”vt - ’Ut*H27

21
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Proof. When ¢(x) = 0, at the line 4 of Algorithm 1, we have x;11 = x; — yw;. By using the Lipschitz smoothness of the
objective function F'(x), we have

L
F(wep1) < F(a) + (V@) 2o = a0 & o — 2l

2
~v*L
(2e) = UV (), we) + -5 |

F

gl gl gl
Fx) — §||VF(9%)||2 — 5= VL) |lwe|* + 5 llwe = VE(z)|?
F

/'y ~ ~
(21) = SIVE@)I? = 5 (1 =y Le) [V f e,y v)ll” + IV e,y v) = VE(a)|

—~
INS
S

Fe) = 2 IVF@)? = IV @ye o)l + 21V F @y ve) = V()]

(1) ~
< Fla) = SIVE @) = TV F e ye, 00| + 7L, 7007

gzyve

vUgry gry

6
LG 7L (ol ) = Gla)) + 3703, o — i 65)

where the above inequality (i) holds by 0 < v < and the above inequality (ii) holds by the above inequality (52).

2L’
O

Theorem A.8. Assume the sequence {xy,y:, v i, be generated from our Algorithm 1. Under the above Assumptions 2.1-

. 1 AL o 3 Ut Ap? : 1 3 1
2.5, let 0 < v < min (TLF’TLG’ 1602 TgoL2 1202, 12(L2+T2L2 ) ,0 < A < min (—ng, —goiz) and 0 < 7 < 51,
s Loy
we have

ZHVF )|
t=1

2( 21) + g(x1,y1) — G(a1) + |1 — v |2 — F*) 2 g 25TL3yy ris?
o L rI0E  — (86)
v2 L Y1 C?T * .
where L {4+ Lo Cle and F* = inf  cga F(z) > —o0.

Proof. According to the line 3 of Algorithm 1, we have u, = V,g(z¢, y;). Then by using Lemma A.5, we have

9(@e11, Y1) — G(@er) = (9(e, 41) — G(xr)

AL 1 1
< _7(g(xtvyt) - G(xt)) + — |1 — ze|)* — ﬁ”ywl —yel® + MVyg(xe, yi) — ug |

2 8y
A ~ 1
= —%(g(fﬂt,yt) — G(xy)) + %IIVJ"(wt,yt,vt)ll2 - gllym —ul?, (87)

where the above equality holds by u, = Vg(z¢, y¢) and 441 = 2y — yw, =z — ’y%f(xt, Yt, V).

By using Lemma A.3, we have

loer = vfs |1* = lloe = o7
257 L7, 7007

T w2 O gyy w0
<« BTy _ 2 _
< Hvt vt | ||Ut+1 vl + 64
20 L}  L3,,CF
+§(F %fﬂf)(uxtﬂ —ze|® + e — wel?)

2572  ris2 20

gyyve

» L2v2\|Vf(zt,yt,vt)ll2+ LHymfytll, (88)

T 3
= Bl e = o712 = Slloers —vil® +

22



Optimal Hessian/Jacobian-Free Nonconvex-PL Bilevel Optimization

where the above equality holds by z;11 = ©; — ywy = zy — 'yﬁf(xt, Y, v¢) and 2= Lf + chl Then by using
Lemma A.7, we have

F(zy1) — Fla) < —*HVF(%)H2 - *||Vf($t,ytavt)|| +yLE 002

gmyve

+*(Lf+T3L§my)( (1, 9¢) — G(21)) + 37C2,, v — o ||, (89)

Next, we define a useful Lyapunov function (i.e. potential function), for any ¢ > 1
Q= F(x) + (@, y0) — Glag) + o — o7 |1 (90)
By combining the above inequalities (87), (88) and (89), we have
Qi1 —
= F(ziy1) — F(xt) + 9(Te1, yer1) — G(@41) — (9(%%) — G(x4)) + lveer — v |1 = lloe — o7 |1

= —*HVF(%)II2 - *lIVf(fCt»yuUt)Hz Ly, 07 + *(L +13L5s,) (9(@e,ye) — G(24))

gry T'y0¢ v-gxy

N Al 1
+ 3707yl — v |1? = 7(9(%»%) — G(xy)) + 7||vf(xt,yt7@t)”2 ~ oy = yel?
T N 3 257L2 3662 0. ~ 20 .
= El o = o7 12 = Zloe — el + gifj S LIV @y o)1 + Z L2y — will?
5y v 20y A 6y
< S IVF@II = (5 = LIV @opwdl? = (G = (0 +riE5,) ) (ot w) = Gl)
L 204, 2 (HT 2 2 452 4 257 LG, ro0¢
(ﬁ - ?L )Hyt+1 - yt” - (7 - 3fycgmy)||vt — U || +’7Lga:y v(se T
25712 i
< _7HVF(xt)”2 +7Lgmy 3552 6975,547 ©On
where the last inequality holds by 0 < v < min , : and 0 < A < . Then we can obtain
here the last inequality holds by 0 in (1507 2o 12(in# ) 0 < . Th b
Q(Qt — Qt-{—l) 257'.[/2 452
2 2 452 4 gyy"v0e
Averaging the above inequality (92), we have
2 452
- Z |VF(z H2 (Ql — QT+1) 4912 pis2 4 257Lgyy Ty0¢
T goyl v 2vp
(2 20 — F7) oL 452 4 257 L3y, 002
- Iy auy"v0 2y
_ Q(F(xl) +9(z1,y1) — G(w1) + [[v1 — UT”Z - F*) L 9I2 pds? 257—[/31/7; 3562 93)
Ty aoyTv0e 29
where the above inequality (i) holds by F™* = inf cga F'(z) > —o0.
Set 5, = O(ﬁmax(Lg;,ng/u)rﬁ ), we can obtain
min [ VF()|* < 7 2 IVF@)I? < O(5). ©4)

t 1
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B. Related Works

The GALET method (Xiao et al., 2023) is meaningless for nonconvex-PL bilevel optimization, which is based on the
following facts:

