
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACTION-AWARE DYNAMIC PRUNING FOR EFFICIENT
VISION-LANGUAGE-ACTION MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Robotic manipulation with Vision-Language-Action models requires efficient in-
ference over long-horizon multi-modal context, where attention to dense visual
tokens dominates computational cost. Existing methods optimize inference speed
by reducing visual redundancy within VLA models, but they overlook the varying
redundancy across robotic manipulation stages. We observe that the visual token
redundancy is higher in coarse manipulation phase than in fine-grained operations,
and is strongly correlated with the action dynamic. Motivated by this observation,
we propose Action-aware Dynamic Pruning (ADP), a multi-modal pruning frame-
work that integrates text-driven token selection with action-aware trajectory gating.
Our method introduces a gating mechanism that conditions the pruning signal on
recent action trajectories, using past motion windows to adaptively adjust token
retention ratios in accordance with dynamics, thereby balancing computational
efficiency and perceptual precision across different manipulation stages. Extensive
experiments on the LIBERO suites and diverse real-world scenarios demonstrate
that our method significantly reduces FLOPs and action inference latency (e.g.
1.35× speed up on OpenVLA-OFT) while maintaining competitive success rates
(e.g. 25.8% improvements with OpenVLA) compared to baselines, thereby provid-
ing a simple plug-in path to efficient robot policies that advances the efficiency and
performance frontier of robotic manipulation.

1 INTRODUCTION

Large vision language models Liu et al. (2023c;b; 2024a); Team et al. (2023); Awadalla et al. (2023)
have recently been extended into Vision–Language-Action (VLA) models Kim et al. (2024; 2025);
Black et al. (2024); Li et al. (2024); Brohan et al. (2024); Wen et al. (2025b;a); Bjorck et al. (2025)
that map both the visual observation and language instruction to executable robot actions. In the
mainstream pipeline, a vision encoder produces dense visual tokens from one or more camera views,
a projector aligns them to the language space, and an LLM fuses all modalities to predict actions.
However, this multi-modal design introduces long input sequences with numerous visual tokens that
are only weakly relevant to the current manipulation operation, which inflates compute, memory
footprint, and latency, and it can dilute attention over truly task-relevant cues.

Existing work pursues efficiency via architectural lightening and modality-aware compression, such as
RoboMamba Liu et al. (2024b) that focuses on lightweight designs, DeeR-VLA Yue et al. (2024) that
aims at structured pruning/reparameterization, Mole-VLA Zhang et al. (2025) that targets conditional
layer activation, VLA-Cache Xu et al. (2025) that focuses on cache reuse, and EfficientVLA Yang
et al. (2025) that aims to prune visual tokens via attention. However, a key but underexplored property
of robotic manipulation is that visual redundancy in VLAs is action-aware across different
manipulation stages. As Fig. 1 shows, during coarse-grained operations (e.g., relocating), global
movement dominates and redundant tokens can be pruned; during fine-grained phases (e.g., grasping),
local geometry and detailed cues dominate and preserving full vision is preferred. Moreover, the
relevance of visual patches is not only text conditioned (semantics of the instruction) but also action
conditioned (instantaneous end-effector motion and gripper state). Treating all steps uniformly, or
ranking tokens solely by mixed attention scores, therefore yields suboptimal pruning schedules that
either prune too little (limited savings) or prune too much (accuracy loss), especially in multi-view
settings (scene and wrist/gripper cameras) where importance is unevenly distributed across time.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Action-aware dynamic pruning vs. static pruning. We visualize five past observation
windows as cases from a manipulation episode that condition the current anticipatory window. p1,
p3 and p5 reflect coarse phases, prompting the gate to enable pruning to suppress redundant tokens,
whereas p2 and p4 are delicate phases requiring detail vision context, so pruning is disabled and full
vision is used. The curves depict robot’s motion that drives the gating rule.

To address this challenge, we introduce Action-aware Dynamic Pruning (ADP), a plug-and-play
strategy that reduces computation while preserving manipulation fidelity. ADP is built on two com-
plementary ideas: (1) Text-driven Pruning evaluates the relevance of visual patch using cross-modal
similarities, selecting only the most relevant tokens before entering deep fusion in the subsequent
layers. (2) Action-aware Dynamics modulate whether pruning is activated at a given step using
a lightweight decision signal derived from the end-effector trajectory within each action window.
Specifically, when the recent motion magnitude is relatively low compared to past motion statistics
(delicate phases), pruning is disabled to preserve the full visual field for precise control. Conversely,
when the motion magnitude is relatively high compared to past motion statistics (coarse phases),
pruning is engaged to suppress redundancy and save FLOPs. We implement a gated mechanism that
treats recent action statistics as a pruning signal over sliding trajectory windows, adaptively adjusting
retention ratios according to motion dynamics and balancing efficiency with precision across manipu-
lation stages. Our contributions can be summarized as: (1) We show that the importance of the visual
token in VLA models varies within different stages of robotic manipulation. This insight motivates
our dynamic pruning method tailored to manipulation phases compared to static pruning approaches.
(2) We propose text-driven action-aware pruning that combines task instruction relevance with a
gating rule based on end-effector motion, enabling adaptive switching between pruned and full-vision
states. (3) We present a principled complexity analysis and extensive experiments in simulation and
real-world settings, demonstrating that our method reduces FLOPs and latency while maintaining
fine visual details required for successful manipulation.

2 PRELIMINARY

The mainstream vision–language–action paradigm extends large vision–language models to generate
executable robot actions from multi-modal inputs—visual observations (scene and wrist/gripper
views) and task instructions. A pre-trained vision encoder produces visual tokens, a projector aligns
them to the LLM token space, and the LLM fuses modalities and autoregressively emits action tokens,
which are de-tokenized into a continuous 7-dimensional robot action.

Formally, given a sample of a scene image Is ∈ RH×W×3, a gripper view Ig ∈ RH×W×3, and a task
instruction It ∈ RN×L, the vision encoder fvenc (DINOv2 Oquab et al. (2023) and SigLIP Zhai et al.
(2023)) and text tokenizer f tenc project the multi-modal data into the same latent dimension space:

Xvis = fvenc(I
s, Ig), Xtxt = f tenc(I

t), (1)

where Xvis ∈ RLvis×D and Xtxt ∈ RLtxt×D represent latent embeddings for vision and text.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

OpenVLA. In the latent space, the embedding representations are concatenated into a multi-modal
sequence as:

Xm = X[BOS] ⊕Xvis ⊕Xprop ⊕Xtxt (2)
where ⊕ denotes concatenating embeddings of [BOS], vision, text, and proprioceptive (optionally)
along the sequence length dimension, yielding multi-modal inputs Xm ∈ R1+Lvis+Ltxt+1. The
multi-modal sequence Xm is then fed into a Large Language Model (LLM) fLLM (Llama2 Touvron
et al. (2023)), which performs contextual reasoning and autoregressively generates an action token
sequence:

p(â | Xm) =

7∏
j=1

fLLM(âj | Xm, â<j), (3)

where â = (â1, . . . , â7) ∈ T7 and T = {1, . . . ,K} denotes the reserved action token space.

