Under review as a conference paper at ICLR 2021

DON’T STACK LAYERS IN GRAPH NEURAL NETWORKS,
WIRE THEM RANDOMLY

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks have become a staple in problems addressing learning
and analysis of data defined over graphs. However, several results suggest an
inherent difficulty in extracting better performance by increasing the number of
layers. Besides the classic vanishing gradient issues, recent works attribute this to
a phenomenon peculiar to the extraction of node features in graph-based tasks, i.e.,
the need to consider multiple neighborhood sizes at the same time and adaptively
tune them. In this paper, we investigate the recently proposed randomly wired
architectures in the context of graph neural networks. Instead of building deeper
networks by stacking many layers, we prove that employing a randomly-wired
architecture can be a more effective way to increase the capacity of the network
and obtain richer representations. We show that such architectures behave like an
ensemble of paths, which are able to merge contributions from receptive fields of
varied size. Moreover, these receptive fields can also be modulated to be wider or
narrower through the trainable weights over the paths. We also provide extensive
experimental evidence of the superior performance of randomly wired architectures
over three tasks and five graph convolution definitions, using a recent benchmarking
framework that addresses the reliability of previous testing methodologies.

1 INTRODUCTION

Data defined over the nodes of graphs are ubiquitous. Social network profiles (Hamilton et al., [2017),
molecular interactions (Duvenaud et al., [2015)), citation networks (Sen et al.|[2008), 3D point clouds
(Simonovsky & Komodakis, |2017) are just examples of a wide variety of data types where describing
the domain as a graph allows to encode constraints and patterns among the data points. Exploiting
the graph structure is crucial in order to extract powerful representations of the data. However, this is
not a trivial task and only recently graph neural networks (GNNs) have started showing promising
approaches to the problem. GNNs (Wu et al.| [2020) extend the deep learning toolbox to deal with the
irregularity of the graph domain. Much of the work has been focused on defining a graph convolution
operation (Bronstein et al., [2017), i.e., a layer that is well-defined over the graph domain but also
retains some of the key properties of convolution such as weight reuse and locality. A wide variety of
such graph convolution operators has been defined over the years, mostly based on neighborhood
aggregation schemes where the features of a node are transformed by processing the features of
its neighbors. Such schemes have been shown to be as powerful as the Weisfeiler-Lehman graph
isomorphism test (Weisfeiler & Lehman, [1968; Xu et al.,[2019), enabling them to simultaneuosly
learn data features and graph topology.

However, contrary to classic literature on CNNs, few works (L1 et al.}2019a; | Dehmamy et al.,2019;
Xu et al.l 2018; Dwivedi et al., 2020) addressed GNNs architectures and their role in extracting
powerful representations. Several works, starting with the early GCN (Kipf & Welling, 2017), noticed
an inability to build deep GNNs, often resulting in worse performance than that of methods that
disregard the graph domain, when trying to build anything but very shallow networks. This calls
for exploring whether advances on CNN architectures can be translated to the GNN space, while
understanding the potentially different needs of graph representation learning.

Li et al.| (2019b)) suggest that GCNs suffer from oversmoothing as several layers are stacked, resulting
in the extraction of mostly low-frequency features. This is related to the lack of self-loop information
in this specific graph convolution. It is suggested that ResNet-like architectures mitigate the problem
as the skip connections supply high frequency contributions. Xu et al.| (2018) point out that the
size of the receptive field of a node, i.e., which nodes contribute to the features of the node under

Under review as a conference paper at ICLR 2021

)
12345678910111213141516

|

12345678010111213141516

45678910111213141516

12345678910111213141516

n
o =
12345678910111213141516 S == 12345678910111213141516

Figure 1: Random architectures aggregate ensembles of paths. This creates a variety of receptive
fields (effective neighborhood sizes on the domain graph) that are combined to compute the output.
Figure shows the domain graph where nodes are colored (red means high weight, blue low weight)
according to the receptive field weighted by the path distribution of a domain node. The receptive
field is shown at all the architecture nodes directly contributing to the output. Histograms represent
the distribution of path lengths from source to architecture node.

consideration, plays a crucial role, but it can vary widely depending on the graph and too large
receptive fields may actually harm performance. They conclude that for graph-based problems it
would be optimal to learn how to adaptively merge contributions from receptive fields of multiple
size. For this reason they propose an architecture where each layer has a skip connection to the output
so that contributions at multiple depths (hence sizes of receptive fields) can be merged. Nonetheless,
the problem of finding methods for effectively increasing the capacity of graph neural networks is
still standing, since stacking many layers has been proven to provide limited improvements

2019b} [Oono & Suzukil, 2019; [Alon & Yahav], 2020; NT & Maeharal, 2019).

