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ABSTRACT

Generating 3D human poses from multimodal inputs such as text or images re-
quires models to capture both rich semantic and spatial correspondences. While
pose-specific multimodal large language models (MLLMs) have shown promise,
their supervised fine-tuning (SFT) paradigm struggles to resolve the task’s inher-
ent ambiguity. Its reliance on objectives like SMPL parameter regression creates
a critical alignment gap, compromising the model’s ability to achieve the required
semantic and spatial fidelity. To close the gap, we propose Pose-RFT, a framework
that shifts the learning paradigm from supervised imitation to reward-driven rein-
forcement fine-tuning (RFT). We address the core technical challenge of this task:
a hybrid action space requiring joint optimization of discrete language and con-
tinuous pose outputs. To this end, we introduce HyGRPO, a hybrid reinforcement
learning algorithm that enables stable optimization by performing group-wise re-
ward normalization over sampled responses. Pose-RFT incorporates task-specific
reward functions to guide optimization towards spatial alignment in image-to-pose
generation and semantic consistency in text-to-pose generation. Extensive experi-
ments on multiple pose generation benchmarks demonstrate that Pose-RFT signif-
icantly improves performance over existing pose-specific MLLMs, validating the
effectiveness of our approach in closing the alignment gap for 3D pose generation.

1 INTRODUCTION

Recent advances in 3D human pose generation (Delmas et al., 2022; 2023; 2024; Miao et al., 2024;
Wang et al., 2025b; Tevet et al., 2022; Li et al., 2025a) have increasingly focused on addressing the
problem of understanding and reasoning about 3D human poses from multimodal inputs, such as
images and text. Among these, pose-specific multimodal large language models (MLLMs) (Feng
et al., 2024; Lin et al., 2024; Li et al., 2025c) have emerged as a promising direction, extending
general-purpose language models with dedicated pose decoders to enable joint reasoning over lan-
guage, vision, and 3D pose. While these models have shown strong performance, their standard
training via supervised fine-tuning (SFT) exposes a fundamental limitation.

The central challenge is the inherent one-to-many nature of 3D pose generation. This ambiguity is
explicit in the text-to-pose task (Delmas et al., 2022; Li et al., 2024b), where a single prompt can map
to a broad distribution of valid poses. It is implicit in the image-to-pose task (Von Marcard et al.,
2018; Shen et al., 2023; Yan et al., 2024; Wang et al., 2025a), a classic ill-posed problem where
multiple plausible 3D poses can yield the same 2D evidence. The SFT paradigm, which learns a
deterministic mapping via regression to a single ground truth for each sample, is fundamentally
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Figure 1: Examples and Motivation. Left: An overview of our Pose-RFT framework for multi-
modal 3D pose generation. Right: Illustrating the alignment gap. While SFT yields a suboptimal
averaged output, RFT produces a high-reward output for superior semantic and spatial alignment.

misaligned with this property. Consequently, SFT models are driven to predict an averaged, often
suboptimal, output to minimize expected error across the dataset. As illustrated in Figure 1, this
creates a critical alignment gap between the model’s predictions and the true objectives of semantic
consistency and spatial accuracy.

To close this alignment gap, a paradigm shift from supervised imitation to goal-driven optimization
is necessary. Reinforcement Learning (RL) (Schulman et al., 2017; Rafailov et al., 2023) offers a
principled framework for this, enabling models to learn from reward signals that directly reflect task-
specific goals. However, applying RL to this domain presents a significant challenge: most existing
Reinforcement Fine-Tuning (RFT) algorithms (Achiam et al., 2023; Jaech et al., 2024; Liu et al.,
2025b; Shen et al., 2025; Li et al., 2025b) are designed for the discrete token spaces of language and
are not equipped to handle the fine-grained, continuous parameters of 3D human poses.

To address these challenges, we propose Pose-RFT, a novel reinforcement fine-tuning framework
specifically designed for 3D human pose generation in MLLMs (see Figure 2). First, we formulate
the task as a hybrid action space reinforcement learning problem, where the policy must simultane-
ously produce discrete actions (e.g., text tokens) and continuous actions (e.g., 3D pose parameters).
To effectively manage the inherent uncertainty and enable the stochastic exploration required by RL,
the continuous action is modeled by a multivariate Gaussian policy. This policy is parameterized by
a dedicated pose head that predicts both the mean and covariance for a given state. Second, we intro-
duce HyGRPO, a novel online hybrid reinforcement learning algorithm designed to achieve stable
optimization in the challenging hybrid action space. By leveraging group-wise reward normaliza-
tion over multiple sampled outputs, HyGRPO directly optimizes the policy, effectively steering it
towards high-reward responses. Third, we propose four task-specific reward functions to guide
policy optimization: (i) a spatial location reward for image-to-pose generation, (ii) a semantic align-
ment reward for text-to-pose generation, (iii) a format correctness reward, and (iv) a text embedding
similarity reward. By training with diverse outputs and structured feedback, HyGRPO encourages
the model to generate 3D poses that are spatially accurate and semantically aligned.

In summary, our main contributions are as follows:

(1) We propose Pose-RFT, the first reinforcement fine-tuning framework specifically designed for
3D human pose generation in MLLMs. (2) We develop HyGRPO, a hybrid-action reinforcement
learning algorithm that effectively optimizes both discrete and continuous outputs in pose-specific
MLLMs. (3) Extensive experiments on multiple pose generation benchmarks demonstrate that Pose-
RFT significantly improves performance over existing pose-specific MLLMs, validating the effec-
tiveness of hybrid action reinforcement fine-tuning for 3D pose generation.

2 RELATED WORK

2.1 HUMAN POSE GENERATION

Human pose generation involves producing 3D human poses conditioned on either images or
text. For image-to-pose generation, also known as pose estimation, existing approaches are typ-
ically divided into optimization-based and regression-based methods. Optimization-based meth-
ods (Bogo et al., 2016; Pavlakos et al., 2019) estimate 3D pose parameters by aligning projected
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joints with detected 2D keypoints through iterative refinement. In contrast, regression-based ap-
proaches (Kanazawa et al., 2018; Cai et al., 2023; Dwivedi et al., 2024; Goel et al., 2023) rely on
deep neural networks to directly predict 3D poses from input images. Text-to-pose generation aims
to synthesize 3D human poses based on textual descriptions, such as physical attributes or actions
(Delmas et al., 2022; Tevet et al., 2022; Hong et al., 2022). Although these methods have shown
promising results, they remain confined to either image-to-pose or text-to-pose generation, without
a unified framework capable of leveraging cross-modal knowledge to infer human poses from both
visual and textual inputs.