OpenVLA-OFT. For optimize finetuning version, the paradigm shifts to parallel decoding without
traditional autoregressive decoding stage. In the latent space, the method introduces Lact placeholder
Xplace as inputs for actions positions:

Xm = X[BOS] ⊕Xvis ⊕Xprop ⊕Xtxt ⊕Xplace, (4)
where Xm ∈ R1+Lvis+Ltxt+1+Lact and the first placeholder as current action placeholder and another
Lact − 1 actions as future actions. During generation, the LLM directly predicts action tokens at
action chunk in parallel:

Â = fLLM(Xm)
∣∣
place ∈ TLact×7, (5)

where Â = [â1; . . . ; âLact ], and each âi = (âi,1, . . . , âi,7) ∈ T7 represents the tokenized 7-DoF
action predicted at the i-th placeholder position. To expand action representation ability, the oft
version also introduce the continuous control with token-level modeling, which each dimension of
the continuous action is uniformly discretized into 256 bins. During generation, the 7 degrees of
freedom action follows the standard gripper parameterization:

â c = [∆x, ∆y, ∆z, ∆ϕ, ∆θ, ∆ψ, g ]⊤, (6)
where (∆x,∆y,∆z) denote Cartesian displacements, (∆ϕ,∆θ,∆ψ) denote Euler-angle rotations
(roll, pitch, yaw), and g denotes the gripper.

3 RELATED WORK

Vision-Language-Actions. Vision-Language-Action (VLA) models extend large vision-language
models with an action generator that links multimodal perception to low-level robot control. They take
images and text instructions, encode them into a shared latent space, then decode it into executable
actions. Early approaches Chi et al. (2023); Kim et al. (2024) map multimodal embeddings to
discrete tokens, while more recent works Wen et al. (2025b); Kim et al. (2025) emphasize continuous
parallel decoding actions for improving performance. To this end, lightweight MLPs, diffusion-based
decoders, and parallel decoding strategies have been introduced to transform hidden states into
temporally consistent trajectories. Representative architecture include CogACT Li et al. (2024),
OpenVLA Kim et al. (2024), OpenVLA-OFT Kim et al. (2025), and π series Black et al. (2024),
which adopt diffusion modules for iterative refinement of continuous actions, as well as optimized
fine-tuning frameworks that leverage placeholder tokens for parallel action prediction.

Efficient Robotic Manipulations. The high computational complexity of Vision-Language-Action
(VLA) models poses significant efficiency challenges for real-time robotic control. To address this,
recent works have proposed efficiency-oriented strategies that can be broadly divided into training-
aware and training-free approaches. Training-aware methods, such as RoboMamba Liu et al. (2024b)
and DeeR-VLA Yue et al. (2024), redesign architectures or apply compression and pruning during
training, achieving notable speedups while preserving accuracy. For instance, DeeR-VLA Yue et al.
(2024) introduces dynamic reparameterization and structured pruning to reduce FLOPs, and Mole-
VLA Zhang et al. (2025) selectively activates subsets of model layers conditioned on task demands,
yielding scalable deployment. On the other hand, training-free methods aim to accelerate inference
without retraining. VLA-Cache Xu et al. (2025) reuses keys and values of uninformative tokens
between consecutive steps to save computation, while EfficientVLA Yang et al. (2025) retain task-
relevant patches identified via attention maps. However, these methods typically rely on single-layer
heuristics or static rules that may overlook stage-dependent redundancy in manipulation tasks.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of our proposed Action-aware Dynamic Pruning (ADP) for Vision-Language-
Action models. (a.) Action-aware gating: the pruning function adaptively determines whether to
prune based on recent end-effector trajectories (∆x,∆y,∆z,∆ϕ,∆θ,∆ψ, g) , enabling dynamic
pruning. (b.) Anticipatory pruning: task-relevant visual tokens are selected via attention-based
relevance, while redundant patches are discarded before entering the VLA backbone.

4 METHODOLOGY

In this section, we introduce our proposed method Action-aware Dynamic Pruning (ADP) in VLAs
for robotic manipulations. We first introduce text-driven pruning that identifies text-relevant tokens
in Section 4.1 and then introduce action-aware dynamics that dynamically modulates the pruning
strategy according to the past observed actions in Section 4.2.

4.1 TEXT-DRIVEN ANTICIPATORY PRUNING

Before entering the LLM, the multimodal sequence X still contains a large number of redundant
visual tokens, which increase computation and dilute attention focus. To mitigate this redundancy, we
compute the relevance of visual tokens with respect to task instructions at each layer, which shown
in Figure 3. Let the hidden state at layer l be H(l) ∈ RS×D (H(0) = Xm in Eq. 2). We partition
H(l) into the vision and text subsets H(l)

vis ∈ RLvis×D and H
(l)
txt ∈ RLtxt×D. Applying the projection

matrices, we obtain query and key representations:

Q(l) = H
(l)
txtW

(l)
Q , K(l) = H

(l)
visW

(l)
K , (7)

reshaped into multi-head form Q(l) ∈ RNh×Ltxt×d and K(l) ∈ RNh×Lvis×d. The scaled dot-product
similarity is then computed as

A(l) =
Q(l)(K(l))⊤√

d
∈ RNh×Ltxt×Lvis

, (8)

where each entry measures the degree to which a text token attends to a visual patch. To derive a
global importance score per visual token, we average across heads and text queries:

Φ(l)(v) =
1

Nh · Ltxt

Nh∑
h=1

Ltxt∑
t=1

A
(l)
h,t,v, (9)

Xkeep = Top-K
(
Φ(l), k

)
, k = ⌊ρ · Lvis⌋, (10)

where v ∈ {1, . . . , Lvis} indexes visual tokens, Nh is the number of attention heads, Ltxt is the text
sequence length, and Lvis is the total number of visual tokens. In multi-view scenarios with C input
images (e.g., scene and wrist views), each contributing Lvis

c patches such that
∑C

c=1 L
vis
c = Lvis, the

retention quota is distributed across views by a weighting vector α ∈ RC with
∑C

c=1 αc = 1. The
remain visual tokens kept for view c is

Xvis
(c) = Top-K

(
Φ

(l)
(c), kc

)
, kc = ⌊αc · k⌋ , (11)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Text-driven Anticipatory Pruning.
Step 1: Retrieval pretrained weights from
Layer l to compute relevance scores. Step 2:
Treat text as a guider to prune vision tokens
based on the ranking .

where Φ
(l)
(c) denotes the importance scores restricted

to view c. For each view c, the remain visual tokens
could be represented as:

Xvis
keep =

C⋃
c=1

{Xvis
(c)[v] | v ∈ Xvis

(c), X
vis
(c)[v] ∈ RD }.

(12)
The reduced visual sequence Xvis

keep is then concate-
nated back with other modalities to form the pruned
multimodal sequence:

X̃m = X[BOS]⊕Xvis
keep⊕Xprop⊕Xtxt⊕Xact⊕X[EOS],

(13)
where X̃m denotes the dynamically reduced input
propagated to the LLM module.

4.2 ACTION-AWARE DYNAMIC STRATEGY

While static pruning can effectively identify task-
relevant visual tokens, not every stage of a manipula-
tion task is suitable for relying solely on the pruned set. In particular, missing fine-grained visual
details may cause failures in operations such as moving, swiping, or aligning objects. The accumula-
tion of such local errors can easily propagate and ultimately cause the entire task to fail. To address
this limitation, we introduce a dynamic visual strategy that adapts the pruning decision to the robot’s
motion state across different task phases, guided by the end-effector (EEF) trajectory within each
action chunk, which focus on capturing both translational displacement and rotational motion.