In this paper, we argue that the recently proposed randomly wired architectures 2019)
are ideal for GNNGs. In a randomly wired architecture, “layers” are arranged according to a random

directed acyclic graph and data are propagated through the paths towards the output. Such architecture
is ideal for GNNs because it realizes the intuition of of being able of merging receptive
fields of varied size. Indeed, the randomly wired network can be seen as an extreme generalization of
their jumping network approach where layer outputs can not only jump to the network output but
to other layers as well, continuously merging receptive fields. Hence, randomly wired architectures
provide a way of effectively scaling up GNNs, mitigating the depth problem and creating richer
representations. Fig. [I|shows a graphical representation of this concept by highlighting the six layers
directly contributing to the output, having different receptive fields induced by the distribution of
paths from the input.

Our novel contributions can be summarized as follows: i) we are the first to analyze randomly wired
architectures and show that they are generalizations of ResNets when looked at as ensembles of
paths 2016); ii) we show that path ensembling allows to merge receptive fields of varied
size and that it can do so adaptively, i.e., trainable weights on the architecture edges can tune the
desired size of the receptive fields to be merged to achieve an optimal configuration for the problem;
iii) we introduce improvements to the basic design of randomly wired architectures by optionally
embedding a path that sequentially goes through all layers in order to promote larger receptive
fields when needed, and by presenting MonteCarlo DropPath, which decorrelates path contributions
by randomly dropping architecture edges; iv) we provide extensive experimental evidence, using
a recently introduced benchmarking framework (Dwivedi et al.| 2020) to ensure significance and
reproducibility, that randomly wired architectures consistently outperform ResNets, often by large
margins, for five of the most popular graph convolution definitions on three different tasks.

2

Under review as a conference paper at ICLR 2021

2 BACKGROUND
2.1 GRAPH NEURAL NETWORKS

A major shortcoming of CNN:ss is that they are unable to process data defined on irregular domains.
In particular, one case that is drawing attention is when the data structure can be described by a graph
and the data are defined as vectors on the graph nodes. This setting can be found in many applications,
including 3D point clouds (Wang et al., 2019} Valsesia et al.|[2019)), computational biology (Alipanahi
et al.|[2015; Duvenaud et al.,2015)), and social networks (Kipf & Welling, [2017). However, extending
CNNs from data with a regular structure, such as images and video, to graph-structured data is not
straightforward if one wants to preserve useful properties such as locality and weight reuse.

GNNs redefine the convolution operation so that the new layer definition can be used on domains
described by graphs. The most widely adopted graph convolutions in the literature rely on message
passing, where a weighted aggregation of the feature vectors in a neighborhood is computed. The GCN
(Kipf & Welling| 2017) is arguably the simplest definition, applying the same linear transformation
to all the node features, followed by neighborhood aggregation and non-linear activation:

1
o [s i
| Z‘ JEN;

Variants of this definition have been developed, e.g., GraphSage (Hamilton et al.l 2017) concatenates
the feature vector of node ¢ to the feature vectors of its neighbors, so that self-information can also be
exploited; GIN (Xu et al., [2019) uses a multilayer perceptron instead of a linear transform, replaces
average with sum to ensure injectivity and proposes a different way of computing the output by using
all the feature vectors produced by the intermediate layers. These definitions are all isotropic because
they treat every edge in the same way. It has been observed that better representation capacity can be
achieved using anistropic definitions, where every edge can have a different transformation, at the
cost of increased computational complexity. The Gated GCN (Bresson & Laurent, 2017) and GAT
(Velickovic et al., [2017)) definitions fall in this category.

2.2 RANDOMLY WIRED ARCHITECTURES

In recent work, [Xie et al.|(2019) explore whether it is possible to avoid handcrafted design of neural
network architectures and, at the same time, avoid expensive neural architecture search methods
(Elsken et al.,[2019), by designing random architecture generators. They show that “layers” perform-
ing convolution, normalization and non-linear activation can be connected in a random architecture
graph. Strong performance is observed on the traditional image classification task by outperforming
state-of-the-art architectures. The authors conjecture that random architectures generalize ResNets
and similar constructions, but the underlying principles of their excellent performance are unclear,
as well as whether the performance translates to tasks other than image recognition or to operations
other than convolution on grids.