2.2 MULTIMODAL LARGE LANGUAGE MODELS

Multimodal Large Language Models (MLLMs) (Achiam et al., 2023; Liu et al., 2023; Li et al.,
2024a; Wang et al., 2024b; Chen et al., 2024b) have shown strong performance in vision-language
understanding tasks by jointly modeling visual inputs and natural language. These models excel at
multimodal reasoning, visual grounding, and instruction following, enabling them to comprehend
complex visual content in diverse application scenarios. Leveraging these capabilities, recent works
have successfully applied MLLMs to downstream vision-centric tasks such as image segmentation
(Lai et al., 2024; Bai et al., 2024), anomaly detection (Gu et al., 2024), and keypoint localization
(Wang et al., 2024a), demonstrating their transferability beyond purely linguistic domains.

To adapt MLLMs to downstream tasks, post-training strategies such as supervised fine-tuning (SFT)
and reinforcement fine-tuning (RFT) are commonly used. Recent efforts such as ChatPose (Feng
et al., 2024) and UniPose (Li et al., 2025c) have applied SFT to extend MLLMs for 3D pose gen-
eration, leveraging their vision-language reasoning capabilities. However, these methods rely solely
on SFT and do not incorporate reinforcement-based optimization. The absence of RFT limits the
model’s capacity to further refine generation quality, particularly in scenarios involving ambiguity
and task-specific alignment.

2.3 REINFORCEMENT LEARNING

Reinforcement learning (RL) (Sutton et al., 1998) is a core paradigm in machine learning, where
an agent learns a policy-a mapping from observations to actions-by interacting with an environment
and optimizing cumulative rewards. Through trial-and-error learning, the agent improves its policy
based on feedback in the form of scalar rewards. Classical algorithms such as Q-learning(Watkins
& Dayan, 1992) have been successfully applied in fields such as robotics, autonomous control, and
game playing. With the rise of large language models (Radford et al., 2018; Touvron et al., 2023;
Achiam et al., 2023), Reinforcement Learning with Human Feedback (RLHF) (Bai et al., 2022) has
become as a key technique for fine-tuning models using human preference data. RLHF leverages
algorithms like Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Direct Preference
Optimization (DPO) (Rafailov et al., 2023) to guide model behavior for improving the alignment,
coherence, and helpfulness in response generation.

In the context of multimodal large language models, recent works (Zhou et al., 2025; Liu et al.,
2025a; Zhan et al., 2025; Liu et al., 2025b; Yang et al., 2025; Zhang et al., 2025; Shen et al., 2025)
have explored the use of RL with verifiable reward signals to enhance visual reasoning. However,
the application of RL to 3D human pose generation remains underexplored, primarily due to the
continuous nature of pose regression, which poses challenges for RL methods originally designed for
discrete action spaces. To address similar challenges in other domains, several works have proposed
hybrid discrete-continuous action formulations (Lowe et al., 2017; Fan et al., 2019; Li et al., 2021),
offering a promising direction for adapting reinforcement learning to structured continuous tasks
such as 3D pose generation.

3 METHODOLOGY

This section first reformulates 3D human pose generation as a reinforcement learning problem under
a hybrid action space. It then introduces the proposed Hybrid Action Space Group Relative Policy
Optimization (HyGRPO) algorithm, which jointly optimizes discrete language and continuous pose
outputs. Finally, it describes how HyGRPO is applied to fine-tune pose-specific MLLMs using
task-specific reward functions designed for 3D human pose generation.

3



Published as a conference paper at ICLR 2026

Pose-Specifc 
Policy Model

Pose-RFT: Reinforcement Fine-Tuning for Pose-Specific MLLM

Language Aligned Multimodal Embedding Space

Language 
Head

Large Language Model

Text Encoder

𝝅𝜽(𝒂|𝒒)

CLIP
Encoder

Pose-Aware
Encoder

Projector Projector

LoRA

Pose-Specific MLLM as Hybrid Policy

𝐇𝐲𝐛𝐫𝐢𝐝 𝐏𝐨𝐥𝐢𝐜𝐲 
𝝅𝜽 𝒂, 𝒑 𝒒 = 𝝅𝜽(𝒂|𝒒) ⋅ 𝝅𝜽(𝒑|𝒒, 𝒂)

Pose 
Head

Reward
Function

Policy
Optimization

Sample
Input

Generate
Candidates

Compute 
Advantages

Update 
Policy

What is the man doing in 
the image, can you give me 
his SMPL pose?

Multimodal Input Group of candidates Advantages HyGRPO Update Step
Continuous ProbsDiscrete Probs

𝑨𝟏
(+0.3, +0.5)

𝑨𝟐
(+0.2, -0.5)

 …
𝑨𝑮

(-0.5, Null)

𝑶𝟏: Sure, it’s <POSE>.

𝑶𝟐: OK, the SMPL pose 
of this man is <POSE>.

𝑶𝑮: The man is running on 
the dirt road.

𝑷𝟏

𝑷𝟐

𝑷𝑮

…

Discrete 
Policy

Continuous
Policy

𝝅𝜽(𝒑|𝒒, 𝒂)

Sample from Hybrid Policy

The SMPL pose 
is <POSE>.

Notation:
𝒒 – multimodal input (text or image)
𝒂 – generated language response
𝒑 – generated 3D pose

Training 
Dataset

Discrete
Text

Continuous
Pose

Figure 2: Overview of Pose-RFT Framework. Our reinforcement fine-tuning framework for pose-
specific MLLMs. Given a multimodal input, the model generates multiple hybrid responses (text
+ pose). These candidates are evaluated using task-specific rewards, and our HyGRPO algorithm
updates the policy to promote the generation of higher-reward outputs.

3.1 REFORMULATING 3D POSE GENERATION FOR REINFORCEMENT LEARNING

We formulate the 3D human pose generation within pose-specific MLLMs as a hybrid action re-
inforcement learning problem. The model operates in a hybrid action space comprising discrete
language tokens and continuous 3D poses. The overall policy is defined as:

πθ(a, p|q) = πθ(a|q) · πθ(p|q, a), (1)
where q denotes a multimodal input, a a represents discrete textual responses, and p denotes contin-
uous 3D pose parameters. We regard the joint distribution πθ(a, p|q) as the overall policy, which is
factorized into a discrete sub-policy πθ(a|q) modeling the distribution over textual responses, and a
continuous sub-policy πθ(p|q, a) modeling the distribution over 3D poses conditioned on both the
input query and the generated language response.

