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ABSTRACT

Class-Incremental Learning (CIL) traditionally assumes that all tasks share a sim-
ilar domain distribution, limiting its applicability in real-world scenarios where
data arrive from evolving environments. We introduce a new problem setting,
Cross-Expanding Incremental Learning (XIL), which extends CIL by requiring
models to handle class-incremental data across distinct domains and to expand
class-domain associations bidirectionally. In this setting, new classes should be
integrated into previously seen domains, while earlier classes are extended to
newly encountered ones, a capability we refer to as bidirectional domain trans-
ferability (BiDoT). To address XIL, we present a new framework, Semantic Ex-
pansion through Evolving Domains (XEED), which leverages domain-specialized
prompts, residual-guided representation modulation, and evolving prototype em-
beddings to expand class semantics across previously encountered domains. We
further introduce the BiDoT Score, a novel metric for quantifying the degree of
BiDoT. Extensive experiments on benchmark datasets with significant domain
shifts demonstrate that XEED outperforms existing CIL baselines by a large mar-
gin in both standard accuracy and BiDoT scores, establishing a strong foundation
for realistic continual learning under domain-evolving conditions.

1 INTRODUCTION

Figure 1: Comparison of training and inference phases be-
tween conventional class-incremental learning (CIL) and
our proposed cross-expanding incremental learning (XIL).
While CIL assumes a shared domain across all incremen-
tal tasks, XIL considers distinct domains and requires bidi-
rectional semantic expansion, extending new classes to past
domains and past classes to new ones.

Class-incremental learning (CIL)
aims to enable models to incre-
mentally learn new classes while
retaining previously acquired knowl-
edge (Zhou et al., 2024b). To address
this challenge, a wide range of learn-
ing strategies have been proposed (Li
& Hoiem, 2017; Rebuffi et al., 2017;
Kirkpatrick et al., 2017; Zenke et al.,
2017; Aljundi et al., 2018; Yan et al.,
2021; Douillard et al., 2022), and
prompt tuning approaches (Wang
et al., 2022d;c; Smith et al., 2023;
Gao et al., 2024; Qu et al., 2025) have
attracted increasing attention for their
ability to leverage pre-trained models
and adapt them to new tasks with
minimal computational overhead,
often surpassing full fine-tuning in
performance.

However, most CIL methods rely on the assumption that the training and test data share a simi-
lar domain distribution, making them susceptible to performance degradation under domain shifts
(Kundu et al., 2020). While a number of approaches (Shi & Wang, 2023; Kundu et al., 2020; Simon
et al., 2022; Cho et al., 2023; Kishida et al., 2021) have been introduced to alleviate the domain gap
mismatch between incremental tasks by incorporating perspectives from domain adaptation (Ganin
& Lempitsky, 2015) and domain generalization (Zhou et al., 2022), they remain limited in scope. In
this paper, we systematically compare existing tasks and propose a novel task that has not yet been
explored in the literature, together with a simple baseline framework.
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Figure 2: Gap between the accuracy after the final task in XIL and in CIL for full fine-tuning
(Joint-FT), recent state-of-the-art methods, and the proposed framework (XEED) on datasets with
substantial domain shifts. A more negative gap indicates poorer generalization across domains.

Problem settings tackling the domain gap mismatch in incremental scenarios generally assume a
fully or partially shared label space across domains, enabling the transfer of attributes common
to classes. Shi & Wang (2023) consider a setting where the label space remains fixed across tasks,
requiring the integration of newly encountered domain knowledge over time in a supervised manner.
Kundu et al. (2020) study a semi-supervised scenario in which a model must adapt to a test domain
with few labeled examples, while De Carvalho et al. (2024); Weng et al. (2024) consider settings that
rely on unlabeled target-domain examples. Simon et al. (2022) investigate a multi-domain training
setup where the goal is to learn invariant features that generalize to unseen test domains. Similarly,
Cho et al. (2023) tackle the joint challenge of domain adaptation and domain generalization to
unseen distributions. Moreover, Kishida et al. (2021) investigate scenarios with unknown classes,
in which the model is tasked with detecting novel objects and simultaneously adapting to known
classes across domains.

In practice, data availability varies significantly across domains and classes, and there may be no data
at all for learning shared attributes of classes across domains. For example, consider an industrial
robot trained to recognize components using high-quality images collected in a controlled factory
environment. When deployed in different facilities or adapted to new tasks, the robot may need to
learn additional parts from operator-provided data, such as smartphone photos, technical diagrams,
or even hand-drawn sketches. In such cases, previously learned components may not appear in the
new environment at all. Moreover, the robot’s working environment can change frequently through
relocation or reverting to previous settings, requiring it to recognize previously learned components
across all encountered domains, a capability that lies beyond the scope of conventional CIL settings.

Therefore, we introduce a novel problem setting, Cross-Expanding Incremental Learning (XIL). As
illustrated in Figure 1, XIL requires a model not only to retain previously learned knowledge as
new classes emerge from different domains over time, but also to bidirectionally transfer domain
knowledge across learned classes. It should generalize to previously encountered domains where
direct supervision was unavailable for certain classes. We refer to this capability as bidirectional
domain transferability (BiDoT), and to evaluate it, we introduce a new metric, BiDoT Score.