3 RANDOMLY WIRED GNNS

In this section, we first introduce randomly wired architectures and the notation we are going to use.
We then analyze their behavior when viewed as ensembles of paths.

h®)
A randomly wired architecture consists of a directed acyclic graph - o(wy) e
(DAG) connecting a source architecture node, which is fed with the U(W\ I
input data, to a sink architecture node. One should not confuse the °

architecture DAG with the graph representing the GNN domain: to
avoid any source of confusion we will use the terms architecture nodes
(edges) and domain nodes (edges), respectively. A domain node is
a node of the graph that is fed as input to the GNN. An architecture
node is effectively a GNN layer performing the following operations
(Fig. [2): i) aggregation of the inputs from other architecture nodes
via a weighted sum as in (Xie et al.,[2019):

h® =3 w;h® = 3" o(w;)h"), i=1,...,L-1 (1)
JEA; JEA;
Figure 2: An architecture
node is equivalent to a GNN
3 layer.

Under review as a conference paper at ICLR 2021

being o a sigmoid function, A; the set of direct predecessors of the
architecture node 7, and w;; a scalar trainable weight; ii) a non-linear
activation; iii) a graph-convolution operation (without output activation); iv) batch normalization.

The architecture DAG is generated using a random graph generator. In this paper, we will focus on
the Erd6s-Renyi model where the adjacency matrix of the DAG is a strictly upper triangular matrix
with entries being realizations of a Bernoulli random variable with probability p. If multiple input
architecture nodes are randomly generated, they are all wired to a single global input. Multiple output
architecture nodes are averaged to obtain a global output. Other random generators may be used,
e.g., small-world and scale-free random networks have been studied in (Xie et al., 2019). However, a
different generator will display a different behavior concerning the properties we study in Sec. [3.1]

3.1 RANDOMLY WIRED ARCHITECTURES BEHAVE LIKE PATH ENSEMBLES

It has already been shown that ResNets behave like ensembles of relatively shallow networks, where
one can see the ResNet architecture as a collection of paths of varied lengths (Veit et al.,[2016). More
specifically, in a ResNet with n layers, where all layers have a skip connection except the first one
and the last one, there are exactly oL-2 paths, whose lengths follow a Binomial distribution (i.e., the
number of paths of length [from layer £ to the last layer is (L ﬁ; 1)), and the average path length is
% + 1 (Veit et al.,[2016)). In this section, we show that a randomly wired neural network can also be
considered as an ensemble of networks with varied depth. However, in this case, the distribution of
the path length is different from the one obtained with the ResNet, as shown in the following lemma
(proof in the supplementary material).

Lemma 3.1. Let us consider a randomly wired network with L architecture nodes, where the
architecture DAG is generated according to a Erdds-Renyi graph generator with probability p. The

average number of paths of length | from node k to the sink, where k < L, is E[Nl(k)} = (L*kfl)plfl

1-2
and the average total number of paths from node k to the sink is B[N ®)] = p(1 + p)L—F-1,
We can observe that if p = 1, the randomly wired network converges to the ResNet architecture.
This allows to think of randomly wired architectures as generalizations of ResNets as they enable
increased flexibility in the number and distribution of paths instead of enforcing the use of all 2272,

3.2 RECEPTIVE FIELD ANALYSIS

In the case of GNNs, we define the receptive field of a domain node as the neighborhood that affects
the output features of that node. As discussed in Sec. [I] the work in (Xu et al.l 2018) highlights that
one of the possible causes of the depth problem in GNNSs is that the size of the receptive field is not
adaptive and may rapidly become excessively large. Inspired by this observation, in this section we
analyze the receptive field of a randomly wired neural network. We show that the receptive field of
the output is a combination of the receptive fields of shallower networks, induced by each of the paths.
This allows to effectively merge the contributions from receptive fields of varied size. Moreover, we
show that the trainable parameters along the path edges modulate the contributions of various path
lengths and enable adaptive receptive fields, that can be tuned by the training procedure.

We first introduce a definition of the receptive field of a feedforward graph neural networkﬂ

Definition 3.1. Given a feedforward graph neural network with L layers, the receptive field of radius
L of a domain node is its L-hop neighborhood.