To parameterize the continuous policy, we adopt a multivariate Gaussian distribution defined over
the space of 3D human poses:

πθ(p|q, a) = N (p;µθ(q, a),Σθ(q, a)), (2)
where the mean µθ(q, a) and covariance Σθ(q, a) are predicted by a continuous pose head condi-
tioned on the multimodal input q and the discrete response a. This probabilistic formulation captures
the aleatoric uncertainty inherent in 3D human pose generation by modeling the conditional distri-
bution over continuous pose vectors. Furthermore, the use of a differentiable multivariate Gaussian
enables both stochastic sampling during training and efficient gradient-based optimization within
the continuous pose space.

Benefiting from the strong cross-modal alignment established during MLLM pretraining, both the
discrete and continuous policies are built on a shared language-aligned multimodal embedding
space. To further enhance this representation, we augment the MLLM with a pose-aware encoder, a
Vision Transformer pretrained on pose estimation, to extract more informative and pose-relevant vi-
sual features. These features are fused with the language-aligned multimodal embeddings to yield a
more informative and pose-relevant state space for reinforcement learning. Details of the pose-aware
encoder and the visual fusion strategy are provided in Appendix A. Taken together, the architectural
enhancement from the pose-aware encoder and the probabilistic modeling from the Gaussian policy
establish a powerful and robust baseline model, which we then elevate further using our reinforce-
ment fine-tuning framework.

3.2 HYGRPO: HYBRID ACTION SPACE GROUP RELATIVE POLICY OPTIMIZATION

To optimize the hybrid policy defined in the previous section, we introduce Hybrid Action Space
Group Relative Policy Optimization (HyGRPO), an online reinforcement learning algorithm de-
signed to enhance pose-specific MLLMs for 3D human pose generation. HyGRPO is designed to
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operate directly on the hybrid action space, jointly optimizing the discrete language and continuous
pose heads within the shared MLLM embedding space. By doing so, it facilitates coherent align-
ment between the model’s textual and pose outputs, effectively bridging the gap between standard
discrete token prediction and continuous parameter generation.

To handle hybrid outputs, HyGRPO models the policy πθ over both discrete text answers a and con-
tinuous human poses p conditioned on input question q. For each training sample q from dataset D,
we sample G output candidates {ai, pi}Gi=1 ∼ πθ(·|q), and optimize the policy using the following
objective:

Eq∼D,{ai,pi}G
i=1∼πθ(·|q)

[
1

G

G∑
i=1

ri(θ)Âi

]
, (3)

where ri(θ) is the importance weight of the i-th sampled output, computed as the ratio between the
current policy and the reference policy:

ri(θ) =
πθ(ai, pi|q)
πref(ai, pi|q)

=
πθ(ai|q)
πref(ai|q)︸ ︷︷ ︸
rd(ai|q)

· πθ(pi|q, ai)
πref(pi|q, ai)︸ ︷︷ ︸
rc(pi|q,ai)

.
(4)

A key design choice in HyGRPO is the decomposition of the normalized advantage, Â, into discrete
and continuous components, which measure the quality of the textual response and the predicted
pose, respectively:

Â(q, a, p) = F̂ (q, a)︸ ︷︷ ︸
discrete advantages

+ ∆̂(q, a, p)︸ ︷︷ ︸
continous advantages

,
(5)

where F̂ measures the quality of the generated textual response, and ∆̂ evaluates the predicted pose
quality. To ensure training stability, we adopt clipped importance sampling as in PPO (Schulman
et al., 2017). The final HyGRPO training objective is:

JHyGRPO =Eq∼D,{ai,pi}G
i=1∼πθ(·|q)

[
1

G

G∑
i=1

(
min(rdF̂i, clip(rd, 1−ϵ, 1+ϵ)F̂i)

)
+

1

V

V∑
i=1

(
min(rc∆̂i, clip(rc, 1−ϵ, 1+ϵ)∆̂i)

)
− βDKL(πθ∥πref)

)]
,

(6)

where G is the number of generated candidates, V is the subset of candidates that include a valid pose
output. This objective provides separate, targeted advantage signals for the discrete and continuous
policy heads, enabling stable and generalizable training across the hybrid action space. The full
derivation and algorithm are detailed in Appendix B and C.

3.3 GUIDING HYGRPO WITH TASK-SPECIFIC REWARDS

The HyGRPO algorithm is guided by a suite of task-specific reward functions designed on a core
principle: each reward provides targeted feedback for a distinct component of the MLLM’s hybrid
output. This modular design ensures comprehensive supervision, governing not only the continuous
pose outputs (for spatial and semantic accuracy) but also the discrete textual outputs (for conver-
sational format and correctness). This approach is crucial as it enhances the model’s new pose
generation capabilities while preserving its foundational conversational capabilities.

Spatial Location Reward in Image-to-Pose Generation. In the image-to-pose generation task,
the model is expected to output SMPL pose coefficients conditioned on the input image. To encour-
age spatial accuracy, the reward should reflect how well the predicted pose aligns with the visual
input. Following standard 3D human pose estimation practice, this reward is defined as the inverse
of the mean joint position error—the Euclidean distance between predicted and ground-truth 3D
joint locations:

Rjoint =
1

||Jpred − Jgt||2
. (7)
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Semantic Alignment Reward in Text-to-Pose Generation. In the text-to-pose generation task,
the model is expected to predict SMPL pose coefficients conditioned on a text prompt. Unlike
image-to-pose generation, which emphasizes joint-level accuracy, this task focuses on high-level
semantic alignment between the textual description and the generated pose.

