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ABSTRACT

With the advancement of diffusion models, image generation has entered an era
of zero-shot image-to-image synthesis, where highly similar facial identities or
artistic styles can be produced using only a single portrait or artwork as input,
without requiring any model parameter fine-tuning. However, while these tech-
nologies offer significant benefits to artistic creation, they simultaneously intro-
duce non-negligible risks associated with right infringement, such as the unau-
thorized forgery of facial identities and the plagiarism of artistic styles. To ad-
dress these risks, this paper proposes Anti-Adapter Armor, the first universal
and authentication-integrated framework designed to protect personal images
against unauthorized zero-shot image-to-image generation. We begin by ana-
lyzing how existing zero-shot image-to-image methods utilize image encoders
to convert input images into embeddings, which are injected into the diffusion
model’s UNet via cross-attention. Based on this, we develop a reversible encryp-
tion framework that transforms original image embeddings into diverse encrypted
forms based on different passwords. Authorized users can recover the original em-
beddings using the decryptor and correct passwords for normal image generation.
To achieve protection, we propose a multi-targeted adversarial attack that trans-
fers the original image embeddings into the encrypted forms by adding adversarial
perturbation. Therefore, the protected images are equipped with a protective coat-
ing that restricts unauthorized users to generating encrypted content exclusively.
Extensive experiments show that our approach outperforms state-of-the-art pro-
tection methods in preventing unauthorized zero-shot image-to-image generation,
while enabling adaptable and secure authentication for authorized users.

1 INTRODUCTION

With the development of diffusion models, image generation has evolved from early text-to-image
methods Rombach et al. (2022) to the current framework that supports multimodal conditional in-
puts, in which text and visual inputs jointly guide the generation process. Recently, many zero-shot
image-to-image generation approaches are proposed, which can synthesize highly similar facial
identities or artistic styles with only a single portrait or artwork as input. Unlike fine-tuning diffu-
sion models, these approaches do not alter the pre-trained parameters of diffusion models. Instead,
they inject the key information of reference images into diffusion models in a plug-and-play man-
ner, thereby offering substantial convenience to AI-generated content (AIGC) creators. However,
despite their widespread adoption, these technologies have also introduced security risks associated
with image contents. The primary concern lies in copyright infringement: unauthorized synthesis
of facial identity and artistic style may violate individuals’ rights to their portrait and artists’ in-
tellectual property rights. Moreover, the generation of sensitive or harmful content using personal
portraits could lead to adverse societal consequences. For this concern, although deepfake detection
technology has made significant progress, it remains reactive, addressing problems only after they
occur. Therefore, to protect personal images from unauthorized zero-shot image-to-image gener-
ation, there is an urgent need to develop a proactive protection mechanism that establishes AIGC
usage permissions at the source of image generation.
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Figure 1: When publishing the original image without
protection, diffusion models can easily imitate the con-
tent via just one image (the second column). After ap-
plying Anti-Adapter Armor (the third column), unau-
thorized users cannot generate the target content (the
fourth column) while authorized users can generate in-
tended images through a password-based authentication
(the fifth column).

Compared to fine-tuning diffusion mod-
els, the zero-shot image-to-image gener-
ation approaches treat images in a sim-
ilar way as text prompts. These ap-
proaches use an image encoder to ex-
tract image embeddings and incorporate
an additional cross-attention module
that decouples the embeddings of text
and image prompts. In practical scenar-
ios, such methods can replicate the tar-
get facial identity or artistic style using
only a single image as reference. Com-
pared to fine-tuning-based approaches,
these zero-shot methods present a more
significant risk, as unauthorized users
can achieve their goals with just one
image, which is considerably easier to
obtain than the larger dataset required
for fine-tuning. Therefore, prevent-
ing unauthorized generation with zero-
shot image-to-image methods requires
increased attention, as no universal and
flexible solution has yet been developed
to address this challenge. Recently,
Song et al. Song et al. (2025) propose IDProtector, a data poisoning-based method tailored to facial
identity protection. However, IDProtector has two significant limitations: (1) this method is irre-
versible, and even trusted parties cannot recover the true identity, thereby limiting its flexibility; (2)
it focuses exclusively on unauthorized identity forgery while overlooking the other critical issue in
real scenarios: style plagiarism of artworks. Additionally, this method is closed-source.

