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ABSTRACT

There exist features that are related to the label in the same way across different
settings for that task; these are semantic features or semantics. Features with
varying relationships to the label are nuisances. For example, in detecting cows
from natural images, the shape of the head is a semantic and because images of
cows often have grass backgrounds but not always, the background is a nuisance.
Relationships between a nuisance and the label are unstable across settings and,
consequently, models that exploit nuisance-label relationships face performance
degradation when these relationships change. Direct knowledge of a nuisance
helps build models that are robust to such changes, but knowledge of a nuisance
requires extra annotations beyond the label and the covariates. In this paper, we
develop an alternative way to produce robust models by data augmentation. These
data augmentations corrupt semantic information to produce models that identify
and adjust for where nuisances drive predictions. We study semantic corruptions
in powering different robust-modeling methods for multiple out-of distribution
(OOD) tasks like classifying waterbirds, natural language inference, and detecting
Cardiomegaly in chest X-rays.

1 INTRODUCTION

Relationships between the label and the covariates can change across data collected at different
places and times. For example, in classifying animals, data collected in natural habitats have cows
appear on grasslands, while penguins appear on backgrounds of snow; these animal-background
relationships do not hold outside natural habitats (Beery et al., 2018; Arjovsky et al., 2019). Some
features, like an animal’s shape, are predictive of the label across all settings for a task; these are
semantic features, or semantics in short. Other features with varying relationships with the label,
like the background, are nuisances. Even with semantics present, models trained via empirical risk
minimization (ERM) can predict using nuisances and thus fail to generalize (Geirhos et al., 2020).

Models that rely only on the semantic features perform well even when the nuisance-label relation-
ship changes, unlike models that rely on nuisances. Many methods exist to build models robust to
changing nuisance-label relationships (Mahabadi et al., 2019; Makar et al., 2022; Liu et al., 2021;
Puli et al., 2022; He et al., 2019); we call these spurious-correlation avoiding methods (SCAMs).
These methods broadly fall into two classes: 1) methods that assume access to nuisances, like
Nuisance-Randomized Distillation (NURD) (Puli et al., 2022), debiased focus loss (DFL), product
of experts (POE) (Mahabadi et al., 2019), and 2) methods that rely on assumptions about ERM-
trained models relying on nuisances, like Just Train Twice (JTT) (Liu et al., 2021). We point out a
commonality between the two classes of methods: a model that predicts the label from the nuisance
called a biased model, that are built using extra annotations or assumptions. Intuitively, biased mod-
els play a role in building robust predictive models by providing a way to detect when the nuisance
can influence predictions.

How do we build biased models without extra annotations in the form of nuisances being known in
the training data or assumptions about ERM-trained models relying on nuisances? In this work, we
build robust models from a different and complementary source of assumptions: knowledge about
semantics. Imagine using data augmentation to corrupt semantics in the covariates — if the resulting
semantic-corrupted input can still predict the label, the prediction must rely on nuisances, thereby
providing a window into nuisances that can be used to build a biased model.

Designing a data augmentation that corrupts semantics is easy. For example, replacing the covari-
ates with random noise would fully corrupt the semantics. However, after such a corruption there
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is nothing that predicts the label meaning no nuisance information would be identified. A better
semantic corruption would corrupt the semantics, while preserving some nuisances. This preserva-
tion is possible when semantics and nuisances appear differently in the covariates; we call such a
difference a separation. We identify different separations to develop semantic corruptions for object
recognition and natural language inference (NLI).

The first separation is when semantics are global and nuisances are local. Formally, global seman-
tics are position-dependent functions of the subsets of the covariates (patches in images, or words in
sentences), while local nuisances are position-independent. For example, in recognizing cows, the
shape of the animal structures the distant patches where the cow’s eyes, ears, tail, hooves appear;
nuisances like grass can appear anywhere without structure. Due to positional-dependence, random-
izing positions of subsets of covariates corrupts global semantics; however, position-independent
local nuisances are retained. Under the global/local separation, we corrupt semantics via patch ran-
domization (PATCH-RAND) for images and n-gram randomization (NGRAM-RAND) for NLI.

The second separation is when certain parts of the input are required for semantics. For example in
chest X-rays, lungs appear in the center, while nuisances like the scanner affect the border. In NLI,
the premise sets up the context for detecting entailment. Without the premise, entailment cannot be
determined by semantics, but the hypothesis retains some nuisances. For this separation, masking
parts of the covariates corrupts semantics for object recognition via region-of-interest masking (ROI-
MASK) and for the semantic context in NLI via premise masking (PREM-MASK).

The last two separations are when semantics and nuisances are signals of different frequencies or dif-
ferent pixel-intensities. For example, in detecting Cardiomegaly in chest X-rays, semantic features
like the heart are low-frequency features with high pixel-intensity; see fig. 2. However, nuisances
like noise due to the X-ray scanner can be high-frequency or low-intensity signals. For such separa-
tions, frequency filtering (FREQ-FILTER) and intensity filtering (INT-FILTER) corrupt semantics.

We demonstrate the value of semantic corruption by using it to power a variety of methods: NURD
(Puli et al., 2022), DFL, POE (Mahabadi et al., 2019), and JTT (Liu et al., 2021). We run these meth-
ods by building biased models using nuisances produced by semantic corruption. These methods
with semantic corruptions outperform ERM on out-of distribution (OOD) generalization tasks like
waterbirds (Sagawa et al., 2019), cardiomegaly detection from chest X-rays, and NLI. The perfor-
mance of NURD, DFL, POE run with semantic corruption is similar to what the methods achieve with
extra observed nuisance variables. Finally, JTT with semantic corruptions outperforms vanilla JTT.

2 WHAT DO METHODS NEED TO REDUCE SPURIOUS CORRELATIONS?

A spurious correlation is a relationship between the covariates and the label that changes across
settings like time and location (Geirhos et al., 2020). Models that exploit a spurious correlation
can perform poorly outside the training distribution. We focus on the class of methods that correct
models using knowledge of nuisances or where they might appear (Mahabadi et al., 2019; Liu et al.,
2021; Puli et al., 2022); we call these spurious-correlation avoiding methods (SCAMs). With label
y, a vector of nuisances z, and covariates x, the goal is to predict well on data regardless of the
nuisance-label relationship. Next, we establish that the central part of several SCAMs is a model that
predicts the label using nuisances, which we call the biased model. Let ptr and pte be the training
and test distributions respectively, and let a |= b denote that the random variables a, b are independent.

