
Effector: A Python package for regional explanations

Vasilis Gkolemis∗,† gkolemis@hua.gr, vgkolemis@athenarc.gr

Julia Herbinger¶ julia.herbinger@stat.uni-muenchen.de

Christos Diou∗ diou@hua.gr

Theodore Dalamagas† dalamag@athenarc.gr

Eirini Ntoutsi§ eirini.ntoutsi@unibw.de

Bernd Bischl¶ bernd.bischl@stat.uni-muenchen.de

Giuseppe Casalicchio¶ giuseppe.casalicchio@lmu.de
∗Harokopio University of Athens, †ATHENA RC, §University of the Bundeswehr Munich
¶Munich Center for Machine Learning (MCML), Department of Statistics, LMU Munich

Abstract

Global feature effect methods explain a model outputting one plot per feature. The plot
shows the average effect of the feature on the output, like the effect of age on the an-
nual income. However, average effects may be misleading when derived from local effects
that are heterogeneous, i.e., they significantly deviate from the average. To decrease the
heterogeneity, regional effects provide multiple plots per feature, each representing the
average effect within a specific subspace. For interpretability, subspaces are defined as
hyperrectangles defined by a chain of logical rules, like age’s effect on annual income sep-
arately for males and females and different levels of professional experience. We introduce
Effector, a Python library dedicated to regional feature effects. Effector implements
well-established global effect methods, assesses the heterogeneity of each method and,
based on that, provides regional effects. Effector automatically detects subspaces where
regional effects have reduced heterogeneity. All global and regional effect methods share a
common API, facilitating comparisons between them. Moreover, the library’s interface is
extensible so new methods can be easily added and benchmarked. The library has been
thoroughly tested, ships with many tutorials (https://xai-effector.github.io/) and is avail-
able under an open-source license at PyPi https://pypi.org/project/effector/ and Github
https://github.com/givasile/effector.

Keywords: Explainability, interpretability, global explanations, regional explanations.

1 Introduction

The increasing adoption of machine learning (ML) in high-stakes domains like healthcare
and finance has raised the demand for explainable AI (XAI) techniques (Freiesleben et al.;
Ribeiro et al., 2016). Global feature effect methods explain a black-box model through a
set of plots, where each plot is the effect of a feature on the output, as in Figure 1a.

Global effects may be misleading when the black-box model f(·) exhibits interactions
between features. An interaction between two features, xs and xk, exists when the differ-
ence in the output f(x) as a result of changing the value of xs depends on the value of
xk (Friedman and Popescu, 2008). Global effects are often computed as averages over local
effects. When feature interactions are present, local effects become heterogeneous, i.e., they
significantly deviate from the average (global) effect. In these cases, the global effect may

1

https://xai-effector.github.io/
https://pypi.org/project/effector/
https://github.com/givasile/effector

be misleading, a phenomenon known as aggregation bias (Mehrabi et al., 2021; Herbinger
et al., 2022).

Regional (Herbinger et al., 2023, 2022; Molnar et al., 2023; Britton, 2019; Hu et al., 2020;
Scholbeck et al., 2022) or cohort explanations (Sokol and Flach, 2020), partition the input
space into subspaces and compute a regional explanation within each. The partitioning
aims at subspaces with homogeneous local effects, i.e., with reduced feature interactions,
yielding regional effects with minimized aggregation bias (Herbinger et al., 2022). By com-
bining these regional explanations, users can interpret the model’s behavior across the entire
input space. Several libraries focus on XAI, but none targets on regional effect methods
(Table 1). Therefore, we present Effector, a Python library dedicated to regional explain-
ability methods, which:

• implements well-established global and regional effect methods, accompanied by an
intuitive way to visualize the heterogeneity of each plot.

• follows a consistent and modular software design. Existing methods share a common
API and novel methods can be easily added and compared to existing ones.

• demonstrates through tutorials the use of regional effects in real and synthetic datasets.
Synthetic datasets we evaluate the implemented methods with ground truth.

2 Effector - A python package for global and regional feature effects

To showcase the effectiveness of Effector we use the Bike-Sharing dataset (Fanaee-T and
Gama, 2014). The results are plot in Figure 1 and explained hereafter.

(a) Global effect (b) Regional on weekdays (c) Regional on weekends

Figure 1: RegionalPDP applied to the Bike Sharing dataset; Left: Global effect of feature
hour on the bike-rentals. Middle: Regional effect of feature hour on weekdays. Right:
Regional effect of feature hour on weekends.

