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Abstract

Recent studies have shown that deep reinforcement learning agents are vulnerable
to small adversarial perturbations on the agent’s inputs, which raises concerns
about deploying such agents in the real world. To address this issue, we propose
RADIAL-RL, a principled framework to train reinforcement learning agents with
improved robustness against lp-norm bounded adversarial attacks. Our frame-
work is compatible with popular deep reinforcement learning algorithms and we
demonstrate its performance with deep Q-learning, A3C and PPO. We experi-
ment on three deep RL benchmarks (Atari, MuJoCo and ProcGen) to show the
effectiveness of our robust training algorithm. Our RADIAL-RL agents consis-
tently outperform prior methods when tested against attacks of varying strength
and are more computationally efficient to train. In addition, we propose a new
evaluation method called Greedy Worst-Case Reward (GWC) to measure attack
agnostic robustness of deep RL agents. We show that GWC can be evaluated
efficiently and is a good estimate of the reward under the worst possible se-
quence of adversarial attacks. All code used for our experiments is available
at https://github.com/tuomaso/radial_rl_v2.

1 Introduction

Deep learning has achieved enormous success on a variety of challenging domains, ranging from
computer vision [1], natural language processing [2] to reinforcement learning (RL) [3, 4]. Neverthe-
less, the existence of adversarial examples [5] indicates that deep neural networks (DNNs) are not
as robust and trustworthy as we would expect, as small and often imperceptible perturbations can
result in misclassifications of state-of-the-art DNNs. Unfortunately, adversarial attacks have also been
shown possible in deep reinforcement learning, where adversarial perturbations in the observation
space and/or action space can cause arbitrarily bad performance of deep RL agents [6, 7, 8]. As deep
RL agents are deployed in many safety critical applications such as self-driving cars and robotics, it
is of crucial importance to develop robust training algorithms (a.k.a. defense algorithms) such that
the resulting trained agents are robust against adversarial (and non-adversarial) perturbation.

Many heuristic defenses have been proposed to improve robustness of DNNs against adversarial
attacks for image classification tasks, but they often fail against stronger adversarial attack algorithms.
For example, [9] showed that 13 such defense methods (recently published at prestigious conferences)
can all be broken by more advanced attacks. One emerging alternative to heuristic defenses is
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Figure 1: Screenshots of our RADIAL framework promoting robustness of deep RL agents while
the standard deep RL agents without robust training are vulnerable to adversarial attacks.

defense algorithms 2 based on robustness verification or certification bounds [10, 11, 12, 13]. These
algorithms produce robustness certificates such that for any perturbations within the specified `p-
norm distance ε, the trained DNN will produce consistent classification results on given data points.
Representative works along this line include [11] and [14], where the learned models can have much
higher certified accuracies by including the robustness verification bounds in the loss function with
proper training schedule, even if the verifier produces loose robustness certificates [14] for models
without robust training (a.k.a. nominal models). Here, the certified accuracy is calculated as the
percentage of the test images that are guaranteed to be classified correctly under a given perturbation
magnitude ε.

However, most of the defense algorithms are developed for classification tasks. Few defense algo-
rithms have been designed for deep RL agents perhaps due to the additional challenges in RL that are
not present in classification tasks, including credit assignment and lack of a stationary training set. To
bridge this gap, in this paper we present the RADIAL(Robust ADversarIAl Loss)-RL framework to
train robust deep RL agents. We show that RADIAL can improve the robustness of deep RL agents
by using carefully designed adversarial loss functions based on robustness verification bounds. Our
contributions are listed below:

• We propose a novel robust deep RL framework, RADIAL-RL, which can be applied to
different types of deep RL algorithms. We demonstrate RADIAL on three popular RL
algorithms, DQN [3], A3C [15] and PPO [16].

• We demonstrate the superior performance of RADIAL agents on both Atari games and
continuous control tasks in MuJoCo: our agents are 2− 10× more computationally efficient
to train than [17] and can resist up to 5× stronger adversarial perturbations better than
existing works [18, 17].

• We also evaluate the effects of robust training on the ability of agents to generalize to new
levels using the ProcGen benchmark, and show that our training also increases robustness
on unseen levels, reaching high rewards even against ε = 5/255 PGD-attacks.

• We propose a new evaluation method, Greedy Worst-Case Reward (GWC), for efficiently
(in linear time) evaluating RL agent performance under attack of strongest adversaries (i.e.
worst-case perturbation) on discrete action environments.

