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Abstract

Bayesian Neural Nets are proposed as flexible models that can provide calibrated uncer-
tainty estimates for out-of-distribution data. Due to the high dimensionality of BNN poste-
riors and the intractability of exact inference, numerous approximate inference techniques
have been proposed. However, issues persist. Some approaches lack a proper Bayesian
formulation while others result in inexpressive or uncalibrated posteriors, defeating the
primary purpose of BNNs. Recently, subspace inference has been proposed to overcome
these challenges by running the inference on a lower-dimensional subspace of network pa-
rameters. While achieving promising results, these methods are mathematically involved
and therefore extending them to general architectures and problems is challenging. Here,
we propose a new subspace inference method—called HybridBNN—that divides the net-
work weights into deterministic and stochastic subsets before training. We develop an
expectation-maximization algorithm for the joint inference of the posterior over the stochas-
tic weights as well as the optimization of the deterministic ones. HybridBNN achieves
competitive prediction and calibration performance on two regression and classification
toy datasets and a benchmark dataset for in and out-of-domain distributions. The sim-
plicity and flexibility of HybridBNN make it a favorable candidate for developing generic
calibrated models.

1. Introduction

Developing calibrated predictive models that can flexibly fit any type of data has been a
long-standing problem in statistical machine learning. While neural nets are known for pro-
viding overconfident predictions specifically for out-of-distribution data, several approaches
have been proposed to alleviate their calibration issues primarily through Bayesian averag-
ing (Minka, 2000). Instead of a single weight configuration that fits the data in a neural net,
Bayesian averaging considers the space of all such weight configurations and weighs them
according to their predictive performance. One popular way to perform this is through
BNNs, which place a prior distribution over the weights of the neural net and infers the
posterior distribution conditioned on the dataset.

Prior θ ∼ N (0, I), Likelihood y|x,θ ∼ p(y|fθ(x)), Posterior p(θ|{xi,yi}Ni=1) (1)

The space of weights in BNN is high-dimensional; hence, exact inference is intractable.
Therefore, approximate inference methods have been proposed. Initial proposals of inference
algorithms for BNNs included Variational Inference (VI), Monte Carlo Dropout (MCD),
and deep ensembles (Gal and Ghahramani, 2016; Blundell et al., 2015; Lakshminarayanan
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et al., 2017). Unfortunately, all of these approximate inference methods are associated with
well-established issues listed below. Despite achieving promising calibration performance,
ensemble methods lack a proper Bayesian formulation. A recent paper shows that the in-
distribution calibration power of an ensemble of K networks with size N is comparable
to that of a single network of size KN (Abe et al., 2022, 2023), therefore challenging
the conventional understanding of ensembles as well-calibrated models. VI and MCD in
BNNs are known to provide posteriors that are severely inexpressive (Foong et al., 2020).
Furthermore, distance awareness, an important property of well-calibrated models, is absent
in VI and MCD (Liu et al., 2020a). Laplace approximation and its variants alleviate some
of the calibration issues associated with approximate inference in BNNs and provide a more
cost-effective solution to posterior inference (Daxberger et al., 2021; Bergamin et al., 2024).
Still, the inference is performed in the full network weight space which might be unnecessary.

Alternative to these approaches, Maddox et al. (2019) show that under strong assump-
tions, Stochastic Gradient Descent (SGD) can be cast as a sampling procedure. Osawa
et al. (2019) build on this idea and show that this framework is flexible and hence can
be combined with other deep learning tricks such as batch normalization, data augmen-
tation, and learning rate scheduling. More recently, methods for performing inference in
the subspaces of weights instead of full weight space are becoming more popular. Recent
theoretical results suggest that partially stochastic BNNs have sufficient expressivity to
capture the full posterior distribution of BNNs even in complex datasets (Sharma et al.,
2023). Empirically, Izmailov et al. (2019) show that subspace inference in BNNs can indeed
provide competitive performance and calibration. Daxberger et al. (2020) proposes another
form of subspace inference called sub-network inference, which deviates from the original
proposal by Izmailov et al. (2019) in both subspace construction and subspace inference.
Most similar to our approach is Bajwa et al. (2020) in that we divide the space of weights
into deterministic and stochastic and perform joint inference. However, their inference al-
gorithm uses Bayes-by-Backprop, a form of variational inference that potentially leads to
inexpressive posteriors (Blundell et al., 2015). Along similar lines, Kristiadi et al. (2020)
show that relu BNN with stochastic nodes only in the last layer mitigates the overcon-
fidence problem, but they use Laplace approximation which might be inexpressive in the
general case.