The central question we raise is whether current models are capable of transferring domain knowl-
edge across classes when class distributions are not shared across domains. Using the accuracy gap
between XIL and CIL, we empirically show that neither full fine-tuning nor recent state-of-the-art
methods (Wang et al., 2022d;c; Smith et al., 2023; Gao et al., 2024) exhibit inherent bidirectional do-
main transferability. As shown in Figure 2, performance drops significantly when the model is faced
with unseen class-domain combinations, indicating that such generalization is not naturally sup-
ported by current architectures or training protocols. To address this, we propose a new framework,
Semantic Expansion through Evolving Domains (XEED), inspired by generative replay-based meth-
ods using synthetic images. XEED leverages generative models to transfer domain characteristics
to class-specific attributes by exploiting semantic relationships between classes and domain-specific
features. Specifically, XEED first learns domain-specialized prompts via an auxiliary classifier. It
then employs prototype embeddings to progressively expand the semantic representation space, en-
abling bidirectional integration of domain knowledge from synthetic samples.

Since the XIL task is novel and no directly comparable baselines exist, we conduct experiments
using the strongest and most relevant prompt-based learning methods, selected after a comprehen-
sive consideration of CIL variations (Zhou et al., 2023; Kundu et al., 2020; Simon et al., 2022; Cho
et al., 2023; Kishida et al., 2021), generative replay-based approaches (Meng et al., 2024; Zhang
et al., 2025; Wu et al., 2025), and prompt-based techniques (Wang et al., 2022d;c; Smith et al., 2023;
Gao et al., 2024). Extensive experiments on datasets with substantial domain shifts demonstrate that
XEED consistently outperforms existing CIL methods in both standard accuracy and BiDoT Scores.
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1.1 CONTRIBUTIONS

Our key contributions are as follows: (1) We propose a novel problem setting, Cross-Expanding
Incremental Learning (XIL), which, to the best of our knowledge, is the first to extend class-
incremental learning to enable bidirectional domain knowledge transfer across previously learned
classes. (2) We propose a new framework, Semantic Expansion through Evolving Domains (XEED),
which integrates newly introduced knowledge and enables bidirectional domain transfer by leverag-
ing semantic relationships between classes and domains. (3) We introduce a new evaluation metric,
the BiDoT Score, to measure the bidirectional domain transferability (BiDoT), an aspect not ad-
dressed in CIL. (4) We conduct extensive experiments and analyze the limitations of existing CIL
baselines under the XIL setting. XEED outperforms baselines with 7.1% higher average standard
accuracy, and up to 31.41% higher BiDoT scores across all datasets.

2 RELATED WORKS

2.1 CLASS-INCREMENTAL LEARNING

Class-incremental learning (CIL) methodologies can be broadly categorized based on the learning
strategies they employ. Strategies such as knowledge distillation, regularization, and network ex-
pansion aim to retain prior knowledge while learning new tasks by transferring past information (Li
& Hoiem, 2017; Rebuffi et al., 2017), constraining important parameters (Kirkpatrick et al., 2017;
Aljundi et al., 2018), or dynamically extending the model architecture (Yan et al., 2021; Douillard
et al., 2022). Unlike such conventional approaches, prompt tuning methods leverage pre-trained
models to adapt to downstream tasks with minimal resource consumption (Wang et al., 2022c; Smith
et al., 2023; Gao et al., 2024; Qu et al., 2025), achieving competitive or even superior performance
compared to full fine-tuning at a much lower cost.

Another common approach is to store a subset of training data as exemplars and replay them during
new task learning to retain prior knowledge (Rebuffi et al., 2017; Hou et al., 2019; Wang et al.,
2022a). However, growing concerns over privacy and regulations have led to a shift toward gen-
erating synthetic images that resemble previous classes, rather than storing real user data (Meng
et al., 2024; Krawczyk & Gepperth, 2024; Wu et al., 2025; Zhang et al., 2025). Inspired by these
developments, our framework leverages generative models to generate synthetic cross-class domain
transferred images and learns domain-specialized prompts to adapt to diverse domains.

2.2 MORE PROBLEM SETTINGS IN CIL

Recent studies (Wang et al., 2023; Shi & Wang, 2023; Liu et al., 2024; Ganin & Lempitsky, 2015;
Zhou et al., 2022) have challenged core assumptions in CIL, such as tasks sharing the same do-
main distribution or training and test data originating from the same domain. For settings where
domain distributions vary across tasks with label space remains fixed, Liu et al. (2024) propose
using batch-wise exponential moving average algorithm to adaptively mitigate classifier forgetting.
Similarly, Shi & Wang (2023) introduce adaptive coefficient learning to dynamically adjust replay,
cross-domain distillation, and divergence terms. Wang et al. (2023) consider significant domain
gaps during training, similar to XIL, but their objective is to mitigate knowledge interference across
tasks by isolating task-specific knowledge. Their approach does not handle scenarios where class-
domain associations change at test time, requiring generalization across both domain shifts and class
boundaries. In contrast, XIL focuses on bidirectional domain knowledge transfer across tasks.