To quantify this alignment, we adopt a pretrained text-pose retrieval model that maps both inputs
into a shared embedding space. Specifically, the retrieval model comprises a text encoder ϕt(·)
and a pose encoder ϕp(·), both projecting their respective inputs into a shared embedding space.
The semantic alignment reward is defined as the similarity score between the encoded text and the
generated pose:

Rsemantic = cos(ϕt(q), ϕp(p)). (8)

Format Reward. To encourage the model to generate responses that conform to a specified for-
mat, we introduce a format reward, denoted as Rformat. For instance, we expect the model to produce
outputs enclosed in a template such as: “The SMPL pose of this person is <POSE>.” To enforce this
constraint, we apply regular expression matching to assess format compliance. The format reward
is defined as:

Rformat =

{
1, if the output matches the expected format
0, otherwise

. (9)

Text Embedding Similarity Reward. To preserve general QA capabilities while fine-tuning for
pose-centric tasks, we incorporate a text reward that encourages semantic agreement between gen-
erated and ground-truth answers in vision-language QA tasks. Specifically, we utilize the BGE-M3
encoder (Chen et al., 2024a) to compute dense embeddings for both the model-generated answer and
the ground-truth response. The reward is defined as the cosine similarity between the normalized
embeddings of the predicted and ground-truth answers:

Rtext = cos(E(apred), E(agt)). (10)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To train Pose-RFT, we incorporate four types of data sources to enhance multimodal
understanding: (1) Text-Pose Data. We utilize the PoseScript dataset (Delmas et al., 2022), which
provides natural language descriptions paired with 3D human poses. This enables the model to learn
fine-grained semantic correlations between language and human poses. (2) Image-Pose Data. Fol-
lowing prior works (Goel et al., 2023; Feng et al., 2024; Li et al., 2025c), we adopt standard human
pose estimation training datasets, including Human3.6M (Ionescu et al., 2013), MPI-INF-3DHP
(Mehta et al., 2017), COCO (Lin et al., 2014), and MPII (Andriluka et al., 2014). For evaluation,
we use the 3DPW (Von Marcard et al., 2018) and Human3.6M test sets. (3) Image-Text Data. We
employ the BEDLAM-Script dataset introduced in PoseEmbroider (Delmas et al., 2024), a curated
multimodal dataset containing images, 3D poses, and textual descriptions, constructed based on the
BEDLAM dataset (Black et al., 2023). (4) VQA Data. For visual question answering, we utilize
the LLaVA-Instruct-150k dataset (Liu et al., 2023).

Metrics. We evaluate our model on both image-to-pose and text-to-pose tasks using reconstruction
and retrieval metrics. Image-to-Pose Reconstruction Metrics: We report the Mean Per Joint Po-
sition Error (MPJPE) and the Procrustes-aligned MPJPE (PA-MPJPE), which measure the average
Euclidean distance between predicted and ground-truth joint positions, with and without Procrustes
alignment, respectively. Text-to-Pose Retrieval Metrics: Following (Feng et al., 2024; Lin et al.,
2024; Li et al., 2025c), we report Recall@K (K = 5, 10, 20) for both text-to-pose (RT2P ) and pose-
to-text (RP2T ) retrieval tasks, which assess the accuracy of matching poses with their corresponding
textual descriptions.

Implementation Details. We adopt LLaVA-1.5V-7B (Liu et al., 2023) as the vision-language
backbone. For the pose-aware encoder, we employ the pretrained Vision Transformer from HMR2.0
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Table 1: Comparison on Human Pose Estimation task. Reconstruction errors are reported on the
3DPW and Human3.6M datasets.

Method 3DPW Human3.6M RPE

MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE

HMR (Von Marcard et al., 2018) 130.0 76.7 88.0 56.8 - -
SPIN (Kolotouros et al., 2019) 96.9 59.2 62.5 41.1 244.9 107.3
PyMAF (Zhang et al., 2021) 92.8 58.9 57.7 40.5 - -
HMR2.0 (Goel et al., 2023) 70.0 44.5 44.8 33.6 225.2 105.7
MEGA (Fiche et al., 2024) 67.5 41.0 - - - -
TokenHMR (Dwivedi et al., 2024) 71.0 44.3 - - - -

ChatPose (Feng et al., 2024) 163.6 81.9 126.0 82.4 275.0 101.8
UniPose (Li et al., 2025c) 94.7 59.1 69.2 41.8 213.4 94.1
Pose-RFT (Ours) 85.9 51.6 63.0 44.5 198.6 87.0

Table 2: Comparison on Text-to-Pose Generation Task. Retrieval metrics (Recall@K, K=5, 10,
20) are reported on the PoseScript dataset under two evaluation protocols.

Method PoseScript (Full Retrieval) PoseScript (Random Sampling)

RT2P ↑ RP2T ↑ RT2P ↑ RP2T ↑
PoseScript (Delmas et al., 2022) 40.4 52.3 65.0 41.4 54.1 65.9 73.3 82.5 89.4 70.0 82.5 87.4
ChatPose (Feng et al., 2024) 17.6 25.3 35.8 28.0 39.0 54.4 39.9 50.6 58.7 56.1 65.3 72.5
ChatHuman (Lin et al., 2024) 41.8 52.6 65.1 42.1 52.3 66.5 - - - - - -
UniPose (Li et al., 2025c) - - - - - - 73.7 82.4 89.6 70.9 80.5 89.6

Pose-RFT (Ours) 42.2 53.0 65.5 45.3 57.2 70.4 71.8 82.6 88.7 74.6 86.5 91.5

(Goel et al., 2023). Reinforcement fine-tuning follows the settings of Visual-RFT (Liu et al., 2025b)
and VLM-R1 (Shen et al., 2025). During both pretraining and fine-tuning, the CLIP encoder and
the pose-aware encoder are kept frozen, while the projector and task head are updated. The large
language model is fine-tuned using LoRA (Hu et al., 2022). Further implementation details are
provided in the Appendix D.

4.2 COMPARISONS ON HUMAN POSE GENERATION TASKS

Image-to-Pose Generation. We evaluate our method on both standard reconstruction and com-
plex reasoning tasks for image-to-pose generation. On standard benchmarks like 3DPW (Von Mar-
card et al., 2018) and Human3.6M (Ionescu et al., 2013), Table 1 shows that Pose-RFT significantly
outperforms other MLLM-based approaches, demonstrating the efficacy of our reinforcement fine-
tuning framework in closing the alignment gap. While a performance gap remains compared to
traditional specialist models in this setting, the unique advantage of the MLLM paradigm is evident
on the Reasoning Pose Estimation (RPE) task (Feng et al., 2024). On this more complex bench-
mark, which requires visual-language reasoning that specialist models cannot perform, Pose-RFT
establishes a new state-of-the-art, validating the effectiveness of our MLLM-based approach for
advanced, reasoning-driven pose estimation.