Building on these works, we propose a new subspace inference method that divides the
network weights into stochastic and deterministic ones, hence we call it HybridBNN. We
treat the deterministic weights as the parameters of a statistical model and the stochastic
weights as latent weights defining the space of functions mapping the inputs to the out-
puts. We develop an expectation maximization (EM) algorithm to jointly optimize the
deterministic weights while inferring the posterior distribution over the stochastic weights.
HybridBNN scales well to high dimensional inputs and provides competitive prediction and
calibration performance on toy examples and a benchmark dataset.

2. Methods

Let xi ∈ Rd,yi ∈ RD, i = 1, . . . , N denote the inputs and outputs of the HybridBNN. We
represent the BNN weights by θ and place a factorized Gaussian prior over them. Given
a realization of θ the BNN function is fθ(x) ∈ RD and we aim to fit a predictive model

2



HybridBNN

such that y|x,θ ∼ p(y|fθ(x)). We divide the weights of the neural network to θ = {θs,θd}
to represent stochastic and deterministic weights. Our key observation is that when the
data is inherently low-dimensional, the space of functions representing the input-output
relationship should also be low-dimensional, and the inference can be performed on a lower-
dimensional space. We can treat the stochastic weights of the neural network as latent
variables and the deterministic weights as the parameters in a probabilistic model, and
reformulate our proposed method as a marginal likelihood optimization problem instead of
posterior inference.

pθd(x1:N ,y1:N ,θs) = p(θs)
N∏
i=1

p(xi)p(yi|fθ(xi))

A natural choice for performing marginal likelihood optimization in this setting is to use
the EM algorithm.

max
θd

log pθd(x,y) = max
θd

log

∫
pθd(x,y,θs)dθs = max

θd
log

∫
p(x)p(θs)p(y|fθ(x))dθs

Below we elaborate on the E and M steps of the algorithm.

Q(θd|θ̂d) = Ep(θs|x,y,θ̂d)

[
log p(x)p(θs)p(y|fθ(x))dθs

]
︸ ︷︷ ︸

E-Step

, θ̂d = arg max
θd

Q(θd|θ̂d)︸ ︷︷ ︸
M-step

(2)

For the E step, we use a Monte Carlo estimation of the integral shown below.

Q(θd|θ̂d) ≈ 1

M

M∑
m=1

[
log p(x)p(θ(m)

s )p(y|f
θ
(m)
s ,θd

(x))

]
(3)

where M is the number of posterior samples. For the M step, we approximate the expected
log joint using multiple samples drawn from the current estimate of the posterior. This
approximate expectation is a function of the deterministic parameters, and we maximize
it in the M step to update the deterministic parameters. Samples from the posterior are
given by running MCMC in the low-dimensional stochastic weight space. We can compute
the log of joint for each posterior sample as a function of deterministic parameters, simply
by running a forward evaluation of the neural network and keeping track of its gradient
wrt θd. The M step is performed simply by backpropagating the gradients of the following
probabilistic loss wrt θd and updating it.

θ̂d = arg max
θd

M,N∑
m,j=1

log p(yj |fθ(m)
s ,θd

(xj))

In our experiments, we use Adam optimizer to perform this step. These steps can be repeated
until convergence.

3



HybridBNN

IND OOD

y

IND OOD IND OOD

STD STD STD

C
ou

nt
s

A1 A2 A3

B1 B2 B3

Figure 1: Results on the toy regression model. Data used for training is shown in the
black boxes in panels (B1-B3) and model predictions are shown in colors (legends
are consistent across two rows). All models perform well on mean prediction.
(A1-A3) Standard deviation of the model predictions for in-distribution (IND)
and out-of-distribution (OOD) data. A well-calibrated model exhibits a larger
OOD standard deviation. (B1-B3) Mean predictions and normalized standard
deviations across samples from the posterior of 3 models for IND and OOD data.
Both Hybrid (B1) and VI (B2) provide appropriate uncertainty estimates on this
dataset for IND and OOD. MCD fails to properly represent the uncertainty.