To safeguard personal images from being forged or plagiarized by unauthorized zero-shot image-to-
image generation methods, this paper begins by systematically analyzing the major challenges in this
scenario. There are two primary challenges which remain insufficiently addressed: (1) Universality:
The protection solution should be effective across various zero-shot image-to-image methods and di-
verse threat scenarios such as identity forgery and artistic style plagiarism. (2) Authentication: The
image owner holds the authority to define permitted usage scenarios. While image post-processing
operations can remove added protection information from protected images, unauthorized users
may also exploit this technique. Therefore, the protection solution must exhibit robustness against
common post-processing techniques while permitting authorized users to produce intended outputs
securely.

To address these challenges, this paper proposes Anti-Adapter Armor, the first universal and
authentication-integrated framework against unauthorized zero-shot image-to-image generation.
As shown in Fig. 2, the framework first encrypts the original image embeddings required by zero-
shot image-to-image generation methods. Then, a protective coating related to the encrypted em-
beddings are added to the original image through the proposed multi-targeted adversarial attack.
Consequently, unauthorized users cannot replicate the original content based on the protected im-
age, while authorized users can recover the original embeddings for intended generation using the
correct decryption password. The protection results are shown in Figure 1. The main contributions
of this work include:

• We propose the first universal and authentication-integrated framework for preventing
unauthorized zero-shot image-to-image generation.

• The proposed framework provides flexible access control through password-based authen-
tication, allowing different passwords to generate diverse protected images.

• The proposed framework shows superior universality across various tasks and diverse fine-
tuning methods.
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(b) Our Solution: Anti-Adapter Armor
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Figure 2: (a) the threat scenario of this paper: personal images can be imitated by zero-shot image-
to-image generation based on diffusion models. (b) the proposed solution (the red box): adding a
protective coating to the original images, ensuring universal and authentication-integrated.

2 RELATED WORK

2.1 ZERO-SHOT IMAGE-TO-IMAGE GENERATION BASED ON DIFFUSION

Fine-tuning technologies for diffusion models, which involve optimizing all or part of the model
parameters using a small-scale dataset, enable the generation of content that closely resembles the
images used during fine-tuning. However, these methods still require multiple images representing
a specific character or style, such as LoRA Hu et al. (2022), DreamBooth Ruiz et al. (2023), Textual
Inversion Gal et al. (2022), and Custom Diffusion Kumari et al. (2023). Nevertheless, acquiring
such multiple images is often challenging in practice. To address this, zero-shot image-to-image
generation methods have been developed, requiring only a single image to produce similar content.
These methods use an image encoder to extract embeddings from the single reference image and
a cross-attention module to integrate them into specific UNet layers. For general generation, IP-
Adapter Ye et al. (2023) employs CLIP Radford et al. (2021) as the image encoder. For facial identity
generation, IP-Adapter Faceid Ye et al. (2023) and Instant-ID Wang et al. (2024) encode embeddings
through pretrained ArcFace Deng et al. (2019) models. Recent methods such as Photomakerr Li et al.
(2024), PULID Guo et al. (2024), and StoryMaker Zhou et al. (2024) further integrate both CLIP
and ArcFace encoders to enhance identity preservation. Compared to fine-tuning, these zero-shot
methods alleviate the necessity of acquiring multiple fine-tuning images, thereby enhancing their
practical applicability.