NURD. In tackling spurious correlations, Puli et al. (2022) identify a conditional that has per-
formance guarantees on test distribution pte with an unknown nuisance-label relationship. They
develop NURD to learn the conditional using data from ptr ̸= pte. NURD uses 1) the nuisance-
randomized distribution, p |= (y, z,x) = p(y)p |= (z)p(x | y, z), where z |= p |=

y, and 2) an uncorrelat-
ing representation r(x) for which z |= p |=

y | r(x). In p |= , the nuisance alone cannot predict the label;
this helps avoid features that depend only on the nuisance. Next, features that are mixed functions
of the label and the nuisance (e.g. x1 = y+ z) can also be spurious. Uncorrelating r(x) avoid such
features. With these insights, NURD builds models of the form p |= (y | r(x)) that are most informa-
tive of the label. We work with reweighting-NURD, which estimates p |= by weighting samples as
p(y)/ptr(y | z)ptr(y, z,x). See appendix A for more details.

End-to-end bias mitigation. Mahabadi et al. (2019) consider two methods to train a biased model
and a base predictive model jointly to make the base model predict without relying on the biases. The
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Table 1: Summary of NURD, JTT, POE, and DFL. Each method approximates what we call a biased
model: ptr(y | z). This table describes the different biased models, their names, how they are built.
We build biased models as ptr(y | T (x)) where T (x) is a semantic corruption.

Method Name What the biased model is Assumptions

JTT Identification model ptr(y | x) learned via ERM ERM builds biased models.
POE/DFL Biased model ptr(y | z) learned via ERM z from domain-knowledge.
NURD Weight model ptr(y | z) learned via ERM z from domain-knowledge.

methods use and fine-tune a BERT model (Devlin et al., 2019) and do not propagate the gradients of
the biased model to update the common parameters (token embeddings in this case). They propose
1) POE, where the log of the product of the predicted probabilities of the two models is used to
compute the classification loss and 2) DFL, where the biased model is used to weight the cross-
entropy loss for the base model. For both methods, Mahabadi et al. (2019) build a biased model as
ptr(y | z). The intuition is that the samples correctly classified by the biased model will have low
loss and the base model focuses on classifying samples that the biased model misclassifies.

Just Train Twice JTT. With JTT, Liu et al. (2021) aim to build models robust to group shift, where
the relative mass of a fixed set of disjoint groups of the data changes between training and test times.
The groups here are subsets of the data defined by a pair of values of discrete label and nuisance
values. While they work without relying on training group annotations, i.e. without nuisances, they
assume ERM builds models with high worst-group error. JTT first builds an "identification" model
via ERM to isolate samples that are misclassified due to reliance on the nuisances. Then, JTT trains a
model via ERM on data with the loss for the misclassified samples upweighted (by constant λ). The
number of epochs to train the identification model and the upweighting constant are hyperparameters
that require tuning using group annotations (Liu et al., 2021).

The commonality of a biased model. The central part between NURD, DFL, POE, and JTT is a
model that predicts the label using nuisances (like ptr(y | z)), which we call the biased model as in
He et al. (2019); Williams et al. (2018). While these methods reduce dependence on nuisances, they
build biased models using additional annotations or require assumptions that ERM-trained models
predict using the nuisance. In the next section, we describe an alternative: corrupt semantic infor-
mation with data augmentations to construct nuisances that can be used in a biased model.

3 ROBUSTNESS VIA SEMANTIC CORRUPTIONS

We define a data augmentation as a transformation of the covariates with random noise δ: T (x, δ).
Formally, an ideal semantic corruption is a data augmentation or transformation such that the label
does not depend on the transformation given the nuisance y |= T (x, δ) | z and that the transformation
is not independent of the nuisance T (x, δ) ̸|= z. The first condition ensures that the biased model built
from the semantic corruption only predicts the label because of the nuisance. The second condition
ensures the semantic corruption depends on the nuisance. In designing a semantic corruption these
two conditions are in tension. The former wants to destroy everything about the label unrelated to
the nuisance, while the latter wants to retain everything about the nuisance, which may be hard to
achieve without retaining extra information about the label. The design of a semantic corruption
is made easier, when semantics and nuisances appear differently in the covariates; we call such a
difference a separation. Focusing on two popular OOD tasks, object recognition and NLI, we identify
separations and build semantic corruptions based on permutations and masking.

3.1 SEMANTIC CORRUPTIONS VIA PERMUTATIONS FOR A GLOBAL/LOCAL SEPARATION

The first separation we consider is between semantics that appear as global structure and nuisances
that appear as local structure. We give an intuitive example for such global semantics and local
nuisances before formalizing them. Consider the waterbirds dataset from (Sagawa et al., 2019) with
waterbirds and landbirds appearing predominantly on backgrounds with water and land respectively.
Semantic features like the wing shape and the presence of webbed feet are corrupted by randomly
permuting small patches. However, the background nuisances remain after permutations because
they can be detected from small patches due to colors and textures. See fig. 1a.

Formally, given subsets of the covariates x1, · · ·xk extracted in an order, semantics s(x1, · · · ,xk)
change with the order of extraction while nuisances n(x1, · · · ,xk) do not: for permutations Π

∃π ∈ Π s(x1, · · ·xk) ̸= s(xπ(1), · · ·xπ(k)), ∀π ∈ Π n(x1, · · ·xk) = n(xπ(1), · · ·xπ(k))
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(a) PATCH-RAND to corrupt global semantics in Wa-
terbirds. The original is the left most, followed by
PATCH-RANDs with sizes 112, 28, 14. At sizes less
than 28, shape is hard to make out.

(b) Masking to corrupt semantics in chest X-rays.
The original is the left most, followed by ROI-MASK
of size 112, 154, 196. At sizes more than 154, the
heart is blocked out.

Figure 1: Semantic corruptions of Waterbirds via PATCH-RAND and chest X-rays via ROI-MASK.

We give a demonstrative example of a semantic corruption with global semantics and local nui-
sances. Consider a family of distributions F = {pD}D∈R with changing nuisance-label relation-
ships. With U as the uniform distribution over {1, 2, 3}, and N as the normal distribution, samples
from pD(y, z,x) come as y ∼ U , z ∼ N (Dy, 1), and y selects a configuration of x

y = 1 =⇒ x = [−z, z, z], y = 2 =⇒ x = [z,−z, z], y = 3 =⇒ x = [z, z,−z]

The configuration is a semantic that determines y and computing it requires comparing coordinates:
y = 1 if x2x3 > 0, y = 2 if x1x3 > 0, and y = 3 otherwise. In words, the semantic feature
is global. However, z = x1 + x2 + x3, which means that z is determined regardless of where
the negative sign is, i.e. it is local. Here, a random permutation T (x, δ) of the coordinates in x is
a semantic corruption: as T (x, δ) permutes the location of the negation, T (x) | y, z is distributed
identically to T (x) | z. Next, we give semantic corruptions for vision and language tasks with
global/local separations.

Patch randomization. In image recognition, object recognition tasks where the object is a shape
in the foreground and the color and texture in the background are nuisances, often satisfy the global-
semantics and local-nuisances separation. For illustration, consider differentiating cows and pen-
guins in natural images; here, shape is a global semantic feature, while grass in the background
is local and can appear without structure. Permuting patches via patch randomization (PATCH-
RAND), like in fig. 1a, corrupts global semantics while retaining local nuisances.

