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Abstract
Although multi-view learning has achieved remarkable progress
over the past decades, most existing methods implicitly assume
that all views (or modalities) are well-aligned. In practice, however,
collecting fully aligned views is challenging due to complexities
and discordances in time and space, resulting in the Partially View-
unaligned Problem (PVP), such as audio-video asynchrony caused
by network congestion. While some methods are proposed to align
the unaligned views by learning view-invariant representations,
almost all of them overlook specific information across different
views for complementarity, limiting performance improvement. To
address these problems, we propose a robust framework, dubbed
VariatIonal ConTrAstive Learning (VITAL), designed to learn both
common and specific information simultaneously. To be specific,
each data sample is first modeled as a Gaussian distribution in the
latent space, where the mean estimates the most probable common
information, while the variance indicates view-specific information.
Second, by using variational inference, VITAL conducts intra- and
inter-view contrastive learning to preserve common and specific
semantics in the distribution representations, thereby achieving
comprehensive perception. As a result, the common representa-
tion (mean) could be used to guide category-level realignment,
while the specific representation (variance) complements sample
semantic information, thereby boosting overall performance. Fi-
nally, considering the abundance of False Negative Pairs (FNPs)
generated by unsupervised contrastive learning, we propose a ro-
bust loss function that seamlessly incorporates FNP rectification
into the contrastive learning paradigm. Empirical evaluations on
eight benchmark datasets reveal that VITAL outperforms ten state-
of-the-art deep clustering baselines, demonstrating its efficacy in
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both partially and fully aligned scenarios. The Code is available at
https://github.com/He-Changhao/2024-MM-VITAL.
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1 Introduction
Multi-view learning aims at exploiting the common and specific
information of different views (or modalities) to achieve compre-
hensive perception [13, 34]. The success of existing multi-view
learning methods heavily relies on an implicit assumption that all
views are aligned perfectly [4, 28, 31]. In practice, however, this
assumption is not always feasible, due to sensor discrepancies or
communication disruptions, resulting in unaligned views, i.e., Par-
tially View-unaligned Problem (PVP) [15, 39]. That is to say, the
collected views lack proper alignment, which will adversely affect
multi-view representation learning and, consequently, downstream
tasks [29, 43].

Traditional solutions to PVP involve graph matching techniques,
such as the Hungarian algorithm [20], to align unaligned views
in a common space. However, their non-differentiable nature pre-
cludes integration with deep neural networks (DNNs) for end-to-
end learning. To overcome this issue, Huang et al. [15] presented
Partially View-unaligned Clustering (PVC), a differentiable alter-
native that learns common representations across different views
while achieving differentiable alignment by using these representa-
tions. Nonetheless, PVC, akin to the Hungarian algorithm, relies on
instance-level alignment, which is excessive for tasks requiring only
category-level alignment [38, 39], such as clustering. Recent ad-
vancements, such as MvCLN [39], introduced category-level align-
ment, enhancing efficiency and reducing matching errors brought
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Figure 1: Our VITAL consists of two modules: Variational Contrastive Learning and Dynamic Rectification. For variational
contrastive learning, we utilize a probabilistic encoder (𝑞𝜙 ) to approximate the true posterior distribution of observed samples,
where the mean and variance of the distribution are modeled as common and specific information, respectively. Then, L𝑖𝑛𝑡𝑒𝑟 is
used for contrasting between different views in the common space to maximize the shared semantics, while L𝑖𝑛𝑡𝑟𝑎 is used for
contrasting between reconstructed and original views to retain intrinsic semantics. As for Dynamic Rectification, we employ a
probabilistic model to fit the loss and derive a confidence mask for FNPs (see section 3.4). Finally, the common representations
are utilized for realigning views, and the features ultimately used for downstream tasks are obtained from the combination of
common and specific representations.

by instance-level alignment. SURE [38] extended MvCLN by recon-
structing each original view from integrated common representa-
tions, aiming to preserve high-dimensional semantic information.
Yet, these methods focused predominantly on common information,
often at the expense of unique view-specific information, leading
to suboptimal representations for downstream applications.

To address this problem, we propose a robust framework, dubbed
VariatIonal ConTrAstive Learning (VITAL), to learn common rep-
resentations for category-level realignment and view-specific repre-
sentations for information complementation. The pipeline of VITAL
is shown in Figure 1, which consists of two modules: Variational
Contrastive Learning and Dynamic Rectification. Specifically, VI-
TAL first models each data sample as a Gaussian distribution in
the latent space, with the mean representing likely common infor-
mation and the variance capturing specific information. Second,
to preserve comprehensive semantic information, VITAL employs
intra- and inter-view contrastive learning coupled with variational
inference to encapsulate intrinsic semantics into the distribution
representations and maximize the shared semantics across different
views, respectively. Thanks to the explicit learning of both view-
invariant and view-specific information, our VITAL could infuse
comprehensive semantics into the latent space, thereby enhancing
the discrimination of the fused representations. Finally, as the la-
bels are unavailable, all unpaired samples across different views
are considered as negative pairs, which inevitably leads to some
samples from the same class being incorrectly treated as negatives,

namely False Negative Pairs (FNPs). Clearly, FNPs will mislead the
models, resulting in suboptimal or even erroneous solutions. To
alleviate or even eliminate the adverse impact of FNPs, we present
a robust contrastive loss to adaptively focus more on clean pairs
and less on noisy ones, thus avoiding overemphasizing FNPs and
boosting the model’s robustness. Our main contributions are as
follows:

• We propose a comprehensive framework to tackle the Par-
tially View-unaligned Problem (PVP), which initially aligns
views using common representations, and subsequently en-
riches the fused representations with specific information.