2We don’t use the naming convention in this field to call this type of defense as certified defense because we
think it is misleading as such defense methodology cannot provide any certificates on unseen data.
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2 Related work and background

2.1 Adversarial attacks in Deep RL

The topic of adversarial examples in supervised learning tasks has been extensively studied, especially
for DNN classifiers [5, 19]. More recently, [6, 7, 8] showed that deep RL agents are also vulnerable to
adversarial perturbations, including adversarial perturbations on agents’ observations and actions [6,
7, 8], mis-specification on the environment [20], adversarial disruptions on the agents [21] and other
adversarial agents [22]. For a review of different attack and defense settings in RL see Ilahi et al.
[23].

In this paper, we focus on `p-norm adversarial perturbations on agents’ observations since this
threat model is adopted by many of the existing works investigating adversarial robustness of deep
RL [6, 7, 8, 24, 25, 26, 27, 18, 17]. However, our framework is not limited to `p-norm perturbation
and in fact can be easily extended to semantic perturbations (e.g. rotations, color/brightness changes,
etc) for vision-based deep RL agents (e.g. atari games) by leveraging the techniques proposed in [28].

2.2 Formal verification and robust training for Deep RL

Robustness certification methods for DNN classifiers [12] have been applied in the deep RL setting:
for example, [27] propose a policy of choosing the action with highest certified lower bound Q-value
during execution, and [24] derived tighter robustness certificate for neural network policies under
persistent adversarial perturbations in the system. These works study the robustness with fixed
neural networks, while our work is focused on training neural networks that produce more robust RL
policies.

The idea of adversarial training has been applied to deep RL to defend against adversarial attacks [25,
26]; however, these approaches often have much higher computational cost than standard training.
While previous work such as [21] have also trained robust agents under different threat models from
ours, we will not be comparing against them as they have different goals and evaluation methods.

The most relevant literature to our work are two robust training methods for deep Q-learning
agents [18, 17]. RS-DQN [18] decouples the DQN agent into a policy and student networks, which
enables leveraging additional constraints on the student DQN without strongly affecting learning
of the correct Q-function, whereas SA-DQN [17] adds a hinge loss regularizer to encourage the
DQN agents to follow their original actions when there are perturbations in the observation space.
[17] also propose SA-PPO and SA-DDPG for training robust RL-agents in continuous control. In
contrast, in RADIAL, we leverage the in-expensive robustness verification bounds to carefully design
regularizers discouraging potentially overlapping actions of deep RL agents. As demonstrated in the
Sec 4, our RADIAL agents outperform [18, 17] under various strength of adversarial attacks, while
being 2-10× more computationally efficient to train than [17]. Moreover, we introduce a novel metric
to evaluate agent performance against worst possible adversary that is not investigated in [18, 17].

2.3 Basics of Deep Reinforcement Learning

Markov Decision Process with parameters (S,A,P,R, γ, s0) is used to characterize the environ-
ments in this paper, where S is a set of states, A is a set of the available actions, P : S ×A×S → R
defines the transition probabilities, and R : S × A → R is the scalar reward function, s0

is the initial state distribution and γ is the discount factor. RL algorithms aim at learning a
possibly stochastic policy π : S × A → R describing the probability of taking an action a
given state s. The goal of a policy is to maximize the cumulative time discounted reward of
an episode

∑
t γ

trt, where t is the timestep and rt, at and st are reward, action and state at timestep t.

Deep Q-networks (DQN) [3]. An action-value function Q(s, a) describes the expected cumulative
rewards given current state s and action a. In Q-learning, a policy π is constructed by taking the action
with highest Q-value. The optimal Q function, denoted as Q∗(s, a), satisfies the Bellman Optimality
Equations Q∗(s, a) = r + γE(s′|s,a) [maxa′ Q

∗(s′, a′)], where s′ is the next state and r is reward.
The essence of DQN is to use neural networks to approximate the Q∗(s, a) and the networks can
be trained by minimizing the loss L(θ) = E(s,a,s′,r)

[
(r + γmaxa′ Q(s′, a′; θ)−Q(s, a; θ))2

]
. The

two baseline works on robust training for RL agents [18, 17] use more advanced versions than vanilla
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DQN including Dueling-DQN [29] and Double-DQN [30]. Double-DQN uses two Q-networks to
evaluate target valueQtarget and the one being trainedQactor, with θactor being optimized by minimizing
the loss L(θactor):

L(θactor) = E(s,a,s′,r)

[
(r + γmax

a′
Qtarget(s

′, a′; θtarget)−Qactor(s, a; θactor))
2
]
. (1)

Dueling-DQN improves DQN by splitting Q-values into the value of the state VQ(s) and advantage
AQ(s, a) calculated by different output layers such that Q(s, a) = VQ(s) +AQ(s, a).