Windowed trajectory and actions. Assume i indexes windows and u indexes steps within a
window; bi and ei denote the start and end timesteps, and ω matches the OFT action placeholder length.
We treat each decoded action chunk as a temporal window [bi, ei] of length ω = ei−bi+1 with actions
A c

i = [a c
i,1; . . . ;a

c
i,ω ] ∈ Rω×7, where a c

i,u = [∆xi,u,∆yi,u,∆zi,u,∆ϕi,u,∆θi,u,∆ψi,u, gi,u ]
⊤

collects per-step translational and rotational increments and the gripper command.
Definition 4.1 (Windowed FK for EEF Position). Let Tt ∈ SE(3) be the EEF pose at time t, and
π : SE(3)→R3 extract its translation. With body-frame (right-multiply) composition,

p bi+u ≜ π

(
Tbi

u∏
k=1

[
Ri,k vi,k

0⊤ 1

])
, Tbi+u ≜ Tbi+u−1

[
Ri,u vi,u

0⊤ 1

]
, (14)

where vi,u = [∆xi,u,∆yi,u,∆zi,u]
⊤ and Ri,u = Rx(∆ϕi,u)Ry(∆θi,u)Rz(∆ψi,u).

The rotation order RxRyRz follows our implementation; if a world-frame (left-multiply) update or a
different Euler order is used, the composition should be adjusted accordingly. Definition 4.1 therefore
makes pt = π(Tt) an explicit function of the full 7-DoF action sequence within each window.

Windowed trajectory distance. Given pt from Def. 4.1, we quantify motion per window either by
the Euclidean displacement:

δi =

ei−1∑
t=bi

∥pt+1 − pt∥2. (15)

The windowed trajectory distance aims to yield a scalar δi that captures overall motion magnitude
and subsequently drives our pruning decision rule.

Dynamic decision function. Given a windowed trajectory distance, we define a binary state variable
si ∈ {0, 1}, where si = 0 corresponds to the full-vision state (w/o pruning) and si = 1 to the pruned
state (cross-attention pruning). therefore next state could be determined by

si+1 = f(δi) =

{
1, δi ≥ δ̄i,
0, δi < δ̄i;

δ̄i =
1

i

i∑
j=1

δj . (16)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The dynamic switch to si+1 adapts to the global motion scale of the task, enabling pruning during
periods of high activity while retaining full vision during fine-grained phases. An alternative is the
adjacent-extrema function, which sets thresholds based on the extrema of the most recent τ windows:

U (i) = max{δi−τ+1, . . . , δi},
V (i) = min{δi−τ+1, . . . , δi}

(17)

with the update rule

si+1 =


1, δi ≥ U (i),

0, δi ≤ V (i),

si, V (i) < δi < U (i).

(18)

This design aims to respond quickly to local motion variations, capturing abrupt efficient shifts
between coarse and delicate manipulations. When the robot exhibits large-amplitude motions,
pruning is activated to suppress redundant visual input and reduce computation. When motion
amplitude decreases, signaling the onset of fine manipulation, pruning is disabled to preserve the
complete visual context necessary for accurate control.

4.3 THEORETICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY

We consider the computational cost of the Transformer stack in fLLM with respect to the sequence
length before and after pruning. Let S denote the token length of the full multi-modal sequence
in Eq. 2, D the hidden dimension, and M the intermediate dimension of the feed-forward network
(SwiGLU). The total number of vision tokens before pruning is Lvis, while k = ⌊ρ · Lvis⌋ tokens are
kept after the text-driven selection in Eq. 10. We denote by T the number of forwards in a complete
task execution (Eq. 5), and by γ ∈ [0, 1] the proportion of forwards executed in the pruned state
(Sec. 4.2). Let H be the number of Transformer layers in fLLM.

For one Transformer layer, the FLOPs are approximated by

F (S;D,M) ≈ 2S2D + 4SD2 + 6SDM, (19)

corresponding to attention, projections, and MLP. A baseline forward of the H-layer LLM therefore
costs

Fbase = H · F (S;D,M). (20)

In ADP, pruning happens before the LLM at the embedding stage: visual tokens are ranked and
reduced using Eq. 9–10, yielding the shorter sequence

S′ = 1 + k + Lprop + Ltxt + Lact + 1. (21)

The scoring overhead uses lightweight projections and a similarity matrix between text and vision
embeddings,

Fscore = 2LtxtD
2 + 2LvisD

2 + 2NhLtxtLvisd. (22)

Assume pruning and scoring are performed once per forward before any Transformer layer, so all
H layers operate on S′, the per-layer cost follows F (S;D,M)≈ 2S2D + 4SD2 + 6SDM , and
D = Nhd,

∆FADP = Fbase − FADP, FADP = Fscore +H · F (S′;D,M), (23)

where k = ⌊ρLvis⌋, S′ is as above with Lprop, Ltxt, Lact the proprioception/text/action lengths, Nh is
the number of attention heads of size d, and Fbase = H F (S;D,M). Over an episode of T forwards,
the expected complexity under the dynamic strategy is

E[Fepisode] = T
(
γ FADP + (1− γ)Fbase

)
, (24)

with expected savings
E[∆Fepisode] = T γ∆FADP. (25)

The pruning is applied at the embedding stage prior to fLLM, so the reduced length S′ benefits all H
layers uniformly, and the dynamic rule (Eq. 14–16) controls how often the pruned path is used across
action windows.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on the LIBERO Benchmark. TR: Training-Free; AR: Auto-Regressive; PD:
Parallel Decoding. Ratio: The retain tokens / Full tokens.

Method TR Decoding CKPT Spatial Object Goal Long Average FLOPs↓ Speedup↑
OpenVLA Kim et al. (2024) - AR OpenVLA (7B) 84.7% 88.4% 79.2% 53.7% 76.5% - -
SparseVLM Zhang et al. (2024) ✓ AR OpenVLA (7B) 79.8% 67.0% 72.6% 39.4% 64.7% - -
FastV Chen et al. (2024) ✓ AR OpenVLA (7B) 83.4% 84.0% 74.2% 51.6% 73.3% - -
VLA-Cache Xu et al. (2025) ✓ AR OpenVLA (7B) 83.8% 85.8% 76.4% 52.8% 74.7% - -
FlashVLA Tan et al. (2025) ✓ AR OpenVLA (7B) 84.2% 86.4% 75.4% 51.4% 74.4% - -
SP-VLA Li et al. (2025) ✓ AR OpenVLA (7B) 75.4% 85.6% 84.4% 54.2% 74.9% - -
WorldVLA Cen et al. (2025) - AR Chameleon (7B) 85.6% 89.0% 82.6% 59.0% 79.1% - -
WorldVLA* Cen et al. (2025) - AR Chameleon (7B) 87.6% 96.2% 83.4% 60.0% 81.8% - -
NORA Hung et al. (2025) - AR Qwen-VL (3B) 85.6% 87.8% 77.0% 45.0% 73.9% - -
SmolVLA Shukor et al. (2025) - AR SmolVLM (2.25B) 93.0% 94.0% 91.0% 77.0% 88.8% - -
CogACT Li et al. (2024) - FM CogVLM (7B) 97.2% 98.0% 90.2% 88.8% 93.6% - -
NORA-Long Hung et al. (2025) - PD Qwen-VL (3B) 92.2% 95.4% 89.4% 74.6% 87.9% - -
OpenVLA-OFT Kim et al. (2025) - PD OFT (7B) 98.6% 98.2% 96.6% 94.8% 97.1% 7.91 1.00×
FastV(+OFT) Chen et al. (2024) ✓ PD OFT (7B) 96.8% 81.0% 96.4% 73.0% 86.8% 6.37 1.24×

VLA-ADP (Ratio=30%) ✓ PD OFT (7B) 97.6% 98.4% 97.4% 84.2% 94.4% 5.85 1.35×
VLA-ADP (Ratio=40%) ✓ PD OFT (7B) 98.2% 97.2% 96.6% 87.2% 94.8% 6.14 1.29×
VLA-ADP (Ratio=50%) ✓ PD OFT (7B) 99.4% 98.0% 96.4% 91.2% 96.3% 6.43 1.23×
VLA-ADP (Ratio=60%) ✓ PD OFT (7B) 98.8% 98.0% 95.8% 92.0% 96.2% 6.74 1.17×
VLA-ADP (Ratio=70%) ✓ PD OFT (7B) 99.0% 98.2% 96.8% 91.2% 96.3% 7.03 1.13×

Figure 4: Visualisation of our method on representative examples of the four LIBERO task types
(Spatial, Object, Goal, Long). Blue masks indicate pruned vision tokens. The retained tokens con-
sistently highlight task-relevant objects, validating the Text-driven Anticipatory Pruning. Moreover,
full vision tokens are restored at critical phases (e.g., initialisation, grasping, placement), demonstrat-
ing the effectiveness of the Task-driven Pruning and Action-Aware Dynamic Strategy.