• To model both common and specific information, we present
a novel Variational Contrastive Learning paradigm to learn
view-invariant representation (mean) and view-specific one
(variance) simultaneously.

• A robust inter-view contrastive loss is proposed to selectively
optimize clean and noisy pairs, thus alleviating or even elim-
inating the negative impact of FNPs during training.

• Our extensive experiments on eight benchmark datasets,
encompassing both partially and fully aligned scenarios, cor-
roborate the effectiveness and superiority of our framework.

2 Related Works
This section provides a brief review of some related works in the
domains of multi-view learning and contrastive learning.
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2.1 Multi-view Learning
Most existing multi-view learning methods implicitly take the view
completeness assumption to learn from multiple views or modali-
ties [13, 14, 28]. However, this ideal assumption would be easily bro-
ken in practice, resulting in incomplete views, i.e., Partially Sample-
missing Problem (PSP) and Partially View-unaligned Problem (PVP).
To address PSP, numerous methods were proposed to learn view-
invariant representations between views through filling in the
missing parts using information from complete portions [22, 24–
26, 30]. Additionally, the PVP-oriented approaches aimed to estab-
lish the cross-view correspondences of the view-unaligned samples
by learning view-invariant representations [15, 38]. The pioneering
PVP-oriented method PVC utilized DNNs to reconcile unaligned
views by learning latent common representations and employing a
differentiable bi-graph matching algorithm for instance-level align-
ment [15]. Alternatively, MvCLN presented a category-level align-
ment paradigm, enhancing the efficiency and accuracy of cross-
view alignment for partially view-unaligned clustering [39]. Sub-
sequently, SURE further extended MvCLN to preserve compre-
hensive sample information by jointly reconstructing the original
samples [38]. Despite their advancements, these methods predomi-
nantly focused on latent common representations, neglecting the
specific information of each view, and thus failing to fully exploit
the available comprehensive information [13, 41].

2.2 Contrastive Learning
Contrastive learning, renowned for its efficacy in representation
learning tasks, has been widely integrated into numerous algo-
rithms. SimCLR established a foundational framework by pairing
two augmented views of the same sample as positive pairs, with
other samples forming negative ones [5]. Although this cross-view
contrastive learning achieved promising performance in various
tasks, it risked introducing False Negative Pairs (FNPs), which share
the same category while coming from different instances, within a
batch in unsupervised settings, leading to performance degradation.
Intuitively, addressing FNPs is crucial for boosting the robustness
and effectiveness of contrastive learning. Various techniques have
been proposed to tackle this issue: Yang et al. divide FNPs using a
calculated threshold based on the distance between positives and
negatives [38], while Huynh et al. employ a threshold and a top-k
strategy to filter FNPs. Other approaches, like those by Chuang
et al. [7] and Caron et al. [2], focus on increasing the weight of
positive pairs to enhance the robustness. However, most of these
methods roughly separate the training pairs into positives and
negatives, which may not guarantee the correctness of the hard bi-
nary identification for all pairs, thereby limiting their performance
improvement.

3 Methodology
In this section, we first formulate the Partially View-unaligned
Problem (PVP) in subsection 3.1, and then provide an overview
of VITAL in subsection 3.2. Subsequently, in the next two subsec-
tions, we elaborate on the two modules involved in VITAL, namely
Variational Contrastive Learning and Dynamic Rectification.

3.1 Problem Formulation
Given a multi-view dataset X = {𝑋 1, 𝑋 2, . . . , 𝑋𝑉 }, where 𝑉 is the
number of views, 𝑋𝑘 = {𝒙𝑘1 , 𝒙

𝑘
2 , . . . , 𝒙

𝑘
𝑁
} represents the sample set

of the 𝑘-th view, 𝑁 is the total number of instances, and 𝒙𝑘
𝑖
denotes

the 𝑖-th sample of the 𝑘-th view. Without loss of generality, consid-
ering the case of binary views, for a fully aligned dataset, we assume
that 𝒙𝑘1

𝑖
and 𝒙𝑘2

𝑖
have alignment between𝑘1-th view and𝑘2-th view.

However, the PVP ariseswhen this alignment is disrupted, thus split-
ting the dataset into a fully aligned subset 𝐴 = {𝒂1

𝑖
, 𝒂2
𝑖
, . . . , 𝒂𝑉

𝑖
}𝑁1
𝑖=1

and an unaligned subset𝑈 = {𝒖1
𝑖
, 𝒖2
𝑖
, . . . , 𝒖𝑉

𝑖
}𝑁2
𝑖=1.