Asynchronous Advantage Actor Critic (A3C) [15]. A3C uses neural networks to learn a policy
function π(a|s; θ) and a state-value function V (s; θv). Here the policy network π(a|s; θ) determines
which action to take, and value function evaluates how good each state is. To update the network
parameters (θ, θv), an estimate of the advantage function, At, is defined as At(st, at; θ, θv) =∑k−1
i=0 γ

irt+i + γkV (st+k; θv)− V (st; θv) with hyperparameter k. The network parameters (θ, θv)
are learned by minimizing the following loss function:

L(θ, θv) = E(st,at,rt)

[
A2
t −At log π(at)− βH(π)

]
, (2)

where the first term optimizes the value function, second optimizes policy function and last term
encourages exploration by rewarding high entropyH of the policy with scaling parameter β.

Proximal Policy Optimization (PPO) [16]. PPO is a critic based policy-gradient method similar
to A3C, that works for off-policy updates unlike A3C.

PPO uses the clipping function on the ratio of action probabilities to constrain the difference between
new and old policy. The resulting objective function is

L(θ) = E(st,at,rt)

[
−min(

π(at|st; θ)
π(at|st; θold)

At, clip(
π(at|st; θ)
π(at|st; θold)

, 1− η, 1 + η)At)

]
, (3)

where η is a hyper-parameter andAt is an estimate of the advantage function at timestep t. In addition,
PPO usually includes a term minimizes loss of the value function and rewarding entropy of the policy
similar to A3C.

3 A Robust Deep RL framework with adversarial loss

In this section, we propose RADIAL (Robust ADversarIAl Loss)-RL, a principled framework
for training deep RL agents robust against adversarial attacks. RADIAL designs adversarial loss
functions by leveraging existing neural network robustness formal verification bounds. We first
introduce the key idea of RADIAL and then elucidate a few ways to formulate adversarial loss for
the three classical deep reinforcement learning algorithms, DQN, A3C and PPO in Sections 3.1, 3.2
and 3.3. In Section 3.4, we propose a novel evaluation metric, Greedy Worst-Case Reward (GWC), to
efficiently assess agent’s robustness against input perturbations.

Main idea. The training loss of the RADIAL framework, LRADIAL, consists of two terms:

LRADIAL = κLnom + (1− κ)Ladv, (4)

where Lnom denotes the nominal loss function such as Eqs. (1)-(3) for nominal (standard) deep RL
agents, and Ladv denotes the adversarial loss which we will design carefully to account for adversarial
perturbations. κ is a hyperparameter controlling the trade-off between standard performance and
robust performance with value between 0 and 1, and note that standard RL training algorithms have
κ = 1 throughout the full training process. Here we propose two principled approaches to construct
Ladv both via the neural network robustness certification bounds [14, 12, 13, 11, 31, 32, 33, 34]:

#1. Construct an strict upper bound of the perturbed standard loss (Eq (9), (10), (7));
#2. Design a regularizer to minimize overlap between output bounds of actions with large

difference in outcome (Eq (5), (6)).

The Approach #1 is well-motivated as minimizing a strict upper bound of the perturbed standard loss
usually also decreases the true perturbed standard loss, which indicates the policy should perform
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well under adversarial perturbations. Alternatively, Approach #2 is motivated by the idea that we
want to avoid choosing a significantly worse action because of a small input perturbation.

The foundation of both Approach #1 and #2 lies in the robustness formal verification tools to derive
output bounds of neural networks under input perturbations. Specifically, for a given neural network,
suppose zi(x) is the activation of the ith layer of a neural network with input x. The goal of a
robustness verification algorithm is to compute layer-wise lower and upper bounds of the neural
network, denoted as zi(x, ε) and zi(x, ε), such that zi(x, ε) ≤ zi(x+ δ) ≤ zi(x, ε), for any additive
input perturbation δ on x with ||δ||p ≤ ε. We will apply robustness verification algorithms on the
Q-networks (for DQN) or policy networks (for A3C and PPO) to get layer-wise output bounds of Q
and π. These output bounds can be used to calculate an upper bound of the original loss function
under worst-case adversarial perturbation Ladv for Approach #1. Similarly, the layer-wise bound is
used to minimize the overlap of output intervals as proposed in Approach #2. For the purpose of
training efficiency, IBP [14] is used to compute the layer-wise bounds for the neural networks, but
other differentiable certification methods [12, 13, 11, 31, 32, 33] could be applied directly (albeit
may incur additional computation cost). Our experiments focus on p =∞ to compare with baselines
but the methodology works for general p.