Regional Effects. Global effect methods are vulnerable to aggregation bias. Figure 1a
shows that the global effect (blue curves) of feature hour on the bike-rentals in the
Bike-Sharing dataset (Fanaee-T and Gama, 2014) has two sharp peaks at about 7:30 and
17:00 which indicate people’s commute patterns to and from work. The ICE plots (red
curves), however, indicate heterogeneity; there are many instances that deviate from this
explanation. Regional effect plots automatically detect two subspaces; one for weekdays

2

(Figure 1b) with a peak at about 7:30 and 17:00 and one for weekends (Figure 1c) with a
peak at about 13:00-16:00, with decreased heterogeneity compared to the global effect. The
example highlights that regional effects can uncover different explanations that are hiding
behind the global (average) effect.

Methods. Figure 1 is obtained using PDP and RegionalPDP, but similar findings are ob-
tained with any other method, as shown in Appendix D. Effector implements the follow-
ing global effect methods alongside their regional counterparts; Partial Dependence Plots
(PDP) (Friedman, 2001), derivative-PDP (Goldstein et al., 2014), Accumulated Local Ef-
fects (ALE) (Apley and Zhu, 2020), Robust and Heterogeneity-aware ALE (RHALE) (Gkolemis
et al., 2023a) and SHAP Dependence Plots (SHAP-DP) (Lundberg and Lee, 2017). Formal
descriptions of these methods are provided in Appendices A and B. Comparative analyses
using synthetic examples with ground truth effects are detailed in Appendix C, while their
application to real datasets is presented in Appendix D. Finally, instructions on integrating
Effector with common machine learning libraries are outlined in Appendix E.

Usage. Effector adheres to the progressive disclosure of complexity; simplifies the initial
step and demands incremental learning steps for increasingly sophisticated use cases. Global
or regional plots require a single-line command (lines 10 and 11 of Listing 1). In three
lines of code, the user can customize the bin-splitting of RHALE (line 15) or change the
heterogeneity threshold for an accepted split (line 20). All methods require two arguments:
the dataset X and the predictive function f. For RHALE and d-PDP, the user can accelerate
the computation, providing a function f der that computes the derivatives with respect to
the input. Otherwise, finite differences (Scholbeck et al., 2022) will be used. Effector is
compatible with any underlying ML library; it only requires wrapping the trained model
into a Python Callable, as shown in Appendix E.

1 from effector import RHALE , RegionalRHALE

2 from effector.binning_methods import DynamicProgramming

3

4 # Input

5 # X = .., the dataset (np.array of shape =(N,D))

6 # f = .., predictive function (python callable)

7 # f_der = .., predictive function ’s jacobian (python callable)

8

9 # 1-step global and regional effect

10 RHALE(X, f, f_der).plot(feature =1)

11 RegionalRHALE(x, f, f_der).plot(feature=1, node_idx =0)

12

13 # 3-step global effect

14 rhale = RHALE(X, f, f_der)

15 rhale.fit(binning_method=DynamicProgramming(max_nof_bins =100))

16 rhale.plot(feature =1)

17

18 # 3-step regional effect

19 regional_rhale = RegionalRHALE(X, f, f_der)

20 regional_rhale.fit(heter_pcg_drop_thres =0.1)

21 rhale.plot(feature=1, node_idx =0)

Listing 1: Listing showing how to use Effector.

3

Design The domain of regional effects is rapidly evolving, so Effector is designed to
maximize extensibility. The library is structured around a set of abstractions that facilitate
the development of novel methods. For example, a user can easily experiment with a
novel ALE-based approach by subclassing the ALEBase class and redefining the .fit()

and .plot() methods. Or they can define a new RHALE-based heterogeneity index by
subclassing the RegionalRHALE class.

Comparison to existing frameworks Global effect methods, such as PDP and ALE,
are integrated into various explainability toolkits (Pedregosa et al., 2011; Klaise et al., 2021;
Baniecki et al., 2021). However, none of these toolkits implements all methods, and notably,
none includes their regional counterparts, as shown in Table 1. Only DALEX offers a feature
for grouping ICE plots using K-means, akin to subspace identification. As we can see, only
DALEX provides functionality for grouping ICE plots using K-means, something similar
to subspace detection. However, K-means clustering results in less interpretable subspaces
and, notably, DALEX lacks support for the other regional effect methods.

Table 1: Comparison between current feature effect libraries and Effector

(d-)PDP (RH)ALE SHAP-DP

Global Regional Global Regional Global Regional

InterpretML ✓ ✗ ✗ ✗ ✗ ✗

DALEX ✓ ∗ ✓ ✗ ✗ ✗

ALIBI ✓ ✗ ✓ ✗ ✗ ✗

PyALE ✗ ✗ ✓ ✗ ✗ ✗

ALEPython ✗ ✗ ✓ ✗ ✗ ✗

PDPbox ✓ ✗ ✗ ✗ ✗ ✗

Effector ✓ ✓ ✓ ✓ ✓ ✓

Broader Impact The principle of progressive disclosure of complexity ensures Effector’s
applicability in both research and industrial contexts. Users can easily get regional explana-
tions for black-box models trained on tabular data in a single-line. Regional methods that
exploit automatic differentiation, like RHALE, will be particularly useful for Deep Learn-
ing models on tabular data (Agarwal et al., 2021). Researchers can leverage Effector to
develop novel methods and compare them with the existing approaches. The library will
keep being updated to incorporate emerging regional effect methods.