3.2 Overview of VITAL
To address the mentioned PVP, existing methods primarily focus
on seeking a latent common space for realignment by learning a
mapping 𝑓 : X → Y [15, 38, 39]. However, this often overlooks
view-specific information from each view, consequently resulting
in performance degradation. Drawing inspiration from the char-
acteristics of Gaussian distribution, where the mean encapsulates
the central feature and the variance reflects its diversity, we could
model the shared information as the mean and the view-specific in-
formation as the variance. To achieve this, each sample is embedded
as a Gaussian distribution instead of a fixed point in the latent space.
More specifically, our VITAL employs variational inference to ap-
proximate the posterior Gaussian distribution of observed samples,
minimizing the divergence from the true posterior through the pro-
posed intra- and inter-view contrastive learning. Thus, the learned
common representations (means) could facilitate category-level
realignment due to its central semantics, while the view-specific
representations (variances) provide complementary information
due to the diverse specificity. The loss function of this methodology
is formulated as:

L𝑉𝐶𝐿 = L𝑖𝑛𝑡𝑒𝑟 + L𝑖𝑛𝑡𝑟𝑎 + L𝐾𝐿 . (1)

Furthermore, to mitigate the adverse influence of FNPs, we pro-
pose a dynamic rectification module that integrates seamlessly with
VITAL. This module employs a probabilistic model to infer a con-
fidence mask for FNPs while dynamically correlating L𝑖𝑛𝑡𝑒𝑟 with
this mask to establish a robust loss L𝑖𝑛𝑡𝑒𝑟−𝐷𝑅 . The details of our
VITAL will be elaborated in the following sections.

3.3 Variational Contrastive Learning
For an observed sample 𝒙𝑘

𝑖
, let 𝒛𝑘

𝑖
represent its latent variables in

the semantic space following [19]. We assume that 𝒛𝑘
𝑖
adheres to a

posterior Gaussian distribution 𝑝Θ (𝒛𝑘𝑖 |𝒙
𝑘
𝑖
), where Θ indicates the

true parameters. Due to sampling from 𝑝Θ may yield latent variables
semantically approximate to 𝒛𝑘

𝑖
, 𝑝Θ encapsulates the essence of the

observed sample. However, the sparsity of 𝒛𝑘
𝑖
renders direct opti-

mization of 𝑝Θ (𝒛𝑘𝑖 |𝒙
𝑘
𝑖
) impractical [42]. To tackle this, variational

inference is employed to approximate the distribution, thereby
deriving intra- and inter- contrastive learning to enhance the dis-
crimination of representations. More specifically, for each sample
𝒙𝑘
𝑖
, a recognition model 𝑞𝜙 (𝒛𝑘𝑖 |𝒙

𝑘
𝑖
) ∼ N (𝒛𝑘

𝑖
; 𝝁𝑘
𝑖
, (𝝈𝑘

𝑖
)2𝐼 ) serves as

the approximation solution to 𝑝Θ (𝒛𝑘𝑖 |𝒙
𝑘
𝑖
), where𝜙 is the variational

parameters [19]. Given that various views of an instance may serve
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as mutual priors, the objective is to minimize the Kullback-Leibler
(KL) divergence between the approximate and true posterior across
all views:

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

𝐷𝐾𝐿 (𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) | |𝑝Θ (𝒛𝑖 |𝒙𝑛𝑖 ))

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )
𝑝Θ (𝒛𝑖 |𝒙𝑛𝑖 )

d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

[
log 𝑝Θ (𝒙𝑛𝑖 ) − L𝐸𝐿𝐵𝑂

]
,

(2)

whereL𝐸𝐿𝐵𝑂 denotes the evidence lower bound (ELBO) [17]. Since
log 𝑝Θ (𝒙𝑛𝑖 ) remains constant for the observed sample, minimizing
Equation (2) is equivalent to maximizing L𝐸𝐿𝐵𝑂 :

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

L𝐸𝐿𝐵𝑂 = −
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

𝐷𝐾𝐿 (𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) | |𝑝Θ (𝒛𝑖 ))

+
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1
E𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) [log 𝑝Θ (𝒙𝑛𝑖 |𝒛𝑖 )],

(3)

where 𝑝Θ (𝒛𝑖 ) could be a preset arbitrary distribution. Assuming
that 𝑝Θ (𝒛𝑖 ) follows a standard Gaussian distributionN(𝒛𝑖 ; 0, 𝐼 ), the
first term in Equation (3) could be optimized via a KL loss:

L𝐾𝐿 =

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

𝐷𝐾𝐿 (𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) | |𝑝Θ (𝒛𝑖 ))

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

1
2
(− log(𝝈𝑚𝑖 )2 + (𝝁𝑚𝑖 )2 + (𝝈𝑚𝑖 )2 − 1) .

(4)

Moreover, the second term in Equation (3) is used to measure the
generative quality of the approximate posterior 𝑞𝜙 , which can be
calculated through intra- and inter-view contrastive losses:

−
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1
E𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) [log 𝑝Θ (𝒙𝑛𝑖 |𝒛𝑖 )]

=−
𝑉∑︁
𝑘=1
E
𝑞𝜙 (𝒛𝑘

𝑖
|𝒙𝑘

𝑖
) [log 𝑝Θ (𝒙

𝑘
𝑖 |𝒛

𝑘
𝑖 )]︸                                      ︷︷                                      ︸

L′ intra

−
𝑉∑︁
𝑚≠𝑛

E𝑞𝜙 (𝒛𝑚
𝑖
|𝒙𝑚

𝑖
) [log𝑝Θ (𝒙𝑛𝑖 |𝒛

𝑛
𝑖 )]︸                                        ︷︷                                        ︸

L′
inter

,

(5)
where L′

𝑖𝑛𝑡𝑟𝑎
and L′

𝑖𝑛𝑡𝑒𝑟
are intra- and inter- contrastive losses

respectively. By using the SGVB estimator [19], the two terms in
Equation (5) can be approximated as a sampling process:

