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ABSTRACT
Robot Imitation Learning (IL) is a widely used method for train-
ing robots to perform manipulation tasks that involve mimicking
human demonstrations to acquire skills. However, its practical-
ity has been limited due to its requirement that users be trained
in operating real robot arms to provide demonstrations. This pa-
per presents an innovative solution: an Augmented Reality (AR)-
assisted framework for demonstration collection, empowering non-
roboticist users to produce demonstrations for robot IL using de-
vices like the HoloLens 2. Our framework facilitates scalable and
diverse demonstration collection for real-world tasks. We validate
our approach with experiments on three classical robotics tasks:
reach, push, and pick-and-place. The real robot performs each task
successfully while replaying demonstrations collected via AR.

CCS CONCEPTS
• Computing methodologies → Imitation Learning; • Soft-
ware and its engineering→ Augmented Reality.
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1 INTRODUCTION
Recent advancements in robot learning have showcased its potential
across various manipulation applications [2–4]. While Reinforce-
ment Learning (RL) has emerged as a common approach for devel-
oping robot controllers, defining reward functions to elicit desired

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VAM-HRI’24, May 11, 2024, Boulder, CO
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

behaviors can be challenging, potentially leading to overfitting to
specific RL algorithms [1] and sample inefficiency [20]. In contrast,
Imitation Learning (IL) aims to empower end-users to teach robots
skills and behaviors through demonstrations, showing promising
results in controlled laboratory environments [3, 4, 11, 13]. How-
ever, current methods for collecting demonstrations require users
to be acquainted with the operation of specific controllers or engage
in contact-based kinesthetic teaching on real robot arms [6, 16, 18],
thereby impeding the widespread application of IL.

To streamline demonstration collection for non-roboticists, it
is crucial to address two issues: 1) non-expert users typically lack
understanding of robot arm controllers, and 2) non-roboticists may
face limited access to real robot arms due to their high cost and the
specialized nature of robot manipulators. While virtual reality (VR)
has been used for addressing these challenges [8, 21], it requires
creating VR environments in advance, limiting task diversity. To
circumvent this, Duan et al. [5] propose using augmented reality
(AR) for visual-input demonstration collection. However, many
powerful imitation learning methods still rely on demonstrations
in low-dimensional state spaces, such as robot arm joints and end-
effector poses [7, 14, 15], rather than utilizing demonstrations in
high-dimensional state spaces, such as visual information like im-
ages. Additionally, imitation learning often demands many more
high-dimensional visual demonstrations [9, 17] compared to low-
dimensional demonstrations, increasing user burden. Therefore,
collecting low-dimensional demonstrations while addressing the
two posed challenges still requires further investigation.

We propose a novel framework that enables non-roboticists to
use AR to easily collect demonstrations in low-dimensional state
space. Our framework enables users to perform tasks using their
hands as they would in daily life, addressing the first challenge.
Leveraging AR, our method circumvents the need for real robot
arms, solving the second challenge. Our contributions are two-fold:

(1) We present a framework allowing non-roboticists wearing
AR glasses to easily collect demonstrations in low-dimensional
state space using their own hands.

(2) We deploy our framework on the HoloLens 2 AR platform
and assess the gathered demonstrations using a real Fetch
robot. The robot successfully completed three sample tasks
when replaying collected demonstrations, underscoring the
high quality of the demonstrations collected via AR.
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Figure 1: This figure illustrates the proposed framework’s pipeline. The user with AR glasses performs the task while being
mindful of the attached AR robot end effector. We capture the low-dimensional states as demonstrations during this process.
The collected demonstrations can be readily applied to various downstream tasks, such as demonstration replay and training
imitation learning algorithms.

2 METHODOLOGY
We describe the proposed framework, as depicted in Figure 4,
through two distinct steps. In Section 2.1, we delineate the pro-
cess by which users collect demonstrations aided by AR. Subse-
quently, in Section 2.2, we detail how we enhance the smoothness
of collected demonstrations with the assistance of our designed
key-poses detection.

Figure 2: Left: Egocentric view showing the overlap between
the human hand and the robot end effector. Right: The hu-
man performs the task manually, with the robot end effector
mirroring the hand movements.

2.1 AR-assisted Demonstration Collection
To collect demonstrations of arm trajectories from users, we uti-
lized theMicrosoft HoloLens 2, an augmented reality head-mounted
display (ARHMD). The HoloLens 2 provides developers with data
from eye tracking, a microphone, an inertial measurement unit, and
hand tracking. The HoloLens provides both the position and orien-
tation of the wearer’s hands, enabling us to map the user’s hand
movement to the robot directly. During the demonstration process
(as seen in Figure 2), users wear the ARHMD, which overlays a
digital twin of the robot on the user and provides an egocentric
view of the robot’s perspective. This setup facilitates real-time vi-
sual feedback of the robot’s movements to the user. Using current

inverse kinematics algorithms [12], we compute the robot’s joint
angles based on the demonstrator’s hand position. Furthermore,
to detect whether a user is picking or placing an object, we calcu-
late the distance between their pointer finger and thumb as they
grab a bounding box. If the distance exceeds a specified threshold,
it indicates an object being picked up; otherwise, it signifies an
object being placed down. To provide accurately positioned visual-
izations, we align the coordinate frames of the Unity scene and the
HoloLens using a fiducial marker placed on the table [10]. As the
joint angles, end-effector positions, and pick or place actions are
calculated during the demonstrations, this information is recorded
on a separate machine, transmitted from the HoloLens via Unity
Robotics Hub’s ROS-TCP-Endpoint and ROS-TCP-Connector [19].
With this setup, we record one demonstration 𝐷 with a form as
shown in Equation 1. Each demonstration includes 𝑁 data points,
with the form of end-effector pose, 𝑝𝑖 , corresponding robot arm
joints, 𝑗𝑖 , and binary gripper state, 𝑔𝑖 for each timestep 𝑖 = 1, ..., 𝑁 .