In a randomly wired architecture, each path induces a corresponding receptive field whose radius
depends on the length of the path. Then, the receptive field at the output of the network is obtained
by combining the receptive fields of all the paths. In order to analyze the contribution of paths of
different lengths to the receptive field of the network, we introduce the concept of distribution of the
receptive field radius of the paths. Notice that if we consider a feedforward network with L layers,
the distribution of the receptive field radius is a delta centered in L.

The following lemma allows to analyze the distribution of the receptive field radius in a randomly
wired architecture.

"We use the term “feedforward neural network” to indicate an architecture made of a simple line graph,
without skip connections: this is a representation of one path.

Under review as a conference paper at ICLR 2021

0.14 T T T T 0.15 T
—— Unweighted —p=0.2
0.12 —— Weighted q ——p=0.4
- = =Unweighted + Sequential p=0.6
0.1 = = =Weighted + Sequential |- e —p=0.8
P T e P N ResNet § 0.1r ——p=1.0 (ResNet) |-
2008} 5
3 8
%006 2
a 8
£0.05 -
0.04 |- S
o
) I
0.02 %
\,
0 — - 0
0 60 80 100 0 20 40 60 80 100

Receptive Field Radius Path length

Figure 3: Distribution of receptive field radius Figure 4: Path distribution as function of archi-
(p = 0.4, w;; = 1 for unweighted, w;; = 0.5 tecture edge probability.
for weighted).

Lemma 3.2. The derivative -2 v Y of the output y of a randomly wired architecture with respect to the

input xq is
0 8 6 8

pE’P pEP {z,g}egp =2 pePp!
where vy, is the output of path p, ¥, is the output of path p when we consider all the aggregation
weights equal to 1, \p, 8yp /gy" P is the set of all paths from source to sink, L is the number of

architecture nodes, ’Pl is the set of paths from source to sink of length | and EP is the set of edges of
the path p.

Proof. Direct computation. O

From Lemma[3.2] we can observe that the contribution of each path to the gradient is weighted by
its corresponding architecture edge weights. Thus, we can define the following distribution p of the
receptive field radius:

pL= Z Ap = Z H Wij for 1=2,...,n, 2)
peP! pePL {i,j}e€r

where we have assumed that the gradient gzz depends only on the path length, as done in (Veit et al.|
2016). This is a reasonable assumption if all the architecture nodes perform the same operation.
The distribution of the receptive field radius is therefore influenced by the architecture edge weights.
Figure [3]shows an example of how such weights can modify the radius distribution. If we consider
w;; = 1 for all 7 and j, we obtain that the radius distribution is equal to the path length distribution.
In order to provide some insight into the role of parameter p in the distribution of the receptive field
radius, we focus on this special case and analyze the distribution of the path lengths in a randomly
wired architecture by introducing the following Lemma (proof in the supplementary material).

Lemma 3.3. Let us consider a randomly wired network with L architecture nodes, where the
architecture DAG is generated according to a Erdds-Renyi graph generator with probability p. The
average length of the paths from node k to the sink is E[I*)] ~ 1’%p(L —k—-1)+2.

Therefore, if p = 1l and w;; = 1 for all ¢ and j the radius distribution is a Binomial distribution

centered in & + 1 (as in ResNets), instead when p < 1 the mean of the distribution is lower. The
path length dlstrlbutlon for different p values is shown in Fig. [l This shows that, differently
from feedforward networks, the receptive field of ResNets and randomly wired architectures is a
combination of receptive fields of varied sizes, where most of the contribution is given by shallow
paths, i.e. smaller receptive fields. The parameter p of the randomly wired neural network influences
the distribution of the receptive field radius: a lower p value skews the distribution towards shallower
paths, instead a higher p value skews the distribution towards longer paths.

After having considered the special case where w;; = 1 for all 4 and j, we now focus on the general
case. Since the edge architecture weights are trainable parameters, they can be adapted to optimize
the distribution of the receptive field radius. This is one of the strongest advantages provided by
randomly wired architectures with respect to ResNets. This is particularly relevant in the context of
GNNs, where we may have a non-uniform growth of the receptive field caused by the irregularity