2.1.1 IMAGE PROTECTION FOR DIFFUSION MODELS

The growing use of fine-tuning technologies in diffusion models has raised increasing concerns
about the unauthorized use of personal images. To address this risk, numerous methods have been
proposed to protect copyrighted content, such as artistic styles Shan et al. (2023) and facial identi-
ties Van Le et al. (2023), from being reproduced by fine-tuning. Adv-DM (mist) Liang et al. (2023)
targets the fine-tuning of diffusion models to output a predefined noisy image by adding pixel-level
adversarial perturbations to original images. CAAT Xu et al. (2024) demonstrates that subtle pertur-
bations in the attention mechanism can induce strong fine-tuning misdirection. Pretender Sun et al.
(2025) proposes an adversarial training framework to effectively mislead downstream fine-tuning
processes, demonstrating universality across various fine-tuning methods. ACE Zheng et al. (2023)
introduce a unified target to guide perturbation optimization consistently across both the forward
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encoding and reverse generation processes, effectively addressing the offset problem in this field
and enhancing protection stability and transferability. Nightshade Shan et al. (2024) implements a
prompt-specific poisoning approach to mislead text-to-image models to generate incorrect results.
For anti-plagiarism of artistic style, Glaze Shan et al. (2023) proposes an optimization-based cloak-
ing algorithm to obstruct the learning and replication of artistic style by diffusion models. For de-
fending specific fine-tuning methods, Anti-DreamBooth Van Le et al. (2023) embeds imperceptible
noise into training images to prevent fine-tuning by DreamBooth. In preventing zero-shot image-to-
image generation, IDProtector Song et al. (2025) introduces a unified model that adds adversarial
perturbations to disrupt the image encoders used by such methods.

3 METHODOLOGY

3.1 THREAT SCENARIO

This section presents the real-world threat scenario faced by sharing personal images. We define
three key parties involved: (1) Bob, (2) Alice, and (3) Eva. The specific objectives of each party are
outlined as follows:

• Bob: as shown in Figure 2, Bob is the images’ owner who hopes to publicly share his
personal portraits or paintings. For the authorized party Alice, Bob permits the use of
zero-shot image-to-image generative models to create derivative works from his images. In
contrast, the unauthorized party Eva is prohibited from using such models to replicate his
images.

• Alice: the authorized party with rights to use Bob’s images. Given the correct password,
Alice can recover the original image embeddings, enabling normal usage.

• Eva: the unauthorized adversary attempting illicit usage. As shown in Figure 2 (b), Eva
may try to remove the protection solution by applying post-processing operations to Bob’s
images. Furthermore, in a more dangerous scenario, Eva obtains the decryption tool and
attempts to guess the password to recover the original embeddings.

3.2 PIPELINE OF ANTI-ADAPTER ARMOR

Based on the above analysis, existing zero-shot image-to-image generation methods generally em-
ploy an image encoder to extract image embeddings, and incorporate an additional cross-attention
module to decouple the projected image embeddings from the text prompt embeddings. Therefore,
the core idea of our solution is to disrupt the original embeddings of images, making them devi-
ate from the initial form. To achieve this objective, Anti-Adapter Armor consists of two sequential
stages: (1) embeddings encryption and (2) protective coating generation. We define the image
encoder as IE, the diffusion model as DM, the proposed encryptor as Enc, the password as Pcrt,
the original image as Iori, and the image embeddings as E . The password and the embeddings to be
encrypted have the same dimension.

3.2.1 STAGE-1: EMBEDDINGS ENCRYPTION

Overall Pipeline: The image encoder IE is first used to extract original image embeddings Eori.
Subsequently, Eori are encrypted into Eenc by encryptor Enc, with the requirement that the similar-
ity between Eenc and Eori be as low as possible. This process can be formulated as:

Eenc = Enc(Eori,Pcrt), (1)

where Eori = IE(Iori). For the authorized user Alice, the encrypted embeddings Eenc can be
decrypted into Edec using the decryptor Dec and the correct password Pcrt. This process achieves
authentication for authorized users, which can be formulated as:

Edec = Dec(Eenc,Pcrt). (2)

Architecture of Encryptor and Decryptor: As illustrated in Figure 3, both the encryptor Enc
and decryptor Dec are trainable models sharing the same architecture but differ in their parameters.
The proposed encryptor and decryptor are composed of a self-attention module, a cross-attention
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Figure 3: The details of the encryptor and decryptor. We omit layer normalization operation here.

module, and a fully connected layer. The cross-attention module enables the encrypted results to be
dependent on the corresponding passwords.