5 EXPERIMENTS

We conduct experiments across LIBERO simulation and real-robot tasks under standardized set-
tings, comparing against strong baselines and conducting targeted ablations to assess success rates,
compute/latency, and the contributions of dynamic scheduling and layer-wise pruning.

5.1 SIMULATION EXPERIMENTS

Experiments setup. For simulation, we use LIBERO Liu et al. (2023a) with four suites (i.e., Spatial,
Object, Goal, Long) evaluating spatial understanding, object recognition, goal-directed behaviour,
and long-horizon planning. All Libero settings follow OpenVLA-OFT, using its public run scripts.
For comparison, we reproduce FastV Chen et al. (2024) on OpenVLA-OFT and run under the same
environment. Experiments run on Linux with an NVIDIA RTX 4090. We set the window size to
the OpenVLA-OFT chunk size (8) and apply a cold start: the first two windows use full vision.
To limit error accumulation, if pruning occurs in three consecutive windows, the next window is
forced to full vision. In multi-view pruning, the main wrist retention is 4:6. Within the Action-Aware
Dynamic Strategy, we use Euclidean displacement and the adjacent-extrema rule; in its third case we
deterministically set the state to 1 (instead of inheriting si) to further reduce FLOPs.

Main result. Table 1 shows that VLA-ADP achieves a stable accuracy–compute trade-off across the
keep ratio on LIBERO. Compared to OpenVLA-OFT, when the keep ratio is 50–70%, the average
success rate slightly decreases (≤ 0.9%), while the LLM-side inference speed improves by up to
1.23×, and the FLOPs are markedly below the baseline. Further compressing the retention rate to
30–40% maintains an average SR of 94.4–94.8%, yet attains 1.29–1.35× speedup. Notably, VLA-
ADP achieves a 99.4% success rate on the Spatial, indicating that VLA-ADP successfully prunes
redundant vision tokens while selectively preserving key information in relatively simple spatial

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Real-World Experiments (4 tasks). Task 1 to Task 4 cover the picking, placing and wiping
motion, which covering a variety of objects.

Method Decoding Task1 Task2 Task3 Task4 Average Latency↓ Speedup↑
OpenVLA-OFT (base) PD 83.3% 93.3% 86.7% 80.0% 85.8% 76.9 1.00
VLA-ADP (ours) PD 90.0% 90.0% 90.0% 83.3% 88.3% 51.8 1.49×

Figure 5: Real world experiments. We conduct the experiments on Jaco2 Real-world Platform.

manipulation scenarios. By contrast, Random Dropping (50%) yields a 1.29× speedup on the LLM
side and performs reasonably on the Spatial and Goal, but its success rates on Object and Long are
only 73.0% and 76.2%, respectively.

5.2 REAL-WORLD EXPERIMENTS

Experiment setup. We evaluate on four real tasks executed on a physical robot: Task1: pick up
the orange pot and place it in the green plate; Task2: place the blue cube on the plate; Task3: place
the carrot on the blue pan; Task4: wipe the table. All runtime settings mirror the simulation: Linux
workstation with an NVIDIA RTX 4090, parallel decoding (PD) and window size equal to OpenVLA-
OFT chunk size (8) with a two-window cold start (full vision). To curb error accumulation, if pruning
is enabled for three consecutive windows, the next window uses full vision. Within the Action-Aware
Dynamic Strategy we use Euclidean displacement and the adjacent-extrema rule, and in the third case
deterministically set the state to 1 to further reduce FLOPs.

Main result. Table 2 summarizes the outcomes. VLA-ADP improves the average success rate
from 85.8% to 88.3% while reducing latency from 76.9 to 51.8 (baseline/ours = 1.49×). Per task,
VLA-ADP outperforms the baseline on Task1/3/4 (90.0%, 90.0%, 83.3%) and is still competitive on
Task2 (90.0% vs. 93.3%). These results indicate that our dynamic pruning maintains or improves
real-world success while yielding substantial speedup.

6 ABLATION STUDY

We conduct ablations on each component of our method: first removing the dynamic strategy to test
ADP (w/o Action-aware Dynamic); then ablating the pruning module (w/o Text-driven Pruning) with
different weight selections for relevance scoring.

Action-aware Dynamic Strategy. We assess the impact of the dynamic strategy with two baselines:
removing the dynamic function (ADP w/o D) and a handcrafted periodic switching variant (w/o
D + PS). Table 3a (a) shows that introducing the dynamic controller (ADP) yields the best overall
accuracy–compute balance: 96.3% average SR with ρavg = 0.22 and 6.43 FLOPs, outperforming
the variant w/o D (93.45%, ρavg = 0.25, 6.23 FLOPs) and the periodic schedule w/o D + PS (89.9%,
ρavg = 0.50, 4.55 FLOPs). Per-suite, the dynamic policy preserves Goal/Long while boosting
Spatial/Object—most notably a +16.6 point gain on Object over the periodic schedule (98.0% vs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation Study on each component of our design. (a) Ablation on dynamic strategies (f ).
(b) Ablation on pruning based on weights retrievaled from layer l. Metrics are SR (%) and FLOPs.

f
Spatial Object Goal Long Avg

SR↑ SR↑ SR↑ SR↑ SR↑ ρavg FLOPs↓

ADP 99.4% 98.0% 96.4% 91.2% 96.3% 0.22 6.43
- w/o D 98.2% 88.0% 96.4% 91.2% 93.45% 0.25 6.23
- w/o D + PS 95.0% 81.4% 96.2% 87.0% 89.9% 0.50 4.55

(a)

l
Spatial Object Goal Long Avg

SR↑ SR↑ SR↑ SR↑ SR↑ FLOPs↓

0 99.4% 98.0% 96.4% 91.2% 96.3% 6.43
1 98.2% 97.6% 96.2% 89.8% 95.5% 6.57
4 98.0% 97.8% 96.4% 91.2% 95.8% 6.89

(b)

(a) Original Attention Maps (b) Pruning Attention Maps. (c) Vision tokens importance score.
Figure 6: The figure illustrates the layer-wise importance score of the vision tokens. (a) Vision–vision
self-similarity (across layers) (b) Text→vision attention (after ADP) (c) Vision-token importance Φ

81.4%), and +4.4 on Spatial (99.4% vs. 95.0%). Compared to ADP w/o D, ADP improves average
SR by +2.85 points with comparable compute (+0.20 FLOPs), indicating that state-aware switching
(rather than fixed cycling) is crucial to avoid over-pruning during fine manipulation while still pruning
aggressively when large motions occur.

Impact of Pruning Strategy. We ablate layer selection to validate using layer 0 for importance
scoring. Table 3b (b) shows that final SR is similar across layers, with layer 0 yielding the best
accuracy–compute balance: 96.3% average SR with 6.43 FLOPs, compared to layer 1 (95.5%, 6.57
FLOPs) and layer 4 (95.8%, 6.89 FLOPs). Meanwhile, FLOPs increase with deeper layers, so
selecting l = 0 offers a superior performance–efficiency trade-off. The slight decline in average SR
with depth corroborates our analysis: deeper layers induce more localised attention—sharpening
peaks vs. non-peaks but reducing global state coverage—thus becoming more sensitive to occasional
mismatches and noise, which leads to marginally lower success rates.