Under review as a conference paper at ICLR 2021

of the graph structure (Xu et al.;|[2018). Notice that the randomly wired architecture can be seen as
a generalization of the jumping knowledge networks proposed in (Xu et al.l [2018)), where all the
architecture nodes, not only the last one, merge contributions from previous nodes. We also remark
that, even if we modify the ResNet architecture by adding trainable weights to each branch of the
residual module, we cannot retrieve the behaviour of the randomly wired architecture. In fact, the
latter has intrinsically more granularity than a ResNet: the expected number of architecture edge

weights of a randomly wired network is w, instead a weighted ResNet has only 2(L — 2)
weights. Ideally, we would like to weight each path independently (i.e., directly optimizing the
value of)\, in Eq. (3.2)). However, this is unfeasible because the number of parameters would
become excessively high and the randomly wired architecture provides an effective tradeoff. Given
an architecture node, weighting in a different way each input edge is important because to each edge
corresponds a different length distribution of the paths going through such edge, as shown by the
following Lemma (proof in supplementary material).

Lemma 3.4. Let us consider a randomly wired network with n architecture nodes, where the
architecture DAG is generated according to a Evdds-Renyi graph generator with probability p. Given
an edge {i, j} between the architecture nodes i and j where i < j, the average length of the paths
from the source to the sink going through that edge is E[l;;] ~ ﬁ(L —(j—1)—-3)+4

3.3 SEQUENTIAL PATH

In the previous sections we have shown that a randomly wired architecture behaves like an ensemble
of paths merging contribution from receptive fields of varied size, where most of the contribution is
provided by shallow paths. As discussed previously, this provides numerous advantages with respect
to feedforward networks and ResNets. However, some graph-based tasks may actually benefit from a
larger receptive field (L1 et al.,|2019b), so it is interesting to provide randomly wired architectures
with mechanisms to directly promote longer paths. Differently from ResNets, in a randomly wired
neural network with L architecture nodes the longest path may be shorter than L, leading to a smaller
receptive field. In order to overcome this issue, we propose to modify the generation process of the
random architecture by imposing that it should also include the sequential path, i.e., the path traversing
all architecture nodes. This design of the architecture skews the initial path length distribution towards
longer paths, which has the effect of promoting their usage. Nevertheless, the trainable architecture
edge weights will ultimately define the importance of such contribution. Fig. [3|shows an example of
how including the sequential path changes the distribution of the receptive field radius.

3.4 MONTECARLO DROPPATH REGULARIZATION

The randomly wired architecture offers new degrees of freedom to introduce regularization techniques.
In particular, one could delete a few architecture edges during training with probability pa.op as a way
to avoid co-adaptation of architecture nodes. This is reminiscent of DropOut (Srivastava et al., 2014)
and DropConnect (Wan et al., [2013)), although it is carried out at a higher level of abstraction, i.e.,
connections between “layers” instead of neurons. It is also reminiscent of techniques used in Neural
Architecture Search (Zoph et al.,|2018)) and the approach used in ImageNet experiments in (Xie et al.|
2019), although implementation details are unclear for the latter.

We propose to use a MonteCarlo approach where paths are also dropped in testing. Inference is
performed multiple times for different realizations of dropped architecture edges and results are
averaged. This allows to sample from the full predictive distribution induced by DropPath, as in
MonteCarlo DropOut (Gal & Ghahramani, 2015). It is worth noting that MonteCarlo DropPath
decorrelates the contributions of paths in Eq. (3.2) even if they share architecture edges (proof in
supplementary material), thus allowing finer control over the modulation of the receptive field radius.

4 EXPERIMENTAL RESULTS

Experimental evaluation of GNNs is a topic that has recently received great attention. The emerging
consensus is that benchmarking methods routinely used in past literature are inadequate and lack
reproducibility. In particular, [Vignac et al.| (2020) showed that commonly used citation network
datasets like CORA, CITESEER, PUBMED are too simple and skew results towards simpler archi-
tectures or even promote ignoring the underlying graph. TU datasets are also recognized to be too
small (Errica et al., |2019) and the high variability across splits does not allow for sound comparisons
across methods. In order to evaluate the gains offered by randomly wired architectures across a wide
variety of graph convolutions and tasks, we adopt a recently proposed GNN benchmarking framework
(Dwivedi et al.,[2020), that has introduced new datasets and allows for reproducible experiments.