Other works (Kundu et al., 2020; Simon et al., 2022; Cho et al., 2023; Kishida et al., 2021) combine
CIL with domain adaptation or generalization. Kundu et al. (2020) leverage Gaussian prototype-
based distribution information and guides to distinguish new classes under test-time domain shifts
and adapt source-trained models. Simon et al. (2022) use multi-source domain data to learn domain-
invariant features via class-wise Mahalanobis metrics, enabling generalization to unseen domains.
Cho et al. (2023) propose a complementary framework in which a domain adaptation model pro-
vides pseudo-labels for domain generalization, while the domain generalization model initializes the
domain adaptation model, thereby addressing the joint challenge of domain adaptation and gener-
alization. These approaches rely on strong assumptions: Kundu et al. (2020) require labeled target
data for both old and new classes, and Simon et al. (2022); Cho et al. (2023) assume access to di-
verse domains covering all classes. In contrast, XIL sees each class in only one source domain and
must transfer knowledge bidirectionally to generalize across unseen domains.
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Figure 3: Overview of the XEED framework at task i. Prototype embedding fill colors represent
classes, and outline/prompt colors represent domains. (1) During each task, domain-specialized
prompts are concatenated with image patches and optimized to encode domain-specific semantics
via auxiliary supervision. (2) A diffusion model generates synthetic images by disentangling and
recombining class and domain semantics across tasks, enabling bidirectional domain transfer. (3)
The classifier updates its class prototypes with generated data, leading to an evolving semantic space
that captures richer class semantics across all seen domains. Best viewed in color.

3 PROBLEM STATEMENT

In Class-Incremental Learning (CIL) (Zhou et al., 2023), the label space C ⊂ Y , where C repre-
sents a subset of classes from the complete class set Y , expands incrementally as new class subsets
are introduced over time, while the domain distribution D remains fixed. The training sequence is
TCIL = {(C1, D), (C2, D), . . . , (Ct, D)}, where Ci ⊂ Y , Ci ∩ Cj = ∅, ∀i ̸= j, and t denotes the
total number of incremental learning steps. During inference, the model is evaluated on all previ-
ously learned classes within the same domain encountered during training: ECIL =

⋃t
i=1(C

i, D).

While CIL assumes a fixed domain distribution during incremental class learning, real-world scenar-
ios often involve evolving domains. To bridge this gap, we introduce Cross-Expanding Incremen-
tal Learning (XIL), a novel setting in which a model should incrementally learn new classes from
evolving domains while retaining prior knowledge. In addition, this setting aims to enable bidirec-
tional transfer of domain knowledge across classes, including to domains where certain classes were
never directly supervised. Formally, the label space in XIL expands over time with the introduc-
tion of new class subsets as in CIL. However, the domain distribution D also varies across tasks.
Each domain D comprises samples drawn from a unique distribution S = {(xk, yk)}nk=1 ∼ PXY ,
where xk ∈ X is an input, yk ∈ C ⊂ Y is the corresponding label, n is the number of sam-
ples, and PXY is the joint input-label distribution (Wang et al., 2022b). A domain shift be-
tween tasks is defined as P i

XY ̸= P j
XY for all i ̸= j. XIL defines a sequence of tasks as:

TXIL =
{
(C1, D1), (C2, D2), . . . , (Ct, Dt)

}
, Ci ⊂ Y,Ci ∩ Cj = ∅,∀i ̸= j.

During inference, the model is evaluated not only on previously observed class-domain pairs, but
also on its ability to generalize to novel combinations, i.e., classes appearing from encountered but
unsupervised domains. This evaluation is defined as: EXIL =

⋃t
i=1

⋃t
j=1(C

i, Dj),where Dj =

Di or Dj ̸= Di, capturing both knowledge retention and bidirectional domain transfer across tasks.

4 THE PROPOSED FRAMEWORK

Our framework, XEED (Semantic Expansion through Evolving Domains), tackles the challenge
of bidirectional domain transferability in XIL by incrementally expanding class semantics across
all previously encountered domains. It consists of three core components that work in concert
to support semantic expansion across tasks, as illustrated in Figure 3. First, domain-specialized
prompts are learned via auxiliary supervision to encode domain-specific characteristics while re-
maining disentangled from class semantics. Then, synthetic images are created by modulating class
representations with domain features through residual-guided cross-attention. Finally, prototype
embeddings are continuously updated with synthetic images, allowing the semantic representation
space to evolve bidirectionally, extending newly learned classes to previously encountered domains
and past classes to newly encountered domains.
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4.1 OUR FRAMEWORK: SEMANTIC EXPANSION THROUGH EVOLVING DOMAINS (XEED)

4.1.1 DOMAIN SPECIALIZATION VIA AUXILIARY SUPERVISION

In XIL, the domains of class-incremental data continuously change over time, and the model should
be able to extract meaningful features for learned classes across all previously seen domains, even
without direct supervision. To address this variability, we employ an auxiliary classifier during train-
ing to learn small domain-specialized prompts (Jia et al., 2022) that effectively capture underlying
domain characteristics, facilitating adaptation across multiple domains.