3.1 RADIAL-DQN

For Dueling-DQN, the advantage function AQ is used to decide which action to take and the value
function VQ is only important for training. Hence, we only need to makeAQ robust and the Q function
is lower and upper bounded byQ(s, a, ε) = VQ(s)+AQ(s, a, ε) andQ(s, a, ε) = VQ(s)+AQ(s, a, ε)

with ε-bounded perturbations to input s. In RADIAL we proposde two approaches to derive the
adversarial loss Ladv; however, due to the space constraints, we describe the approach that has better
empirical performance in the main text, and leave the other in the Appendix.

For DQN, we find that Approach #2 performs better. The goal of Approach #2 is to minimize the
weighted overlap of activation bounds for different actions (Fig. 2). The idea is to minimize only
what is necessary for robust performance, overlap. If there is no overlap, the original action’s Q-value
is guaranteed to be higher than others even under perturbation, so the agent won’t change it’s behavior
under perturbation. However not all overlap is equally important. If two actions have a very similar
Q-value, overlap is acceptable, as taking a different but equally good action under perturbation is not
a problem. To address this we added weighting by Qdiff, which helps by multiplying overlaps with
similar Q-values by a small number and overlaps with different Q-values by a large number.

The final loss loss function is as follows:
Ladv(θactor, ε) = E(s,a,s′,r)[

∑
y

Qdiff(s, y) ·Ovl(s, y, ε)] (5)

where
Qdiff(s, y) = max(0, Q(s, a)−Q(s, y)), Ovl(s, y, ε) = max(0, Q(s, y, ε)−Q(s, a, ε) + η)

η = 0.5 ·Qdiff(s, y) and a is the action taken. Here Ovl represents the overlap between the bounds
of two actions (grey region in Fig 2). To promote additional robustness, the network is incentivized
to have a margin η (rather than simply no overlaps). We set η = 0.5 ·Qdiff to have it be half of the
maximum margin attainable. See Appendix F for experiments and discussion on the importance
of this choice for margin. Note that Qdiff is treated as a constant (no gradient) for the optimization.
Eq. (5) reduces to zero when ε = 0.

3.2 RADIAL-A3C

In A3C, as the value network V and entropy H are only used to help training, we will use the
unperturbed form of the approximated advantage At(st, at; θ, θv) and entropy H and focus on
designing a robust policy network π in RADIAL-A3C. As the Approach #2 is more effective in our
experiments, we focus on describing Approach #2 here and leave Approach #1 in the Appendix B.
The idea of Approach #2 for A3C is very similar to DQN, except that the Q-values are replaced by a
combination of the policy outputs π and the pen-ultimate layer of the policy networks z (before the
softmax layer):

Ladv(θactor, ε) = E(s,a,s′,r)[
∑
y

πdiff(s, y) ·Ovl(s, y, ε)] (6)
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Figure 2: Visualizing Ladv for RADIAL-DQN
(Approach #2) in a simple case with 2 actions.

Algorithm 1: Greedy Worst-Case Reward
R = 0
while st not terminal do

1. Calculate πi(st, θ), πi(st, ε; θ) and
πi(st, ε; θ) for each action i

2. Calculate set of possible actions
Γ := {i | πi ≥ maxj(πj)}

3. Take the "worst" action k out of the
possible actions,
k = argmini∈Γ(πi(st, θ)). Observe
rt and st+1 and update R← R+ rt

4. t = t+ 1
end
return R

with πdiff(s, y) = max(0, π(s, a) − π(s, y)) and Ovl(s, y, ε) = max(0, z(s, y, ε) − z(s, a, ε) + η).
Where η = 0.5 · zdiff(s, y) and zdiff(s, y) = max(0, z(s, a)− z(s, y)).

3.3 RADIAL-PPO

For RADIAL-PPO, we use Approach #1 as Approach #2 does not work for continuous ac-
tions(discussion in Appendix C). In RADIAL-PPO, we only calculate bounds over current policy
output, because the experiences are generated by sampling from unperturbed old policy, and value
function/advantage are only used during training. The intuition for Approach #1 is to derive an upper
bound of the RHS of Eqn. 3 which will always hold.

