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Abstract

White Matter (WM) lesions, commonly observed as
hyperintensities on FLAIR MRIs or hypointensities
on T1-weighted images, are associated with
neurological diseases. The spatial distribution
of these lesions is linked to an increased risk of
developing neurological conditions, emphasizing
the need for location-based analyses. Traditional
manual identification and localization of WM
lesions are labor-intensive and time-consuming,
highlighting the need for automated solutions. In
this study, we propose novel deep learning-based
methods for automated WM lesion segmentation
and localization. Our approach utilizes state-
of-the-art models to concurrently segment WM
lesions and anatomical WM regions, providing
detailed insights into their distribution within the
brain’s anatomical structure. By applying k-means
clustering to the regional WM lesion load, distinct
subject groups are identified to be associated
with various neurological conditions, validating
the method’s alignment with established clinical
findings. The robustness and adaptability of our
method across different scanner types and imaging
protocols make it a valuable tool for research and
clinical practice, offering potential improvements in
diagnostic efficiency and patient care. Codes and
refined atlas utilized in this study are available at
https://github.com/juliamachnio/WMHLocalization.

1 Introduction

White matter hyperintensities (WMH) are patholog-
ical changes in white matter that typically appear
as hyperintensities on FLAIR images or hypointensi-
ties on T1-weighted MRIs [1]. The total WMH load,
which is the volume of WM lesion in mm3, increases
with age and is recognized as an early indicator of
neurological diseases such as Alzheimer’s disease [2],
dementia [3], and ischemic stroke [4]. Accurate di-
agnosis requires not only lesion detection but also
quantification of their volume, shape, geometry, and
location, alongside the patient’s clinical symptoms
[5–8]. However, manual lesion quantification per-
formed by experienced clinicians is time-consuming
and labor-intensive, underscoring the need for auto-
mated WM lesion segmentation and localization to

streamline diagnosis and prognosis.
Recent studies have highlighted the critical rela-

tionship between the location of WM lesions and
the future risk of developing neurological diseases,
prompting a shift in research towards location-
specific analysis [9]. However, these studies have
primarily focused on clinical findings rather than
advancing methodology, relying on time-consuming
and labor-intensive approaches. For example, in [10,
11], the authors manually harmonized MRI data
from thousands of patients across different cohorts
to conduct voxel-based and region-of-interest analy-
ses. While their research yielded significant insights
into lesion localization, future improvements would
require similarly extensive efforts, with no guaran-
tee of consistency in results. In another study [12],
the authors advanced the methodology by employ-
ing semi-automatic WM lesion detection but still
relied on registration to the Montreal Neurological
Institute (MNI) space for detailed statistical anal-
ysis. Despite the valuable clinical findings from
these studies, the processes remained time-intensive,
underscoring the need for an automated tool to
streamline segmentation, registration, and WM le-
sion quantification.

Several studies have explored deep learning tech-
niques for automating WM lesion segmentation and
localization [13–15]. While most research has fo-
cused on WM lesion segmentation, fewer studies
have addressed the detailed localization of lesions.
For example, [16] introduced location information by
calculating the Euclidean distance from key brain
structures, such as the ventricles and cortex, to
detect small WM lesions in cerebral small vessel
disease. This approach was improved in [17] by
integrating localization into the convolutional neu-
ral networks using multi-scale patches derived from
downsampled MRIs. Another study [14] evaluated
four different WM lesion segmentation algorithms
and proposed registering the results to MNI space,
enabling location-based assessments of WM lesion
load for ischemia and lacunes. Although studies like
[13, 15] have incorporated regional white matter in-
formation into automatic WM lesion segmentation
and localization, a fully automated solution that
bypasses the need for registration and provides prac-
tical, location-specific lesion data for both research
and clinical applications is still lacking.
This study introduces deep learning-based meth-
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ods for WM lesion segmentation and localization,
addressing the challenges of automation, speed, and
localization for both clinical and research applica-
tions. Our approach focuses on segmenting WM
lesions and anatomical WM regions simultaneously
within the subject’s native space. The key contribu-
tions of this work include: (1) developing a refined
atlas of anatomical WM regions; (2) creating ground-
truth labels for 170 subjects based on these WM
regions; (3) training deep learning models for WM
lesion segmentation and WM lesion localization; and
(4) clustering the localized WM lesion loads and in-
terpreting them with neurological diseases. This
is the first method to fully automate WM region
segmentation within a subject’s anatomical space,
eliminating the need for intra-subject or template-
space registration and making it fast enough for clin-
ical use. The obtained results are consistent with
established clinical findings, differentiating distinct
patient groups associated with various neurological
diseases. These insights are helpful for diagnosis
and prognosis, offering robust, fine-grained analy-
ses that enhance understanding of brain changes in
real-world clinical settings.