Given a task (Ct, Dt) ∈ T consisting of input-label pairs (Xt, Y t), where Ct = Y t ⊂ Y de-
notes the label subset at timestep t and Dt is the associated domain, we introduce a domain-specific
prompt PDt

to inject specific domain information of the task into a frozen pre-trained feature ex-
tractor fϕ. Each image sample xi ∈ Xt is first mapped to patch embeddings ximg ∈ RN×D, where
N is the number of image patches, and D is the embedding dimension. A class token xcls ∈ R1×D is
prepended, and a learnable prompt PDt ∈ RL×D designed to encode domain-specific information,
where L is the length of the prompt token, is inserted after the class token, yielding the final input:

zi = [xcls, P
Dt

, ximg] ∈ R(1+L+N)×D. (1)

The sequence zi is processed by the frozen feature extractor fϕ, and the output at the class token
position is used as the image-level representation:

hi = fϕ(zi)[0]. (2)

To ensure the prompt PDt

captures domain-level rather than class-specific features, an auxiliary
linear classifier Aϕ is introduced during training. It takes hi as input and is trained with a cross-
entropy loss to predict the class within domain Dt. During training, only the prompt PDt

and
the classifier Aϕ are updated, while all parameters of the feature extractor fϕ remain frozen. The
training objective of the current task dataset St = {(xi, yi)} ∼ P t

XY is defined as:

LCE = −
∑

(xi,yi)∈St

yi logAϕ(hi). (3)

This auxiliary supervision acts as a regularizer, guiding the prompt to encode shared domain char-
acteristics while avoiding class-specific semantics. As a result, the prompt effectively conditions the
representation space of the feature extractor based on the domain Dt of the input image.

4.1.2 REPRESENTATION MODULATION WITH DOMAIN SEMANTICS

To address unsupervised domain gaps in rehearsal-free CIL, we leverage the generative capability
of a pre-trained diffusion model conditioned on both image and text inputs (Ye et al., 2023). Specif-
ically, we transfer domain semantics to class-specific attributes via representation modulation in a
training-free manner. To enable bidirectional domain knowledge transfer, we extract class centroids
from sequential data to generate and store pseudo-exemplars, discarding the original data.

Exemplar generation incorporates a sequentially incoming image xi as the image conditioning input
Ii, and the class name corresponding to label yi as the text conditioning input Ti. Both inputs are
encoded using a CLIP image encoder EncI and a CLIP text encoder EncT , respectively. At task t,
we define an exemplar xex as:

xex = gθ(z, k,EncT (T t
i ),EncI(Iti )), (4)

where gθ is a diffusion model parameterized by θ, z is random noise, and k denotes the total num-
ber of denoising steps. Using a small k preserves high-level semantics while modifying low-level
details, mitigating overfitting to the original image and enabling faster generation.

For bidirectional domain knowledge transfer from one task t to another t′ ̸= t, we first suppress
class-specific semantics in Iti and retain only domain-related features. We compute a residual vector
by subtracting the class embedding from the image embedding (Ye et al., 2023):

δtI = EncI(Iti )− EncT (T t
i ), (5)
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which is used as the image conditioning input for generation:

xt′←t
transfer = gθ(z, k,EncT (T t′

i ), δtI). (6)

To preserve the class-specific semantics of T t′

i while injecting domain features from δtI , cross-
attention (Vaswani et al., 2017) is modified to incorporate δtI only in specific transformer blocks
responsible for layout and style (Wang et al., 2024). This enables modulation of the representation
only in terms of the domain semantics of T t′

i .

4.1.3 SEMANTIC EXPANSION USING EVOLVING PROTOTYPES

To continuously expand the semantic representation space of the classifier using generated data, we
employ evolving prototype embeddings that are incrementally updated as new domain knowledge
arrives. Specifically, each class c ∈ C within a domain Dt ∈ D is represented by a domain-aware
prototype vector µDt

c . This vector is computed as the mean of feature embeddings extracted by the
frozen feature extractor fϕ, conditioned on the corresponding domain-specialized prompt:

µDt

c =
1

|EDt

c |
∑

xi∈EDt
c

fϕ(xi, P
Dt

), (7)

where EDt

c denotes the evolving support set for class c in domain Dt. As new samples are synthe-
sized or encountered, EDt

c is expanded accordingly, allowing µDt

c to dynamically reflect the updated
semantic structure of each class. Given a test input x, its feature embedding h is classified by com-
puting the cosine similarity with the current set of prototypes:

ŷ = argmax
c∈C

⟨h, µDt

c ⟩
∥h∥ ∥µDt

c ∥
. (8)

To select the appropriate domain prompt D̂ during inference, the test image embedding fϕ(x) is
compared with domain prototypes µDt

. The prompt D̂ is chosen by minimizing the distance: D̂ =

argminDt∈D

∥∥∥fϕ(x)− µDt
∥∥∥
2
. Each domain prototype µDt

is computed by averaging the image

embeddings within each class under domain Dt, and then taking the mean across all classes:

µDt

=
1

|CDt |
∑

c∈CDt

 1

|EDt

c |
∑

xi∈EDt
c

fϕ(xi)

 , (9)

where CDt

is the set of classes in domain Dt.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. To properly evaluate under the proposed XIL setting, each class must be observable in
every domain so that tasks can introduce new class-domain combinations and unseen combinations
can be assessed at test time. We used widely adopted datasets for domain adaptation (Chang et al.,
2023; Dayal et al., 2025) and generalization (Jiao et al., 2025; Jin et al., 2021). PACS (Li et al., 2017)
shows large style variations across domains, while DomainNet (Peng et al., 2019) has strong domain
style differences and severe label shifts. Office-31 (Saenko et al., 2010) reflects environmental
differences with small within-domain variation. Classes were randomly shuffled and assigned to
tasks by first distributing an equal share via integer division. The remaining classes were then
sequentially allocated to tasks in task order. In PACS, leftover classes were assigned to domains
other than Photo, where no prompt tuning was applied, to prevent overfitting to a single class.