L′
𝑖𝑛𝑡𝑟𝑎 ≃ − 1

𝐿

𝐿∑︁
𝑙=1

𝑉∑︁
𝑘=1

log𝑝Θ (𝒙𝑘𝑖 |𝒛
𝑘
(𝑖,𝑙 ) ), (6)

where 𝒛𝑘(𝑖,𝑙 ) ∼ 𝑞𝜙 (𝒛𝑖 |𝒙𝑘𝑖 ) and

L′
𝑖𝑛𝑡𝑒𝑟 ≃ − 1

𝐿

𝐿∑︁
𝑙=1

𝑉∑︁
𝑚≠𝑛

log𝑝Θ (𝒙𝑚𝑖 |𝒛𝑛(𝑖,𝑙 ) ), (7)

where 𝒛𝑛(𝑖,𝑙 ) ∼ 𝑞𝜙 (𝒛𝑖 |𝒙𝑛𝑖 ), and 𝐿 is the number of Monte Carlo
samples in the SGVB estimator, which can be set to 1 if the batch

size is large enough [19]. Accordingly, Equation (6) could be relaxed
as follows:

L𝑖𝑛𝑡𝑟𝑎 =

𝑉∑︁
𝑘=1

H(𝑇𝑖𝑛𝑡𝑟𝑎, 𝑝 (𝒙𝑘𝑖 , 𝒙̂
𝑘
𝑖 )), (8)

where H denotes cross-entropy, 𝑇𝑖𝑛𝑡𝑟𝑎 represents the intra-view
ground truth, 𝒙̂𝑘𝑖 = 𝑞𝜃 (𝒛𝑘(𝑖,𝑙 ) ) is the result obtained through the
reparameterization trick [19] via a generative model 𝑞𝜃 , and 𝑝 (·, ·)
is the likelihood between two points, which is computed as follows:

𝑝 (𝒃𝑖 , 𝒃 𝑗 ) =
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒃𝑖 , 𝒃 𝑗 )/𝜏)∑𝑁
𝑘=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒃𝑖 , 𝒃𝑘 )/𝜏)

, (9)

where 𝑠𝑖𝑚(·, ·) is the calculation function of cosine similarity, and
𝜏 denotes the temperature parameter.

For Equation (7), due to the inconsistency of the cross-view vari-
ables, direct computation of the expectation through sampling is
not feasible. Since the specificity (variance) of each view is inde-
pendent of each other, we relax the optimization of Equation (7) by
maximizing the shared semantics across different views as follows:

L𝑖𝑛𝑡𝑒𝑟 =
𝑉∑︁
𝑚≠𝑛

H(𝑇𝑖𝑛𝑡𝑒𝑟 , 𝑝 (𝝁𝑚𝑖 , 𝝁
𝑛
𝑖 )), (10)

where 𝑇𝑖𝑛𝑡𝑒𝑟 is the inter-view ground truth. Therefore, the final
variational contrastive learning loss function can be written as
Equation (1). Notably, 𝑇𝑖𝑛𝑡𝑒𝑟 = 𝐼 may inadvertently introduce False
Negative Pairs (FNPs) since L𝑖𝑛𝑡𝑒𝑟 is conducted at category level,
potentially impending model efficacy [27]. The following section
will introduce a Dynamic Rectification module designed to produce
good soft rather than hard partitions of the pairs, thus enhancing
the robustness.

3.4 Dynamic Rectification
In unsupervised contrastive learning, handling the challenge posed
by FNPs is crucial for enhancing model performance. To this end,
inspired by [45], we introduce a robust mechanism to improve the
traditional contrastive learning by rewriting 𝑇𝑖𝑛𝑡𝑒𝑟 as follows:

𝑇𝑖𝑛𝑡𝑒𝑟 = 𝑝𝛼 𝐼 , (11)

where 𝛼 is a parameter sensitive to FNPs. Equation (11) could pro-
duce gradients in different directions within two distinct intervals,
whose dividing point can be computed by setting the gradient of
L𝑖𝑛𝑡𝑒𝑟 with respect to 𝑝 to zero:

Δ =
𝜕L𝑖𝑛𝑡𝑒𝑟

𝜕𝑝
= −𝛼𝑝𝛼−1 log𝑝 − 𝑝𝛼

1
𝑝

= −𝑝𝛼−1 (1 + 𝛼 log𝑝) = 0,
(12)

then 𝑝 = 𝑒−1/𝛼 . As a result, the optimization surface is divided into
two areas, i.e., (0 < 𝑝 < 𝑒−1/𝛼 ) and (𝑒−1/𝛼 < 𝑝 < 1). In the two
areas, the optimizer performs different optimization directions:

• (0 < 𝑝 < 𝑒−1/𝛼 ): Pairs in this interval are prone to be
FNPs, mistakenly considered as hard positive samples due
to low similarity by traditional contrastive learning. This
misclassification will mislead the learning process, resulting
in an overfitting issue [12, 45]. In contrast, ourL𝑖𝑛𝑡𝑒𝑟 applies
a reverse gradient to these pairs, facilitating their correct
optimization.
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(a) Loss after L𝑉𝐶𝐿 (b) Loss with𝑀𝐺𝑀𝑀 (c) Loss with𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (d) Rectification Accuracy

Figure 2: Visualization of different masking schemes on the Deep Caltech-101 dataset in partially aligned (50%) scenario. We
present the density plots of loss at different training stages in (a), (b), and (c). (a) After the initial training stage with L𝑉𝐶𝐿 ,
there still exists considerable overlap between positives and negatives. (b) Directly employing 𝑀𝐺𝑀𝑀 leads to suboptimal
results, with partial overlap remaining between positives and negatives. (c) By utilizing𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 , which discards the pairs
with confounding in𝑀𝐺𝑀𝑀 , this overlap can be remarkably reduced. (d) Compared to𝑀𝐺𝑀𝑀 ,𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 exhibits higher FNP
rectification accuracy.