2 Methods

The proposed WM lesion segmentation and local-
ization methods involve two main components, as
shown in Figure 1 (B). The first component includes
training deep learning networks for WM lesion seg-
mentation, while the second focuses on WM region
segmentation. Figure 1 (A) outlines the process for
generating WM region ground-truth labels, which
are necessary for training the deep learning models
for WM region segmentation. This labelling process
is performed once before model training. Ultimately,
the method provides both the localization and load
of WM lesions, enabling the grouping of subjects
based on regional lesion similarities and facilitating
connections to neurological diseases.

2.1 White Matter Labels

We used the JHU MNI atlas type II [19] to ob-
tain regional WM labels for model training. We
selected this atlas due to its public availability and
widespread use in clinical studies related to lesion
localization. The original atlas contained 130 brain
regions, 24 of which were non-white matter. We
merged the remaining WM labels into 34 subregions
based on their ontological relationships and clinical
relevance. The labels can be found in Tables A.1
and A.2.

To obtain subject-specific labels, as depicted in
Figure 1 (A), we register the T1 atlas to each sub-
ject’s T1 image and estimate the affine transform

from this registration. This transform is then ap-
plied to register the refined WM atlas labels to
the subject’s space, generating individualized labels.
While using different registration methods such as
SynthMorph [20] and FLIRT [21], we achieved lower
accuracies than intensity-based approaches, likely
due to age-related changes in WM regions. As a
result, we used a multimodal intensity-based au-
tomatic image registration algorithm [22], applied
exclusively to the extracted WM regions [18].

2.2 WM Lesion Localization

As shown in Figure 1 (B), we trained four deep
learning architectures of U-Net [23], UNETR [24],
MultiResUNet [25], and MedNeXt [26], to segment
both WM lesions and anatomical WM regions, and
combined the results to determine the location of
WM lesions. We treated FLAIR and T1 images as
a single modality to increase the number of train-
ing samples, improve robustness to intensity and
modality variations, and enhance the model’s gen-
eralizability in cases of missing data modalities. To
further increase model robustness, we applied multi-
ple augmentation techniques [27], including additive
and multiplicative noise, bias field addition, rotation,
elastic deformation, and motion artifact simulation.
Additionally, we used a weighted combination of
cross-entropy (CE) loss, Dice-Sørensen (DS) loss,
and skeleton recall (SR) loss, which has proven ef-
fective for segmenting thin, tubular structures and
lesions [28].

2.3 Inference and Clustering

The predictions from both segmentation networks
were combined to localize WM lesions within each
subject’s anatomical space. This integration used
FLAIR and T1 modalities, either separately or in
combination, by aggregating probability scores be-
fore applying hard pixel classification. Next, we
applied k -means clustering to the normalized re-
gional lesion loads extracted from the labeled WM
lesions. This allowed us to group patients based on
regional similarities in WM lesion distributions and
to associate these groups with brain-related diseases
reported in the literature.

3 Experiments and Results

3.1 Data

We conducted all experiments using the publicly
available MICCAI 2017 WMH Segmentation Chal-
lenge dataset [29], which includes 3D T1 and FLAIR
images from 170 subjects across three distinct co-
horts: Utrecht, Amsterdam, and Singapore. The
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Figure 1. Overview of the proposed methods for WM lesion and region segmentation. (A) The process for
creating ground-truth WM region labels for individual scans. First, WM regions are segmented [18] in the subject
and the atlas. The atlas WM is then registered to the subject’s WM using affine transforms, and these transforms
are applied to map the atlas labels into the subject’s anatomical space. (B) Deep learning pipeline for regional
WM lesion segmentation and analysis. Two deep networks are trained on T1 and FLAIR images for segmenting
WM lesions and for segmenting WM regions. The predictions from these models are combined to provide regional
WM lesions for each subject. The regional lesion loads are then calculated and used for clustering to explore
associations with various neurological conditions.