∀st ∈ S,∀||δ||p ≤ ε ; L(θ, st + δ) ≤ Ladv(θ, st, ε). Minimizing this upper bound will then also
decrease the loss under perturbation. In practice optimizing this loss function results in increasing the
lower bound of the probability of taking good actions (At ≥ 0), and decreasing the upper bound of
the probability to take bad actions (At < 0).

The mathematical definition of Ladv is the following:

Ladv(θ, ε) = E(st,at,rt)

[
−min(

π̂(at|st, ε; θ)
π(at|st; θold)

At, clip(
π̂(at|st, ε; θ)
π(at|st; θold)

, 1− η, 1 + η)At)

]
(7)

The worst-case policy is defined as:

π̂(at|st, ε; θ) =

{
π(at|st, ε; θ), if At ≥ 0

π(at|st, ε; θ), otherwise
(8)

For our continuous control experiments, the output of our policy are the parameters µ,Σ of a Gaussian,
with covariance being diagonal and independent of input state s. We can define bounds on distance d:

d(at, st, ε) = maxµ∈{µ,µ}(at − µ)TΣ−1(at − µ), d(at, st, ε) = minµ∈[µ,µ](at − µ)TΣ−1(at − µ)

Then π(at|st, ε; θ) = e−d/2

((2π)k det Σ)0.5
and π(at|st, ε; θ) = e−d/2

((2π)k det Σ)0.5
. Where k is the number of

dimensions in the action space.

For discrete action, π is a categorical distribution over possible actions, where π(at) is the upper
bound of the policy network π at at-th output. This can be computed from the upper bound of at-th
logit(output before softmax) and lower bound of other logits by applying softmax.

3.4 New efficient evaluation metric: Greedy Worst-Case Reward

The goal of training RL agents robust against input perturbations is to ensure that the agents could still
perform well under any (bounded) adversarial perturbations. This can be translated into maximizing
the worst-case reward Rwc, which is the reward under worst possible sequence of adversarial attacks.
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We define Rwc as follows: Rwc = min||δt||p≤ε Eτ [R(τ)] with trajectory τ = (s0, a0, ..., sT , aT )
where at, st, rt are drawn from π(st + δt), P(st−1, at−1),R(st−1, at−1) respectively, and R(τ) =∑

t rt. One idea is to evaluate every possible trajectory τ to find which one produces the minimal
reward. However Rwc is practically impossible to evaluate, as finding the worst perturbations δt of a
set of possible actions at for each state st is NP-hard, and the amount of trajectories to evaluate grows
exponentially with respect to trajectory length T , which is hard to compute. One possible way to avoid
finding worst-case perturbations directly is to use certified output bounds [12, 13, 11, 31, 32, 33],
which produces a superset of all possible actions under worst-case perturbations and hence the
resulting total accumulative reward is a lower bound of Rwc. We name this reward as Absolute
Worst-Case Reward (AWC). Note that AWC is a lower bound of Rwc when both the policy and
environment are deterministic.

However, AWC still requires evaluating an exponential amount of possible action sequences, which is
computationally expensive. To overcome this limitation, we propose an alternative evaluation method
called Greedy Worst-Case Reward (GWC) in Algorithm 1, which approximates the desired Rwc and
can be computed efficiently with a linear complexity of total timesteps T . The idea of GWC is to
avoid evaluating exponential numbers of trajectories and use a simple heuristic to approximate Rwc
by choosing the action with lowest Q-value (or the probability of action taken for A3C) greedily at
each state. We show in Fig 4 (in Appendix E) that GWC is often close to AWC while being much
faster to evaluate (linear complexity of total time steps). Discussion about metrics used in baseline
works [17, 18] and full description of the algorithm for computing AWC is in Appendix D.

4 Experimental results

Environments and setup To have a fair comparison with baseline works [17, 18], we experiment on
the same Atari-2600 environment [35] and same 4 games used in [17, 18]. Different from [17, 18],
we further evaluate our algorithm on a more challenging ProcGen [36] benchmark, which allows us
to test generalization abilities of the agent. Note that both Atari-games and ProcGen [36] benchmark
have high dimensional pixel inputs and discrete action spaces. To compare our RL agents with
continuous actions with [17], we use the MuJoCo environment which simulates robotic control
and has relatively low-dimensional inputs and a continuous action space. Full training details and
hyperparameter settings are available in Appendix H.