Optimization Objectives: The primary optimization objectives involve minimizing the similarity
between encrypted embeddings Eenc and original embeddings Eori, while simultaneously maxi-
mizing the similarity between decrypted embeddings Edec and the original embeddings Eori. To
achieve these objectives, we propose an encryption loss Lenc and a decryption loss Ldec based on
cosine similarity CosSim inspired by facial de-identification Li et al. (2023); Gu et al. (2020);
Cao et al. (2021), which guide the joint training of the encryptor and decryptor. When training, we
randomly generate n+1 passwords that includes one correct password Pcrt and n wrong password
Pwrg i, i={0, 1, ..., n-1}. The loss functions are formulated as follows:

Lenc =CosSim(Enc(Eori,Pcrt), Eori) +
n−1∑
i=0

CosSim(Enc(Eori,Pwrg i), Eori), (3)

Ldec = 1−CosSim(Dec(Eenc crt,Pcrt), Eori), (4)
where Eenc crt=Enc(Eori,Pcrt). The range of cosine similarity is restricted between 0 and 1 to
ensure the non-negativity. Furthermore, to prevent unauthorized users from recovering the original
embeddings using random passwords, we propose Lwrg as follows:

Lwrg =

n−1∑
i=0

CosSim(Dec(Eenc crt,Pwrg i), Eori). (5)

To enhance the diversity of encryption and decryption results, we propose Ldiv . For each iterative
optimization, the batch size is b. Thus, there are a total of n+1 encrypted embeddings and n wrong
decrypted embeddings in each iteration. We re-number the above b× (2n+1) embeddings as from 0
to N , where N=b× (2n+1)-1. Ldiv is formulated as follows:

Ldiv =
1

2

N∑
k=0

N∑
j=0

CosSim(Ek, Ej), s.t.k ̸= j. (6)

This loss function enforces diverse encryption and decryption results when different passwords are
applied, while ensuring that distinct original embeddings do not generate similar encrypted or de-
crypted results with different passwords.

Finally, to prevent similarity in encryption and decryption results when the same password is ap-
plied to different original embeddings, we introduce Ldiv s. Specifically, in each iteration, for each
original embedding in the same batch, two fixed passwords, Penc and Pdec, are respectively used
for encryption and decryption. Ldiv s is formulated as follows:

Ldiv s =
1

2

b−1∑
k=0

b−1∑
j=0

CosSim(Eenck, Eencj) +
1

2

b−1∑
k=0

b−1∑
j=0

CosSim(Edeck, Edecj) s.t.k ̸= j, (7)

where Eenc and Edec represent the encrypted embeddings with Penc and the decrypted embeddings
with Pdec, respectively. In conclusion, the total loss function is the sum of the above-mentioned loss
functions weighted by λi:

L = λ1Lenc + λ2Ldec + λ3Lwrg + λ4Ldiv + λ5Ldiv s. (8)

5
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Table 1: Comparison results of facial identity protection and artwork anti-plagiarism tasks against
SOTA methods. ISM: identity similarity between generated and original faces, AFR: abnormal face
rate, ESM: embedding similarity between protected and original artworks. “specific” refers to the
consideration of only a single type of image encoder, whereas “general” considers all types of image
encoders. The best and second-best results are marked by red and blue.

Method
Face Identity Protection Artwork Anti-Plagiarism

IP-Adapter Faceid Instant-ID IP-Adapter IP-Adapter Plus
ISM↓ AFR↑ PSNR↑ ISM↓ AFR↑ PSNR↑ ESM↓ PSNR↑ LPIPS↓ ESM↓ PSNR↑ LPIPS↓

No Protect 1.0 0.00 NA 1.0 0.00 NA 1.0 NA NA 1.0 NA NA
Pretender 0.8691 0.01 30.08 0.8721 0.02 30.08 0.8164 30.09 0.1307 0.7393 30.09 0.1307
Adv-DM 0.8975 0.01 29.43 0.9092 0.01 29.43 0.8438 28.05 0.1488 0.7538 28.05 0.1488

ACE 0.9302 0.04 27.00 0.9346 0.02 27.00 0.7920 26.71 0.2042 0.7244 26.71 0.2042
CAAT 0.9561 0.05 32.08 0.9600 0.02 32.08 0.8467 32.55 0.1260 0.7326 32.55 0.1260

ours(specific) 0.0514 0.15 30.01 -0.011 0.16 30.26 0.0161 30.62 0.1109 0.2390 29.01 0.1505
ours(general) 0.1422 0.07 32.10 0.0685 0.19 32.10 0.1175 30.81 0.0980 0.2713 30.81 0.0980

3.2.2 STAGE-2: PROTECTIVE COATING GENERATION

Overall Objectives: In the second stage, we generate a protective coating on the original image
Iori by optimizing imperceptible perturbations δ. The adversarial perturbation budget is denoted by
ϵ. The generation process of protected image Ipro can be formulated as:

Ipro = Iori + δ

s.t. max(CosSim(IEi(Ipro), Etar i))

and |δ| ≤ ϵ, i = {0, 1, ...,m− 1},
(9)

where Etar i denotes the encrypted embedding associated with the image encoder employed by the
ith zero-shot image-to-image method. There are a total of m encoders.