Table 1. Overview of the dataset splits used in this
study. The vendor abbreviations refer to GE (G), Philips
(P), and Siemens (S).

Dataset #Scans Dimensions Resolution Strength Vendor
Train 110 181×251×81 1.1×1×3mm3 1.5T,3T G, P, S
Test 60 202×250×60 1.1×0.98×3mm3 3T G, P, S

dataset provides manually annotated labels for back-
ground, WM lesions, and other pathologies. The
data was divided into training and testing sets, as de-
tailed in Table 1, by swapping the challenge-provided
training and testing splits to increase the amount of
training data for WMH localization. For training,
the subjects were randomly split into training and
validation subsets using 5-fold cross-validation, with
an 80:20 ratio.

3.2 Settings

To select the best-performing effective models, we
trained both 2D and 3D architectures, including
U-Net [23], UNETR [24], MultiResUNet [25], and
MedNeXt [26], for WM lesion and region segmenta-
tion using the training splits from all three cohorts.
This process was also repeated for each cohort in-
dividually. Each model was evaluated using T1,
FLAIR, and an ensemble of both modalities based

on Softmax outputs. The most accurate models
were then selected to calculate regional lesion loads
for scan clustering.
The models were primarily trained using a

weighted combination of the CE and DS loss func-
tions. This process was then repeated with the
addition of the SR loss. The losses were weighted
equally since their values were observed to be within
a similar range during training. All models were
implemented in a PyTorch framework [30] and opti-
mized using the Stochastic Gradient Descent (SGD)
method with Nesterov momentum set to 0.9 and
an initial learning rate of 0.001. Training was con-
ducted for 1,000 iterations with a maximum of 250
mini-batches.

3.3 Results

We first applied the trained WM lesion segmentation
models to the test data. Models evaluated using only
FLAIR images achieved significantly higher accuracy
than those evaluated with T1 or combined modal-
ities (with a p-value ≪ 0.05 using the Wilcoxon
signed-rank test). This is likely due to the clearer
distinction between WM lesion and WM tissue in-
tensities in FLAIR images compared to T1. Ad-
ditionally, models trained with the combined loss
function, including SR, consistently achieved supe-

3



Utrecht Singapore Amsterdam
Cohort

0.4

0.5

0.6

0.7

0.8

0.9

1.0
D

SC

Figure 2. Violin plots depicting test WM lesion seg-
mentation accuracy across different cohorts. The results
were obtained using a 2D U-Net model trained with the
combination of CE, DS, and SR loss functions.

Table 2. Test segmentation accuracy (mean ± SD) for
WM lesion and WM region segmentation tasks using
T1, FLAIR, and ensemble modalities. For WM lesion
segmentation, results are from a 2D U-Net model trained
with CE, DS, and SR loss functions. For WM region seg-
mentation, results are from a 3D MultiResUNet model
trained with CE and DS loss functions. Statistically sig-
nificant differences are highlighted for each task (p-value
≪ 0.05 using the Wilcoxon signed-rank test).

Segmentation Task T1 FLAIR T1 & FLAIR
WM lesions 0.59 ± 0.17 0.77 ± 0.09 0.73 ± 0.11
WM regions 0.82 ± 0.04 0.75 ± 0.03 0.80 ± 0.03

rior accuracy. The SR loss utilizes additional masks
that preserve structural connectivity, improving the
segmentation of small and thin structures like WM
lesions. Detailed WM lesion segmentation results
are presented in Tables B.1 to B.5.

The 2D U-Net model trained with the CE, DS,
and SR loss functions and evaluated solely on FLAIR
images achieved the highest segmentation accuracy,
with a Dice similarity coefficient (DSC) of 0.77, com-
parable to current state-of-the-art results [29, 31,
32]. Accuracy variations may arise from differences
in data splits and augmentation techniques we em-
ployed to develop a more robust model. Additionally,
we generated violin plots to illustrate WM lesion
segmentation accuracy across different cohorts us-
ing the best-performing model (see Figure 2). The
Singapore and Amsterdam cohorts displayed sim-
ilar dispersion and interquartile ranges, while the
Utrecht cohort exhibited higher dispersion, likely
due to its varying data resolution.