Evaluation Metrics. We evaluate using continual learning accuracy metrics (Rebuffi et al., 2017;
Li & Hoiem, 2017) and propose the BiDoT Score to measure bidirectional domain transferability
in XIL. The accuracy for task i is defined as: ACCi = 1

|E1:i|
∑

(x,y)∈E1:i 1(ŷ = y), where E1:i
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Table 1: Final and average performance metrics (BiDoT, accuracy) for each dataset, averaged over
three runs. Best results are highlighted in bold, and second-best results are underlined.

PACS Office-31 DomainNet
Method F-BiDoT A-BiDoT Final Avg F-BiDoT A-BiDoT Final Avg F-BiDoT A-BiDoT Final Avg
Joint-FT 26.73 26.73 49.74 49.74 48.60 48.60 64.99 64.99 23.20 23.20 33.76 33.76
LwF 26.86 43.18 32.72 61.17 26.67 21.56 42.72 62.55 10.28 8.48 15.82 32.15
EWC 24.25 35.52 35.27 57.20 47.02 68.41 49.57 56.58 12.49 12.96 12.81 32.59
S-Prompts 18.85 26.90 43.48 65.91 35.60 25.00 54.81 67.33 5.24 4.92 15.05 35.69
CODA-P 24.68 46.73 37.43 69.60 67.39 58.13 75.84 80.27 29.41 25.49 36.08 49.68
CPrompt 33.78 43.18 43.02 66.86 63.37 53.58 73.90 79.02 29.71 24.81 37.26 50.60
SimpleCIL 26.56 42.89 40.51 69.01 69.06 60.93 75.45 77.12 11.94 11.10 17.00 32.25
XEED 65.19 67.77 61.86 78.51 78.08 73.67 80.72 83.19 33.63 37.57 35.30 48.40

contains all samples from tasks 1 to i, and 1(·) is the indicator function. We report average (Avg)
and final (Final) accuracy after all tasks.

In addition, we introduce the BiDoT Score to explicitly measure the new challenge of bidirectional
domain transferability. For each task i, the BiDoT score is defined as:

BiDoTi =
1

|E1:i
unseen|

∑
(x,y)∈E1:iunseen

1(ŷ = y), (10)

where the evaluation set E1:i
unseen includes all previously learned classes tested on unseen domains

Dunseen:

E1:i
unseen =

i⋃
k=1

⋃
Dj∈Dunseen

(Ck, Dj), (11)

where class Ck had no supervision during training. We report average (A-BiDoT) and final (F-
BiDoT) scores. A-BiDoT captures consistent generalization, while F-BiDoT reflects overall gener-
alization to unseen domains.

Baselines. Since our proposed setting, XIL, is novel and lacks directly comparable methods under
identical conditions, we establish the most relevant prompt-based learning methods from CIL as
baselines. These include traditional methods such as LwF (Li & Hoiem, 2017) and EWC (Kirk-
patrick et al., 2017), and recent state-of-the-art prompt tuning methods: S-Prompts (Wang et al.,
2022c), which learns independent prompts per domain; CODA-Prompt (Smith et al., 2023), which
uses decomposed attention conditioned prompt tuning; and CPrompt (Gao et al., 2024), which trains
the current task prompt and classifier guided by all existing prompts and classifiers. We also include
SimpleCIL (Zhou et al., 2024a), a prototype-based classifier approach without further training of the
pretrained model. To evaluate the inherent bidirectional domain transfer capability of the model, we
additionally report results from offline joint fine-tuning (Joint-FT).

Architecture. All baselines were implemented using PyTorch (Paszke et al., 2019), with a ViT-
B/16 backbone (Dosovitskiy et al., 2020) pretrained on ImageNet1K (Russakovsky et al., 2015).
For high-quality synthetic image generation, we utilized IP-Adapter (Ye et al., 2023) built on top of
Stable Diffusion XL (SDXL) (Podell et al., 2023).

Training Details. The prompt length L was set to 5, for both XEED and S-Prompts across all
datasets, and the denoising step k was set to 50, yielding good image quality across all datasets.
Other baseline hyperparameters followed official implementations (Li & Hoiem, 2017; Kirkpatrick
et al., 2017; Wang et al., 2022c; Smith et al., 2023; Gao et al., 2024). To generate images, we
extracted 5–10 class centroids from the training data and generated 25–30 samples per class.