3 Conclusion and Future Work

We introduced Effector, a Python library dedicated to regional explainability methods.
The library is accessible at PyPi. Effector ships with comprehensive documentation and
tutorials to familiarize the community with the realm of regional explainability methods,
https://xai-effector.github.io/ Immediate plans involve accommodating multiple features
of interest in the regional effect methods, as in GADGET (Herbinger et al., 2023) and
to encompass other types of regional explainability methods, such as methods based on
marginal effects (Scholbeck et al., 2022).

4

https://pypi.org/project/effector/
https://xai-effector.github.io/

Appendix A. Global Effect Methods at Effector

This section provides a brief mathematical overview of the global effect methods that are
implemented at Effector. For an in-depth understanding of the methods, we refer the
reader to the original papers (Friedman and Popescu, 2008; Goldstein et al., 2014; Apley
and Zhu, 2020; Gkolemis et al., 2023a; Lundberg and Lee, 2017; Herbinger et al., 2023,
2022).

Each global effect method consists of a definition fms (xs) and an approximation f̂ms (xs),
where m is the method’s name and xs is the feature of interest. The definition derives the
effect of the s-th feature on the output based on the data-generating distribution p(x) and
the analytical form of the predictive function f . The approximation, on the other hand,
estimates the effect based on the dataset instances D = {(xi, yi)}Ni=1 and the predictive
function f treated as an input-output black-box. In real-world scenarios, only the approxi-
mation is applicable, as the data-generating distribution p(x) and the analytical form of f
are unknown.

Furthermore, each method provides a way to quantify the heterogeneity of the local
effects, i.e., the deviation of the local effects from the average effect. Since there is variation
in how each method defines and visualizes the heterogeneity, it is difficult to provide unified
mathematical notation. However, for all methods, we define a heterogeneity index Ĥm

s ,
which quantifies the level of interactions between the s-th and the rest of the features and
is computed using the dataset instances. This index will be later used to find the regional
effects. If the method additionally provides a formal definition of the heterogeneity index
using the data-generating distribution, we denote it asHm

s . Finally, if a method also provides
a way to quantify the heterogeneity at each point along the s-th axis, apart from a global
index, we denote it as Hm

s (xs) and Ĥm
s (xs), respectively.

For all methods, Effector implements the approximation of the global effect and the
heterogeneity index for each method, which we summarize at Table 2.

Notation. Let X ∈ Rd be the d-dimensional feature space, Y the target space and f(·) :
X → Y the black-box function. We use index s ∈ {1, . . . , d} for the feature of interest
and /s = {1, . . . , d} − s for the rest. For convenience, we use (xs,xc) to denote the input
vector (x1, · · · , xs, · · · , xD), (Xs,Xc) instead of (X1, · · · , Xs, · · · , XD) for random variables
and Xs,Xc for the feature space and its complement, respectively. The training set D =
{(xi, yi)}Ni=1 is sampled i.i.d. from the distribution PX,Y .

A.1 ALE and RHALE

Accumulated Local Effects (ALE) was introduced by (Apley and Zhu, 2020). Subse-
quently, (Gkolemis et al., 2023a) introduced Robust and Heterogeneity-aware ALE (RHALE)
which extends ALE’s definition with a component that quantifies the heterogeneity. Fur-
thermore, RHALE introduced a novel approximation of both the global effect and the het-
erogeneity using an automated bin-splitting. ALE and RHALE can handle datasets with
correlated features well, as we will illustrate below. In contrast, (d-)PDP and SHAP-DP
have limitations in these cases as we will see in Sections A.2 and A.3.