Observation of Attention Weights. A common view holds that text–vision alignment concentrates
in deeper multimodal layers, so high importance scores should be computed there; however, this need
not hold for parallel-decoding VLA. Our visualizations and measurements show that layer 0 already
provides a stable, discriminative text-to-vision signal. In Fig. 6a, the layer-0 self-similarity matrix
shows a clear high-contrast block structure, while deeper layers become increasingly diagonal-banded,
compressing non-local correlations. The text to vision submatrix (Fig. 6b) follows the same trend:
layer 0 exhibits pronounced peaks and troughs across many vision tokens, whereas deeper layers
retain only a few narrow high-response bands. The token importance score Φ (Fig. 6c) likewise has
higher SNR at layer 0; with depth, curves sharpen and develop long tails or near collapse, making
top-k ranking more sensitive to local noise.

7 CONCLUSION

We presented VLA-ADP, a plug-and-play pruning framework that unifies text-driven anticipatory
pruning with an action-aware dynamic strategy to accelerate VLA inference while preserving reliabil-
ity. Across simulation and real-world evaluations, the method maintains or improves task success,
reduces compute, and shortens inference latency. The dynamic controller consistently outperforms
removal and periodic switching, and early-layer scoring offers the best accuracy–efficiency balance.
These results indicate that adaptively pruning vision tokens by motion state and instruction relevance
enables efficient, fine-grained manipulation without compromising control quality.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for
training large autoregressive vision-language models. arXiv preprint arXiv:2308.01390, 2023.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for generalist
humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. A vision-language-action flow model for
general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control, 2023. URL https://arxiv. org/abs/2307.15818,
2024.

Jun Cen, Chaohui Yu, Hangjie Yuan, Yuming Jiang, Siteng Huang, Jiayan Guo, Xin Li, Yibing Song,
Hao Luo, Fan Wang, et al. Worldvla: Towards autoregressive action world model. arXiv preprint
arXiv:2506.21539, 2025.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19–35. Springer, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Chia-Yu Hung, Qi Sun, Pengfei Hong, Amir Zadeh, Chuan Li, U Tan, Navonil Majumder, Soujanya
Poria, et al. Nora: A small open-sourced generalist vision language action model for embodied
tasks. arXiv preprint arXiv:2504.19854, 2025.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
speed and success. arXiv preprint arXiv:2502.19645, 2025.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
synergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024.

Ye Li, Yuan Meng, Zewen Sun, Kangye Ji, Chen Tang, Jiajun Fan, Xinzhu Ma, Shutao Xia, Zhi
Wang, and Wenwu Zhu. Sp-vla: A joint model scheduling and token pruning approach for vla
model acceleration. arXiv preprint arXiv:2506.12723, 2025.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023c.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee, Kaichen Zhou, Pengju An, Senqiao Yang,
Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Multimodal state space model
for efficient robot reasoning and manipulation. arXiv e-prints, pp. arXiv–2406, 2024b.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil Zoui-
tine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, et al. Smolvla: A vision-
language-action model for affordable and efficient robotics. arXiv preprint arXiv:2506.01844,
2025.

Xudong Tan, Yaoxin Yang, Peng Ye, Jialin Zheng, Bizhe Bai, Xinyi Wang, Jia Hao, and Tao
Chen. Think twice, act once: Token-aware compression and action reuse for efficient inference in
vision-language-action models. arXiv preprint arXiv:2505.21200, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025a.

Junjie Wen, Yichen Zhu, Minjie Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Xiaoyu Liu, Chaomin
Shen, Yaxin Peng, and Feifei Feng. Diffusionvla: Scaling robot foundation models via unified
diffusion and autoregression. In Forty-second International Conference on Machine Learning,
2025b.

Siyu Xu, Yunke Wang, Chenghao Xia, Dihao Zhu, Tao Huang, and Chang Xu. Vla-cache: Towards
efficient vision-language-action model via adaptive token caching in robotic manipulation. arXiv
preprint arXiv:2502.02175, 2025.

Yantai Yang, Yuhao Wang, Zichen Wen, Luo Zhongwei, Chang Zou, Zhipeng Zhang, Chuan Wen,
and Linfeng Zhang. Efficientvla: Training-free acceleration and compression for vision-language-
action models. arXiv preprint arXiv:2506.10100, 2025.

Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, and Gao
Huang. Deer-vla: Dynamic inference of multimodal large language models for efficient robot
execution. Advances in Neural Information Processing Systems, 37:56619–56643, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Rongyu Zhang, Menghang Dong, Yuan Zhang, Liang Heng, Xiaowei Chi, Gaole Dai, Li Du, Yuan
Du, and Shanghang Zhang. Mole-vla: Dynamic layer-skipping vision language action model via
mixture-of-layers for efficient robot manipulation. arXiv preprint arXiv:2503.20384, 2025.

Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsifica-
tion for efficient vision-language model inference. arXiv preprint arXiv:2410.04417, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

THE USE OF LARGE LANGUAGE MODELS

In this manuscript, we used a LLM as a writing assistant to refine the presentation of certain contents.
Specifically, the LLM was used to: (1) Rephrase sentences and paragraphs for greater readability,
conciseness, and academic formality. (2) Correct grammar, spelling, and punctuation errors. (3)
Improve logical flow and transitions between sentences. All content enhanced by the LLM has been
thoroughly reviewed by the authors to ensure accuracy. The core idea, technical contributions, and
results of the experiment are entirely the original contributions of the authors.

ALGORITHM

Here we provide the full pipeline of our proposed action-aware dynamic pruning for vision-language-
action models.

Algorithm 1 Action-Aware Dynamic Pruning (ADP) for VLA Inference

Require: Multimodal embeddings Xm=
[
X[BOS],Xvis,Xprop,Xtxt,Xact,X[EOS]

]
,

Q/K weights W (0)
Q ,W

(0)
K , retention ratio ρ, view weights α∈RC with

∑
c αc=1,

gating rule f(·) (mean or adjacent-extrema), windowed actions A c
i , pose Tbi

Output: Per-window visual state si∈{0, 1}, pruned sequence X̃m, actions â
1: Init: s1←0 (cold start, full vision), s2←0; consec←0 ▷ two-window cold start
2: for window i = 1, 2, . . . do
3: Compute windowed motion δi via FK on A c

i (Def. 4.1):

δi ←
ei−1∑
t=bi

∥pt+1 − pt∥2 with pt = π(Tt), Tt+1 = Tt

[
Ri,u vi,u

0⊤ 1

]
4: Gate update: si+1 ← f(δi)
5: if consec ≥ 3 then ▷ reset to avoid prolonged pruning
6: si+1 ← 0; consec← 0

7: Branch by state
8: if si+1 = 1 then ▷ pruned path
9: Q/K scoring at layer 0:

Q(0)=H
(0)
txt W

(0)
Q , K(0)=H

(0)
vis W

(0)
K , A(0)= Q(0)(K(0))⊤√

d

10: Aggregate importance (Eq. 9): Φ(0)(v)← 1
NhLtxt

∑
h,t A

(0)
h,t,v

11: k ← ⌊ρ · Lvis⌋; kc ← ⌊αc · k⌋ for c=1..C

12: Per-view Top-k: Xvis
(c) ← Top-K(Φ

(0)
(c) , kc); Xvis

keep ←
⋃

c X
vis
(c)

13: Form pruned input: X̃m← [X[BOS],Xvis
keep,X

prop,Xtxt,Xact,X[EOS]]

14: LLM forward: â← fLLM(X̃m); consec← consec+ 1
15: else ▷ full-vision path
16: X̃m ← Xm; â← fLLM(Xm); consec← 0

17: Execute â and advance to next window
18: return {si}, X̃m, â

REAL-WORLD EXPERIMENT DETAILS

We provide additional details of the real-robot experiments to facilitate reproducibility.