Text-to-Pose Generation. We compare Pose-RFT with existing text-conditional pose generation
models (Delmas et al., 2022; Feng et al., 2024; Lin et al., 2024; Li et al., 2025c) on PoseScript-
H2 test set (Delmas et al., 2022). Following the standard protocol for this task, we generate 3D
poses from text prompts and then use a pretrained retrieval model (Delmas et al., 2022) to compute
Recall@K scores as a proxy for generation quality. To ensure a comprehensive comparison, we
report results under two established evaluation protocols (Full Retrieval and Random Sampling).
As shown in Table 2, Pose-RFT achieves the best performance across most metrics. We attribute
this success to our reinforcement fine-tuning with a semantic alignment reward, which effectively
enhances the model’s ability to capture fine-grained text-pose correspondence.
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4.3 ABLATION STUDIES AND DISCUSSIONS

Pose-Aware Encoder. We evaluate the effectiveness of the proposed pose-aware encoder, our spe-
cialized visual module designed to capture fine-grained pose information from the input image. As
shown in Figure 3, compared to relying solely on a generic CLIP encoder, this specialized module
leads to a significantly higher spatial location reward score on the 3DPW dataset. This improvement
establishes a more powerful SFT baseline for subsequent fine-tuning. We do observe, however, that
this vision-centric module brings little benefit to the semantic reward in the text-to-pose task, an
expected outcome as its features are less aligned with textual inputs.
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Figure 3: Ablation Study of Pose-RFT’s Core
Components. Both the Pose-Aware Encoder and
Reinforcement Fine-tuning (RFT) contribute pos-
itively, with RFT providing the most significant
gains across both semantic and spatial rewards.

Distributional Modeling. Next, we analyze
the impact of modeling the 3D pose output
as a probabilistic distribution rather than a
deterministic one–a key prerequisite for our
sampling-based RFT approach. As shown in
Table 3, introducing the distributional head
(Baseline + Dist.) by itself yields only marginal
changes in performance compared to the de-
terministic (Baseline). However, its crucial
role is revealed when combined with reinforce-
ment learning (Baseline + Dist. + RFT), where
it achieves the best performance. This syn-
ergy demonstrates that distributional modeling
is a critical enabler, facilitating more effective
reward-driven exploration and learning.

Effectiveness of Reinforcement Fine-tuning. With a stronger architecture and a probabilistic
policy in place, we now demonstrate the core contribution of our work. As shown in both Figure 3
and Table 3, applying reinforcement fine-tuning (+ RFT) provides the most significant performance
gains across all tasks and metrics. This consistently positive result validates our central hypothesis:
shifting from a supervised paradigm to a reward-driven RFT paradigm is highly effective in enhanc-
ing the alignment between language, vision, and 3D pose representations, successfully closing the
alignment gap.

Table 3: Ablation study on distributional modeling (denoted as “Dist.”) for 3D pose generation.
Reconstruction and retrieval metrics are reported on the 3DPW and PoseScript-H2 datasets.

Method Dist. RFT Image-to-Pose Generation Text-to-Pose Generation
MPJPE ↓ PA-MPJPE ↓ mRecallT2P ↑ mRecallP2T ↑

Baseline ✗ ✗ 90.4 57.1 36.2 41.5
Baseline + Dist. ✓ ✗ 91.4 59.2 37.4 42.0

Baseline + Dist. + RFT ✓ ✓ 85.9 51.6 53.6 57.6

Necessity of Hybrid-Action RL (HyGRPO). Finally, we validate that a specialized hybrid-action
algorithm is essential for this success. We compare our proposed HyGRPO with GRPO, an algo-
rithm designed for discrete-only action spaces. As illustrated in Figure 4, GRPO fails to improve
the quality of the continuous 3D pose generation. In contrast, HyGRPO, by jointly optimizing both
discrete token and continuous pose parameters under the guidance of task-specific rewards, yields
consistent and substantial improvements. This confirms that our novel HyGRPO algorithm is the
key technical component that enables the success of RFT in this complex, hybrid-action task.

4.4 QUALITATIVE RESULTS

We provide qualitative results to visually validate our method on both tasks. For text-to-pose, Figure
5 illustrates the training progression, showing a clear improvement in semantic alignment and struc-
tural plausibility as our reinforcement fine-tuning proceeds. For image-to-pose, Figure 6 demon-
strates the superior spatial accuracy and realism of our Pose-RFT in a direct comparison against
other leading MLLM-based methods on challenging in-the-wild images.
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Figure 4: Comparison between GRPO and HyGRPO. Training reward curves for pose generation.
The discrete-only GRPO fails to yield improvements, whereas our proposed HyGRPO achieves
consistent gains, demonstrating that a hybrid-action approach is essential for optimizing continuous
pose outputs.

Training Steps

The person is in a dance pose, standing on their left 
leg. The right leg is extended backwards. The head is 

tilted back. The two arms are outstretched to each 
side, with the right arm angled up.

He is bent forward with both knees bent and his face 
right above knee level looking down. His right arm is 

hanging down with his elbow bent and his hand in 
front between both of his legs and the palm of his 

hand is facing towards his legs. His left arm is 
extended out to his side at about waist height with 

the palm of his hand faced up.

The person is lying with their upper torso resting on 
the ground and head facing straight up, with their left 
leg mostly sticking straight up while their right leg is 

bent at the knee with foot facing forwards.

Figure 5: Training progression of text-to-pose generation. As reinforcement fine-tuning pro-
gresses (left to right), 3D poses generated from fixed text prompts exhibit increasingly improved
semantic consistency and structural plausibility.

5 CONCLUSION
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Figure 6: Qualitative comparison on image-to-
pose generation. Our Pose-RFT (bottom row)
exhibits superior spatial accuracy and realism
over baselines, especially in capturing challeng-
ing limb orientations and overall dynamics.

In this paper, we presented Pose-RFT, the first
reinforcement fine-tuning framework designed
to resolve the critical alignment gap in MLLM-
based 3D pose generation. We attribute this
gap to the fundamental mismatch between the
standard SFT paradigm and the inherent one-
to-many nature of the pose generation task. To
address this, Pose-RFT introduces a paradigm
shift to RFT, enabled by our novel HyGRPO al-
gorithm, which is specifically designed to han-
dle the challenging discrete-continuous hybrid
action space. Guided by task-specific rewards
for spatial accuracy and semantic alignment,
our framework directly optimizes for the true
objectives of the task. Extensive experiments
on multiple benchmarks demonstrate that Pose-
RFT consistently outperforms existing pose-
specific MLLMs. These findings validate that
our hybrid-action reinforcement fine-tuning ap-
proach is an effective method for closing the
alignment gap. More broadly, this work highlights the significant potential of RFT for unlock-
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ing the full capabilities of MLLMs on complex, ambiguous generation tasks, paving the way for
more aligned and controllable human-centric content generation.
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Guénolé Fiche, Simon Leglaive, Xavier Alameda-Pineda, and Francesc Moreno-Noguer. Mega:
Masked generative autoencoder for human mesh recovery. arXiv preprint arXiv:2405.18839,
2024.

Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik.
Humans in 4d: Reconstructing and tracking humans with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 14783–14794, 2023.

Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, and Jinqiao Wang. Anoma-
lygpt: Detecting industrial anomalies using large vision-language models. In Proceedings of the
AAAI conference on artificial intelligence, volume 38, pp. 1932–1940, 2024.

Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei Liu. Avatarclip:
Zero-shot text-driven generation and animation of 3d avatars. arXiv preprint arXiv:2205.08535,
2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3. 6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions
on pattern analysis and machine intelligence, 36(7):1325–1339, 2013.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-end recovery of
human shape and pose. In Computer Vision and Pattern Recognition (CVPR), 2018.

Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis. Learning to recon-
struct 3d human pose and shape via model-fitting in the loop. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 2252–2261, 2019.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
soning segmentation via large language model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9579–9589, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. arXiv preprint arXiv:2109.05490, 2021.

Jiefeng Li, Jinkun Cao, Haotian Zhang, Davis Rempe, Jan Kautz, Umar Iqbal, and Ye Yuan. Genmo:
A generalist model for human motion. arXiv preprint arXiv:2505.01425, 2025a.

11



Published as a conference paper at ICLR 2026

Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao,
Yi Wang, and Limin Wang. Videochat-r1: Enhancing spatio-temporal perception via reinforce-
ment fine-tuning. arXiv preprint arXiv:2504.06958, 2025b.

Yiheng Li, Ruibing Hou, Hong Chang, Shiguang Shan, and Xilin Chen. Unipose: A unified multi-
modal framework for human pose comprehension, generation and editing. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 27805–27815, 2025c.

Yumeng Li, Bohong Chen, Zhong Ren, Yao-xiang Ding, Libin Liu, Tianjia Shao, and Kun Zhou.
Cposer: An optimization-after-parsing approach for text-to-pose generation using large language
models. ACM Transactions on Graphics (TOG), 43(6):1–13, 2024b.

Jing Lin, Yao Feng, Weiyang Liu, and Michael J Black. Chathuman: Language-driven 3d human
understanding with retrieval-augmented tool reasoning. arXiv preprint arXiv:2405.04533, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, pro-
ceedings, part v 13, pp. 740–755. Springer, 2014.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
zero: Reasoning-chain guided segmentation via cognitive reinforcement. arXiv preprint
arXiv:2503.06520, 2025a.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025b.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black.
Amass: Archive of motion capture as surface shapes. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 5442–5451, 2019.

Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu,
and Christian Theobalt. Monocular 3d human pose estimation in the wild using improved cnn
supervision. In 2017 international conference on 3D vision (3DV), pp. 506–516. IEEE, 2017.

Bo Miao, Mingtao Feng, Zijie Wu, Mohammed Bennamoun, Yongsheng Gao, and Ajmal Mian. Re-
ferring human pose and mask estimation in the wild. Advances in Neural Information Processing
Systems, 37:44791–44813, 2024.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios
Tzionas, and Michael J Black. Expressive body capture: 3d hands, face, and body from a single
image. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10975–10985, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training.(2018), 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

12



Published as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Zehong Shen, Zhi Cen, Sida Peng, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Learning human
mesh recovery in 3d scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 17038–17047, 2023.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
Human motion diffusion model. arXiv preprint arXiv:2209.14916, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Timo Von Marcard, Roberto Henschel, Michael J Black, Bodo Rosenhahn, and Gerard Pons-Moll.
Recovering accurate 3d human pose in the wild using imus and a moving camera. In Proceedings
of the European conference on computer vision (ECCV), pp. 601–617, 2018.

Dongkai Wang, Shiyu Xuan, and Shiliang Zhang. Locllm: Exploiting generalizable human keypoint
localization via large language model. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 614–623, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Shengze Wang, Jiefeng Li, Tianye Li, Ye Yuan, Henry Fuchs, Koki Nagano, Shalini De Mello, and
Michael Stengel. Blade: Single-view body mesh estimation through accurate depth estimation.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 21991–22000,
2025a.

Yufu Wang, Yu Sun, Priyanka Patel, Kostas Daniilidis, Michael J Black, and Muhammed Kocabas.
Prompthmr: Promptable human mesh recovery. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 1148–1159, 2025b.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Guoli Yan, Zichun Zhong, and Jing Hua. Self-supervised 3d human mesh recovery from a single
image with uncertainty-aware learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 6422–6430, 2024.

Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
soning through cross-modal formalization. arXiv preprint arXiv:2503.10615, 2025.

Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin Zhao, Fan Yang, Ming Tang, and Jinqiao
Wang. Vision-r1: Evolving human-free alignment in large vision-language models via vision-
guided reinforcement learning. arXiv preprint arXiv:2503.18013, 2025.

Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, and Zhenan
Sun. Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback loop.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 11446–11456,
2021.

13



Published as a conference paper at ICLR 2026

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
zero’s” aha moment” in visual reasoning on a 2b non-sft model. arXiv preprint arXiv:2503.05132,
2025.

A DETAILS OF POSE-AWARE ENCODER AND THE VISUAL FUSION
STRATEGY

This section provides additional implementation details of the Pose-Aware Encoder and the corre-
sponding visual feature fusion strategy used in our framework.

Previous works (Liu et al., 2023; Feng et al., 2024) typically adopt the CLIP visual encoder (Radford
et al., 2021) as the visual backbone. However, since CLIP is pretrained using global and coarse-
grained supervision from image-caption pairs, it struggles to capture fine-grained pose details. In
contrast, pose estimation tasks require precise localization of human keypoints, encouraging the
encoder to learn fine-grained, pose-aware representations. To address this limitation, we introduce
a pose-specific Vision Transformer (Goel et al., 2023) pretrained on human pose estimation into the
visual pipeline, as illustrated in Figure 1.