Under review as a conference paper at ICLR 2021

Table 1: ZINC Mean Absolute Error. Table 2: CLUSTER Accuracy.
L=38 L=16 L=32 L=8 L=16 L=32

GCN 0.465%0-012 (0,445F0-022 (9 426+0-011 GCN 48.71%301 48 57E7 85 55 62+312
RAN-GCN 0.44752:919 (,3989.015 (38550015 RAN-GCN 58.6135.1° 62.245 1.5 63.3252.9°
GIN 0.444%0-017 (0.461%0:922 (), 633%0-089 GIN 49.93+1:7949,04%2-51 44.96%5-56
RAN-GIN 0.39855.0°* 0.426;5.°%° 0.54070.1°° RAN-GIN 54.3872.°% 56.5815.2° 56.195 2"
GatedGCN ~ 0.339%0-027 (,284%0-014 (9 277+0.025 GatedGCN 63.105%5470.09%1-89 71,94%1-51
RAN-GatedGCN 0.31079.°'° 02187917 0.215529%° RAN-GatedGCN 63.8532:4% 72.1371:68 74.3270:89
GraphSage 0.363%19-00° (,35510-003 () 351+0:009 GraphSage 66.22%70-73 715010370 23 %177
RAN-GraphSage 0.3687).0'° 0.34050.°° 0.333;0.°°® RAN-GraphSage 67.2153:2% 71.9032:0° 72.5632.98
GAT 0.416£0-016 (0,384%0-011 () 357+0-011 GAT 54.35%4:3960.68%6-10 55,41 %431
RAN-GAT 0.43055:.920 0.39229:°12 0.368:05.01! RAN-GAT 63.3852"° 69.68: 1.7 70.935; 18

We focus on testing five of the most commonly used graph convolution definitions: GCN (Kipf
& Welling, 2017), GIN (Xu et al., 2019 Gated GCN (Bresson & Laurent, [2017)), GraphSage
(Hamilton et al.,[2017), GAT (Velickovic et al.L|2017). We select three representative tasks introduced
by (Dwivedi et al.,|2020): graph regression on the ZINC dataset, node classification on the CLUSTER
dataset, and graph classification with superpixels on CIFAR10. To ensure reproducibility, we use
exactly the same setting as (Dwivedi et al.||2020). We are interested in the performance differences
between the baseline ResNet architecture, i.e., a feedforward architecture with skip connections after
every layer, and the randomly wired architecture. It was already shown in (Dwivedi et al.|2020) that
ResNet GNNs significantly outperform architectures without residual connections. We remark that
other works proposed methods to build deeper GNN (Rong et al.l 2019; |Zhao & Akoglu, 2019;|Gong
et al.| [2020), but such techniques can be regarded as complementary to our work. We do not attempt
to optimize a specific method, nor we are interested in comparing one graph convolution to another.
A fair comparison is ensured by running both methods with the same number of trainable parameters
and with the same hyperparameters. In particular, the learning rate of both methods is adaptively
decayed between 102 and 10~° by halving according to the value of the validation loss, with a
patience of 5 epochs. Stopping criterion is validation loss not improving for 5 epochs after reaching
the minimum learning rate. We average the results of all experiments over 4 runs with different
weight initializations and different random architecture graphs, drawn with p = 0.6. We also evaluate
results for multiple values of the total number of layers (architecture nodes) L, in order to show that
randomly wired GNNs allow a more effective increase in capacity. The random architectures use
sequential paths (Sec. [3.2)) in the ZINC experiment, sequential paths and DropPath in the CLUSTER
experiment, and only DropPath in CIFAquﬂ The reason for these choices is that the regression
task in ZINC and the node classification task in CLUSTER are particularly sensitive to the size
of the receptive field, as observed by analyzing the experimental receptive radius (supplementary
material). On the other hand, CIFAR10 is bottlenecked by overfitting, and it greatly benefits from the
regularizing effect of DropPath, as also observed on CLUSTER. The number of DropPath iterations
in testing was fixed to 16.

4.1 RANDOM GNN BENCHMARKING

The results presented in this section show that randomly wired GNNs have compelling performance
in many regards. First of all, they typically provide higher accuracy or lower error than their ResNet
counterparts for the same number of parameters. Moreover, they are more effective at increasing
capacity than stacking layers: while they are essentially equivalent to ResNets for very short networks,
they enable larger gains when additional layers are introduced.

Table [I] shows the results obtained on the ZINC dataset. The metric is mean absolute error (MAE), so
lower is better. The superscript reports the standard deviation among runs and the subscript reports
the level of significance by measuring how many baseline standard deviations the average value of the

2GIN and RAN-GIN compute the output as in (Xu et al.,[2018), using the contributions of all architecture
nodes.
3We do not use DropPath for RAN-GIN on any experiment as we observed unstable behavior.