N-gram randomization. Tasks like natural language inference (NLI) — where the goal is deter-
mining if a premise sentence entails a hypothesis — satisfy the global-semantics/local-nuisances
separation. Consider this example: the sentence "Bob speaks but Jon does not" contradicts "Jon
speaks but Bob does not" but entails "Bob speaks". The meaning is inferred from a global structure
on the words and the order they appear in. Nuisances like the number of shared words between the
hypothesis and the premise predict entailment, but do not impose order (McCoy et al., 2019). Here,
randomizing the order of the words corrupts the semantics: For example, one order randomization
of the sentence "Jon speaks but Bob does not" is "Bob speaks but Jon does not"; the former entails
"Jon speaks" but the latter contradicts it. Local nuisances, like the number of overlapping words
or the presence of a certain negation word, are preserved after order randomization. We randomize
the order by permuting different n-grams in each sentence; we call this n-gram randomization
(NGRAM-RAND).

3.2 SEMANTIC CORRUPTIONS VIA MASKING FOR A LOCATION-BASED SEPARATION

The second separation we use to build semantic corruptions is based on when a certain subset of the
covariates contain a necessary part of the semantic information, masking, by removing that subset
or setting it to a constant, corrupts semantics. Such masking retains nuisances outside the subset.
Formally, we corrupt the semantics by replacing subsets xS with a value that is out of support: for
example, in images where pixels lie in (0, 1), we corrupt x = [xS ,x−S ] as xcorrupted = [0∗xS ,x−S ].

As an illustrative example, consider a family F = {pD}D∈R with varying nuisance-label relation-
ships. With a,b being random uniform binary random variables, e(ρ) as the exponential distribution
with parameter ρ, and s+(u) = log(1 + exp(u)) as soft-plus, let sampling from pD(y, z,x) be:

y = a⊕ b, z ∼ e(s+(D ∗ (2y − 1))) x = [(2a− 1)z, (2b− 1)z].

For such a family, we show that masking out coordinate x1 is a semantic corruption: T (x) = [0,x2]
satisfies T (x) |= y | z and T (x) ̸|= z. First, due to y being computed as an XOR function of a,b, it
holds that b |= y. Then, due to z only relying on y and exogenous noise, b |= (y, z) which implies
b |= y | z. Given z, b determines x2, meaning that b |= y | z =⇒ x2 |= y | z =⇒ T (x) |= y | z.
Second, the magnitude of the second coordinate of T (x) is z: |T (x)2| = z =⇒ T (x) ̸|= z.
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(a) Corruption via FREQ-FILTER. Original image to
the left followed zeroing out 14, 56, 112 of the lowest
frequencies. The heart features are corrupted at 56
but the token in the top left corner is preserved.

(b) Corruption via INT-FILTER. Original image to the
left followed zeroing out pixels with intensities above
the 80%, 60%, 40%. The heart features are corrupted
at 40% but non-heart parts are not.

Figure 2: Semantic corruptions of chest X-rays via FREQ-FILTER and INT-FILTER respectively.

Region-of-interest-masking for object recognition. Semantics in images can often be localized
to regions-of-interest. For example, in detecting cardiomegaly, the region-of-interest is the middle
of the chest where the heart resides. Masking out the region of interest removes centrally located
semantic information from the chest X-ray (fig. 1b). However, nuisances like hospital-specific infor-
mation (like alignment tokens (Zech et al., 2018)) are present in the border; see top right corner of
the x-rays in fig. 1b. We call this ROI-MASK. When the region-of-interest (ROI) is centrally located,
the size of the mask can be varied and the resulting border-only images are semantic corruptions.

Premise-masking for NLI. Semantic features in NLI rely on the meanings of the premise and
the hypothesis sentences: for example, the premise states the occurrence of an event ("Alice sat
while bob stood.") which can entail ("Alice sat.") or contradict ("Bob sat.") the hypothesis. The
information about the setup in the premise is therefore crucial to differentiate between entailment and
contradiction. If the context given by the premise is blocked out, the hypothesis sentence can predict
the label only due to nuisances like the presence of negation words that correlate with contradictions
(Gururangan et al., 2018). Thus, masking the premise is a semantic corruption for NLI that retains
nuisance information present in the hypothesis; we call this PREM-MASK.

3.3 SEMANTIC CORRUPTIONS FOR IMAGES VIA FREQUENCY AND INTENSITY SEPARATIONS

PATCH-RAND relies on differences in relative size and ROI-MASK relies on differences in spatial
position. We consider two aspects of the image that are not spatial, frequency and pixel-intensity,
and give corruptions for features that depend on these aspects. Under a frequency-based separa-
tion, semantics and nuisances appear as signals of different frequencies. Under an intensity-based
separation, semantics appear brighter or dimmer than nuisances. For example, consider detect-
ing Cardiomegaly from chest X-rays, where the heart appears as an object formed of bright pixels
with little variation in intensity across the pixels; the latter suggests that the heart features are low-
frequency signals. However, in chest X-rays nuisances like scanner noise have low pixel-intensity
and nuisances like alignment-tokens are high-frequency signals.

This observation motivates corruptions along the axes of frequency and pixel-intensity: frequency
filtering (FREQ-FILTER) and intensity filtering (INT-FILTER). FREQ-FILTER zeroes-out frequen-
cies in the discrete fourier domain, while INT-FILTER zero-out pixels based on their intensities. See
fig. 2 for how FREQ-FILTER and INT-FILTER corrupt the heart region. FREQ-FILTER and INT-FILTER
are based on positional separations in frequency and intensity spaces; this is in contrast to ROI-MASK
that is based on positional separations in pixel space.

3.4 USING SEMANTIC CORRUPTIONS IN PRACTICE

For each of the methods in table 1, we use a semantic corruption T (x) in building a biased model
ptr(y | T (x)). For reweighting-NURD with semantic corruptions, we replace ptr(y | z) with
ptr(y | T (x)) for a semantic corruption T (x), for DFL and POE, we replace the model ptr(y | z)
with ptr(y | T (x)), and for JTT, we use ptr(y | T (x)) as the identification model.

Choosing the “size” in PATCH-RAND, NGRAM-RAND, ROI-MASK. For PATCH-RAND, NGRAM-
RAND, and ROI-MASK, misspecifying the size parameter, such as setting it be too large or too small,
runs the risk of either retaining semantics or corrupting nuisances. For example, with large patches,
PATCH-RAND may not corrupt semantics while with small patches (like pixels) PATCH-RAND may
corrupt all features. The resulting biased model can rely on semantics or ignore some nuisances;
such biased models may not help mitigate spurious correlations.
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We select the corruption parameters using a small evaluation set from the test distribution for NURD,
POE, and DFL; this is common practice in OOD generalization (Mahabadi et al., 2019; Gulrajani
and Lopez-Paz, 2020). For JTT, we follow Liu et al. (2021) and use nuisance annotations in the
validation data. We report the results for all corruption parameters in appendix B.2.