• (𝑒−1/𝛼 < 𝑝 < 1): Pairs within this range are likely true
positive pairs, thus receiving the correct optimization direc-
tion. Before dynamically rectifying FNPs, we initially set 𝛼
to 0.1 to mitigate the impact of FNPs during the rectification
process and guarantee correct optimization.

After the aforementioned steps, the next challenge is to rectify the
FNPs caused by category-level mismatching. In the past, proba-
bilistic models have been proven to be useful for decoupling loss
distributions between noisy labels and clean labels [1, 16, 23]. In-
spired by this, we similarly propose to fit the loss distribution of all
pairs using a two-component Gaussian Mixture Model (GMM):

𝑝 (𝑙 |𝜃 ) =
2∑︁
𝑘=1

𝛾𝑘𝜙 (𝑙 |𝑘), (13)

where 𝑙 represents the contrastive loss for a specific pair in order to
ensure a fair comparison, 𝛾𝑘 and 𝜙 (𝑙 |𝑘) are the mixture coefficient
and the probability density of the 𝑘-th component [16] respectively,
which can be simply solved using the EM algorithm [9]. Moreover,
since the loss of positives is small, we consider the component with
a lower mean as the distribution of positives, while the other as neg-
atives. After that, we can easily compute the posterior probability
of all pairs with respect to a specific component as follows:

𝑤𝑖 = 𝑝 (𝑘 |𝑙𝑖 ) =
𝑝 (𝑘)𝑝 (𝑙𝑖 |𝑘)

𝑝 (𝑙𝑖 )
. (14)

If 𝑘 represents the component with a lower mean, then {𝑤𝑖 }𝐵
2

𝑖=1 can
be regarded as the probability that all pairs belong to positives, or al-
ternatively, as soft labels for FNPs. As positives should have smaller
losses, we dynamically associate {𝑤𝑖 }𝐵

2

𝑖=1 with the sensitivity param-

eter in 𝑇𝑖𝑛𝑡𝑒𝑟 through 𝛼 ′ = 0.1 × 𝑤𝑖−min({𝑤𝑖 }𝐵
2

𝑖=1 )
max({𝑤𝑖 }𝐵

2
𝑖=1 )−min({𝑤𝑖 }𝐵

2
𝑖=1 )

, where

𝐵 represents the batch size. This implies utilizing the posterior prob-
abilities provided by the GMM model to guide the optimization of
L𝑖𝑛𝑡𝑒𝑟 .

On the other hand, we can easily separate the positive set and
negative set by setting a threshold of {𝑤𝑖 }𝐵

2

𝑖=1 [16]. However, in
practical applications, we found that directly using the GMMmodel
for predictions in the overlapping region between two components

is often inaccurate, as illustrated in Figure 2 (a) and (b). To address
this issue, we propose a solution called confidence mask to dynami-
cally focus more on clean pairs and less on noisy ones. Specifically,
for the fitting result 𝜙 (𝑙 |𝑘) ∼ N (𝜇𝑘 , 𝜎2𝑘 𝐼 ), we first calculate the
confidence through the distance between the means of the two
components:

𝑑 =

����� 𝜇1 − 𝜇2

max({𝑙𝑖 }𝐵
2

𝑖=1) −min({𝑙𝑖 }𝐵
2

𝑖=1)

����� . (15)

Then, for the initial version of the positive set𝑀𝐺𝑀𝑀 obtained by
dividing {𝑤𝑖 }𝐵

2

𝑖=1 with a threshold of 0.5 [16], we pick out the subset
with higher confidence by

𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = {𝑙 ∈ 𝑀𝐺𝑀𝑀 |𝑙 ≤ 𝑄𝑑 }, (16)

where 𝑄𝑑 represents the 𝑑 quantile of the loss value set {𝑙𝑖 }𝐵
2

𝑖=1
and we can finally take𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 as the final positive set. This
approach avoids pairs in the overlapping part between the two com-
ponents and improves the rectification accuracy for FNPs. Figure 2
(c) and (d) demonstrate the effectiveness of 𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 through
experiments. Therefore, the dynamically robust version of L𝑖𝑛𝑡𝑒𝑟
can be written as:

L𝑖𝑛𝑡𝑒𝑟−𝐷𝑅 =

𝑉∑︁
𝑚≠𝑛

H(𝑇 ′
𝑖𝑛𝑡𝑒𝑟 , 𝑝 (𝝁

𝑚
𝑖 , 𝝁

𝑛
𝑖 )), (17)

where𝑇 ′
𝑖𝑛𝑡𝑒𝑟

= 𝑝𝛼
′ ×𝑀 ,𝑀 represents the mask of the final positive

set, and × denotes element-wise multiplication. In summary, the
final loss function of this module can be rewritten as:

L𝑉𝐶𝐿−𝐷𝑅 = L𝑖𝑛𝑡𝑒𝑟−𝐷𝑅 + L𝑖𝑛𝑡𝑟𝑎 + L𝐾𝐿 . (18)

Through Equation (18), we integrate the process of dynamically
rectifying FNPs with our robust contrastive loss. In the next section,
we will demonstrate the specific implementation details of applying
this framework to PVP.