Robust Multi-targeted Adversarial Attack: As shown in Eq. 9, the objective of protective coating
generation is to modify the original image embeddings Eori to the encrypted embeddings Etar i with-
out significantly altering the original image quality. This process faces two primary challenges: (1)
unauthorized adversaries may employ more than one zero-shot image-to-image generation methods,
necessitating that the protective coating exhibits universality across various image encoders utilized
in these methods; (2) unauthorized adversaries may attempt to erase the protective coating through
image processing operations, such as blurring and noise addition. To effectively tackle these chal-
lenges, this paper proposes a robust multi-targeted adversarial attack method based on Fast Gradient
Sign Method (FGSM).

To achieve universality, we design a multi-targeted adversarial loss function Lmt as follows:

Lmt =
m−1∑
i=0

1−CosSim(Epro i, Etar i), (10)

where Etar i=Enci(IEi(Iori),P) and Epro i=IEi(Ipro). Then, the perturbations δ are updated by
the gradients ∇ of Iori:

δ = δ − σ ∗ ∇Iadv
Lmt. (11)

The range of δ is restricted between −ϵ and +ϵ. To enhance robustness, we add differentiable image
processing operations diff distortion in each iteration. The above procedure is repeated until the
similarity surpasses the predefined threshold ths. This algorithm is detailed in Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset: We evaluate the proposed approach on two typical tasks: facial identity protection and
artwork anti-plagiarism. For facial identity protection, we use CelebA Liu et al. (2015) for training
and 200 facial images from FFHQ Karras et al. (2019) for testing. All images are normalized to
112 × 112 by face alignment. For artwork anti-plagiarism, we select 25,769 painting images from
Wikiart Saleh & Elgammal (2015) as the training dataset and 50 painting images unseen in the
training phase for test.

6
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Figure 5: Robustness results of face identity protection and artwork anti-plagiarism.

Implementation Details: In experiments, we select two distinct zero-shot image-to-image gener-
ation methods for each task (m=2 in Eq. 9). In the case of facial identity protection, IP-Adapter
FaceID Ye et al. (2023) based on SD-1.5 and Instant-ID Wang et al. (2024) based on SDXL are se-
lected. These methods use the same image encoder (ArcFace Deng et al. (2019)) but differ in terms
of their pre-trained models. For artwork anti-plagiarism, we choose IP-Adapter Ye et al. (2023)
and IP-Adapter-Plus Ye et al. (2023), which utilize different layers of the embeddings encoded by
CLIP Radford et al. (2021). We train a pair of encryptor and decryptor for each image encoder. For
the hyperparameter settings, we set the loss weights λ1 to 1, λ2 to 5, λ3 to 1, λ4 to 1, and λ5 to 1.
The similarity threshold ths is set to 0.75 and 0.65 for two tasks, respectively. The budget ϵ is set to
11
255 and 21

255 , respectively. All experiments are conducted on two NVIDIA 4090 GPUs.

4.2 COMPARATIVE RESULTS

Faceid Instant-ID IP-Adapter IP-Adapter+Reference Reference
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Figure 4: Visualization results of comparative ex-
periments. “Reference” denotes the image prompt
provided as input to FaceID/Instant-ID/IP-Adapter/IP-
Adapter Plus. “No Protect” represents the original im-
ages without any protection.