5.2 EXPERIMENTAL RESULTS

We comprehensively analyzed our method, XEED, and baseline methods under the XIL setting
from multiple perspectives. Table 1 reports performance on unseen domains and overall accuracy,
demonstrating superior generalization of XEED and the limitations of existing methods. XEED
achieved the highest BiDoT scores across all datasets, with up to a 31.41% improvement over the
second-best baseline on PACS, and also showed superior accuracy on PACS and Office-31. The
larger BiDoT gaps in datasets with high cross-domain variation, such as PACS and DomainNet,
suggest that XEED effectively adapts semantics to evolving domains. Its strong standard accuracy
further indicates effectiveness in both generalization and incremental learning. While CODA-P and
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Figure 4: Per-domain accuracy gap between XIL and CIL in the final task. “Mean” indicates the
average across domains. A more negative gap implies poorer cross-domain generalization.

Figure 5: Final BiDoT and accuracy per domain, averaged over three runs.
CPrompt focus on mitigating forgetting under static distributions, they showed limited generaliza-
tion across all datasets. In Office-31, where in-domain variation is small, prototype-based methods,
XEED and SimpleCIL, outperformed linear classifier methods, highlighting the advantage of pro-
totype representations in improving generalization. These findings underscore the need for realistic
settings, such as XIL, to drive progress beyond static continual learning scenarios.

To further assess the inherent ability of offline-trained Joint-FT and CIL baselines to transfer domain
knowledge across tasks, we evaluated the final accuracy gap between XIL and CIL in Figures 2
and 4. As shown in Figure 2, baseline performance dropped significantly under XIL across all
datasets, indicating limited generalization to unsupervised class-domain associations. In contrast,
XEED achieved a positive gap with improved performance on PACS and showed smaller accuracy
gaps overall. Figure 4 provides a detailed domain-wise comparison of accuracy gaps to examine
whether methods exhibit domain-specific bias in generalization. For EWC, the accuracy gap in
the Clipart domain of DomainNet was 52.6% below its mean, indicating strong domain-specific
bias. In contrast, XEED showed only a 4.8% deviation in its worst case (Infograph), suggesting
much more balanced generalization. Even in Office-31, CODA-P showed a 13.3% deviation in
the Amazon domain, while XEED had only a 2.2% deviation in DSLR, indicating more stable
performance. These results reveal limited bidirectional domain transferability and domain-wise
bias in prior methods, underscoring the value of synthetic image generation and prototype-based
classification for effective, unbiased domain adaptation.

Figure 5 shows final per-domain BiDoT scores and accuracies, highlighting generalization behavior
under different method designs. Since domains follow task order, methods such as EWC, which use
parameter regularization, showed degraded performance on later tasks across all datasets, as seen
in their F-BiDoT scores. CODA-P, due to its decomposed prompt weighting mechanism, tended
to overfit to specific domains, leading to imbalanced generalization across domains. CPrompt ad-

Figure 6: Visualization of generated samples. Exemplars were generated from collected data and
used to synthesize cross-domain transferred images, shown alongside the ground truth for each class
in the target domain.
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Figure 7: t-SNE visualization of CLIP embeddings on PACS. Stars indicate ground truth, circles
represent generated data, and colors denote different classes.

dresses a key CIL limitation by learning prompts and classifiers beyond current-task data, outper-
forming CODA-P under standard CIL (Gao et al., 2024). However, it showed reduced performance
on Office-31 in both F-BiDoT and final accuracy under XIL, suggesting that methods overly tai-
lored to fixed CIL assumptions may struggle to generalize in more dynamic scenarios such as XIL.
XEED leverages domain-specialized prompts and prototype-based classification to generalize with-
out overfitting, consistently achieving the highest mean F-BiDoT across all domains and datasets.

To highlight the effectiveness of our generated samples in approximating real-world data, Figure 6
compares the cross-domain transferred data with the ground truth, while Figure 7 illustrates their
proximity in feature space.

5.3 ABLATION STUDY

We conducted an ablation study to evaluate the contribution of each component in XEED, as shown
in Table 2. Four ablation configurations were tested. First, w/o prompt removes the domain-
specialized prompts, using a frozen pre-trained feature extractor without any domain adaptation.
This setting evaluates whether prototype embeddings alone are sufficient to distinguish between
classes across domains. Second, w/o generation excludes synthetic image generation, assessing
the role of generated samples in maintaining robust bidirectional domain transferability. Third, w/o
prototype replaces prototype-based classification with an auxiliary linear classifier, testing whether
generalization is still achievable without semantic expansion using evolving prototypes. Lastly, w/o
inference disables domain prototype matching and instead randomly selects a domain prompt during
inference, measuring the importance of domain-aware prompt selection for consistent prediction.

Table 2: Ablation study on XEED components.
Method PACS DomainNet Office-31

F-BiDoT Final F-BiDoT Final F-BiDoT Final
XEED 65.19 61.86 33.63 35.30 78.08 80.72
w/o prompts 45.22 58.46 26.62 30.66 65.41 73.80
w/o generation 20.91 39.78 4.47 10.52 33.62 52.40
w/o prototype 18.85 43.48 5.24 15.05 35.60 54.81
w/o inference 52.33 51.26 26.00 26.54 77.83 79.78

W/o prompts led to moderate drops in F-BiDoT
scores across all datasets, despite relatively sta-
ble final accuracy. This indicates that domain-
specific prompts are crucial for achieving ro-
bust generalization to unseen domains, even
when the base model performs reasonably well.
W/o generation caused the most severe perfor-
mance degradation, especially in F-BiDoT, demonstrating the central role of generated samples in
enabling bidirectional domain transfer. W/o prototype led to a disproportionately larger degradation
in F-BiDoT compared to final accuracy, more than in other ablations. This highlights the importance
of evolving prototypes in enhancing generalization to unseen domains. Lastly, w/o inference showed
minimal impact in Office-31 due to its low inter-domain variation, but led to larger drops in both F-
BiDoT and final accuracy in more diverse datasets. This highlights the importance of domain-aware
prompt selection under greater domain shift. Overall, the ablations confirm the necessity of each
XEED component for robust domain transfer and incremental learning.