Robot Platform. All real-world evaluations were conducted on a Kinova Jaco2 6-DoF robotic arm
equipped with a parallel-jaw gripper. The robot was controlled through Cartesian velocity commands
at 10 Hz, with joint and workspace safety limits enforced to prevent collisions.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sensing Setup. A single RGB camera (Sony AX53) was mounted in front of the table to capture
the entire workspace. The camera streamed RGB frames at 640×480 resolution and 30 FPS. No
wrist-mounted camera was used in the real-robot experiments, and all observations were obtained
from this fixed view.

Runtime Environment. All policies were executed on a Linux workstation running Ubuntu 20.04
with an NVIDIA RTX 4090 GPU. Inference employed parallel decoding with an OFT chunk size of
8. Latency was measured as mean per-step inference time over 100 runs.

Task Setup. We evaluated four tabletop manipulation tasks: a) Task 1: Pick up the orange pot
and place it into a green plate. b) Task 2: Pick and place a blue cube onto the plate. c) Task 3:
Pick and place a carrot into a blue pan. d) Task 4: Wipe the table. Objects were placed randomly
within a 50×50 cm workspace area at the beginning of each trial. For data collection, each task was
executed using a gamepad teleoperation interface, with the human operator directly controlling the
Jaco2 arm. We collected approximately 100–150 trajectories per task, covering diverse initial states
and object positions. The collected demonstrations were then used to build the training dataset, and
we fine-tuned OpenVLA-OFT separately on each task before deploying the model for evaluation in
the real-robot experiments.

Evaluation Protocol. Each task was repeated 30 trials under randomized object initializations.
A trial was marked as successful if the object was placed entirely within the target receptacle (for
Tasks 1–3) or if more than 80% of the designated area was wiped (Task 4). At the end of each episode,
the robot was reset to a neutral home pose. Safety termination was triggered if joint torque exceeded
preset thresholds.

QUANTITATIVE STATISTICS

To complement the attention visualizations with comparable quantitative evidence, we compute
scale-free statistics at each layer from the text-to-vision importance vector Φ = {ϕi}Vi=1. We first
normalize Φ as pi = ϕi/

∑V
j=1 ϕj and then evaluate the Participation Ratio (PR) and the Entropy

(H):

PR =
1∑V

i=1 p
2
i

, H(p) = −
V∑
i=1

pi log pi. (26)

PR approximates the effective number of participating visual columns, while H quantifies the
dispersion and multi-modality of the distribution. Together, they characterize the spatial coverage of
alignment signals and the stability of Top-K ranking.

Figure 7a presents the variation of PR across layers. In shallow layers, PR remains relatively high,
indicating that a large number of key vision tokens receive balanced attention and contribute to broad
spatial coverage. As depth increases, PR rapidly decreases and stabilizes, reflecting a progressive
collapse of attention onto a small subset of tokens and reduced feature utilization.

(a) PR across layers (b) Entropy H across layers

Figure 7: Layer-wise statistics of text-to-vision importance scores.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 7b presents the corresponding entropyH across layers. Shallow layers exhibit higher entropy,
suggesting diverse and smooth distributions that make Top-K selection robust against individual
outliers. In contrast, deeper layers display sharply peaked distributions dominated by a few tokens.
While such localization may benefit semantic alignment in downstream reasoning, it renders Top-K
selection unstable and prone to discarding critical tokens. These findings suggest that shallow-layer
attention signals are preferable for estimating the importance of vision tokens in VLA tasks. In
particular, using layer-0 offers a computationally efficient choice, providing reliable importance
estimates while further reducing FLOPs.

RANDOM PRUNING COMPARISON

Figure 8: ADP (Text-Driven Pruning) vs. Random Pruning.

Random Pruning yields competitive performance on Spatial and Goal, but performs substantially
worse on Object and Long. We can attribute this phenomenon to the distribution of visual patches
spanned by the key object as shown in Figure 8. When the target object spans a large number
of patches, random pruning still has a high probability of retaining the relevant patches, thereby
preserving sufficient task-critical vision information. In contrast, random pruning is more likely to
prune the relevant patches when the key object spans only a small number of patches. Such pruning
may result in incorrect object identification, which in turn propagates errors and ultimately causes
task failure.

INVERSION EXPERIMENT

Table 4: Inversion Experiment.

Task Keep Ratio=30% Keep Ratio=50% Keep Ratio=70%
Direct Inverse Gap Direct Inverse Gap Direct Inverse Gap

Spatial 97.6% 44.0% 53.6% 99.4% 54.8% 44.6% 99.0% 90.8% 8.2%
Object 98.4% 0.6% 97.8% 98.0% 11.8% 86.2% 98.2% 59.6% 38.6%
Goal 97.4% 43.6% 53.8% 96.4% 63.6% 32.8% 96.8% 84.8% 12.0%
Long 84.2% 0.2% 84.0% 91.2% 8.2% 83.0% 91.2% 37.4% 53.8%
Avg 94.4% 22.1% 72.3% 96.3% 34.6% 61.7% 96.3% 68.1% 28.1%

To further evaluate the reliability of our text-driven importance scores, we design a counterfactual
inverse-pruning experiment that mirrors the full setup of the main results. Instead of retaining the
most relevant visual tokens identified by our text–vision relevance ranking, we intentionally preserve
the least relevant ones, while keeping all other factors, including model, hyperparameters, tasks, and
ratios (30%, 50%, 70%), unchanged. If the relevance ranking were noisy or poorly aligned with task
semantics, the performance gap between direct and inverse pruning would be small. Conversely,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

a large and systematic divergence would indicate that the scoring mechanism faithfully captures
task-relevant visual information.

The results in Table 4 show a clear and consistent separation between the two settings across all suites
and keep ratios. Under a 30% keep ratio, the average success rate drops sharply from 94.4% (direct)
to 22.1% (inverse), with near-complete failure on Object (0.6%) and Long (0.2%). Similar trends
persist at 50% (from 96.3% to 34.6%) and 70% (from 96.3% to 68.1%). Notably, inverse-70% still
performs far worse than direct-30%, highlighting that semantic relevance dominates task performance
over the number of retained tokens.

Noteably, the degradation is particularly pronounced on Object and Long, which require fine-grained
spatial reasoning and long-horizon planning. Under inverse pruning, the model effectively loses
access to the high-ranked, task-relevant visual tokens used for object grounding, spatial reasoning,
and contact-rich motion planning. This confirms that our importance scores do not drift toward
irrelevant regions but consistently identify and prioritise semantically aligned visual tokens.

Taken together, these counterfactual results provide strong evidence that:

1. Task-relevant visual tokens play a decisive role in VLA tasks, and task success depends
far more on preserving these semantically aligned tokens than on the number of tokens
retained. Task performance collapses as soon as these high-relevance tokens are removed,
demonstrating that semantic alignment is the dominant factor governing model behaviour.

2. The text-driven relevance scoring mechanism accurately identifies and prioritises essential
visual tokens, showing that ADP’s anticipatory pruning relies on a stable and meaningful
semantic signal rather than incidental attention fluctuations. The scoring module effectively
captures the alignment between the task instruction and the image observations, precisely
identifying the visual patches critical for object grounding, spatial reasoning, and contact-
rich manipulation.