4 EXPERIMENTS

In this section, we study semantic corruptions in powering NURD (Puli et al., 2022), JTT (Liu et al.,
2021), and POE and DFL (Mahabadi et al., 2019). To be faithful to the original evaluations of each
method, we run them on tasks from their respective papers: NURD on waterbirds, JTT on waterbirds
and NLI where the nuisance is the presence of a negation word, and POE and DFL on NLI evaluated
on a challenging test dataset, HANS (McCoy et al., 2019). Further, we run NURD on chest X-rays
but focus on the task of Cardiomegaly detection as it is an object recognition task, instead of the
original Pneumonia detection (Puli et al., 2022) which is a texture recognition task. See appendix B
for implementation details. We have released the code here: .

Methods, metrics and model selection. For images, we corrupt semantics with PATCH-RAND,
ROI-MASK, FREQ-FILTER, and INT-FILTER. For text, we corrupt semantics with NGRAM-RAND and
PREM-MASK. To point to the value of semantic corruptions relative to existing data augmentations,
we also build biased models with two baseline transformations that corrupt features: random crop-
ping (RAND-CROP) and adding gaussian noise (GAUSS-NOISE), both common data augmentations
(Shorten and Khoshgoftaar, 2019). We report the average test accuracy for every method. To be
able to compare to what JTT is trained for in Liu et al. (2021), we report test worst-group accuracy
for JTT. For each method, we compare the performance of the original method to that of the methods
run with semantic corruption (including the baselines). For every method being run with semantic
corruptions, group annotations and nuisances are unavailable in the training data. Known-nuisance
versions of POE, DFL, and NURD use direct knowledge of one or more nuisances during training.
Vanilla JTT and JTT with corruptions use validation group annotations to early stop and tune hyper-
parameters. For other methods, we select the size parameter alone on a small evaluation set from the
test distribution. This follows the common practice of using limited queries on a small test dataset
to tune hyperparameters (Gulrajani and Lopez-Paz, 2020).

4.1 OBJECT RECOGNITION TASKS Table 2: Mean and standard error
test accuracy across 10 seeds of NURD
with semantic corruptions on classi-
fying waterbirds. Known-nuisance
NURD uses a label for the type of
background as the nuisance. Consider
the gap between ERM and known-
nuisance NURD. NURD with seman-
tic corruptions PATCH-RAND, ROI-
MASK, FREQ-FILTER, and INT-FILTER
close 99%, 93%, 89%, 82% of the gap
respectively. Except with INT-FILTER,
they outperform ERM and NURD with
RAND-CROP and GAUSS-NOISE.

Method test acc.

Known-z NURD 87.2± 1.0%

ROI-MASK 87.0± 1.0%
PATCH-RAND 86.0± 1.5%
FREQ-FILTER 85.2± 1.2%
INT-FILTER 84.0± 1.9%

RAND-CROP 81.9± 1.5%
GAUSS-NOISE 83.9± 2.2%

ERM 69.2± 2.1%

To be faithful to the original evaluations of each method,
we evaluate JTT on waterbirds, and NURD on both water-
birds and detecting cardiomegaly; both tasks have images
of size 224 × 224 × 3. For both tasks, we use PATCH-
RAND (of patch sizes 7, 14, 28, 56), ROI-MASK (of mask
sizes 112, 140, 168, 196), FREQ-FILTER (of high-pass fil-
ter sizes 196, 168, 140, 112), and INT-FILTER (of intensity
thresholds 0.1, 0.2, 0.3, 0.4) as semantic corruptions. For
the baseline RAND-CROP, we use sizes 7, 14, 28, 56 and for
GAUSS-NOISE, we use variances 0.01, 0.25, 1, 4. Both Puli
et al. (2022) and Liu et al. (2021) use the raw waterbirds
data from Sagawa et al. (2019), where the task is detect-
ing the type of bird (water or land) from images where the
background is a nuisance. Unlike Liu et al. (2021), Puli
et al. (2022) process the waterbirds to get a different setup
from Sagawa et al. (2019). To stay true to the original eval-
uations of the methods, we recreate the setups as described
in their respective papers.

NURD on waterbirds. For NURD, we recreate the wa-
terbirds experiment from Puli et al. (2022) where the full
waterbirds data from Sagawa et al. (2019) was subsampled
into training, validation, and test datasets each with label
balance. However, unlike Sagawa et al. (2019), the valida-
tion data comes from the same distribution as the training
data. The training and validation datasets have 90% water-
birds on backgrounds with water and 90% landbirds on backgrounds with land. The test data has a
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flipped relationship. Known-nuisance NURD uses an additional label denoting the background-type
as the nuisance.

Table 2 gives results. Selecting the size hyperparameter based on the average accuracy over 10
seeds on an evaluation dataset (200 samples) gives size 14 for PATCH-RAND (86.0%), size 196 for
ROI-MASK (87.2%), size 196 for FREQ-FILTER (85.2%), and threshold 0.2 for INT-FILTER (84.0%).
Consider the gap between ERM and known-nuisance NURD. NURD with PATCH-RAND, ROI-MASK,
FREQ-FILTER, and INT-FILTER close 99%, 93%, 89%, 82% of the gap respectively. NURD with these
semantic corruptions outperforms ERM (69.2%) and NURD with RAND-CROP (81.9%) and GAUSS-
NOISE (83.9%). In table 7 in appendix B, we give the results for all corruption parameters. These
full results show that NURD with all semantic corruptions outperforms ERM (69.2%).

Table 3: Test worst-group accu-
racies of JTT on waterbirds. JTT
with semantic corruptions outper-
forms ERM, vanilla JTT, and JTT
with baseline corruptions (RAND-
CROP and GAUSS-NOISE).

Method test acc.

Vanilla JTT 86.5%

ROI-MASK 88.2%
PATCH-RAND 89.0%
FREQ-FILTER 87.2%
INT-FILTER 87.0%

RAND-CROP 59.1%
GAUSS-NOISE 71.0%

ERM 72.0%

JTT on waterbirds. For JTT, we repeat the waterbirds ex-
periment from Liu et al. (2021) which uses the original data
from (Sagawa et al., 2019). The training data has 95% wa-
terbirds on backgrounds with water and 95% landbirds on
backgrounds with land. Both the validation and test datasets
have bird label independent of the background. The groups
here are subsets of the data that correspond to a pair of values
of bird-type and background-type. Like vanilla JTT, we use
group annotations in the validation data to compute worst-
group error and early stop training when using PATCH-RAND
and ROI-MASK. The results for vanilla JTT are from our run
using the optimal hyperparameters from Liu et al. (2021).