We compare Anti-Adapter Armor with
four state-of-the-art open source meth-
ods: Pretender Sun et al. (2025), Adv-
DM Liang et al. (2023), ACE Zheng
et al. (2023), and CAAT Xu et al.
(2024). These methods are tailored to
protect images from being utilized to
fine-tune diffusion models. For facial
identity protection, we employ the iden-
tity cosine similarity (ISM) and abnor-
mal face rate (such as occlusion and ab-
normal patterns in Figure 6) of gener-
ated images (AFR) as metrics. A lower
ISM value combined with a higher AFR
value indicates a more effective pro-
tection performance. For artwork anti-
plagiarism, the embeddings cosine simi-
larity (ESM) is utilized to assess the pro-
tection effectiveness. In addition, we ex-
ploit LPIPS Zhang et al. (2018) to eval-
uate the visual quality of protected im-
ages. For fair comparison, the PSNR of
protected images across these methods are kept around 30. As shown in Table 1, our approach
demonstrates universality across various zero-shot image-to-image generation methods and tasks,
thereby safeguarding images against unauthorized generation. In contrast, existing methods are tai-
lored to defend fine-tuning diffusion models, exhibiting limited generalization capacity to zero-shot
methods. We present visualization results in Figure 4.

4.3 ABLATION STUDY

As shown in Table 2, the ablation experiments are divided into two parts. The diversity is defined as
the cosine similarity of two embeddings.
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Figure 6: The visualization results of encryption and decryption performance. More visualization
results are presented in Appendix. Text prompts: “a young woman in white T-shirt in a garden” and
“best quality, high quality, a wooden house in forest”.

Table 2: Ablation study of different components. “Diversity Same pwd” represents the cosine sim-
ilarity of embeddings encrypted by the same password for different images. “Wrong Dec Rate”
represents the success rate of recovering original embeddings by random passwords. The cosine
similarity threshold for successful recovery is set to 0.8.

Facial Identity Protection Artwork Anti-Plagiarism

Sub-Table Model Encrypt
Diversity↓

Decrypt
Diversity↓

Diversity
Same pwd↓

Wrong
Dec Rate↓

Encrypt
Diversity↓

Decrypt
Diversity↓

Diversity
Same pwd↓

Wrong
Dec Rate↓

Part 1
w/o Ldiv ,Ldiv s 0.9849 0.9995 0.9993 0.0 0.4563 0.9927 0.9160 0.0

w/o Ldiv s -0.0137 0.0100 0.9958 0.0 0.0253 0.0159 0.9788 0.0
with Ldiv ,Ldiv s 0.0232 0.0468 0.0361 0.015 0.082 0.086 0.5891 0.05

Method Specific
Similarity↓

Unseen
Similarity↓ PSNR↑ Time(s)↓ Specific

Similarity↓
Unseen

Similarity↓ PSNR↑ Time(s) ↓

Part 2 w/o Lmt 0.02 0.2946 30.14 25.13 0.1276 0.5128 29.82 220.90
with Lmt 0.1054 0.1054 32.10 40.03 0.1944 0.1944 30.81 480.55

Part 1: Encryption and Decryption. In this part, we evaluate the effect of Ldiv and Ldiv s. The
first sub-table in Table 2 demonstrates that Ldiv can substantially enhance the diversity of the en-
crypted and decrypted results across various passwords. Furthermore, with the help of Ldiv s, the
results conditioned on the same password can also exhibit substantial diversity as measured by “Di-
versity Same pwd”. We also evaluate the security of our approach by wrong decryption rate which
represents the successful rate of decrypting with random passwords. Due to the balance require-
ment between diversity and encryption/decryption performance, the introduction of Ldiv and Ldiv s

slightly increases the security risk of random password attack. The maximum wrong decryption rate
remains as low as 5%, which has slight impact on the overall security of the proposed method.

Part 2: the Impact of Lmt. Finally, we conduct ablation experiments for Lmt in the proposed multi-
targeted adversarial attack. In the third sub-Table of Table 2, “w/o Lmt” represents m = 1 in Eq. 9
and “with Lmt” represents m = 2 in Eq. 9. The metric “Specific Similarity” is the cosine similarity
of embeddings extracted by the utilized image encoder which is different in the case of “w/o Lmt”.
The metric “Unseen Similarity” corresponds to the cosine similarity of embeddings extracted by
other image encoders which is not considered in the case of “w/o Lmt”. The lower the values of
these two metrics, the greater the distinction between the protected images and their original forms.
These results demonstrate that Lmt can enhance the generalization capacity of protected images
against various zero-shot image-to-image generation methods.