3.5 Implementation Details
Given an observed set 𝑋 , we first use L𝑉𝐶𝐿 to perform the first
stage training. Subsequently, we replace L𝑉𝐶𝐿 with L𝑉𝐶𝐿−𝐷𝑅 to
rectify the FNPs, thereby securing a more robust model. The mean
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Table 1: The partially aligned (50%) clustering performance on eight widely used multi-view datasets. The best results are
indicated in bold, and the second-best results are indicated with an underline.

Methods CUB Scene-15 WIKI NUS-WIDE
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AE2-Nets (CVPR’19) 31.32 25.55 12.62 29.90 29.49 14.45 17.66 4.32 1.89 14.61 3.91 2.36
PVC (NeurIPS’20) 55.53 59.75 44.47 37.88 39.12 20.63 27.21 17.59 8.94 48.45 42.39 33.10
MvCLN (CVPR’21) 52.13 49.67 35.54 38.53 39.90 24.26 36.00 17.52 13.11 57.33 42.40 36.22
DSIMVC (ICML’22) 35.87 31.70 16.71 29.65 31.20 14.91 17.11 3.59 1.57 35.30 25.29 16.24
MFLVC (CVPR’22) 40.97 38.67 22.61 31.83 34.10 17.16 17.93 3.81 1.76 24.24 15.01 9.10
DCP (TPAMI’23) 31.07 28.76 6.65 29.48 30.70 12.85 17.54 3.17 1.09 32.45 22.96 13.39

GCFAgg (CVPR’23) 39.87 39.36 22.24 31.26 34.83 17.08 17.42 3.79 1.71 26.87 16.96 9.28
DealMVC (MM’23) 40.87 37.55 22.18 32.79 34.08 17.56 17.93 3.97 1.83 32.02 20.11 12.49
SURE (TPAMI’23) 54.47 50.26 37.19 40.32 40.33 23.08 34.28 16.90 11.69 56.69 42.66 36.76
ICMVC (AAAI’24) 58.73 53.15 40.11 32.45 33.74 18.12 17.26 3.75 1.68 45.36 29.06 22.88

VITAL 78.70 75.74 65.40 41.05 41.76 24.93 36.57 20.58 15.07 62.91 47.86 42.74

Methods Deep Animal Deep Caltech-101 MNIST-USPS NoisyMNIST
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AE2-Nets (CVPR’19) 6.43 7.64 0.62 7.67 14.22 1.78 41.15 38.13 24.12 32.53 26.29 16.06
PVC (NeurIPS’20) 3.83 0.00 0.00 18.59 48.89 14.60 86.54 78.08 74.60 81.84 82.29 82.03
MvCLN (CVPR’21) 26.24 40.24 19.74 35.55 60.99 40.90 89.96 81.36 80.40 91.05 84.15 83.56
DSIMVC (ICML’22) 14.60 22.20 5.35 17.07 25.54 6.84 34.52 30.03 18.24 24.23 14.62 8.28
MFLVC (CVPR’22) 12.82 17.89 4.56 19.49 31.34 9.74 33.88 29.66 18.04 22.96 14.38 7.74
DCP (TPAMI’23) 12.06 17.52 4.44 16.33 38.08 11.76 31.84 26.16 7.02 23.47 15.13 3.70

GCFAgg (CVPR’23) 12.44 19.20 4.39 21.33 49.22 18.82 36.80 29.92 18.09 23.11 13.52 6.67
DealMVC (MM’23) 14.73 20.15 5.47 22.05 29.02 11.18 32.78 25.22 14.95 25.60 16.09 9.34
SURE (TPAMI’23) 27.65 40.76 19.85 46.18 70.68 32.98 92.14 82.83 83.47 95.17 88.24 89.72
ICMVC (AAAI’24) 12.33 15.30 4.41 23.30 37.58 18.31 34.95 29.18 18.18 27.23 18.99 10.59

VITAL 44.51 49.04 29.87 53.97 74.05 52.40 94.17 85.91 87.52 95.44 88.66 90.25

Figure 3: The clustering performance of the CUB dataset under different aligned rates. The solid lines represent the average
results of five different random seeds, while the shaded regions indicate the standard deviation range of the results.

𝝁𝑘
𝑖
and standard deviation 𝝈𝑘

𝑖
of each sample are utilized as its

common and specific representations, respectively:

𝑪𝑘 =

[
𝝁𝑘1 , 𝝁

𝑘
2 , . . . , 𝝁

𝑘
𝑁

]𝑇
𝚺
𝑘 =

[
𝝈𝑘1 ,𝝈

𝑘
2 , . . . ,𝝈

𝑘
𝑁

]𝑇
.

(19)

Finally, {𝑪𝑘 }𝑉
𝑘=1 facilitates category-level realignment across dif-

ferent views, while the fused representations {𝒛𝑖 }𝑁𝑖=1 are used for
clustering, where 𝒛𝑖 = [𝝁𝑘

𝑖
+ 𝝈𝑘

𝑖
]𝑉
𝑘=1. The fused representations

incorporate both common and specific view information, offer-
ing comprehensiveness and interpretability. Classical clustering

algorithms, such as K-means, can then be applied to the fused rep-
resentations to obtain the final clustering results.