COMPUTATIONAL TRADE-OFF ANALYSIS

Table 5: FLOPs and speedup with keep ratio 0.3. ADP(i) denotes pruning based on the weights from
the i-th layer.

Item baseline ADP (0) ADP (2) ADP (4) ADP (8) ADP (16) ADP (24)

Keep Ratio 1.0 0.3 0.3 0.3 0.3 0.3 0.3
Scoring Layer – 0 2 4 8 16 24
Seq. Len. 603 245 245 245 245 245 245
Vis. Tokens (kept) 512 154 154 154 154 154 154
Scoring FLOPs (T) 0.00 0.02 0.51 1.01 1.99 3.97 5.95
LLM FLOPs (T) 7.91 3.19 3.19 3.19 3.19 3.19 3.19
Total FLOPs (T) 7.91 3.21 3.70 4.20 5.18 7.16 9.14
Expected FLOPs (T) 7.91 5.85 6.06 6.27 6.71 7.58 8.45
Speedup (Orig/Exp.) 1.00 1.35 1.31 1.26 1.18 1.04 0.94

Table 6: FLOPs and speedup with keep ratio 0.4. ADP(i) denotes pruning based on the weights from
the i-th layer.

Item baseline ADP (0) ADP (2) ADP (4) ADP (8) ADP (16) ADP (24)

Keep Ratio 1.0 0.4 0.4 0.4 0.4 0.4 0.4
Scoring Layer – 0 2 4 8 16 24
Seq. Len. 603 296 296 296 296 296 296
Vis. Tokens (kept) 512 205 205 205 205 205 205
Scoring FLOPs (T) 0.00 0.02 0.51 1.01 1.99 3.97 5.95
LLM FLOPs (T) 7.91 3.86 3.86 3.86 3.86 3.86 3.86
Total FLOPs (T) 7.91 3.88 4.37 4.86 5.85 7.83 9.80
Expected FLOPs (T) 7.91 6.14 6.35 6.57 7.00 7.87 8.74
Speedup (Orig/Exp.) 1.00 1.29 1.25 1.20 1.13 1.00 0.90

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: FLOPs and speedup with keep ratio 0.5. ADP(i) denotes pruning based on the weights from
the i-th layer.

Item baseline ADP (0) ADP (2) ADP (4) ADP (8) ADP (16) ADP (24)

Keep Ratio 1.0 0.5 0.5 0.5 0.5 0.5 0.5
Scoring Layer – 0 2 4 8 16 24
Seq. Len. 603 347 347 347 347 347 347
Vis. Tokens (kept) 512 256 256 256 256 256 256
Scoring FLOPs (T) 0.00 0.02 0.51 1.01 1.99 3.97 5.95
LLM FLOPs (T) 7.91 4.53 4.53 4.53 4.53 4.53 4.53
Total FLOPs (T) 7.91 4.55 5.04 5.53 6.52 8.50 10.47
Expected FLOPs (T) 7.91 6.43 6.64 6.89 7.30 8.17 9.04
Speedup (Orig/Exp.) 1.00 1.23 1.19 1.15 1.08 0.97 0.87

Table 8: FLOPs and speedup with keep ratio 0.6.

Item baseline ADP (0) ADP (2) ADP (4) ADP (8) ADP (16) ADP (24)

Keep Ratio 1.0 0.6 0.6 0.6 0.6 0.6 0.6
Scoring Layer – 0 2 4 8 16 24
Seq. Len. 603 399 399 399 399 399 399
Vis. Tokens (kept) 512 308 308 308 308 308 308
Scoring FLOPs (T) 0.00 0.02 0.51 1.01 1.99 3.97 5.95
LLM FLOPs (T) 7.91 5.21 5.21 5.21 5.21 5.21 5.21
Total FLOPs (T) 7.91 5.23 5.72 6.22 7.20 9.18 11.16
Expected FLOPs (T) 7.91 6.74 6.94 7.16 7.60 8.47 9.34
Speedup (Orig/Exp.) 1.00 1.17 1.14 1.10 1.04 0.93 0.85

TRADE-OFF OF PRUNING.

To quantify the computational trade-off introduced by anticipatory pruning, we evaluate the FLOPs
associated with importance scoring and compare them against the savings obtained from reducing the
LLM sequence length. Tables 5-9 report detailed FLOPs measurements across a range of keep ratios
and scoring layers (all FLOPs reported in this section are computed under the original multimodal
sequence length of S = 603.)

Across all practically meaningful configurations, the scoring cost remains substantially smaller than
the compute saved by pruning. When importance ranking is performed using shallow layers (e.g.
layers 0–4), the scoring overhead remains within 0.02–1.01T FLOPs. In contrast, shortening the
visual sequence reduces the LLM compute from 7.91T to approximately 3.19–5.90T, yielding a 2–4T
reduction. The net effect is therefore dominated by the savings from operating on a shorter sequence,
and the overall inference cost decreases consistently.

When combined with the action-aware dynamic gating strategy, the expected inference cost reflects the
mixture of pruned and full-vision windows. In our implementation, the dynamic gate activates pruning
for roughly 44% of windows on average across LIBERO. Under this regime, the expected FLOPs per
forward become 5.85T (keep=0.3), 6.14T (keep=0.4), and 6.43T (keep=0.5), corresponding to 1.35×,
1.29×, and 1.23× speedup over the baseline. These values already account for the scoring overhead,
confirming that the computational benefit persists under realistic usage.

OBSERVATION ON GATING RULES.

We also observe that performing relevance scoring at excessively deep layers (≥16) increases the
overhead to 3.97–5.95T FLOPs, which approaches or surpasses the FLOPs saved by pruning. In
such cases, the net speedup degrades and may even become slightly negative. However, this config is
not required in practice. Our ablation study already shows that layer-0 scoring not only minimises
computational overhead but also provides the most reliable and stable importance estimates, making
it the default choice in all experiments.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: FLOPs and speedup with keep ratio 0.7.

Item baseline ADP (0) ADP (2) ADP (4) ADP (8) ADP (16) ADP (24)

Keep Ratio 1.0 0.7 0.7 0.7 0.7 0.7 0.7
Scoring Layer – 0 2 4 8 16 24
Seq. Len. 603 450 450 450 450 450 450
Vis. Tokens (kept) 512 359 359 359 359 359 359
Scoring FLOPs (T) 0.00 0.02 0.51 1.01 1.99 3.97 5.95
LLM FLOPs (T) 7.91 5.88 5.88 5.88 5.88 5.88 5.88
Total FLOPs (T) 7.91 5.90 6.39 6.89 7.88 9.85 11.83
Expected FLOPs (T) 7.91 7.03 7.24 7.46 7.89 8.76 9.63
Speedup (Orig/Exp.) 1.00 1.13 1.09 1.06 1.00 0.90 0.82

Overall, the additional scoring computation is far smaller than the savings achieved through reduced
sequence length for all practical settings, and the use of shallow-layer scoring ensures that the
trade-off remains consistently positive. These results verify that the proposed pruning strategy offers
genuine computational benefits without compromising performance.

CASE DISCUSSIONS

Figure 9: Baseline Failed but Ours Success on #Episode 110 of Spatial task.

OBSERVATION ON INTRIGUING PHENOMENON.