Under review as a conference paper at ICLR 2021

Table 3: CIFAR10 Accuracy.
L=38 L =16 L =32

GCN 54.8550-20 54 74+0.52 54 76+0.53 Table 4: Median relative gain over L = 4.
RAN-GCN 57.815)%% 57295044 58,4950 L—-8 L—16 L—33
GIN 48.50" %0 47.14%17° 36,9047 ResNet +7.88% +17.06% +17.99%
RAN-GIN 525235, 5207;5,° 42.7315," NG Random +14.22% +21.81% +24.36%
GatedGCN ~ 68.27+0-50 69.1610-66 69.46%0-47 ResNet 117.90% +15.80% +14.26%
RAN-GatedGON 68.86; 77" 72005, 73505075 CLUSTER Lo rsde +30.07% +32.41%
GraphSage ~ 65.58%*% 66.12%"'! 65.33%0-3 ResNet —0.84% —014% —1.22%
RAN-GraphSage 65.3150% 66.103}," 67.683027 CIFARI0 — — — = o —— — %
GAT 64.43%0-3% 63.61%0:56 64.6250-05

RAN-GAT 66.18535° 66.27:5:1¢ 66.0159.%

Table 5: Comparison against SIGN and PPNP
Num. param. GCN (no residuals) GCN RAN-GCN PPNP SIGN

ZINC 180k 0.526 0.465 0.447 0.746 0.566
CLUSTER 180k 22.23 48.71 58.61 33.00 48.35
CIFAR10 180k 51.16 54.85 57.81 36.37 5249
ZINC 360k 0.537 0.445 0.398 0.750 0.555
CLUSTER 360k 19.26 48.57 62.24 37.37 48.51
CIFAR10 360k 49.86 54.74 57.29 36.68 53.55
ZINC 720k 0.649 0.426 0.385 0.804 0.574
CLUSTER 720k 20.90 55.62 63.32 28.77 49.14
CIFAR10 720k 47.47 54.76 58.49 38.54 53.72

random architecture deviates from the average value of the baseline. Results are in bold if they are at
least 1o significant. The results show that the randomly wired GNNs typically outperform the ResNet
baseline by significant margins. Table [2|reports the node classification accuracy on the CLUSTER
dataset. It can be seen that the random architectures achieve very significant improvements on
this dataset, especially for RAN-GCN, RAN-GIN and RAN-GAT. Table 3| reports the classification
accuracy on CIFAR10 when the images are converted to graphs using superpixels. Also in this
case, the randomly wired architecture greatly outperforms the baseline, in some cases achieving
gains higher than 50. Finally, Table 4] shows the relative performance gain (relative improvement in
accuracy or mean absolute error), averaged over all the graph convolution definitions, with respect
to a short 4-layer network, where random wiring and ResNets are almost equivalent (results in
supplementary material). We can notice that deeper ResNets always provide lower gains with respect
to their shallow counterpart than the randomly wired GNNs. Moreover, we observe monotonically
increasing gains for random GNNs while deeper ResNets are either unable to significantly extract
more performance beyond L = 16 or even provide worse results than the L = 4 network. This
supports our claim that the randomly wired architecture is a superior way to increase GNN capacity.

Finally, we compare the proposed method against two other frameworks for GNNs, namely PPNP
Klicpera et al.| (2018) and SIGN Rossi et al.[(2020), which propose different approaches for solving
the oversmoothing problem. Due to the significant differences in the approaches, providing a fair
comparison is challenging. We decided to equalize the number of parameters across the methods, since
notions as number of layers or features cannot be translated in all the frameworks (180k,360k,720k
parameters correspond to the L = §, 16, 32 settings in the previous tables). Table ?? shows the
obtained results. We can observe that both PPNP on node classification and SIGN on all tasks
outperform the standard GCN architecture without skip connections, but they cannot outperform
GCN with residual connections and the randomly wired GCN.

8

Under review as a conference paper at ICLR 2021

Table 6: Edge probability, L = 16, RAN-GCN.
p=0.2 p=04 p=20.6 p=20.38
ZINC 0.440%09% (4270025 40970010 .415+0.012
CLUSTER 59.87%L64 60.71%227 62757232 2.93+2.75
CIFARIO 56.53%061 56.21%048 57447046 56 5+0.48

Table 7: DropPath on CIFAR10, RAN- Table 8: DropPath on CIFAR10, RAN-
GatedGCN. No sequential path embedding. ~ GatedGCN. No sequential path embedding.