4 Experiment
In this section, we validate the effectiveness of VITAL by evaluat-
ing the clustering performance on eight widely used multi-view
datasets in both partially and fully aligned scenarios. Firstly, we
introduce the experimental setups in Section 4.1, including datasets
and training settings. Subsequently, in Section 4.2, we compare the
clustering performance of VITAL with ten state-of-the-art deep
clustering methods. After that, Section 4.3 demonstrates the effec-
tiveness of the Dynamic Rectification module in VITAL through
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Table 2: The fully aligned (100%) clustering performance on eight widely used multi-view datasets. The best results are indicated
in bold, and the second-best results are indicated with an underline.

Methods CUB Scene-15 WIKI NUS-WIDE
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AE2-Nets (CVPR’19) 54.33 49.93 34.88 37.17 40.47 22.24 48.69 44.25 33.01 13.88 1.88 1.02
PVC (NeurIPS’20) 59.57 66.69 52.90 38.01 39.82 21.06 39.40 42.74 28.42 54.14 46.42 38.78
MvCLN (CVPR’21) 64.92 59.96 47.84 37.90 42.31 25.58 50.50 45.46 32.73 58.70 46.00 39.59
DSIMVC (ICML’22) 59.13 57.50 41.20 30.69 35.17 17.06 43.80 34.45 26.63 55.61 46.16 37.42
MFLVC (CVPR’22) 70.03 67.04 54.44 37.26 40.58 21.89 44.56 38.47 26.91 56.89 46.15 38.15
DCP (TPAMI’23) 61.53 68.27 48.47 39.41 41.47 21.00 46.12 43.69 26.91 51.99 42.65 28.67

GCFAgg (CVPR’23) 71.17 67.12 54.35 37.63 40.39 21.96 52.80 48.21 35.83 51.31 40.93 31.03
DealMVC (MM’23) 53.66 62.35 46.07 39.66 42.38 24.86 56.89 51.36 42.78 55.28 41.80 34.87
SURE (TPAMI’23) 62.70 60.06 46.13 42.75 42.48 24.57 53.25 46.64 35.21 58.14 46.06 39.48
ICMVC (AAAI’24) 82.97 77.05 69.75 41.18 43.62 25.73 52.99 44.42 35.91 66.38 52.73 47.67

VITAL 85.07 79.99 72.40 42.84 46.24 28.01 54.16 53.29 41.38 66.72 54.42 49.21

Methods Deep Animal Deep Caltech-101 MNIST-USPS NoisyMNIST
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AE2-Nets (CVPR’19) 10.02 18.99 2.44 7.59 12.48 0.81 83.08 80.73 74.73 42.11 43.38 30.42
PVC (NeurIPS’20) 3.83 0.00 0.00 20.54 51.40 15.66 95.28 90.36 90.05 87.10 92.84 93.14
MvCLN (CVPR’21) 35.28 54.19 29.37 39.55 65.29 32.81 98.76 96.47 97.27 97.30 94.16 95.31
DSIMVC (ICML’22) 27.12 41.73 16.43 21.38 37.01 17.16 99.37 98.23 98.60 57.07 54.88 43.61
MFLVC (CVPR’22) 26.92 39.99 17.94 49.43 73.39 34.33 99.53 98.64 98.95 97.56 93.74 94.75
DCP (TPAMI’23) 27.81 45.44 18.33 49.16 74.41 48.98 99.11 97.50 98.04 81.19 86.01 75.76

GCFAgg (CVPR’23) 30.79 43.85 21.44 55.65 80.67 37.49 98.37 96.19 96.44 88.58 86.55 80.68
DealMVC (MM’23) 36.07 49.34 26.36 17.38 23.13 10.24 93.07 95.30 91.94 98.64 96.70 97.15
SURE (TPAMI’23) 35.76 53.62 29.51 43.77 70.05 29.46 99.12 97.49 98.05 98.39 95.41 96.50
ICMVC (AAAI’24) 24.55 49.94 21.05 34.02 64.02 39.97 99.33 98.08 98.52 98.72 96.25 97.19

VITAL 55.59 64.74 44.62 65.02 82.02 61.52 99.78 99.36 99.52 98.36 95.38 96.42

ablation studies. Finally, in Section 4.4, we present the visualization
results.

4.1 Experimental Setups
Eight widely used multi-view datasets were utilized in our experi-
ments, including CUB [33], Scene15 [11], WIKI [8], NUS-WIDE [6],
Deep Animal [21], Deep Caltech-101 [10], MNIST-USPS [28], and
NoisyMNIST [35]. For the partially aligned scenario, we simulate
it by randomly shuffling the correspondence of a portion of the
original dataset. The aligned rate is defined as 𝜂 =

𝑁1
𝑁
, where 𝑁1

represents the number of samples with correct alignments, and 𝑁

is the total number of instances.
To train VITAL, we used PyTorch version 1.12.1 with an NVIDIA

3090Ti for all experiments. Our training strategy consists of two
stages: initially, we perform variational contrastive learning using
L𝑉𝐶𝐿 to obtain the approximate posterior distribution of samples,
for a total of 100 epochs. Subsequently, we replace L𝑉𝐶𝐿 with
L𝑉𝐶𝐿−𝐷𝑅 for dynamic rectification of FNPs, conducting additional
10 epochs to enhance model performance. As for the hyperparame-
ters, We employed the Adam [18] optimizer with a learning rate
of 2e-3 for the first stage and 1e-4 for the second, and we fixed the
contrastive temperature 𝜏 to 0.4 for training on all datasets. Regard-
ing the network architecture, we adopted the same four-layer fully
connected network for the probabilistic encoder/decoder across all
datasets. It is worth noting that in VITAL, all datasets share the
same model structure, which allows it to be seamlessly applied to

various PVP downstream task scenarios but not limited to the field
of clustering.