3. Results

Toy dataset We first run HybridBNN on synthetic data. We generate (xi, yi) pairs using
the following model.

w ∼ N (0, 1), xi ∼ U(−1, 1), yi|xi, w = wxi +
1

2
(xi + 0.5)2 sin(4xi) + εi, εi ∼ N (0, σ2), (4)

This type of model presents a challenging calibration problem for neural nets (Blundell
et al., 2015). We compared HybridBNN to VI and MCD on neural networks with the
same architecture and the weight same prior. Fig. 1 shows the comparison between the
models. The HybridBNN leads to higher uncertainty in regions where no data is seen, an
important sign of calibration for out-of-distribution (OOD) data. We refer the reader to
the Appendix A.1 for experimental details.
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Figure 2: Out of distribution uncertainty estimation in the two-circles dataset.
Data used for training the models to classify blue vs. pink dots is shown in panel
A4. Mean prediction across posterior samples from each model is shown in panels
(A1-A3). All models are able to classify data with perfect IND accuracy. (B1-B3)
STD of predictions for IND (red box) and OOD data. Only HybridBNN provides
a calibrated uncertainty estimate for regions outside of the training distribution.
(C) IND calibrated log-likelihood across models. (D1-D3) Same as in Fig. 1A1-
A3. HybridBNN is the only model that provides larger uncertainties for OOD
data. (E) Calibration plot for IND, all models perform similarly for IND.

Distance awareness Distance awareness is a key property of a well-calibrated statistical
model that enables proper uncertainty estimation in the OOD data. Liu et al. (2020b)
discuss that models such as the Gaussian Process are distance-aware, while approximate
inference algorithms for BNNs such as VI and MCD result in models that are not distance-
aware. We explore this in Fig. 2 where we empirically show that HybridBNN is indeed
distance aware. We further demonstrate that while all models have similar calibration
performance for IND data, only HybridBNN performs well for OOD calibration. We refer
the reader to the Appendix A.1 for more results and experimental details.

Calibration metrics A fundamental component of machine learning models is confidence
calibration or the ability to predict probability estimates representative of the true correct-
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Figure 3: Calibration evaluation on MNIST. (A1-A3) Posterior STD for IND and
OOD data. Here IND are test images from MNIST not used in training and
OOD data consists of random images generated by sampling each pixel from a
normal iid distribution. The Hybrid model (A1) provides larger uncertainties for
OOD data. (B) Calibration plot showing that the Hybrid model has better IND
calibration properties on MNIST.

ness likelihood. Guo et al. (2017a) show that modern neural networks are poorly calibrated,
as they often lead to overconfident predictions (Guo et al., 2017b). Common metrics for
evaluating the calibration of a model are calibration diagrams, which represent the accuracy
plotted against the model’s confidence, as well as the Expected and Maximum Calibration
Error (ECE, MCE), defined respectively as the difference in expectation between confidence
and accuracy E|P(ŷ = y|p̂ = p)− p| and the maximum difference maxp |P(ŷ = y|p̂ = p)− p|
(Naeini MP, 2015). In Fig. 3B, we show the calibration diagrams for our model on the
MNIST dataset. Architectural and optimization details can be found in Appendix A.1.

These diagrams and metrics are useful to evaluate our model but suffer from several
problems. Estimates are biased, maximized for an infinite temperature model, and do not
take into account the full probability vector but just the maximum. Ashukha et al. (2020)
have benchmarked different uncertainty estimates for machine learning, pointing out many
pitfalls of existing metrics. They propose another metric that does not suffer from these
issues: Calibrated Log-Likelihood (CLL), which is the log-likelihood at optimal temperature
(Guo et al., 2017a). We use this metric to compare the different models and estimate it
following Ashukha et al. (2020) by separating the test set in a validation set to estimate the
optimal temperature T , and a test set for evaluating log-likelihood at T . We then repeat
this several times to get an unbiased estimate of CLL (Fig. 2C).