Next, we applied the trained WM region segmenta-
tion models to the test data. The 3D MultiResUNet
model, trained with the CE and DS loss functions,
achieved the highest DSC, as shown in the violin
plots in Figure 3 using T1 images. These plots
demonstrate similar dispersion for the left and right
WM compartments. Differences in dispersion be-
tween regions strongly depend on the region’s size
and shape. For example, region 11, with an aver-
age DSC of 0.68, consists of three small gyrus parts
with high curvature that are not always connected.
Conversely, region 12 has a large region with fewer
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Figure 3. Violin plots of test WM regions segmentation
accuracy across all cohorts. Results were obtained using
a 3D MultiResUNet model trained with CE and DS
loss functions. The plots illustrate that larger regions
with simpler curvatures, such as regions 10 (superior,
inferior, and middle temporal gyrus) and 12 (superior
corona radiata and superior longitudinal fasciculus), tend
to have higher accuracy. Detailed descriptions of each
region are provided in Tables A.1 and A.2.

curvatures including superior corona radiata and
superior longitudinal fasciculus, resulting in an av-
erage DSC of 0.82. Models evaluated on T1 images
showed significantly higher segmentation accuracy
(with a p-value ≪ 0.05 using the Wilcoxon signed-
rank test). Table 2 summarizes the best results for
the segmentation tasks used in the later analysis.

Unlike WM lesion segmentation, T1 images pro-
vided better contrast between tissues and a higher
signal-to-noise ratio, leading to a more accurate
anatomical WM segmentation. There was a notable
accuracy difference between 2D and 3D models, as
the varying morphology of WM regions is better
preserved in 3D. No significant accuracy differences
were observed between models trained with the CE
and DS and those with the SR loss functions, except
for training time where models trained with SR con-
verged faster. All WM region segmentation results
are detailed in Tables C.1 to C.5.

We further localized and evaluated the regional
WM lesions by multiplying the predicted WM lesion
masks with the regional WM labels. Figure 4 dis-
plays a coronal view of the predicted regional WM
lesion labels with the highest lesion loads across test
subjects. As can be seen, WM lesions are nearly
symmetric on both sides of the brain, particularly
in the superior-anterior part of the corona radiata
(CR) and the limb of the internal capsule. However,
in region 30, which primarily comprises the poste-
rior part of the CR, most WM lesions appeared on
the right side. In contrast, in region 7 (cuneus, pre-
cuneus, and lingual gyrus), WM lesions were found
exclusively on the left side.

Finally, we calculated the regional WMH loads
and performed k -means clustering on them. Figure 5
and Table D.1 present the results of this experiment,
where we achieved a silhouette index of 0.51 for
K = 4 groups. Subjects were grouped based on the
distribution of WM lesions across different regions.
Group 1, which exhibited the lowest WM lesion
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Figure 4. Occurrence of predicted regional WM lesions
with the highest load across test subjects. WM lesions
are almost symmetrical on both sides of the brain.

load, had lesions located primarily in the anterior
regions on both sides of the brain. As the regional
WM lesion load increased, lesions shifted to superior
regions, particularly in the left hemisphere for those
with the highest lesion load. Besides, the clustering
algorithm identified two subgroups with medium
WM lesion loads (groups 2 and 4). In group 2,
most lesions were concentrated in superior regions,
similar to group 3. However, in group 4, WM lesions
predominantly appeared in the posterior regions of
the brain, as shown in the regional WM lesion maps.

3.4 Discussion

The WM lesion scatter analysis revealed that for
smaller regional lesion loads, lesions predominantly
appeared in the CR, the anterior limb of the internal
capsule, and the superior fronto-occipital fasciculus
on both sides of the brain. As the WM lesion volume
increased, the lesions shifted to superior regions,
including the superior longitudinal fasciculus and
superior CR on both hemispheres. Notably, for
regional WM lesion loads above 45 ml, the majority
of lesions were observed on the left side of the brain.
Previous studies, such as [33], have reported a direct
correlation between WM lesions in subcortical white
matter regions (groups 2 and 3) and a heightened
risk of ischemic stroke. These regions are critical
for connecting various brain areas and facilitating
information transfer. Hence, WM lesions in these
areas can disrupt cognitive processes, potentially
indicating future cognitive decline [6] and the onset
of Alzheimer’s disease [34].