4.2 Comparisons with State-Of-The-Art
In this section, we conducted a comparison between VITAL and ten
state-of-the-art deep clustering methods in both partially and fully
aligned scenarios. The methods include AE2-Nets [44], PVC [15],
MvCLN [39], DSIMVC [30], MFLVC [36], DCP [25], GCFAgg[37],
DealMVC[40], SURE [38] and ICMVC [3]. As only PVC, MvCLN,
and SURE can directly handle partially aligned scenarios, before
applying other algorithms for comparison, we first reduce the di-
mensionality of the original features using PCA and then realign
the representations via the Hungarian algorithm [20]. After that,
we run all methods five times and report the average performance
in terms of three widely used metrics, including clustering Accu-
racy (ACC), Normalized Mutual Information (NMI), and Adjusted
Rand Index (ARI), where larger values indicate better clustering
performance. Table 1 and Table 2 show the performance in par-
tially and fully aligned scenarios, respectively. Figure 3 displays the
performance curves of each method under different aligned rates
from 10% to 100%. From these experimental results, we can easily
observe the following:

• In the partially aligned scenario, VITAL achieves state-of-
the-art performance on all datasets, with significant gaps
observed between it and other baselines on CUB, NUS-WIDE,
Deep Animal, and Deep Caltech-101. This verifies the impor-
tance of leveraging specific information for complementary
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Table 3: Ablation studies of our method."denotes the adoption of the component, while%indicates its exclusion. The best
results are indicated in bold.

Aligned L𝑉𝐶𝐿−𝐷𝑅
CUB Scene15 WIKI NUS-WIDE

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Partially % 77.83 74.40 64.25 39.55 38.55 22.54 35.59 19.91 14.37 59.77 45.58 38.60
" 78.70 75.74 65.40 41.05 41.76 24.93 36.57 20.58 15.07 62.91 47.86 42.74

Fully % 84.70 79.34 71.72 42.26 43.88 26.10 53.45 52.77 40.47 63.04 51.42 43.90
" 85.07 79.99 72.40 42.84 46.24 28.01 54.16 53.29 41.38 66.72 54.42 49.21

Aligned L𝑉𝐶𝐿−𝐷𝑅
Deep Animal Deep Caltech-101 MNIST-USPS NoisyMNIST

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Partially % 42.99 48.01 28.42 45.09 70.17 31.62 92.56 82.55 84.21 94.21 87.22 87.93
" 44.51 49.04 29.87 53.97 74.05 52.40 94.17 85.91 87.52 95.44 88.66 90.25

Fully % 54.02 62.58 42.28 54.06 78.46 36.84 99.75 99.25 99.44 92.34 92.01 88.36
" 55.59 64.74 44.62 65.02 82.02 61.52 99.78 99.36 99.52 98.36 95.38 96.42

sample information, as the selected baselines do not explic-
itly consider it.

• For PVP tasks, the comprehensiveness of the view represen-
tations learned by our framework ensures consistent superi-
ority across different aligned rates. This advantage persists
even under extreme scenarios (10% aligned).

• Superior performance are obtained by VITAL in both par-
tially and fully aligned scenarios, indicating its versatility
beyond being a specific method tailored solely for PVP. We
attribute this success to the contributions of both common
and specific information, as well as the effective rectification
of FNPs in unsupervised contrastive learning.

4.3 Ablation Studies
In this section, we conduct ablation studies on the Dynamic Rectifi-
cation module in VITAL. Specifically, for all eight datasets used in
the experiments, we analyze the impact of the L𝑉𝐶𝐿−𝐷𝑅 loss term
on model performance in both partially and fully aligned scenarios.
The clustering performance are shown in Table 3, where it is evi-
dent that whenL𝑉𝐶𝐿−𝐷𝑅 is not used to rectify False Negative Pairs
(FNPs) in the second dynamic training stage, there is a noticeable
decline in performance across all datasets to varying degrees. This
verifies the effectiveness of L𝑉𝐶𝐿−𝐷𝑅 .

4.4 t-SNE visualization
In Figure 4, we present the t-SNE [32] visualization results of SURE
[38] (the state-of-the-art method for addressing PVP) and our VI-
TAL on the MNIST-USPS dataset. It is evident that VITAL exhibits
larger clusters and fewer outliers compared to SURE. We attribute
this to VITAL’s consideration of both common and specific infor-
mation of the samples. In contrast to SURE, which only utilizes
common information for clustering, VITAL can achieve higher
clustering accuracy.

5 Conclusions
In this paper, we propose a framework explicitly considering the
common and specific information across different views to address

(a) SURE (ACC=92.98) (b) VITAL (ACC=94.80)

Figure 4: The t-SNE visualization results of the MNIST-USPS
dataset in partially aligned (50%) scenario, where data are
colored by classes.

the Partially View-unaligned Problem (PVP). Diverging from ex-
isting works, our contributions are primarily twofold: i) a novel
variational contrastive learning paradigm is proposed to learn the
common and specific information frommulti-view data. ii) to tackle
the challenge of False Negative Pairs (FNPs) in unsupervised con-
trastive learning, we present a robust loss that dynamically asso-
ciates the rectification process of FNPs with contrastive learning.
We demonstrate the effectiveness of our framework in multi-view
clustering in both partially and fully aligned scenarios. In future
research, we aim to refine our method to handle cases involving
Partially Sample-missing Problem (PSP) and combinations such as
PSP+PVP.
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