1) In the convergence analysis, the GALET method simultaneously uses the PL condition, its Assumption 2 (i.e., let
oy = inf, ,{o (V2,9(x,y))} > 0 forall (x,y)) and its Assumption 1 (i.e., V2, g(x, y) is Lipschitz continuous).

min
2) In the nonconvex-PL bilevel optimization problems, Hessian matrix Viyg(x, y)) has two cases: the first case:

V2,9(x,y) is singular; the second case: V3 g(x,y) is not singular.

3) The first case: V7, g(x,y) is singular. Since V3, g(x,y) is Lipschitz continuous by Assumption 1 of (Xiao et al.,
2023), the singular-value of sz g(z, y) also is continuous. Thus, combining its Assumption 1 with Assumption 2 imply
rn(V2,9(x,y))} > 0is close to zero. Under this

min

that the lower bound of the non-zero singular values o, = inf, ,{c

Ly V2042850
_ tf + .;2 £

case, the constant L,, = 2+ — 4oo used in its Lemmas 6 and 9, and Lp = £; o({y1+ g 2)/0g — +00
g

g
used in its Lemma 12.

4) The second case: szg(m, y) is not singular. By Assumption 2 of (Xiao et al., 2023), the singular values of Hessian is
bounded away from 0, i.e., o4, > 0. Under the this case, the PL condition, Lipschitz continuous of Hessian and its
Assumption 2 (the singular values of Hessian is bounded away from 0, i.e., o4 > 0) imply that GALET uses strongly
convex assumption on g(z, y) at variable y. Note that although the singular values of Hessian sz g(x,y) exclude zero,
i.e, the eigenvalues of Hessian V2, g(z,y) may be in [—{y 2, —o4] [0y, £g,2], we cannot have negative eigenvalues at
the minimizer y*(x). Meanwhile, since Hessian is Lipschitz continuous, its all eigenvalues are in [0, {4 2]. Thus, the
PL condition, Lipschitz continuous of Hessian and its Assumption 2 (the singular values of Hessian is bounded away
from 0, i.e., o0y > 0) imply that the GALET assumes the strongly convex.

Although (Kwon et al., 2023) studied the nonconvex-PL bilevel optimization, it also requires some relatively strict
assumptions (e.g., Assumption 1, 4,5,6,7,8 of (Kwon et al., 2023)). For example, Assumption 1 of (Kwon et al., 2023) gives
proximal error-bound (EB) condition that is analogous to PL condition, and its Assumption 4 (2) requires the bounded
|f(z,v)|- In particular, its Assumption 7 (2) assumes the upper-level function f(x,y) has Lipschitz Hessian. Under these
conditions, (Kwon et al., 2023) has a gradient complexity of O(e~1®) for finding an e-stationary solution of nonconvex-
PL bilevel optimization. However, without relying on Lipschitz Hessian of function f(x,y) and bounded | f(z, y)|, our
algorithm obtains an optimal gradient complexity of O(e~!), which matches the lower bound established by the first-order
method for finding an e-stationary point of nonconvex smooth optimization (Carmon et al., 2020).

Meanwhile, (Chen et al., 2024) studied the nonconvex-PL bilevel optimization, but it also relies on some strict assumptions,
e.g., ho = of + g is u-PL (Please see the Assumption 4.1 (a) of (Chen et al., 2024)). While our paper only assumes the
lower-level function g is u-PL. When o > 0, Assumption 4.1 (a) of (Chen et al., 2024) is stricter than our assumption (the
lower-level function g is p-PL). In particular, the upper-level function f(x,y) also requires Lipschitz Hessian (Please see
the Assumption 4.1 (d) of (Chen et al., 2024)).

Note that from (Carmon et al., 2020), the optimal gradient complexity is O(e~%7%) (or O(¢~1:%)) for finding an e-stationary
point of smooth nonconvex optimization problem min,, f(z) with Lipschitz Hessian condition, i.e, |V f(z)||?> < € (or
IV f(x)|| < e€). Meanwhile, based on Lipschitz Hessian of function f(z,y), (Yang et al., 2023a) can obtain a lower gradient
complexity of O(e~987%) (or O(e~17%)) for finding an e-stationary point of nonconvex strongly-convex bilevel optimization,
ie., |[V®(2)||? < e (or [[V®(x)| < e€). Under these strict assumptions, thus, although (Chen et al., 2024) also obtain a
gradient complexity of O(e~1), this is not optimal gradient complexity.

Lemma B.1. (Lemma G.6 of (Chen et al., 2024)) For a u-PL function h(zx) : R® — R that is twice differentiable, at any
x* € arg min, h(x),
)\-‘r

min

(V2h(z*)) > p, (95)

where At

min

(+) denotes the smallest non-zero eigenvalue.

In fact, Lemma G.6 of (Chen et al., 2024) is exactly useful for our HIFBiO method. Based on Lemma G.6 of (Chen et al.,
2024), our Assumption 2.2 is reasonable when has an unique minimizer. Meanwhile, our Assumption 4.8 also is reasonable
when have multiple local minimizers.
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