Additionally, we identified a subgroup with
medium WM lesion loads, where most lesions were
located in the posterior thalamic radiation, poste-
rior corona radiata, tapetum, and retrolenticular
part of the internal capsule, predominantly on the
right side. The literature study in [35] highlighted
that the accumulation of WM lesions, especially in
the anteroposterior regions, significantly contributes
to cerebral amyloid angiopathy, which is associated
with brain hemorrhages.

Furthermore, a few subjects showed a predomi-

nant occurrence of WM lesions in the lingual gyrus,
precuneus, and cuneus within the left hemisphere.
These regions are essential for language processing
and memory [7], as the left hemisphere is primarily
responsible for analytical processing, reading, and
writing. They also play a crucial role in verbal and
narrative memory retrieval. Consequently, WM le-
sions in these areas can disrupt verbal fluency and
language processing, potentially indicating condi-
tions such as multiple sclerosis or stroke [7].

4 Conclusion

In this study, we introduced novel methods for the
fully automated segmentation and localization of
white matter lesions within the brain. Our approach
offers deep learning-based operations directly within
the subject’s anatomical space, addressing a signif-
icant clinical research need for a robust and effi-
cient tool suitable for daily use. We validated the
method’s compliance with recent clinical findings
and highlighted its importance in providing critical
insights for predicting neurological diseases.
The method demonstrated effectiveness across

various scanner types and protocols, showcasing its
versatility and robustness. By leveraging advanced
deep learning techniques, including the integration
of FLAIR and T1 modalities, MRI-based data aug-
mentation, and a combination of state-of-the-art
loss functions, we achieved high accuracy in WM
lesion segmentation and localization. Our results
underscore the method’s potential to enhance re-
search and clinical workflows, ultimately improving
the management of neurological conditions.
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Table A.1. The refined JHU MNI type II atlas regions for the left hemisphere. The refined labels include only
regions within the brain’s white matter. The Merged Label column lists newly created regional labels, while the
Atlas Label and Region columns provide the original atlas labels and their corresponding anatomical names.

WM Merged label Atlas label Region
1 Superior Parietal Lobule
8 Angular Gyrus1
23 Supramarginal Gyrus
2 Cingulate Gyrus

2
40 Cingulum (Cingulate Gyrus)

3 3 Superior Frontal Gyrus
4 4 Middle Frontal Gyrus
5 5 Inferior Frontal Gyrus

6 Precentral Gyrus
6

7 Postcentral Gyrus
9 Pre-cuneus
10 Cuneus7
11 Lingual Gyrus
12 Fusiform Gyrus
13 Parahippocampal Gyrus
17 Entorhinal Area

8

41 Cingulum (hippocampus)
14 Superior Occipital Gyrus
15 Inferior Occipital Gyrus9
16 Middle Occipital Gyrus
18 Superior Temporal Gyrus
19 Inferior Temporal Gyrus10
20 Middle Temporal Gyrus
21 Lateral Fronto-Orbital Gyrus
22 Middle Front-Orbital Gyrus11
24 Gyrus Rectus
38 Superior Corona Radiata

12
43 Superior Longitudinal Fasciculus
36 Posterior Thalamic Radiation
39 Posterior Corona Radiata
55 Retrolenticular Part Of Internal Capsule

13

58 Tapetum
34 Anterior Limb Of Internal Capsule
37 Anterior Corona Radiata14
44 Superior Fronto-Occipital Fasciculus
25 Insular
45 Inferior Fronto-Occipital Fasciculus
47 External Capsule

15

48 Uncinate Fasciculus
33 Cerebral peduncle
35 Posterior Limb Of Internal Capsule
42 Fornix(cres) Stria Terminalis

16

46 Saggital Stratum
51 Fornix (Column And Body)
52 Genu Of Corpus Callosum
53 Body Of Corpus Callosum

Left

17

54 Selenium Of Corpus Callosum
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Table A.2. The refined JHU MNI type II atlas regions for the right hemisphere. The refined labels include only
regions within the brain’s white matter. The Merged Label column lists newly created regional labels, while the
Atlas Label and Region columns provide the original atlas labels and their corresponding anatomical names.