L:8 L:16 L:32 pdmp
None 68.071994 70.78+0-38 79 75+0-37 0 0.005 0.01 0.02 0.03

DropPath 68.86%1:6* 72001044 73,50%0-68 70 78%0-38 70.90*046 72,001044 71.55%0-83 71.09%170

Table 9: Sequential path embedding on CLUSTER, RAN-GatedGCN. No DropPath.
L =28 L =16 L =32
Fully random 56.93%%'7 66.50%°-1° 70.38%1:07
Random+Sequential 63.30721° 68.89%1-87 71,65%0-°7

4.2 ABLATION STUDY
4.2.1 EDGE PROBABILITY

We first investigate the impact of the probability p of drawing an edge in the random architecture.
Table 6] shows the results for a basic random architecture without DropPath nor embedded sequential
path. It appears that an optimal value of p exists that maximizes performance. This could be explained
by a tradeoff between size of receptive field and the ability to modulate it.

4.2.2 DROPPATH

The impact of DropPath on CIFARIO0 is shown in Table [/| We found the improvement due to
DropPath to be increasingly significant for a higher number of architecture nodes, as expected due to
the increased number of edges. The value of the drop probability pgp, = 0.01 was not extensively
cross-validated. However, Table[§|shows that higher drop rates lowered performance.

4.2.3 EMBEDDED SEQUENTIAL PATH

The impact of embedding a sequential path as explained in Sec. [3.2]is shown in Table[9} It can be
observed that its effect of promoting receptive fields with larger radius is useful on this task. We
remark that, while we do not report results due to space constraints, this is not always the case and
some tasks (e.g., CIFAR10) do not benefit from promoting larger receptive fields.

5 CONCLUSIONS

We showed how randomly wired architectures can boost the performance of GNNs by merging
receptive fields of multiple size. Consistent and statistically significant improvements over a wide
range of tasks and graph convolutions suggest considering them as the go-to choice for new models.

Under review as a conference paper at ICLR 2021

REFERENCES

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33
(8):831-838, 2015.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18-42,
2017.

Nima Dehmamy, Albert-L4szl6 Barabasi, and Rose Yu. Understanding the representation power of
graph neural networks in learning graph topology. In Advances in Neural Information Processing
Systems, pp. 15387-15397, 2019.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224-2232, 2015.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks (v1). arXiv preprint arXiv:2003.00982v1, 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 20(55):1-21, 2019.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. arXiv preprint arXiv:1506.02142, 2015.

Shunwang Gong, Mehdi Bahri, Michael M Bronstein, and Stefanos Zafeiriou. Geometrically
principled connections in graph neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11415-11424, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024-1034, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Guohao Li, Matthias Miiller, Guocheng Qian, Itzel C Delgadillo, Abdulellah Abualshour, Ali
Thabet, and Bernard Ghanem. Deepgcns: Making GCNs go as deep as CNNs. arXiv preprint
arXiv:1910.06849, 2019a.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go as deep as
CNNSs? In Proceedings of the IEEE International Conference on Computer Vision, pp. 9267-9276,
2019b.

Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

10

Under review as a conference paper at ICLR 2021

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representations,
2019.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 29-38,
2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning Localized Generative Models for 3D
Point Clouds via Graph Convolution. In International Conference on Learning Representations
(ICLR) 2019, 2019.

Andreas Veit, Michael] Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Advances in neural information processing systems, pp. 550-558,
2016.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2017.

Clément Vignac, Guillermo Ortiz-Jiménez, and Pascal Frossard. On the choice of graph neural
network architectures. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 8489-8493. IEEE, 2020.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International conference on machine learning, pp. 1058—1066,
2013.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):
146, 2019.

B. Weisfeiler and A Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno—Technicheskaya Informatsia, 2(9):12-16, 1968.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 1284-1293, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453-5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

11

	Introduction
	Background
	Graph Neural Networks
	Randomly wired architectures

	Randomly wired GNNs
	Randomly wired architectures behave like path ensembles
	Receptive field analysis
	Sequential path
	MonteCarlo DropPath regularization

	Experimental results
	Random GNN benchmarking
	Ablation study
	Edge probability
	DropPath
	Embedded sequential path

	Conclusions