5.4 ADDITIONAL EXPERIMENTAL ANALYSES

Impact of Synthetic Exemplar Quality on Prototype Dynamics. To assess whether synthetic
exemplars introduce stylistically inconsistent samples that could distort prototype learning, we per-
formed an additional analysis on the Office-31 dataset. For each class-domain pair, we used CLIP
embeddings to compute Mahalanobis distances over generated samples, treating the bottom 5% as
normal samples and the top 5% as potential outliers.

9
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Table 3: Prototype-sample distance statistics.
Domain Normal Outlier % Farther GT Outlier
Amazon 25.23 37.75 85.0 41.08
DSLR 19.88 29.89 100.0 23.53
Webcam 23.71 37.41 95.2 27.25

To assess the impact of such outliers on proto-
type formation, we compare prototype-normal
distances (Normal) with prototype-outlier dis-
tances (Outlier). If outliers distorted the pro-
totypes, they would lie closer to the prototype
than normal samples, effectively pulling the
prototype toward them. However, we consistently observe the opposite: as shown in Table 3,
domain-level results averaged across all classes indicate that outliers remain farther from the proto-
type (% Farther), with 85-100% of classes exhibiting this pattern. Because prototype updates rely
on mean aggregation, higher-quality samples naturally dominate the estimate, preventing atypical
outliers from exerting significant influence.

Finally, we compare these distances with those from the real dataset. The absolute prototype-sample
distances of synthetic images are comparable to the natural intra-class variation in real data (GT
Outlier), and in some domains (e.g., Amazon), real outliers are even farther from the prototype.
This shows that the variability introduced by generated samples falls within the natural range of real
images and does not negatively affect prototype construction.

Effect of Trainable Parameter on Domain Specialization. XIL requires models to gener-
alize to unseen class-domain combinations, and excessive trainable parameters can lead the
model to over-specialize to domain-specific patterns present in the training distribution. For
this reason, XEED employs a frozen backbone with lightweight domain prompts, which lim-
its overfitting while preserving generalization capacity, and still provides strong performance
on seen domains. To validate this design choice, we implemented an adapter-based vari-
ant by attaching residual adapters (Houlsby et al., 2019) to every ViT block and compared
it with the proposed prompt-based XEED model on the Office-31 dataset. As shown in Ta-
ble 4, the adapter variant shows an almost 11% drop in F-BiDoT, indicating weakened gener-
alization to unseen class-domain combinations when more trainable parameters are introduced.

Table 4: Trainable parameter comparison.
Method F-BiDoT A-BiDoT Final Avg
Prompt (Ours) 78.08 73.67 80.72 83.19
Adapter 67.97 60.85 76.71 81.55

In contrast, XEED maintains higher Fi-
nal and Avg performance, showing that
lightweight prompt adaptation provides a
better balance between robustness to distri-
bution shift and strong in-domain accuracy.

More Incremental Tasks. We further evaluate a more fine-grained setting by splitting each in-
cremental task in half (6 tasks total, with 2 per domain in Office-31). As shown in Table 5,

Table 5: More Incremental Tasks.

Method F-BiDoT A-BiDoT Final Avg
XEED 84.40 80.92 80.75 84.19
CPrompt 70.12 71.72 73.75 79.72

increased granularity substantially degrades the
strongest baseline, highlighting that limited per-
task class diversity leads to poorer generaliza-
tion. XEED maintains strong generalization and
remains superior overall.

Prompt Selection. In XIL, classes and domains continually expand, and a parametric selector
trained only on past distributions would struggle to generalize to unseen class-domain combinations.

Table 6: Prompt selection.

Metric Accuracy (%)
Overall 86.86
Unseen 83.19

XEED uses a non-parametric selector in the prototype space, which in-
cludes synthetic exemplars for unseen combinations and enables flex-
ible routing without task-specific parameters. Prompt selection accu-
racy on Office-31 (Table 6), measured on the final task, shows that the
selector generalizes well even to unseen class-domain pairs. Note that
the goal is not domain classification, but effective routing to prompts that support class prediction.

6 CONCLUSION

In this work, we introduced Cross-Expanding Incremental Learning (XIL), a novel setting that ex-
tends class-incremental learning to enable bidirectional domain knowledge transfer. To tackle the
challenges of XIL, we proposed XEED (Semantic Expansion through Evolving Domains), a frame-
work that combines domain-specialized prompts, residual-guided modulation, and evolving proto-
types. We introduced the BiDoT Score, a new metric for explicitly measuring bidirectional domain
transferability, which is not captured by existing CIL benchmarks. Experiments on diverse bench-
marks demonstrated the effectiveness of XEED and revealed the limitations of prior methods under
XIL. We hope this work fosters further research toward generalizable continual learning paradigms.
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A APPENDIX

We provide additional clarifications here in response to the key concerns raised during rebuttal.
Other revisions have been incorporated into the main paper.