Finally, similarly to Lakshminarayanan et al. (2017), we evaluate the spread of the
predictive distribution on OOD data and use this to evaluate the quality of the uncertainty
estimates. To do this, we first train our model on the MNIST train set and evaluate
the standard deviation (STD) distribution on both the MNIST test set and an OOD set
created by sampling random images with iid normal pixels. Fig. 1A1-A3, Fig. 2D1-D3, and
Fig. 3A1-A3 all show that our model’s STD distribution has a heavier tail on OOD data,
reflecting higher uncertainty.
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Conclusion

In this paper, we presented HybridBNN, a model for joint training of stochastic and de-
terministic weights in neural networks, and showed that it possesses desirable calibration
properties on two toy datasets and MNIST. Importantly, HybridBNN possesses distance
awareness, a property discussed in the literature that enables proper OOD uncertainty
estimation. As opposed to previously proposed distance-aware models, HybridBNN does
not introduce any architectural constraints and is compatible with most architectures (Liu
et al., 2020b). An important limitation of HybridBNN is that it assumes that the epistemic
uncertainty is low-dimensional. More efficient inference algorithms are needed for datasets
with higher-dimensional epistemic uncertainty. In other words, HybridBNNs do not scale
computationally to large Bayesian layers, which might be required if the stochasticity in
the data is high-dimensional (Sharma et al., 2023). Moreover, while our implementation of
HybridBNN supports stochastic weights only in the last layer, the algorithm extends be-
yond this setting to arbitrary stochastic weights in the architecture. In addition, while we
have observed that HybridBNN produces calibrated predictions on OOD data, we do not
have theoretical results supporting that. Hence, it is unclear whether these results extend
to other architectures such as convolutional or recurrent neural networks. We leave these
open questions for future work.
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Appendix A. Appendix

A.1. Experimental Details

Regression Model We generated 128 pairs (x,y) for training and a batch size of 32. We
set the value of σ2 to 0.2. We trained a HybridBNN with 2 deterministic layers of size 10
and a stochastic layer of size 10. The tanh activation was used for all layers except for the
last layer. For updating the deterministic weights, we used Adam optimizer with a learning
rate of 10−3. The same architecture was used for the VI and MCD models. In all models,
we placed a N (0, 1) prior over the weights of the networks. Convergence was assessed by
inspecting the loss value and ensuring that it does not change more than 10−4 for at least
10 iterations. The learning rate for other models was set to ensure that the networks do
not diverge. For VI we used a value of 10−2 and for MCD we used 10−1. The training data
was generated by sampling x uniformly on the interval (−1, 1) and computing y according
to Eqn 4. The OOD data was generated by sampling x uniformly on the interval (1, 3). For
HybridBNN, we inferred a posterior over the No U-Turn Sampler (NUTS) with 1 chain,
1000 burn-in samples, and 100 posterior samples. We used a normal likelihood for the
predictions which translated into MSE loss for updating deterministic weights.

Two Circles Classification In this experiment, we used a training set of size 128 sam-
pled independently from make circles function in sklearn with a noise value of 0.1. We
then generated the 2D x vectors into 10-dimensional space using an orthogonal matrix to
facilitate training. For HybridBNN architecture, we used 2 deterministic layers of size 200
and a stochastic layer of size 10. We used relu activation for all but the last layer. The
last layer used a softmax activation for the classification. The same architecture was used
for VI and MCD. In this experiment, we generated 500 samples from the posterior in each
iteration of posterior inference. The likelihood model used for the classification was cate-
gorical which translated into cross-entropy loss for updating the deterministic weights. The
rest of the parameters are similar to the regression experiment. To show the convergence
of the model, Fig. 4 shows that the model not only provides better predictive performance
through iterations, but it improves distance awareness and OOD calibration too.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 10

...

Figure 4: HybridBNN improves OOD calibration through the iterations of the
algorithm.

MNIST We uniformly sampled 128 images from different digit classes in the MNIST
dataset and reformatted the data to a 784-dimensional vector. For the HybridBNN archi-
tecture, we used two deterministic layers of size 200 and a stochastic layer of size 20. The
relu activation was used for all but the last layer. For the last layer, we used softmax to
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match the classification task. We used a learning rate of 10−1 for updating the deterministic
weights of HybridBNN. The same value was used for the VI model. The learning rate for
the MCD model was chosen to be 10−2. Other parameters are similar to the two circles
experiment.
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