WM Merged label Atlas label Region
66 Superior Parietal Lobule
73 Angular Gyrus18
88 Supramarginal Gyrus
67 Cingulate Gyrus

19
105 Cingulum (Cingulate Gyrus)

20 68 Superior Frontal Gyrus
21 69 Middle Frontal Gyrus
22 70 Inferior Frontal Gyrus

71 Precentral Gyrus
23

72 Postcentral Gyrus
74 Pre-cuneus
75 Cuneus24
76 Lingual Gyrus
77 Fusiform Gyrus
78 Parahippocampal Gyrus
82 Entorhinal Area

25

106 Cingulum (hippocampus)
79 Superior Occipital Gyrus
80 Inferior Occipital Gyrus26
81 Middle Occipital Gyrus
83 Superior Temporal Gyrus
84 Inferior Temporal Gyrus27
85 Middle Temporal Gyrus
86 Lateral Fronto-Orbital Gyrus
87 Middle Front-Orbital Gyrus28
89 Gyrus Rectus
103 Superior Corona Radiata

29
108 Superior Longitudinal Fasciculus
101 Posterior Thalamic Radiation
104 Posterior Corona Radiata
120 Retrolenticular Part Of Internal Capsule

30

123 Tapatum
99 Anterior Limb Of Internal Capsule
102 Anterior Corona Radiata31
109 Superior Fronto-Occipital Fasciculus
90 Insular
110 Inferior Fronto-Occipital Fasciculus
112 External Capsule

32

113 Uncinate Fasciculus
98 Cerebral peduncle
100 Posterior Limb Of Internal Capsule
107 Fornix(cres) Stria Terminalis

33

111 Saggital Stratum
116 Fornix (Column And Body)
117 Genu Of Corpus Callosum
118 Body Of Corpus Callosum

Right

34

119 Selenium Of Corpus Callosum
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Table B.1. Test WM lesion segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to all cohorts. The models were trained with CE
and DS loss functions. Statistically significant differences
between modalities for models that achieved the highest
accuracy are highlighted in bold (p-value ≪ using the
Wilcoxon signed-rank test).

ALL
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.57 ± 0.16 0.75 ± 0.10 0.69 ± 0.13
3D 0.59 ± 0.16 0.75 ± 0.11 0.67 ± 0.14

U-NetR
2D 0.43 ± 0.16 0.59 ± 0.16 0.56 ± 0.17
3D 0.45 ± 0.15 0.67 ± 0.13 0.61 ± 0.14

MedNeXt
2D 0.49 ± 0.16 0.57 ± 0.21 0.54 ± 0.18
3D 0.53 ± 0.16 0.68 ± 0.15 0.61 ± 0.16

MultiResUNet
2D 0.45 ± 0.18 0.42 ± 0.21 0.46 ± 0.19
3D 0.61 ± 0.16 0.73 ± 0.11 0.68 ± 0.14

Table B.2. Test WM lesion segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to the Utrecht cohort. The models were trained
with CE and DS loss functions. Statistically significant
differences between modalities for a model that achieved
the highest accuracy are highlighted in bold (p-value ≪
using the Wilcoxon signed-rank test).

Utrecht
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.57 ±0.17 0.74 ± 0.14 0.68± 0.16
3D 0.61 ± 0.16 0.72 ± 0.15 0.72 ± 0.15

U-NetR
2D 0.49 ± 0.16 0.68 ± 0.15 0.64 ± 0.13
3D 0.46 ± 0.14 0.63 ± 0.18 0.60 ± 0.14

MedNeXt
2D 0.53 ± 0.16 0.69 ± 0.15 0.64 ± 0.14
3D 0.53 ± 0.17 0.66 ± 0.15 0.61 ± 0.16

MultiResUNet
2D 0.50 ± 0.19 0.55 ± 0.21 0.46 ± 0.19
3D 0.61 ± 0.18 0.72 ± 0.14 0.68 ± 0.16

Table B.3. Test WM lesion segmentation accuracy
(mean ± SD) for various architectures and modalities ap-
plied to the Singapore cohort. The models were trained
with CE and DS loss functions. Statistically significant
differences between modalities for a model that achieved
the highest accuracy are highlighted in bold (p-value ≪
using the Wilcoxon signed-rank test).