Let fa denote the CLIP visual encoder and fb the pose-aware encoder. Given an input image x, we
extract two sets of visual embeddings: va = fa(x) ∈ RLv×da and vb = fb(x) ∈ RLv×db , where
Lv is the number of visual tokens, and da, db are the respective embedding dimensions. While
UniPose (Li et al., 2025c) directly concatenates va and vb along the channel dimension and applies
a single linear projection W ∈ R(da+db)×d this design can lead to patch-level misalignment due to
the differing preprocessing pipelines of the two encoders, potentially degrading performance.

To preserve the individual strengths of each visual encoder, we propose to project va and vb individ-
ually using two separate linear layers:

v′a = Wava, v′b = Wbvb, Wa ∈ Rda×d, Wb ∈ Rdb×d (11)

The transformed features v′a and v′b are then used in a token-level fusion with language features
during joint training. This design maintains the representational integrity of both visual encoders
while aligning their output with the language model’s embedding space.

B THEORETICAL DERIVATION OF THE HYGRPO OBJECTIVE

Our goal is to optimize a hybrid policy πθ(a, p|q), where a is a discrete action (e.g., text sequence),
and p is continuous action (e.g., 3D human pose), both conditioned on the input q. We assume the
policy factorizes as:

πθ(a, p|q) = πd(a|q) · πc(p|q, a), (12)
where πd is the discrete policy and πc is the continuous policy conditioned on the discrete output. To
simplify the derivation, we temporarily exclude the clipping and KL regularization terms from the
GRPO (Shao et al., 2024) objective. These components are included in the final training objective
but are omitted here for clarity. We begin with the simplified form of the GRPO objective :

Eq∼D,{ai,pi}G
i=1∼πθ(·|q)

[
1

G

G∑
i=1

ri(θ)Âi

]
. (13)

Here, ri(θ) is the importance weight of the i-th sampled output, computed as the ratio between the
current policy and the reference policy:

ri(θ) =
πθ(ai, pi|q)
πref(ai, pi|q)

=
πθ(ai|q)
πref(ai|q)︸ ︷︷ ︸
rd(ai|q)

· πθ(pi|q, ai)
πref(pi|q, ai)︸ ︷︷ ︸
rc(pi|q,ai)

.
(14)
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To effectively train the hybrid policy, we decompose the surrogate loss into discrete and continu-
ous components. This is motivated by the nature of our task design, where the rewards are defined
separately for the discrete and continuous outputs: textual rewards Rd(q, a) evaluate the seman-
tic correctness of the generated answer a. pose rewards Rc(q, a, p) measures the plausibility and
relevance of the generated pose p conditioned on both the question and answer.

Accordingly, we decompose the advantage estimate into discrete and continuous components:

Â(q, a, p) = F̂ (q, a)︸ ︷︷ ︸
discrete advantages

+ ∆̂(q, a, p)︸ ︷︷ ︸
continuous advantages

.
(15)

This decomposition does not rely on an additive assumption over a shared reward function. Instead,
it reflects the fact that the discrete and continuous components are supervised by independent reward
signals tailored to their modalities. Accordingly, we compute two independent advantages from
these separate rewards, using per-sample normalization within the candidate set:

F̂ (q, ai) =
R

(i)
d −mean({Rd}Gi=1)

std({Rd}Gi=1)
∆̂i(q, ai, pi) =

R
(i)
c −mean({Rc}Gi=1)

std({Rc}Gi=1)
. (16)

We now substitute this decomposition into the GRPO objective. To facilitate this, we first move the
expectation over the continuous action into an inner term:

Eq∼D,{ai}G
i=1∼πθ(·|q)

[
1

G

G∑
i=1

rd(ai|q)Epi∼πθ(p|q,ai)[rc(pi|q, ai)Âi(q, ai, pi)]︸ ︷︷ ︸
=:G(q,ai)

]
, (17)

We then analyze the inner term G(q, ai) by substituting the advantage decomposition:

G(q, ai) = Epi∼πθ(p|q,ai)[rc(pi|q, ai)F̂i(q, ai) + rc(pi|q, ai)∆̂i(q, ai, pi)]

= F̂ (q, ai)Epi∼πθ(p|q,ai)[rc(q, ai, pi)]︸ ︷︷ ︸
=1

+Epi∼πθ(p|q,ai)[rc(q, ai, pi)∆̂i(q, ai, pi)]

= F̂i(q, ai) + Epi∼πθ(p|q,ai)[rc(q, ai, pi)∆̂i(q, ai, pi)].

(18)

Substituting G(q, ai) back into the outer expectation, we arrive at a natural decomposition into two
components:

Eq∼D,{ai}G
i=1∼πθ(·|q)[rd(ai|q)F̂i(q, ai)]︸ ︷︷ ︸

Jd

+Eq∼D,{ai,pi}G
i=1∼πθ(·|q)[rd(q, ai)rc(q, ai, pi)∆̂i(q, ai, pi)]︸ ︷︷ ︸

Jc

.

(19)

Although the discrete importance weight rd(a|q) and the continuous policy πθ(p|q, a) share a com-
mon embedding space and are thus implicitly coupled through shared parameters, rd(a|q) does not
directly depend on the parameters of the continuous branch. In practice, when generating valid con-
tinuous 3D poses, the discrete answers q are highly templated. Thus, rd(a|q) can be treated as a
constant with respect to the optimization of the continuous component. Therefore, the continuous
policy gradient is proportional to:

∇θJc ∝ ∇θEq∼D,{ai,pi}G
i=1∼πθ(·|q)[rc(q, ai, pi)∆̂i(q, ai, pi)]. (20)

Based on the decomposed gradient structure, we apply PPO-style (Schulman et al., 2017) clipping
separately to the discrete and continuous components to stabilize training:

JHyGRPO =E(q,a,p)∼D,{ai,pi}G
i=1∼πθ(·|q)

[
1

G

G∑
i=1

(
min(rdF̂i, clip(rd, 1−ϵ, 1+ϵ)F̂i)

)
+

1

V

V∑
i=1

(
min(rc∆̂i, clip(rc, 1−ϵ, 1+ϵ)∆̂i)

)
− βDKL(πθ∥πref)

)]
.

(21)
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Table 4: Hyperparameter settings of pose-specific MLLM pretraining and reinforcement fine-tuning.

Hyperparameters Pretraining Reinforcement fine-tuning
Batch Size 80 16
Learning Rate 3e-4 1e-6
Training Steps 10000 1000
Optimizer AdamW AdamW
Adam β (0.9, 0.95) (0.9, 0.95)
LR Schedule Cosine Cosine
Computing Resources NVIDIA A100 (40GB) NVIDIA A800 (80GB)

where G is the total number of sampled candidates per input, and V ≤ G is the number of can-
didates with valid continuous outputs. This objective enables separate, stable, and reward-aligned
optimization of discrete and continuous policy branches within a unified reinforcement learning
framework.