Evaluation. We evaluate the performance of our agents with a total of 3 metrics: (a) total reward under
10-steps l∞-PGD untargeted attack applied on every frame, (b) GWC and (c) Action Certification
Rate (ACR)[17]. For Atari games the result of Approach #2 for RADIAL-agents are in Table 1, and
the results of Approach #1 are in Appendix I. Note that A3C and PPO take actions stochastically
during training but we set them to deterministically choose the action that has the highest probability
during evaluation.

4.1 Atari results

Table 1 shows that RADIAL-DQN outperforms or matches all the baselines on all four games
against ε = 1/255 PGD-attacks with the same evaluation method in [17]. The result suggests that
RADIAL can train a robust policy against ε = 1/255 adversarial perturbations without sacrificing
nominal performance. In fact, our robust RADIAL agents consistently outperform the baselines on
all the evaluation metrics, with significant margin in RoadRunner. In addition to better rewards, our
RADIAL-DQN is roughly 6× faster to train than [17]. Experimentally if we include the standard
training process, our total run time is only 17 hours compared to SA-DQN’s 35 hours on our hardware.
RADIAL-A3C also achieves high rewards under adversarial attacks and beats the baselines on 2/4
tasks despite the games likely being chosen by previous work because they are easy for Q-learning
agents. As shown in Table 1 (A3C is excluded because it did not learn Freeway), RADIAL-A3C
reaches slightly lower nominal rewards than RADIAL-DQN but shows more robust performance
against large perturbations, even outperforming RADIAL-DQN against ε = 5/255 PGD attacks on
RoadRunner. This shows RADIAL works well for very different types of RL algorithms.

One interesting finding is that our A3C baseline actually performed well against small PGD-attacks
even without robust training (the standard DQN models all perform terribly at ε = 1/255 while
A3C has comparable or even better performance than the robust trained SA-DQN or RS-DQN.) We
believe this is due to two main factors: (a) the network architecture is slightly different from DQN
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Model/metric Nominal PGD attack GWC ACR

ε 0 1/255 3/255 5/255 1/255 1/255

BankHeist
Baselines:
Standard DQN [17] 1325.5±5.7 29.5±2.4 0.0±0.0 0.0±0.0 0.0±0.0 0.000

A3C 1109.0±21.4 1102.5±49.4 534.5±58.2 115.0±27.8 0.5±0.5 0.000
Robust RS-DQN [18] 238.66 190.67 N/A N/A N/A N/A

SA-DQN [17] 1237.6±1.7 1237.0±2.0 1213.0±2.5 1130.0±29.1 1196.5±9.4 0.976
Our Methods:

RADIAL-DQN 1349.5±1.7 1349.5±1.7 1348±1.7 1182.5±43.3 1344.5±1.8 0.981
RADIAL-A3C 1036.5±23.4 975±22.2 949±19.5 712±46.4 851.5±2.9 0.718

Freeway
Baselines:
Standard DQN [17] 33.9±0.07 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.000
Robust RS-DQN [18] 32.93 32.53 N/A N/A N/A N/A

SA-DQN [17] 30.0±0.0 30.0±0.0 30.05±0.05 27.65±0.22 30.0±0.0 1.000
Our Methods:

RADIAL-DQN 33.2±0.19 33.35±0.16 33.4±0.13 29.1±0.17 33.25±0.24 0.998

Pong
Baselines:
Standard DQN [17] 21.0±0.0 -21.0±0.0 -21.0±0.0 -20.85±0.08 -21.0±0.0 0.000

A3C 21.0±0.0 21.0±0.0 21.0±0.0 -17.85±0.33 -21.0±0.0 0.000
Robust RS-DQN [18] 19.73 18.13 N/A N/A N/A N/A

SA-DQN [17] 21.0±0.0 21.0±0.0 21.0±0.0 -19.75±0.1 21.0±0.0 1.000
Our Methods:

RADIAL-DQN 21.0±0.0 21.0±0.0 21.0±0.0 21.0±0.0 21.0±0.0 0.894
RADIAL-A3C 21.0±0.0 21.0±0.0 21.0±0.0 21.0±0.0 21.0±0.0 0.755

RoadRunner
Baselines:
Standard DQN [17] 43390±973 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.000

A3C 34420±604 31040±2173 3025±317 350±93 0.0±0.0 0.000
Robust RS-DQN [18] 12106.67 5753.33 N/A N/A N/A N/A