Table 3 gives results. Selecting the corruption hyperparame-
ters on the validation worst-group accuracy gives size 14 for
PATCH-RAND (89%), size 196 for ROI-MASK (88.2%), size
112 for FREQ-FILTER (87.2%), and threshold 0.4 for INT-
FILTER (87.0%). JTT with these semantic corruptions out-
performs ERM (72.0%), vanilla JTT (86.5%), and JTT with
the baseline corruptions RAND-CROP (59.2%) and GAUSS-NOISE (71.0%). Additionally, table 9
shows that JTT with PATCH-RAND and ROI-MASK outperforms JTT with the baseline corruptions
and ERM at every patch/border-size.

Table 4: Mean and standard error of
test accuracy across 10 seeds of NURD
on chest X-rays. Known-nuisance NURD
uses the hospital as the nuisance. Con-
sider the gap between ERM and known-
nuisance NURD. NURD with PATCH-
RAND, ROI-MASK, FREQ-FILTER, and
INT-FILTER close 77%, 79%, 70%, 60%
of the gap respectively. Except INT-
FILTER, NURD with semantic corrup-
tions outperform ERM and NURD with
baseline corruptions.

Method test acc.

Known-z NURD 81.7± 0.3%

ROI-MASK 77.2± 0.8%
PATCH-RAND 77.5± 0.6%
FREQ-FILTER 75.6± 1.3%
INT-FILTER 73.9± 0.9%

RAND-CROP 75.1± 0.9%
GAUSS-NOISE 58.8± 3.7%

ERM 62.0± 2.0%

NURD on detecting cardiomegaly In chest X-ray clas-
sification, differences between hospitals, like the scan-
ners used to produce the X-rays, are known to corre-
late thorasic conditions with non-physiological aspects
in the image; for example, only some scanners render
the air in the lungs in white (Zech et al., 2018). We
consider the shape-based object recognition task of car-
diomegaly (an irregularly sized heart) detection and, fol-
lowing Puli et al. (2022), construct a dataset by mixing
two chest X-ray datasets: chexpert (Irvin et al., 2019)
and MIMIC (Johnson et al., 2019). The training and
validation datasets have 90% cardiomegaly images from
MIMIC and 90% healthy images from chexpert, while
the test data has a flipped relationship. Known-nuisance
NURD uses the hospital identity as the nuisance.

See table 4 for results. Selecting the corruption param-
eters based on the mean accuracy over 10 seeds on an
evaluation dataset (200 samples) gives size 7 for PATCH-
RAND (77.5%), size 196 for ROI-MASK (77.2%), size
196 for FREQ-FILTER (75.6%), and threshold 0.1 for
the INT-FILTER (73.9%). Consider the gap between
ERM and known-nuisance NURD. NURD with PATCH-
RAND, ROI-MASK, FREQ-FILTER, and INT-FILTER close
77%, 79%, 70%, 60% of the gap respectively. NURD with
all these corruptions but INT-FILTER, outperforms ERM (62.0%) and NURD with RAND-CROP
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(75.1%) and GAUSS-NOISE (51.9%). We give the results for all corruption parameters in table 7
in appendix B; this table shows that NURD with PATCH-RAND and ROI-MASK, for all size parame-
ters, outperform ERM (62.0%).

4.2 NATURAL LANGUAGE INFERENCE (NLI)

For methods POE, DFL, and JTT, we use the MNLI dataset (Williams et al., 2018) during training.
The evaluations of these methods in their respective papers have different nuisances and, conse-
quently, different test sets. In accordance, we describe the setup and the results separately. We use
NGRAM-RAND (sizes 1, 2, 3, 4) to produce nuisances for both setups. We do not run POE/DFL with
PREM-MASK because PREM-MASK corrupts nuisances shared across the sentences that HANS tests.

Table 5: Average and standard devia-
tion of accuracies (over 4 seeds) on the
HANS dataset. The results for POE and
DFL that use known nuisances are given
under known. POE with NGRAM-RAND
performs better than known-nuisance
POE. DFL with NGRAM-RAND (NR)
closes 84% of the gap between ERM and
known-nuisance DFL. Both beat ERM.

z POE DFL

Known 66.3± 0.6% 69.3± 0.2%
NR 66.7± 1.5% 68.4± 1.5%

ERM − 63.6%.

POE and DFL For POE and DFL, we report test accu-
racies on the HANS dataset McCoy et al. (2019) as in
Mahabadi et al. (2019). HANS was created to test the
reliance of models on three known nuisances: 1) lexical
overlap, 2) subsequence match, and 3) constituent match-
ing subtrees in the parse trees. Known-nuisance POE and
DFL use exact knowledge of these nuisances.

Table 5 gives the mean test accuracies over 10 seeds.
For both DFL and POE, selecting the size hyperparame-
ter based on the average accuracy on a small evaluation
dataset (1000 samples) from the test distribution gives
n = 3. With this size, POE with this size achieves 66.7%,
improving over POE with known nuisances (66.3%). DFL
with NGRAM-RAND of size 3, achieves 68.4%, closing
84% of the gap between ERM and known-nuisance DFL
(69.3%). We give results for all n-gram sizes in table 10 in appendix B; this table shows that both
POE and DFL beat ERM for all n-gram sizes.

Table 6: Worst-group and average test
accuracies of JTT on NLI. JTT with
PREM-MASK (PM) and NGRAM-RAND
(NR) outperforms vanilla JTT and ERM.

Worst-group Avg.

Vanilla JTT 71.3% 79.1%
JTT + PM 72.1% 79.9%
JTT + NR 74.3% 79.7%

ERM 67.9% −

JTT For JTT, we repeat the NLI experiment from Liu
et al. (2021), where the presence of a negation word in
the hypothesis sentence is the nuisance. The groups here
are subsets of the data that correspond to a value of the
label and whether or not there is a negation word in the
hypothesis. Vanilla JTT uses group annotations in the val-
idation data to tune the hyperparameters and early stop
training. For each n-gram size, we run JTT with NGRAM-
RAND for two values of the number of epochs of training
for the identification model: 2, 3. Following the hyper-
parameter selection procedure from Liu et al. (2021), for
each n-gram size, we give the results for the run with the higher validation worst-group accuracy.
We run vanilla JTT using the reported optimization hyperparameters from (Liu et al., 2021).

Table 6 gives the results. Selecting the size hyperparameter for NGRAM-RAND using validation
worst-group accuracy, like Liu et al. (2021) do for JTT, gives n = 1 with test worst-group accuracy
of 74.3%, better than vanilla JTT’s 71.3%. Additionally, table 11 shows that JTT using NGRAM-
RAND at every size or PREM-MASK perform better than both vanilla JTT (71.3%) and ERM (67.9%).