C ALGORITHM

Algorithm 1 Hybrid Action Space Group Relative Policy Optimization
1: Input: Initial policy model πinit (a pretrained pose-specifc MLLM); reward models

Rφ; task dataset D; hyperparameters ϵ
2: Output: policy model πθ

3: Initialize πθ ← πinit, πref ← πinit
4: for iteration = 1, . . . , N do
5: Sample a batch Db from D
6: Generate G outputs {ai, pi}Gi=1 ∼ πθ(· | q) for each question q ∈ Db

7: Compute rewards {Ri}Gi=1 for each (ai, pi) by runningRφ

8: Compute Âi for (ai, pi) via group relative advantage estimation
9: Update πθ by maximizing HyGRPO objective Eq. 6

10: end for

D EXPERIMENTAL DETAILS

The detailed hyperparameter settings for both Pose-specific MLLM pretraining and reinforcement
fine-tuning are provided in Table 4. In the pretraining stage, we focus on adapting the base LLaVA
(Liu et al., 2023) model to 3D pose tasks, while the reinforcement fine-tuning stage further optimizes
the policy behavior.

E MORE QUALITATIVE RESULTS: TEXT-TO-POSE

In Figure 7, we present qualitative results of Pose-RFT applied to human-written prompts from
PoseScript (Delmas et al., 2022).

F MORE QUALITATIVE RESULTS: VIDEO-TO-POSE

In Figure 8, we present qualitative results of Pose-RFT applied to in-the-wild videos. As a frame-
based model, Pose-RFT processes each frame independently, without the integration of any temporal
smoothing or post-processing module.

16



Published as a conference paper at ICLR 2026

The person has three limbs on the ground, 
only the left leg is raised with the knee in 

line with the back.

Someone is bent over completely and is 
touching both of their feet with their hands 

while looking down.

The person is standing on the left foot, with 
the right leg stretched forward perfectly 

horizontally. The right arm is slightly bent 
along the body, while the left arm is bent 

forward, with the hand raised slightly 
higher than the elbow.

The person has their left arm angled 
diagonally downwards and their right arm 

held roughly level with their shoulder, 
while their head leans to the left. The left 

leg is crossed in front of the other.

Figure 7: Pose-RFT results on human-written prompts from PoseScript (Delmas et al., 2022).

Figure 8: Pose-RFT results on in-the-wild videos.
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Table 5: Ablation study on reward components. We report the performance impact of removing
individual rewards during RL fine-tuning.

Method Image-to-Pose (3DPW) Text-to-Pose (PoseScript-H2)

MPJPE ↓ PA-MPJPE ↓ RT2P ↑ RP2T ↑
Baseline (no RL) 91.4 59.2 37.4 42.0

w/o Joint Location Reward 108.7 73.5 55.9 60.3
w/o Semantic Alignment Reward 84.0 51.3 35.2 40.8
w/o Format Reward 131.9 80.6 28.3 34.4
w/o Text Emb. Sim. Reward 89.8 58.7 42.3 46.5

Pose-RFT (Full Model) 85.9 51.6 53.6 57.6

Table 6: Cross-Model Evaluation using PoseEmbroider Retrieval Model.

Text-to-Pose (RT2P ) ↑ Pose-to-Text (RP2T ) ↑
Method R@5 R@10 R@20 R@5 R@10 R@20

Baseline 47.7 78.3 86.1 46.2 80.3 88.7
Pose-RFT (Ours) 55.2 85.9 92.1 51.6 85.2 92.0

G ABLATION ON REWARD COMPONENT

To validate the efficacy of our proposed reward design, we performed an ablation study by system-
atically excluding individual reward terms during RL fine-tuning. Specifically, we zero-masked the
target reward signal while maintaining the multi-task training pipeline to strictly isolate the contribu-
tion of each component. As shown in Table 5, the removal of any single reward leads to performance
degradation in its corresponding domain. For instance, excluding the Joint Location Reward signifi-
cantly impairs geometric accuracy (PA-MPJPE ↑ 21.9mm), while removing the Semantic Alignment
Reward deteriorates text-pose consistency. Notably, the Format Reward proves critical for overall
stability; its absence results in catastrophic failure across both modalities, confirming that structured
output constraints are a prerequisite for effective optimization.

H CROSS-RETRIEVER EVALUATION FOR TEXT-TO-POSE

To further validate the generalization capability of our approach and ensure that the learned semantic
alignment is intrinsic rather than specific to the reward model’s feature space, we conducted a cross-
retriever evaluation using an independent pose retrieval framework. Specifically, we employed the
retrieval model from PoseEmbroider (Delmas et al., 2024) as an external evaluator in Table 6.

While PoseEmbroider shares a similar encoder architecture (VPoser + Transformer) with our reward
model (PoseScript), it serves as a robust out-of-distribution test due to two fundamental differences:
Data Distribution Shift: PoseEmbroider was trained on BEDLAM-Script (Black et al., 2023), a
dataset derived from high-fidelity synthetic avatars. This represents a significant domain shift from
the AMASS (Mahmood et al., 2019) data used to train our reward model. Distinct Training Frame-
work: Unlike the joint embedding approach of PoseScript, PoseEmbroider utilizes a distinct multi-
modal embroidery framework with uni-modal contrastive objectives.

I LIMITATIONS

While our method represents a promising step toward reinforcement learning-based 3D human pose
generation, it has several limitations. First, its effectiveness is inherently constrained by the quality
of the reward functions. Designing reliable and semantically meaningful reward signals for pose
generation remains a challenging problem, especially when capturing nuanced human preferences
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such as plausibility, naturalness, or contextual relevance. Inaccurate or incomplete reward feedback
may misguide policy optimization, leading to suboptimal or unnatural poses.

Second, our framework relies on sampling multiple candidate responses per input to perform group-
wise reward normalization. Although this design improves training stability in hybrid action spaces,
it introduces non-negligible computational overhead, which may limit scalability when applied to
larger models or datasets.

J THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used a Large Language Model (LLM) as a general-purpose writing assistant to improve the
clarity, grammar, and style of the manuscript. The LLM provided suggestions for sentence phrasing
and readability, but all content, ideas, and scientific claims in this paper are the sole responsibility
of the authors.
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