4.4 ROBUSTNESS EVALUATION

This section evaluates the robustness against potential posting-processing operations applied by
unauthorized users. We consider three categories of common image distortions that cannot im-
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pair generation quality: Gaussian noise, Gaussian blur, and JPEG compression. In the experiments
of robustness evaluation, we select Gaussian noise, Gaussian blur, and JPEG compression as the
post-processing operations. The mean and standard deviation of Gaussian noise are 0 and 0.01, re-
spectively. The kernel size and standard deviation of Gaussian blur are 3 × 3 and 0.4. The quality
factor of JPEG compression is 0.9.

Table 3: Robustness evaluation under different distor-
tions. The results denote the cosine similarity of em-
beddings between original images and distorted protected
images. “Clean” represents protected images without dis-
tortions.

Type Faceid Ins-ID IP-Ada IP-Ada+

Clean 0.0514 -0.0110 0.0107 0.2523
Noise 0.1678 0.1742 0.1852 0.3864
Blur 0.1407 0.1285 0.0553 0.2890
JPEG 0.3682 0.3882 0.6870 0.6675

The above settings are justified by two
key factors: (1) these operations are
common image processing techniques
that do not require the execution of
complex programs and can be easily
performed using smartphone or user-
friendly software. (2) serious distortion
may compromise the inherent content
of images, resulting in outputs that are
blurred or contain artifacts, which is un-
desirable for unauthorized users. The
robustness results presented in Table 3
indicate that our protection solution is
resilient enough to Gaussian noise and
Gaussian blur because we augment the
pipeline of multi-targeted adversarial attack by adding differentiable image processing operations in
iterations. For JPEG compression, the robustness of our approach is lower compared to the other
two types of distortions, which suggests that the introduced adversarial perturbations are fragile
to discrete cosine transform and quantization operations. We present some visualization results in
Figure 5.

4.5 PERFORMANCE OF ENCRYPTION AND DECRYPTION

Table 4: Effects of encryption and decryption. Diversity is
evaluated by computing the cosine similarity of embeddings
encrypted or decrypted by different passwords. Lower sim-
ilarity represents better diversity.

Model Encrypt
Effect↓

Decrypt
Effect↑

Encrypt
Diversity↓

Decrypt
Diversity↓

Faceid -0.0320 0.9927 0.0203 0.0434
Ins-ID -0.0544 0.9725 0.0591 0.0966
IP-Ada. -0.0244 0.9312 0.0509 0.1230
IP-Ada+ -0.0067 0.9217 0.1120 0.0612

As the first authentication-integrated
framework in this field, our approach
can decrypt the encrypted embed-
dings to their original form with a
correct password. As described in
optimization objectives, the primary
objective of the encryptor is to max-
imize the similarity between the en-
crypted embeddings and the original
embeddings, whereas the decryptor
aims to recover the encrypted embed-
dings that are as close as possible to
the original ones. We evaluate the ef-
fectiveness of encryptor and decryp-
tor through the cosine similarity be-
tween the encrypted/decrypted embeddings and the original embeddings. For diversity, we define
encryption and decryption diversity as the cosine similarity between embeddings generated from the
same input following encryption and decryption processes using different random passwords. Ta-
ble 4 indicates that our approach achieves good performance on encryption effect, decryption effect,
encryption diversity, and decryption diversity. We present visualization results in Figure 6.

5 CONCLUSION

This paper introduces Anti-Adapter Armor, the first universal and authentication-integrated frame-
work designed to prevent unauthorized zero-shot image-to-image generation. Experiments show
our method effectively defends against various zero-shot generation techniques across tasks, prov-
ing its broad applicability. It also allows authorized users to recover original embeddings using
password-based authentication. Future work will focus on improving robustness and visual quality.

9
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

For facial identity protection, Faceid uses the buffalol-pretrained model of ArcFace Deng et al.
(2019) and Instant-ID uses the antelopev2-pretrained model of ArcFace. The embedding dimension-
ality of ArcFace is 1 × 512. For artwork anti-plagiarism, IP-Adapter uses the embedding encoded
by CLIP, which is a 1× 1024 tensors. IP-Adapter Plus uses the hidden state of CLIP Radford et al.
(2021), which is a 1280 × 768. To save computing resources, we randomly sample b row vectors
from the 1280 row vectors corresponding to one image for one iteration. In the experiments, b is set
to 32 and 8 for the two tasks, respectively.