5 RELATED WORK

Spurious-correlation avoiding methods (SCAMs) like (Veitch et al., 2021; Clark et al., 2019; Puli
et al., 2022; He et al., 2019; Makar et al., 2022) assume the nuisance is available as additional
knowledge during training. Semantic corruptions offer a complementary approach to hand-crafting
nuisances or obtaining auxiliary labels, by capturing every nuisance that are separated from seman-
tics (e.g. local nuisances and global semantics). Liu et al. (2021) build the identification model in JTT
with ERM. When the identification model relies on semantics, upweighting misclassified samples
produces data with a different label-semantic relationship from the one in the training data. Models
trained on such data are suboptimal on test data with the same semantic relationship as the training
data. Using semantic corruptions reduces the identification model’s reliance on the semantics.

8



Under review as a conference paper at ICLR 2023

Sinha et al. (2021) use techniques like PATCH-RAND to restrict supports in self-supervised learning
and generative modeling. Carlucci et al. (2019) use PATCH-RAND images to encourage a model
to recover semantic structure. In contrast, we use PATCH-RAND to corrupt semantics and build
biased models that rely on the nuisances, which help build predictive models that avoid reliance
on nuisances. Work like (He et al., 2019; Puli et al., 2022) also use semantic corruptions without
pointing out the reliance on knowledge about semantic features in producing nuisances. He et al.
(2019) use the hypothesis as a nuisance to build a biased model for NLI; this is the masking based
semantic corruption PREM-MASK. Puli et al. (2022) focus on chest X-ray classification, and use the
out-of-body border of the X-ray as a nuisance; this is corrupting semantics via ROI-MASK.

Work like Bahng et al. (2020) uses CNNs with small receptive fields (RFs), to help capture local
nuisances. However, their method is typically limited to very small filters because at size 3x3, deep
neural networks like VGG detect non-local semantics like shapes. In contrast, the size choice in
PATCH-RAND has no bearing on the choice of the model; we used default vision models. Bras et al.
(2020) automatically identify and remove examples with nuisances using adversarial filtering, but
risk removing genuinely easy examples. Qin et al. (2021) work solely with vision transformers
and consider why labels can be predicted from transformations akin to patch-randomized images.
Concluding that this can only be due to nuisances, they propose to encourage the transformer to have
predictions and representations of the original images be dissimilar from those of patch-randomized
images. In contrast, our work applies to general flexible models and shows that semantic corruptions
can be used to break the label’s relationship with nuisances in the original images.

6 DISCUSSION

We study the use of semantic knowledge in building robust models. Given a procedure to corrupt
semantics, anything that predicts the label in the corrupted input is a nuisance. Using semantic
corruptions, practitioners can run different kinds of spurious-correlation avoiding methods (SCAMs)
(NURD, JTT, DFL, POE). With these semantic corruptions, methods like NURD and DFL perform
close to how they would with known nuisances, and methods like JTT perform better than how they
would when relying on ERM on the raw covariates to build a nuisance.

Limitations. The quality of any semantic corruption, and thus the quality of the results, depends
on the extent to which semantics are destroyed and nuisances are retained. PATCH-RAND and
NGRAM-RAND are built to corrupt global semantics and retain local nuisances, ROI-MASK to re-
tain nuisances outside the ROI and PREM-MASK to retain nuisances in hypothesis.

When applied to cases other than what they were built for, these methods may not destroy all the
semantics or retain all the nuisances and thus yield models that generalize. For example, when
PATCH-RAND is used blindly on covariates with local semantics, the biased model may rely on
said semantics; this in turn guides the predictive model to ignore these semantics and, thus, lose
predictive performance. Alternatively, when nuisances are global, PATCH-RAND may corrupt them.
For example in detecting cows and penguins, other nuisance animals (like dogs) may co-occur with
cows more often; PATCH-RAND would corrupt this nuisance animal. Using PATCH-RAND in a SCAM
for such tasks could lead to non-robust predictive models that rely on corrupted nuisances.

Our experiments show blind usage does not always lead to poor performance despite violations of
the separation that underlies the semantic corruption. In both classifying waterbirds and NLI, there
exist local semantics, like small beaks and individual words, that are not corrupted by PATCH-RAND
and NGRAM-RAND respectively. However, in our Waterbirds and NLI experiments, we show models
built using semantic corruptions close more than 80% of the gap in test performance between ERM
and the methods that use known nuisances. Similarly, ROI-MASK corrupts nuisances in the ROI
and retains semantics outside it. However, in both waterbirds and cardiomegaly detection, where
nuisances like hospital-specific tokens and background features lie in the ROI, ROI-MASK still helps
NURD close > 75% of the gap in test performance between ERM and NURD with a known nuisance.

Summary. Semantic corruptions power SCAMs to build models robust to spurious correlations
without requiring extra annotations in the form of known nuisances during training or relying on
hard to verify assumptions like ERM-trained models relying on nuisances. As discussed above,
our experiments point out that using semantic corruptions leads to improved robustness even under
violations of the separation assumptions they are built off of. These two properties indicate the value
of semantic corruptions as a way to build robust models.
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A FURTHER DETAILS ABOUT SPURIOUS-CORRELATION AVOIDING METHODs

NURD. Focusing on mitigating spurious correlations, Puli et al. (2022) identify a conditional that
has performance guarantees on every test distribution within a family of distributions with vary-
ing nuisance-label relationships: pte ∈ F . They develop NURD to learn the conditional using
data only from ptr ̸= pte. NURD uses 1) the nuisance-randomized distribution, p |= (y, z,x) =
p(y)p |= (z)p(x | y, z), where z |= p |=

y, and 2) an uncorrelating representation r(x) for which
z |= p |=

y | r(x). NURD builds models of the form p |= (y | r(x)) using r(x) that are most informa-
tive of the label.

We run reweighting-NURD, which uses a biased model ptr(y | z) as an importance weight to com-
pute loss under the nuisance-randomized distribution: p |= (y, z,x) =

ptr(y)
ptr(y | z)ptr(y, z,x).

To run reweighting-NURD with semantic corruptions, we replace ptr(y | z) with ptr(y | T (x)) for
a semantic corruption T (x). Semantic corruptions are noisy functions of x: with noise ϵ such that
(y, z,x) |= pD

ϵ, T (x) = U(x, ϵ). This implies

y |= p |=

ϵ | x =⇒ y |= p |=

x, ϵ | x =⇒ y |= p |=

T (x) | x

Thus, r(x) = x is uncorrelating and p |= (y | x) achieves the optimality guarantees in Puli et al.
(2022). These optimality guarantees imply that regardless of the test nuisance-label relationship,
p |= (y | x) will achieve optimal performance within the class of models like p |= (y | r(x)).

End-to-end bias mitigation. Mahabadi et al. (2019) consider two methods to train a biased model
ptr(y | z) and a base predictive model jointly to make the base model predict without relying on the
biases. The methods use and fine-tune a BERT model (Devlin et al., 2019) and do not propagate the
gradients of the biased model to update the common parameters (token embeddings in this case).
They propose 1) POE, where the log of the product of the predictions (the output probabilities) of
the two models is used to compute the classification loss and 2) DFL, where the biased model is used
to weight the cross-entropy loss for the base model.