SA-DQN [17] 45870±1380 44300±1753 20170±1822 3350±335 0.0±0.0 0.602
Our Methods:

RADIAL-DQN 44495±1165 44445±1148 39560±1621 23820±942 45770±1622 0.994
RADIAL-A3C 34825±981 31960±933 29920±1496 31545±1480 31885±1912 0.923

Table 1: We report the mean reward of 20 runs as well as the standard error of the mean(sem). Best
result boldfaced, results within a sem of the best result underlined. RADIAL-DQN outperforms all
the baselines. All the robust models are trained with ε = 1/255. RS-DQN results are N/A besides
1/255 PGD as the authors have not released code or models.

and uses Max-pooling layers, which naturally makes it more resistant against many small changes to
input; (b) A3C training is more stochastic, so it is more resistant to occasional random actions caused
by the untargeted attack.

Another interesting observation in our experiments across different algorithms and environments is
that sometimes applying an attack or increasing the magnitude of PGD-attack increases the reward
achieved. We note that this phenomenon is not unreasonable since the PGD attack is designed to
simply change original actions of RL agent; it is possible and often even likely that original trajectory
was not the best possible one and a different trajectory can give higher reward. We observed this
phenomenon on Freeway for both SA-DQN and RADIAL-DQN (Table 1), and for RADIAL-PPO
on CoinRun and Jumper (Table 2). We believe this indicates the weakness of untargeted PGD-attacks
and highlights room for improvement of attacks on RL-policies.

4.2 ProcGen Results

We report our results on 3 environments on the ProcGen benchmark [36] in Table 2. To our best
knowledge, it is the first evaluation of robustness of RL-agents trained on ProcGen. All our agents
were trained for 25M steps on the easy setting, trained on 200 different levels and evaluated on the
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Env: Model Dist Nominal ε=1/255 PGD ε=3/255 PGD ε=5/255 PGD

Fruitbot PPO Train 30.20 ± 0.23 25.72 ± 0.33 15.56 ± 0.38 8.79 ± 0.35
Eval 26.09 ± 0.33 22.53 ± 0.38 13.51 ± 0.39 8.51 ± 0.35

RADIAL-PPO Train 28.03 ± 0.24 27.93 ± 0.25 27.84 ± 0.26 27.50 ± 0.26
Eval 26.08 ± 0.29 26.06 ± 0.30 25.87 ± 0.30 25.81 ± 0.30

Coinrun PPO Train 8.31 ± 0.12 6.36 ± 0.15 4.19 ± 0.16 3.32 ± 0.15
Eval 6.65 ± 0.15 5.22 ± 0.16 3.58 ± 0.15 3.36 ± 0.15

RADIAL-PPO Train 7.12 ± 0.14 7.10 ± 0.14 7.19 ± 0.14 7.34 ± 0.14
Eval 6.66 ± 0.15 6.71 ± 0.15 6.71 ± 0.15 6.67 ± 0.15

Jumper PPO Train 8.69 ± 0.11 6.61 ± 0.15 4.50 ± 0.16 3.42 ± 0.15
Eval 4.22 ± 0.16 3.90 ± 0.15 3.10 ± 0.15 3.15 ± 0.15

RADIAL-PPO Train 6.59 ± 0.15 6.70 ± 0.15 6.55 ± 0.15 6.83 ± 0.15
Eval 3.85 ± 0.15 3.93 ± 0.15 3.75 ± 0.15 3.59 ± 0.15

Table 2: Results on the ProcGen environments. Each model was evaluated for 1000 episodes on the
training/evaluation set. Reported means together with standard error of the mean.

Nominal Attack (MAD)
Environment Model ε = 0 ε = 0.0375 ε = 0.075 ε = 0.15

Walker2D PPO 3635.3±50.7 1968.5±90.6 1283.1±61.9 670.3±31.9
(εtrain = 0.075) SA-PPO [17] 3776.4±186.0 3923.6±189.9 3263.7±228.1 3652.1±203.3

RADIAL-PPO 5251.6±10.4 5108.4±67.9 4474.7±140.6 3895.3±128.3
Hopper PPO 2740.7±125.8 2034.4±126.9 1524.2±146.3 969.9±90.1
(εtrain = 0.075) SA-PPO [17] 3585.0±56.4 3364.7±93.9 3165.1±107.1 2248.3±124.7