A.2 ALGORITHM DETAILS OF ROBUST MULTI-TARGETED ADVERSARIAL ATTACK

A.3 MORE VISUALIZATION RESULTS OF ABLATION STUDY

We present more visualization results of ablation study in Figure 7 and Figure 8. In Figure 7, The
results of the same item across different images are obtained by the same passwords. For instance,
“enc1” across “img1” and “img2” are encrypted by the same passwords. “enc1” and “enc2” denote
the encrypted results using two distinct passwords. “dec1” and “dec2” denote the decrypted results
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Algorithm 1 Robust Multi-targeted Adversarial Attack
Input: Iori, Etar i, i = {0, 1, ..,m-1}
Output: Ipro

1: δ = 0, iter = 0, Ipro = Iori
2: while CosSim(Epro i, Etar i) > ths do
3: Ipro = Iori + δ
4: Ipro = diff distortion(Ipro)
5: for i ∈ [0,m-1] do
6: Epro i = IEi(Ipro)
7: end for
8: Lmt =

∑n−1
i=0 1−CosSim(Epro i, Etar i)

9: δ = δ − σ ∗ ∇Iadv
Lmt

10: δ = clip(δ,min=−ϵ,max=+ϵ)
11: end while
12: return Outputs

using two distinct and random passwords. As shown in Figure 7 (b), the loss function Ldiv enhances
the diversity of encrypted and decrypted results using different passwords (“enc1” vs “enc2”, “dec1”
vs “dec2”). The loss function Ldiv s improves the diversity of encrypted and decrypted results using
the same password for different images (“enc1”/“enc2”/“dec1”/“dec2” across “img1” and “img2”).

As shown in Figure 8, the loss function Lmt enhances the universality across various zero-shot
image-to-image generation methods.

A.4 MORE VISUALIZATION RESULTS OF ENCRYPTION AND DECRYPTION

We present more visualization results of encryption and decryption in Figure 9 and Figure 10.

enc1 enc2 dec1 dec2reference

im
g1

im
g2

im
g1

im
g2

im
g1

im
g2

enc1 enc2 dec1 dec2reference

(a) �/� ���� + ����_�

(b) �/� ����_�

(c) ���� ���� + ����_�

Figure 7: More visualization results of ablation study on loss functions of encryption and decryption.
The results of the same item across different images are obtained by the same passwords. For
instance, “enc1” across “img1” and “img2” are encrypted by the same passwords. “enc1” and
“enc2” denote the encrypted results using two distinct passwords. “dec1” and “dec2” denote the
decrypted results using two distinct and random passwords.
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reference Faceid Faceid FaceidInstant-ID Instant-ID Instant-ID

(a) w/o ��� (Faceid) (b) w/o ��� (Instante-ID) (c) with ���

Figure 8: More visualization results of ablation study on multi-targeted loss function. (a) Minimizes
cosine similarity only in the Faceid embedding domain. (b) Minimizes cosine similarity only in
the Instant-ID embedding domain. (c) Minimizes cosine similarity in both Faceid and Instant-ID
embedding domains.

A.5 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation was involved. All datasets used, including CelebA, FFHQ, and Wikiart, were sourced
in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
information was used, and no experiments were conducted that could raise privacy or security con-
cerns. We are committed to maintaining transparency and integrity throughout the research process.

A.6 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The ex-
perimental setup, including training steps, model configurations, and hardware details, is described
in detail in the paper. Additionally, the datasets used in this paper, such as CelebA, FFHQ, and
Wikiart, are publicly available, ensuring consistent and reproducible evaluation results. We believe
these measures will enable other researchers to reproduce our work and further advance the field.

A.7 STATEMENT OF THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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Figure 9: More visualization results of encryption and decryption performance. Text prompts: “a
young woman in white T-shirt in a garden”.
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Figure 10: More visualization results of encryption and decryption performance. Text prompts:
“best quality, high quality, a wooden house in forest”.
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