𝐷 = {(𝑝𝑖 , 𝑗𝑖 , 𝑔𝑖 )}𝑁−1𝑖=0 (1)

2.2 Demonstration Process
The user can collect demonstrations using the ARHMD, but the
recordings tend to be jerky for two reasons. First, high recording
frequencies are essential to capture dense trajectories. However,
these frequencies can also inadvertently record minor hand tremors.
Second, inherent inaccuracies in hand-tracking contribute to noise.
Applying a filter to the raw demonstrations can smooth out these
issues and improve demonstration quality.

We employ a straightforward trajectory downsampling method,
retaining every 𝐾th data point from the collected demonstration.
However, to ensure critical data points necessary for task comple-
tion are not inadvertently filtered out, we introduce an automatic
key data point detector. Our approach identifies key data points
based on significant angle changes in the user’s hand trajectory
coupled with slow movement (i.e., approaching zero velocity) or
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Figure 3: Each column represents a distinct task. In the upper figure of each task, the visualization displays the demonstration
without processing, with red points indicating detected key data points. The lower figure illustrates the demonstration after
processing. In all tasks, the blue triangle denotes the initial position of the robot arm’s end-effector. For the Reach task, green
triangles mark the three-goal waypoints. In the Push and Pick-And-Place tasks, green triangles indicate the starting and goal
positions for the object.

during grasping and releasing actions. Although our recording
only captures position-based demonstrations without velocity in-
formation, the density of neighboring poses effectively serves as
a substitute. Algorithm 1 presents the pseudocode for the former
case, where 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑛𝑔𝑙𝑒 (·) calculates the angle formed by the
current point, the window’s start point, and the window’s endpoint,
while𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (·) computes the average pairwise distances
within the window. As to grasp/release actions, the required infor-
mation is inherently present in the recorded demonstration.

3 EXPERIMENTS
3.1 Tasks Description
We assess the effectiveness of our framework through experiments
on three fundamental robotic tasks: Reach, Push, and Pick-And-
Place. These tasks represent fundamental manipulation actions
that can be combined to accomplish more complex tasks. In the
Reach task, the robot arm is tasked with reaching three predefined
waypoints. The Push task aims to push an object on the desk from
a starting waypoint to a designated goal waypoint. In the Pick-
And-Place task, the robot arm is required to grasp an object at
one location, transport it to another position, and then release it,
effectively relocating the object to the desired goal position.

Algorithm 1: Key Pose Detection Algorithm
Input :points: positions extracted from collected poses;

window_length: the duration over which we
compute pose angles and density;
sharp_turn_threshold; dense_region_threshold.

1 sharp_turn_indexes, dense_region_indexes← Empty list
2 for idx, point in enumerate(points) do
3 angle← ComputeAngle(point,𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ)
4 if angle > sharp_turn_threshold then
5 sharp_turn_indexes.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑑𝑥)

6 for idx, point in enumerate(points) do
7 density_score←

ComputeDensity(point,𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ)
8 if density_score > dense_region_threshold then
9 dense_region_indexes.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑑𝑥)

Output : sharp_turn_indexes ∩ dense_region_indexes

3.2 Visualization of Collected Demonstration
By plotting the positions of each collected pose in 3D space, we can
visualize the trajectory of the gathered demonstration. As shown
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in Figure 3, the demonstration trajectory collected via AR exhibits
accurate movement for each task with occasional jerky motion.
Upon applying the proposed novel key pose detector to the col-
lected demonstrations, critical data points (the red points) are ac-
curately detected. By retaining these key data points during the
downsampling process, the resulting demonstration trajectories
become smoother.

3.3 Real Robot Demonstration Replay

Figure 4: Each row represents a specific task: Reach, Push,
and Pick-And-Place, respectively.

In each demonstration, we calculate the delta joints between two
time steps, yielding a list of joint actions to be applied to the real
Fetch robot arm. We leverage ROS and the gym environment to
enable the robot arm to execute the generated actions and replay
the demonstration. Figure 4 illustrates the successful completion
of each task by a Fetch robot, validating our approach toward
generating high-quality demonstrations via AR.

4 CONCLUSION
We present an AR-assisted demonstration collection framework
designed to facilitate scalable demonstration gathering for non-
roboticists. By tracking the human hand in an AR environment and
employing a novel key data point detector-based demonstration
filter, we attain high-quality demonstrations with a user-friendly
approach, where users simply perform tasks with their own hands
as they normally would. Through visualization and demonstration
replay on a real robot we show the quality of the demonstrations
collected via our framework and illustrate the validity of our ap-
proach.
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