Singapore
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.64 ± 0.14 0.76 ± 0.08 0.70 ±0.11
3D 0.65 ± 0.13 0.77 ± 0.10 0.71 ± 0.11

U-NetR
2D 0.40 ± 0.19 0.54 ± 0.13 0.42 ± 0.17
3D 0.51 ± 0.19 0.73 ± 0.10 0.62 ± 0.16

MedNeXt
2D 0.49 ± 0.18 0.35 ± 0.12 0.35 ± 0.14
3D 0.58 ± 0.16 0.68 ± 0.12 0.62± 0.15

MultiResUNet
2D 0.49 ± 0.17 0.38 ±0.17 0.46 ± 0.18
3D 0.68 ± 0.14 0.73 ± 0.10 0.71±0.13

Table B.4. Test WM lesion segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to the Amsterdam cohort. The models were
trained with CE and DS loss functions. Statistically
significant differences between modalities for a model
that achieved the highest accuracy are highlighted in
bold (p-value ≪ using the Wilcoxon signed-rank test).

Amsterdam
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.51 ± 0.15 0.74 ± 0.14 0.67 ± 0.10
3D 0.54 ± 0.14 0.75 ± 0.09 0.65 ± 0.12

U-NetR
2D 0.41 ± 0.13 0.57 ± 0.16 0.60 ± 0.12
3D 0.39 ± 0.11 0.67 ± 0.11 0.59 ± 0.11

MedNeXt
2D 0.46 ± 0.13 0.69 ± 0.11 0.63 ± 0.12
3D 0.48 ± 0.13 0.70 ± 0.10 0.61 ± 0.11

MultiResUNet
2D 0.35 ± 0.16 0.34 ± 0.19 0.38 ± 0.16
3D 0.56 ± 0.14 0.74 ± 0.09 0.64 ± 0.14

Table B.5. Test WM lesion segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to all cohorts. The models were trained with
CE, DS, and SR loss functions. Statistically significant
differences between modalities for a model that achieved
the highest accuracy are highlighted in bold (p-value ≪
using the Wilcoxon signed-rank test).

All
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.59 ± 0.17 0.77 ± 0.09 0.73 ± 0.11
3D 0.59 ± 0.16 0.72 ± 0.12 0.71 ± 0.12

U-NetR 3D 0.47 ± 0.20 0.62 ± 0.19 0.62 ± 0.16
MedNeXt 3D 0.75 ± 0.05 0.61 ± 0.11 0.70 ± 0.06
MultiResUNet 3D 0.59 ± 0.17 0.72 ± 0.13 0.71 ± 0.12

Table C.1. Test WM region segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to all cohorts. The models were trained with CE
and DS loss functions. Statistically significant differences
between modalities for a model that achieved the highest
accuracy are highlighted in bold (p-value ≪ using the
Wilcoxon signed-rank test).

All
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.75 ± 0.01 0.70 ±0.01 0.74 ±0.01
3D 0.80 ± 0.03 0.77 ± 0.04 0.80 ± 0.04

U-NetR
2D 0.61 ± 0.10 0.40 ±0.26 0.50 ±0.23
3D 0.74 ±0.05 0.69 ±0.05 0.74 ± 0.05

MedNeXt
2D 0.75 ± 0.05 0.61 ± 0.11 0.70 ± 0.06
3D 0.80± 0.03 0.74 ± 0.05 0.78 ± 0.04

MultiResUNet
2D 0.71±0.04 0.65 ±0.05 0.70 ±0.05
3D 0.81 ±0.04 0.75 ±0.04 0.79 ± 0.03

Table C.2. Test WM region segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to the Utrecht cohort. The models were trained
with CE and DS loss functions. Statistically significant
differences between modalities for a model that achieved
the highest accuracy are highlighted in bold (p-value ≪
using the Wilcoxon signed-rank test).