The intuition for POE is that the samples for which the biased model classifies correctly will not
contribute to the gradients of the base model; thus the base model focuses more on classifying
samples that the biased model misclassifies. The DFL algorithm weights each sample as the biased
model’s predicted probability of all but the label, exponentiated with γ > 0. This downweights
samples that the biased model classifies correctly which in turn mitigates the base model’s reliance
on a nuisance which only helps predict the downweighted samples correctly.

Mahabadi et al. (2019) build the biased model as ptr(y | z) with known nuisances z. We replace
this model with ptr(y | T (x)) for a semantic corruption T (x).

Just Train Twice (JTT). JTT works in two stages: 1) build an "identification" model via ERM on
the training data to isolate samples that are misclassified due to reliance on the nuisances and 2) train
a model via ERM on data with the loss for the misclassified samples upweighted (by constant λ).

The identification model in JTT is built to be a biased model. When the identification model equals
ptr(y | z), it exactly misclassifies the samples in the groups in the minority group1. Upweighting
these samples produces a dataset with lesser dependence between the nuisance and the label. Then,
models learned on the upweighted data depend more on the semantic features.

In this work, we build the identification model on semantic corruptions i.e. we learn ptr(y | T (x)).
The training samples to be upweighted are the ones misclassified when predicting with the identifi-
cation model on semantic-corrupted versions of the sample, i.e. T (x). The second stage is run as in
(Liu et al., 2021) with training data.

B FURTHER EXPERIMENTAL DETAILS

See fig. 3 for an example of PATCH-RAND for chest X-rays.

1The minority group is the set of samples that the nuisance misclassifies. For example, when ptr(y = z) >
ptr(y ̸= z), then the minority group is the set of samples with y ̸= z because using only the nuisance feature
results in predicting y = b on samples with z = b.
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Figure 3: Example of PATCH-RAND of a chest X-ray image. The original image is the left most
followed by PATCH-RANDs with sizes 112, 56, 28, 14, 7, 2 respectively.

B.1 IMPLEMENTATION DETAILS

Each experiment in the paper was run on up to 2 RTX8000 GPUs. The hyperparameters for methods
which use known nuisances in the training data like NURD, POE, DFL are tuned on validation data
from the training distribution. We do the same when using semantic corruptions.

Experimental details for Waterbirds For the NURD setup, the training, validation, and test
datasets have 3020, 756, 800 samples respectively. We use a single architecture to parameterize
the predictive model and the weight model in this experiment: two fully connected layers on top
of a ResNet18 initialized at weights pretrained on Imagenet. We use the same training procedure
for NURD with known nuisances or with semantic corruptions. Both models are trained with cross-
entropy. The weight model is optimized with the default Adam optimizer for 20 epochs with a batch
size of 64. The predictive model is optimized with the Adam optimizer for 20 epochs with a learning
rate of 0.0002, a weight decay of 0.01, and a batch size of 250.

For the JTT setup, the training, validation, and test datasets have 4795, 1199, 5794 samples respec-
tively. For JTT, we use the same model and model parameters as Liu et al. (2021) using their released
code. We repeat the details here for completeness. The model for both stages of JTT is a ResNet-50.
Both models are optimized by stochastic gradient descent (SGD) with momentum 0.9, weight decay
1.0, and learning rate 1 × 10−5. Both models are trained for 300 epochs with batch size 64, using
batch normalization and no data augmentation. The identification model used to select samples to
upweight corresponds to epoch 60 and the upweighting constant is λ = 100.

Experimental details for cardiomegaly detection. The training, validation, and test datasets are
fixed across seeds and have 18000, 2000, 1000 samples respectively. To run reweighting-NURD, we
use a single architecture to parameterize the predictive model and the weight model in this exper-
iment: two fully connected layers on top of a ResNet18 initialized at weights pretrained on Ima-
genet. In known-nuisance NURD with the hospital as the nuisance, the biased model is an estimate
of ptr(y | hospital), which is obtained by binning the samples based on the hospital and averaging
the labels. We use the same training procedure for NURD with known nuisances or with semantic
corruptions. Both weight and predictive models are trained with cross-entropy. The weight model
and the predictive model are optimized with the Adam optimizer over 25 epochs with a batch size
of 256, and learning rate 0.001.

Implementation details for NLI For POE and DFL, we build classifiers by fine-tuning a pretrained
BERT model (Devlin et al., 2019) on the data. We follow the same training procedure and hyper-
parameter details as used in Mahabadi et al. (2019) — models were trained on the MNLI training
dataset which consists of 392k examples, with a learning rate of 2 × 10−5 with a batch size of 8
using the Adam Optimizer. All models are trained for 3 epochs. The development set contains 9815
examples and the HANS test contains 30000 examples. Since the HANS dataset has only two labels
— ‘entailment’ and ‘non-entailment’ — we combine the neutral and contradiction classes during
inference on HANS.

For the JTT setup, Liu et al. (2021) mix the training and development sets from MNLI and create
their own training, validation, and test sets of sizes 206175, 82462, 123712 respectively. For JTT,
we use the same model and model parameters as Liu et al. (2021) using their released code. We use
the optimal hyperparameters reported in Liu et al. (2021) for the learning rate, weight decay, and
the upweighting constant. We repeat the details here for completeness. The model for both stages
of JTT is a pretrained BERT model that is finetuned during training. Both models are optimized
by the AdamW optimizer with clipping for the predictive model, no weight decay, and an initial
learning rate of 2 × 10−5. Both models are trained for 5 epochs with batch size 32 and dropout.
The identification model used to select samples to upweight corresponds to epoch 2 for vanilla
JTT (reported optimal in Liu et al. (2021)); for JTT with semantic corruption, we select one from
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Table 7: Mean and standard error of test accuracy across 10 seeds of NURD on classifying water-
birds. Known-nuisance NURD uses a label for the type of background as the nuisance. Selecting the
size hyperparameter based on the average accuracy over 10 seeds on an evaluation dataset (200 sam-
ples) gives 14 for PATCH-RAND, 196 for ROI-MASK, 196 for FREQ-FILTER, and 0.2 for INT-FILTER.
Consider the gap between ERM and known-nuisance NURD. NURD with PATCH-RAND, ROI-MASK,
FREQ-FILTER, and INT-FILTER close 99%, 93%, 89%, 82% of the gap respectively. NURD with these
semantic corruptions outperforms ERM and NURD with RAND-CROP and GAUSS-NOISE. NURD with
all semantic corruptions outperforms ERM (69.2%).

known RM RM RM RM PR PR PR PR
z 196 168 140 112 7 14 28 56 ERM

Mean 87.2% 87.0% 87.6% 85.1% 85.5% 82.6% 86.0% 83.9% 80.4% 69.2%
Std. err. 1.0% 1.0% 1.8% 1.0% 1.6% 2.2% 1.5% 1.2% 2.0% 2.1%