Relationship Between XIL and Cross-Domain Continual Learning. Existing definitions of
Cross-Domain Continual Learning (CDCL) differ across the literature. As summarized in Sec-
tion 2.2, (Simon et al., 2022) defines CDCL as CIL with domain generalization, where each task
provides multi-domain data and model learns domain-invariant features. In contrast, (De Carvalho
et al., 2024; Weng et al., 2024) frame CDCL as class/task-incremental learning with domain adapta-
tion, where models have access to unlabeled target domain data and adapt to a fixed target domain.

XIL differs from both: neither classes nor domains repeat across tasks, and each class appears
in exactly one domain. Model receives neither multi-domain supervision nor target domain data,
yet must predict all classes across all domains at test time. This requires domain knowledge to
transfer across classes and to support both forward and backward transfer, capabilities not addressed
by existing CDCL settings. This structure reflects practical scenarios where classes arise in new
domains without additional supervision. XIL captures this challenge, and XEED is designed to
enable the necessary bidirectional cross-class transfer of domain knowledge.

Choice of Datasets for Evaluating XIL. XIL requires each task to introduce new class-domain
combinations, which many common benchmarks cannot support. CoRE50 (Lomonaco & Maltoni,
2017) includes only 10 classes across 11 domains, allowing at most one class per task and preventing
valid multi-class XIL task construction. Using subsets would make results highly dependent on the
chosen sessions.

Likewise, benchmarks such as CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet (Le & Yang,
2015), and ImageNet-subsets contain only a single domain, collapsing XIL into ordinary CIL. Multi-
domain datasets like ImageNet-R (Hendrycks et al., 2021) are also unsuitable because domains are
not aligned across classes, making unseen class-domain evaluation impossible.

For these reasons, we use Office-31, PACS, and DomainNet, which naturally satisfy XIL’s structural
requirements and provide meaningful evaluation of cross-class domain transfer.

Effect of Domain Order. We evaluated XEED and CPrompt under randomly shuffled domain
orders across both Office-31 and PACS, as shown in the table below. XEED remains stable across
orderings, while CPrompt shows strong sensitivity. Domain abbreviations: W - Webcam, A - Ama-
zon, D - DSLR, C - Cartoon, S - Sketch, P - Photo, Ar - Art.

Dataset Domain Order Method F-BiDoT A-BiDoT Final Avg
Office-31 W → A → D XEED 75.75 75.54 80.02 85.80

CPrompt 66.97 65.11 75.37 83.98
Office-31 D → W → A XEED 79.93 85.00 83.16 91.89

CPrompt 67.62 82.16 76.16 91.22
PACS C → S → P → Ar XEED 64.99 70.24 67.67 80.57

CPrompt 18.18 31.78 28.27 61.57
PACS S → Ar → P → C XEED 59.88 71.07 66.14 81.58

CPrompt 39.73 54.41 53.21 75.09

Future Work: Toward a Unified Discriminative-Generative Model. Discriminative objectives
(e.g., cross-entropy) focus on class-specific cues but often miss global distributional structure, lim-
iting domain separation and transfer. Generative models such as diffusion models capture full data
distributions and thus encode domain-level characteristics that discriminative training alone cannot.
Our findings suggest that both signals are necessary for stable learning under domain shift.

No existing method unifies discriminative modeling with diffusion-based distribution modeling. As
a future direction, we aim to develop a hybrid discriminative-generative framework building on
XEED, enabling more efficient and robust forward and backward transfer of domain knowledge.
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XIL Task Construction and Evaluation Code. We provide reference implementation code for
(1) constructing XIL tasks and (2) computing the XIL evaluation metrics used in the main ex-
periments. These snippets reproduce the core logic used in our experiments and are included for
clarity and reproducibility. The full implementation is available at https://github.com/
heayounchoi/XIL.

Code 1: Python code for XIL task construction.
def construct_xil_tasks(class_list, domain_list):

# Shuffle global class order
classes = class_list.copy()
random.shuffle(classes)

# Classes allocated per domain
per_domain = len(classes) // len(domain_list)

task_order = []
idx = 0

# Assign class subsets to domains in order
for _ in domain_list:

task_order.append(classes[idx : idx + per_domain])
idx += per_domain

return task_order

Code 2: Python code for computing XIL metrics (Final, BiDoT, and Prompt Accuracy).
def compute_xil_metrics(y_pred, y_true, dom_pred, dom_true, task_order):

metrics = {}

# 1. Final accuracy
metrics["Final"] = 100 * (y_pred == y_true).mean()

# 2. BiDoT (unseen class-domain accuracy)
unseen_idx = [

i for i in range(len(y_true))
if y_true[i] not in task_order[int(dom_true[i])]

]
metrics["BiDoT"] = 100 * (y_pred[unseen_idx] == y_true[unseen_idx]).mean()

# 3. Prompt selection accuracy
metrics["Prompt"] = 100 * (dom_pred == dom_true).mean()

return metrics
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