RADIAL-PPO 3737.5±4.4 3684.9±27.4 3252.1±101.9 2498.9±130.0
Half Cheetah PPO 5566.0±8.7 5517.8±8.8 5179.3±64.7 1483.6±193.4
(εtrain = 0.15) SA-PPO [17] 4175.0±29.9 4168.8±29.9 4178.5±35.3 4173.1±31.8

RADIAL-PPO 4724.3±10.6 4629.7±36.9 4480.0±66.9 4008.5±119.5

Table 3: We report the results of reward (mean ± standard error of the mean) for each agent in
MuJoCo continuous control tasks. Agents are trained for 4096k steps and evaluated for 50 episodes
on the evaluation set. Results within standard error of the mean from best result underlined.

full distribution. We used the IMPALA-CNN architecture [36], which is a significantly larger than
the ones in our Atari experiments, but our algorithm and training setup can still successfully scale
to this more complex setting. We notice like A3C, the original PPO-policy is already quite robust
against small PGD-attacks, but RADIAL-PPO has even better robustness to much stronger attacks.
Next, we use the train/evaluation split in levels to study whether our robust training generalizes to
new environments. We observe that RADIAL training increases robustness consistently on both
training and evaluation set, and the gap between training and evaluation results is often smaller for
RADIAL-PPO. The results in Table 2 uses a deterministic version of the policy and the result of
stochastic policy is reported in Appendix I.

4.3 MuJoCo Results

In Table 3 we show our results on 3 environments from MuJoCo [37] and comparison with vanilla
PPO method and SA-PPO [17] convex relaxation approach. We directly use the implementation from
[17]. We train 4096 k steps for all 3 environments, whereas [17] uses roughly 2000k for Walker2D and
Hopper. For each environment, we compare the performance under MAD attacks [17] with different
ε. For Walker2D, we use training ε = 0.075 instead of ε = 0.05 from [17] for better comparison
under different attacks. For Walker2D and Hopper, RADIAL-PPO outperforms SA-PPO [17] in
both natural testing and robust testing. Interesting, for Half-Cheetah, we found this environment is
naturally robust (even better than robust trained agents) against attack up to ε=0.075.

9



4.4 Evaluating GWC

We show empirically that GWC is indeed a good approximation of AWC reward. We compare GWC
and action certification rate (ACR) against the Absolute Worst-Case Reward (AWC) on a small
scale experiments on reaching the first reward within 80 frames on Freeway due to the exponential
complexity of AWC. Figure is available in Appendix D. GWC is the ratio of +1 rewards as measured
by GWC, while AWC uses depth first search to compute the percentage of +1 rewards using Algorithm
2 (i.e. where all possible sequences of actions get at least +1 reward). For the episodes that we
evaluated, GWC matched AWC perfectly for ε ∈ {1.0, 1.2, 1.5}. Since AWC is a lower bound of
GWC, for ε ∈ {1.3, 1.4} GWC matched AWC on 37/40 episodes, while overestimating on the 3/40.
ACR (as used in [17]) did not show as strong of a correlation with AWC. As evident in Table 1, GWC
is a better indicator for the robust performance than ACR – this is the case for Freeway and Pong
where SA-DQN has higher action certification rates but RADIAL-DQN has higher GWC and PGD
rewards. Together these results give faith in GWC being a good evaluation method.

5 Conclusions and Future works

We have shown that using the proposed RADIAL framework can significantly improve the robustness
of deep RL agents against adversarial perturbations based on robustness verification bounds – our
robustly trained agents reach very good performance against even 5× larger perturbations than
previous state of the art, and in the meantime are much more computationally efficient to train.
In addition, we have presented a new evaluation method, Greedy Worst-Case Reward, as a good
surrogate of the worst-case reward to evaluate deep RL agent’s performance under adversarial
input perturbations. Future works include extending our framework to defend against semantic
perturbations such as contrast and brightness changes, which are more realistic on the vision-based
RL agents (e.g. self-driving car, vision-based robots).

6 Limitations and Potential negative impact

An important limitation of our work and one that may cause negative impact in the future is that our
work addresses only a specific axis of robustness, robustness against lp-norm bounded perturbations.
While there are ways to extend this, for example to semantic perturbation [28], other axes like
robustness to changing environment conditions are not addressed by our method. We want to
highlight common terms used in this field like certified defense and robustness may sound very
convincing to a non-expert, but insufficient understanding of the limits of current robust training
methods and overly relying on them presents pressing potential for negative social impact.
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