FF FF FF FF IF IF IF IF
196 168 140 112 0.1 0.2 0.3 0.4

Mean 85.2% 82.6% 83.7% 80.1% 83.1% 84.0% 80.7% 78.7%
Std. err. 1.2% 1.6% 1.0% 1.5% 1.8% 1.9% 3.3% 3.4%

CROP CROP CROP CROP GAUSS GAUSS GAUSS GAUSS
56 28 14 7 0.01 0.25 1 4

Mean 81.9% 80.3% 74.9% 67.9% 75.8% 74.1% 78.0% 83.9%
Std. err. 1.5% 1.3% 1.5% 2.9% 3.2% 3.1% 3.4% 1.4%

2, 3 using validation group annotations. For both, the upweighting constant is λ = 6. Our runs
with these parameters did not yield the test worst-group accuracy reported in (Liu et al., 2021)
(72.6%); our experiments yielded a test worst-group accuracy 71.3%. We expect this may be due to
the differences in the random seed; JTT is sensitive to hyperparameters and differences in order of
batches may result in drops in performance.

In NGRAM-RAND, when the number of words in the sentence is not a multiple of n, there will be
one k-gram (k < n). In implementing NGRAM-RAND, we ensure that the position of this k-gram is
randomized i.e. we make sure that it does not always occur at the end of the sentence, for example.
NGRAM-RAND is implemented before word-piece tokenization (which BERT uses), to ensure that
we randomize words instead of subwords.

We also create a small HANS-like development set, which can be optionally used to tune the size
parameter. This set is constructed by randomly sampling 1000 examples from the HANS training
set, which does not have any overlap with the main HANS test set.

B.2 FULL RESULTS TABLES

We give the results for all size parameters; see table 7, table 8, table 9, table 11, and table 10. To
report the same metrics as in Mahabadi et al. (2019) for POE and DFL and Puli et al. (2022) for
NURD, we report standard error for NURD and standard deviation for POE and DFL .

Table 10: Average accuracies and standard deviation over 4 seeds of POE and DFL with semantic
corruptions on the HANS dataset. The results for known POE and DFL from Mahabadi et al. (2019),
where both methods use known nuisances. For both methods, selecting the size hyperparameter
based on the average accuracy on a small evaluation dataset (1000 samples) from the test distribution
gives n = 3. With this size, POE with NGRAM-RAND performs better than known-nuisance POE
while DFL with NGRAM-RAND closes 84% of the gap between ERM and known-nuisance DFL .

z POE DFL

Known 66.3± 0.6% 69.3± 0.2%
1-gram 65.7± 2.0% 66.5± 1.5%
2-gram 66.0± 0.9% 68.5± 0.7%
3-gram 66.7± 1.5% 68.4± 1.5%
4-gram 66.2± 2.9% 65.0± 2.0%

ERM − 63.6%.
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Table 8: Mean and standard error of test accuracy across 10 seeds of NURD on detecting car-
diomegaly from chest X-rays. Known-nuisance NURD uses the hospital as the nuisance. Selecting
the corruption parameters based on the mean accuracy over 10 seeds on an evaluation dataset (200
samples) gives 7 for PATCH-RAND, 196 for ROI-MASK, 196 for FREQ-FILTER, and 0.1 for the INT-
FILTER. Consider the gap between ERM and known-nuisance NURD. NURD with PATCH-RAND, ROI-
MASK, FREQ-FILTER, and INT-FILTER close 77%, 79%, 70%, 60% of the gap respectively. NURD
with PATCH-RAND, ROI-MASK, FREQ-FILTER outperforms ERM and NURD with RAND-CROP and
GAUSS-NOISE. NURD with PATCH-RAND and ROI-MASK outperforms ERM for all size parameters.

known RM RM RM RM PR PR PR PR
z 196 168 140 112 7 14 28 56 ERM

Mean 81.7% 77.2% 75.0% 74.4% 68.9% 77.5% 75.2% 72.2% 69.2% 62%
Std. err. 0.3% 0.8% 0.9% 1.3% 1.6% 0.6% 0.8% 1.3% 2.3% 2.0%

FF FF FF FF IF IF IF IF
196 168 140 112 0.1 0.2 0.3 0.4

Mean 75.6% 74.2% 70.4% 71.4% 73.9% 69.8% 61.8% 54.0%
Std. err. 1.3% 1.5% 2.0% 1.4% 0.9% 1.5% 3.2% 2.3%

CROP CROP CROP CROP GAUSS GAUSS GAUSS GAUSS
56 28 14 7 0.01 0.25 1 4

Mean 75.1% 71.2% 66.1% 67.9% 58.8% 49.0% 51.9% 51.1%
Std. err. 0.9% 1.2% 1.7% 1.9% 3.7% 2.8% 2.1% 2.3%

Table 9: Test worst-group accuracies of JTT with semantic corruptions on waterbirds. Selecting the
corruption hyperparameters on the validation worst-group accuracy gives size 14 for PATCH-RAND,
size 196 for ROI-MASK, size 112 for FREQ-FILTER, and threshold 0.4 for INT-FILTER. JTT with
these semantic corruptions outperforms ERM, vanilla JTT, and JTT with the baseline corruptions
RAND-CROP and GAUSS-NOISE. JTT with PATCH-RAND and ROI-MASK outperforms JTT with the
baseline corruptions and ERM at every patch/border-size.

Vanilla RM RM RM RM PR PR PR PR
JTT 196 168 140 112 7 14 28 56 ERM

86.5% 88.2% 88.0% 86.9% 86.2% 89.3% 89.0% 88.9% 89.1% 72%

FF FF FF FF IF IF IF IF
196 168 140 112 0.1 0.2 0.3 0.4

82.5% 84.5% 85.2% 87.2% 69.1% 80.0% 81.7% 87.0%

CROP CROP CROP CROP GAUSS GAUSS GAUSS GAUSS
56 28 14 7 0.01 0.25 1 4

59.1% 0.0% 0.0% 0.0% 0.0% 0.0% 71.0% 0.0%

Table 11: Worst-group and average test accuracies of JTT with semantic corruptions on NLI. JTT
with PREM-MASK and NGRAM-RAND of every size outperforms vanilla JTT. Selecting the size
hyperparameter for NGRAM-RAND using validation worst-group accuracy, like Liu et al. (2021) do
for vanilla JTT, gives n = 1. At this size, JTT with NGRAM-RAND outperforms vanilla JTT by 3%.

Worst-group Average

Vanilla JTT 71.3% 79.1%
PREM-MASK 72.1% 79.9%

1-gram 74.3% 79.7%
2-gram 71.9% 80.0%
3-gram 72.0% 80.1%
4-gram 73.4% 80.4%

ERM 67.9% −
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