Utrecht
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.74 ± 0.03 0.69 ±0.02 0.74 ± 0.02
3D 0.79 ±0.04 0.74 ± 0.05 0.78 ±0.04

U-NetR
2D 0.70 ±0.1 0.62 ±0.11 0.69 ±0.10
3D 0.69 ± 0.04 0.60 ± 0.07 0.69 ± 0.04

MedNeXt
2D 0.73 ± 0.11 0.67 ± 0. 11 0.72 ± 0.12
3D 0.76 ± 0.04 0.69 ± 0.06 0.75 ± 0.04

MultiResUNet
2D 0.72 ±0.08 0.53 ± 0.08 0.67 ± 0.08
3D 0.79 ± 0.03 0.74 ± 0.04 0.78 ± 0.03
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Table C.3. Test WM region segmentation accuracy
(mean ± SD) for various architectures and modalities ap-
plied to the Singapore cohort. The models were trained
with CE and DS loss functions. Statistically significant
differences between modalities for models that achieved
the highest accuracy are highlighted in bold (p-value ≪
using the Wilcoxon signed-rank test).

Singapore
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.74 ±0.01 0.70 ±0.01 0.74 ± 0.01
3D 0.77 ±0.05 0.74 ±0.06 0.77 ±0.05

U-NetR
2D 0.63 ±0.08 0.54 ± 0.17 0.61 ±0.16
3D 0.59 ± 0.09 0.63 ±0.07 0.65 ± 0.08

MedNeXt
2D 0.73 ± 0.04 0.69 ± 0.05 0.73 ± 0.04
3D 0.73 ± 0.05 0.70 ± 0.06 0.73 ± 0.05

MultiResUNet
2D 0.65 ± 0.05 0.69 ±0.05 0.71 ± 0.05
3D 0.74 ± 0.05 0.74 ± 0.06 0.74 ± 0.05

Table C.4. Test WM region segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to the Amsterdam cohort. The models were
trained with CE and DS loss functions. Statistically
significant differences between modalities for models
that achieved the highest accuracy are highlighted in
bold (p-value ≪ using the Wilcoxon signed-rank test).

Amsterdam
Model T1 FLAIR T1 & FLAIR

U-Net
2D 0.55 ± 0.03 0.54 ±0.04 0.57 ± 0.03
3D 0.81 ± 0.03 0.76 ± 0.04 0.79 ± 0.04

U-NetR
2D 0.34 ±0.09 0.29 ± 0.09 0.32 ±0.10
3D 0.75 ± 0.05 0.70 ±0.04 0.75 ±0.04

MedNeXt
2D 0.49 ± 0.20 0.50 ± 0.12 0.53 ±0.16
3D 0.80 ± 0.03 0.75 ± 0.03 0.78 ± 0.03

MultiResUNet
2D 0.42 ± 0.19 0.31 ± 0.16 0.37 ± 0.20
3D 0.81 ± 0.03 0.77 ± 0.04 0.80 ± 0.03

Table C.5. Test WM region segmentation accuracy
(mean ± SD) for various architectures and modalities
applied to all cohorts. The models were trained with
CE, DS, and SR loss functions. Statistically significant
differences between modalities for a model that achieved
the highest accuracy are highlighted in bold (p-value ≪
using the Wilcoxon signed-rank test).

All
Model T1 FLAIR T1 & FLAIR
U-Net 3D 0.80 ± 0.03 0.76 ± 0.05 0.79 ± 0.04
U-NetR 3D 0.74 ± 0.06 0.69 ± 0.05 0.73 ± 0.04
MedNeXt 3D 0.78 ± 0.04 0.74 ± 0.04 0.77 ± 0.03
MultiResUNet 3D 0.81 ± 0.04 0.76 ± 0.04 0.80 ± 0.04
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Table D.1. Details of the groups obtained by k -means clustering of the regional WM lesion loads.

#Subjects
Mean

WM lesions
load

Min
WM lesions

load

Max
WM lesions

load

Major
WM lesions
region(s)

#Subjects
WM lesions
left side

#Subjects
WM lesions
right side

Group 1 29 629 57 2457 14, 31 14 15
Group 2 15 5562 2338 8651 29, 12 8 7
Group 3 7 14121 8730 20159 12, 29 6 1
Group 4 9 4853 3388 8172 30 4 5
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