We observe an intriguing phenomenon: in several scenarios, the pruned model performs even better
than the original baseline. To better understand this behavior, we further examine representative cases
and analyze the underlying factors that contribute to such improvements. We identify a representative
case that illustrates why moderate pruning can outperform the unpruned baseline. In Figure. 9 (a),
the baseline model fails to grasp the bowl, whereas in Figure. 9 (b) our ADP method succeeds
with a stable grasp. A closer inspection shows that the baseline allocates non-trivial attention to
large, static background surfaces, effectively behaving like “sink" regions that dilute focus. After
pruning these low-value background tokens, the model concentrates its attention on the immediate
manipulation region—specifically the bowl and its supporting surface. This reduction of peripheral
noise results in a more discriminative and task-aligned visual representation, helping the policy make
more precise action decisions. Thus, in cases where background clutter dominates the unpruned
attention distribution, pruning can improve operational focus and lead to higher success rates than the
original baseline.

In addition to the individual cases discussed above, we further examined the per-task performance
differences between ADP (keep ratio 0.5) and the OpenVLA-OFT baseline across all LIBERO suites,
as reported in Tables 10–13. We observe that almost all degeneration are concentrated in the Long
suite. In contrast, the Spatial, Object, and Goal suites remain largely unaffected, with success rates that
are nearly identical to or slightly higher than the baseline. Notably, the most substantial degradations
in the Long suite correspond to tasks with particularly long and compositional instructions, often
involving multiple sequential subtasks. These tasks require the model to reallocate visual attention
across distinct stages, each with its own set of relevant objects and fine-grained spatial relationships.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Baseline (b) Ours

Figure 10: Per-stage curves drawn by Baseline and ADP.

Table 10: Spatial Suite Performance (ADP vs Baseline).

Task Length ADP Baseline Gap
pick up the black bowl between the plate and the
ramekin and place it on the plate

82 100.0% 100.0% 0.0%

pick up the black bowl next to the ramekin and
place it on the plate

68 100.0% 100.0% 0.0%

pick up the black bowl from table center and
place it on the plate

66 100.0% 100.0% 0.0%

pick up the black bowl on the cookie box and
place it on the plate

66 100.0% 98.0% +2.0%

pick up the black bowl in the top drawer of the
wooden cabinet and place it on the plate

88 98.0% 94.0% +4.0%

pick up the black bowl on the ramekin and place
it on the plate

63 98.0% 100.0% -2.0%

pick up the black bowl next to the cookie box
and place it on the plate

71 100.0% 100.0% 0.0%

pick up the black bowl on the stove and place it
on the plate

61 98.0% 98.0% 0.0%

pick up the black bowl next to the plate and
place it on the plate

66 100.0% 100.0% 0.0%

pick up the black bowl on the wooden cabinet
and place it on the plate

70 100.0% 96.0% +4.0%

Such behaviour reveals an intrinsic challenge of current VLA backbones. Since models like
OpenVLA-OFT condition action generation solely on the current multi-modal sequence and static
instruction, they lack explicit awareness of subtask completion. As a result, even after the first subgoal
has been completed, the text-driven relevance scoring may continue to assign high importance to
visual tokens associated with the earlier subgoal. Our inversion experiment demonstrated that VLA
performance is extremely sensitive to the availability of correct visual tokens. Therefore, pruning
under a limited token budget can amplify this issue, as tokens tied to an already completed subtask
may still be retained due to textual relevance. In contrast, the subsequent subtask may receive insuffi-
cient visual coverage, which can ultimately lead to failure. These observations suggest that future
progress may require enhancing VLA models with mechanisms for estimating subgoal progress or
dynamically reallocating visual attention across long-horizon, multi-stage tasks.

IMPLEMENTATION DETAILS

Hyperparameters. We provide here the full set of hyperparameters used in our main experiments
for reproducibility. These include all query–key (QK) pruning settings, dynamic gating parameters,
and visualization options. Table 14 summarizes the exact values used in all results reported in the
main text.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Object Suite Performance (ADP vs Baseline).

Task Length ADP Baseline Gap
pick up the alphabet soup and place it in the
basket

52 100.0% 98.0% +2.0%

pick up the cream cheese and place it in the
basket

51 100.0% 100.0% 0.0%

pick up the salad dressing and place it in the
basket

53 98.0% 98.0% 0.0%

pick up the bbq sauce and place it in the basket 48 98.0% 100.0% -2.0%
pick up the ketchup and place it in the basket 46 98.0% 100.0% -2.0%
pick up the tomato sauce and place it in the
basket

51 100.0% 100.0% 0.0%

pick up the butter and place it in the basket 45 96.0% 98.0% -2.0%
pick up the milk and place it in the basket 43 98.0% 96.0% +2.0%
pick up the chocolate pudding and place it in the
basket

56 94.0% 92.0% +2.0%

pick up the orange juice and place it in the
basket

51 98.0% 100.0% -2.0%

Table 12: Goal Suite Performance (ADP vs Baseline).

Task Length ADP Baseline Gap
open the middle drawer of the cabinet 37 100.0% 98.0% +2.0%
put the bowl on the stove 25 94.0% 96.0% -2.0%
put the wine bottle on top of the cabinet 41 94.0% 92.0% +2.0%
open the top drawer and put the bowl inside 43 82.0% 88.0% -6.0%
put the bowl on top of the cabinet 34 100.0% 100.0% 0.0%
push the plate to the front of the stove 40 98.0% 100.0% -2.0%
put the cream cheese in the bowl 32 98.0% 96.0% +2.0%
turn on the stove 17 100.0% 100.0% 0.0%
put the bowl on the plate 25 98.0% 98.0% 0.0%
put the wine bottle on the rack 31 100.0% 98.0% +2.0%

Code Availability. Following the reviewer’s encouragement, we additionally provide a complete
recipe of all hyperparameters, configuration files, and controller settings. Our implementation
exposes all gating and pruning parameters through a unified configuration interface, making it easy
to reproduce and extend the experiments (e.g., varying window sizes, pruning ratios, and similarity
layers).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: Long Suite Performance (ADP vs Baseline).

Task Length ADP Baseline Gap
put both the alphabet soup and the tomato sauce
in the basket

61 94.0% 92.0% +2.0%

put both the cream cheese box and the butter in
the basket

58 96.0% 96.0% 0.0%

turn on the stove and put the moka pot on it 44 100.0% 98.0% +2.0%
put the black bowl in the bottom drawer of the
cabinet and close it

67 96.0% 94.0% +2.0%

put the white mug on the left plate and put the
yellow and white mug on the right plate

87 70.0% 100.0% -30.0%

pick up the book and place it in the back
compartment of the caddy

66 92.0% 100.0% -8.0%

put the white mug on the plate and put the
chocolate pudding to the right of the plate

86 80.0% 98.0% -18.0%

put both the alphabet soup and the cream cheese
box in the basket

65 98.0% 98.0% 0.0%

put both moka pots on the stove 31 92.0% 80.0% +12.0%
put the yellow and white mug in the microwave
and close it

58 94.0% 92.0% +2.0%

Table 14: Complete hyperparameter configuration used in all main experiments.

QK-related Param Value Dynamic Param Value Viz/Eval Param Value
qk_keep_enabled true use_dynamic_visual_strategy true num_trials_per_task 50
qk_layer 0 decision_method adjacent overlay_pruned_color [0,0,255]
qk_keep_ratio 0.5 adjacent_variant extrema overlay_pruned_alpha 120
qk_keep_split [0.4, 0.6] adjacent_extrema_window 3 video_fps 10
random_keep_ratio 0.5 adjacent_lookback 2
random_state_prob 0.5 delta_method net
random_seed 42 limit_consecutive_pruned_enabled true

limit_max_consecutive_pruned 3

20


	Introduction
	Preliminary
	Related Work
	Methodology
	Text-driven Anticipatory Pruning
	Action-Aware Dynamic Strategy
	Theoretical Analysis of Computational Complexity

	EXPERIMENTS
	SIMULATION EXPERIMENTS
	REAL-WORLD EXPERIMENTS

	Ablation Study
	Conclusion