5

Table 2: Global effect methods implemented by Effector

Method Equation Formula

f̂RHALE(xs) Eq. (4)
∑kxxs

k=1

zk − zk−1

|Sk|
∑

i:xi∈Sk

∂f

∂xs
(xis,x

i
c)

ĤRHALE
s Eq. (6)

∑Ks
k=1

zk − zk−1

|Sk|
∑

i:xi∈Sk

[
∂f

∂xs
(xis,x

i
c)− µ̂RHALEk

]2
f̂ALE(xs) Eq. (3)

∑kxs
k=1

1

|Sk|
∑

i:xi∈Sk

[
f(zk,x

i
c)− f(zk−1,x

i
c)
]

ĤALE
s Eq. (5)

∑K
k=1

1

|Sk|
∑

i:xi∈Sk

[
(f(zk,x

i
c)− f(zk−1,x

i
c))− µ̂ALEk

]2
f̂PDP(xs) Eq. (7)

1

N

∑N
i=1 f(xs,x

i
c)

ĤPDP
s Eq. (8)

1

T

∑T
t=1

1

N

∑N
i=1

[
f̂ICEi,centered(xs,t)− f̂PDPcentered(xs,t)

]2
f̂d−PDP(xs) Eq. (9)

1

N

∑N
i=1 f(xs,x

i
c)

Ĥd-PDP
s Eq. (10)

1

T

∑T
t=1

1

N

∑N
i=1

[
f̂ICEi,centered(xs,t)− f̂PDPcentered(xs,t)

]2
f̂SHAP−DP(xs) Eq. (13) κ(xs), κ(xs) is a univariate spline fit to {(xis, ϕ̂i

s)}Ni=1

ĤSHAP-DP
s Eq. (14) 1

N

∑N
i=1

[
ϕ̂i
s − fSHAP−DP(xis)

]2

ALE defines the global effect at xs as an accumulation of the derivative effects. The
derivative effect µ(xs) is the expected change on the output over the conditional distribution

xc|xs, i.e., µ(xs) = Exc|xs

[
∂f
∂xs

(xs,xc)
]
. ALE’s definition is:

fALE(xs) =

∫ xs

z=0
Exc|xs=z

[
∂f

∂xs
(z,xc)

]
∂z (1)

and is visualized with a 1D plot as shown in Figure 2 (Left). RHALE definition is identical
to ALE, i.e., fRHALE(xs) := fALE(xs). Additionally, RHALE quantifies the heterogeneity
HRHALE

s (xs) as the standard deviation of the derivative effects:

HRHALE
s (xs) = σxc|xs

[
∂f

∂xs
(xs,xc)

]
(2)

The heterogeneity is visualized as a shaded area around the derivative effect. Therefore,
RHALE’s definition proposes two separate plots; one for the average effect which is identical
to ALE (Figure 2 (Left)) and another for the derivative effect along with its associated
heterogeneity, i.e., µ(xs)±H(xs) (Figure 2 (Right)). The two plots are arranged one under

6

the other. The heterogeneity index is the aggregated heterogeneity over the s-th axis, i.e.,
HRHALE

s =
∫ xs

z=0H
RHALE(z)∂z. ALE’s approximation is:

f̂ALE(xs) =

kxs∑
k=1

1

|Sk|
∑

i:xi∈Sk

[
f(zk,x

i
c)− f(zk−1,x

i
c)
]

︸ ︷︷ ︸
µ̂ALE
k

(3)

where kxs the index of the bin such that zkx−1 ≤ xs < zkx , Sk is the set of the instances

lying at the k-th bin, i.e., Sk = {xi : zk−1 ̸= x
(i)
s < zk} and ∆x =

xs,max−xs,min

K . In ALE, the
user needs to specify the number K of equally-sized bins that are used to split the feature
axis. RHALE resolves that by approximating the global effect as:

f̂RHALE(xs) =

kxs∑
k=1

zk − zk−1

|Sk|
∑

i:xi∈Sk

∂f

∂xs
(xis,x

i
c)︸ ︷︷ ︸

µ̂RHALE
k

(4)

RHALE’s approximation differentiates from ALE approximation in two aspects. First, it
computes the derivative effects using automatic differentiation instead of finite differences
at the bin limits. This estimates the derivative effects more accurately and faster (Gkolemis
et al., 2022, 2023b). Second, it automatically partitions the s-th axis into a sequence of
Ks variable-size intervals, i.e., {Zk}Ks

k=1. Each interval covers a range from zk−1 to zk, and

defines the set Sk with the instances that lie inside, i.e., Sk = {x(i) : zk−1 ≤ x
(i)
s < zk}. The

automatic bin-splitting is performed by solving an optimization problem that minimizes
the heterogeneity of the derivative effect within each bin (Gkolemis et al., 2023a). The
approximations of the heterogeneity index is given by:

ĤALE
s =

K∑
k=1

1

|Sk|
∑

i:xi∈Sk

[
(f(zk,x

i
c)− f(zk−1,x

i
c))− µ̂ALEk

]2
(5)

ĤRHALE
s =

Ks∑
k=1

zk − zk−1

|Sk|
∑

i:xi∈Sk

[
∂f

∂xs
(xis,x

i
c)− µ̂RHALEk

]2
(6)

A.2 PDP, d-PDP, ICE, d-ICE

PDP (Friedman and Popescu, 2008) is probably the most widely used global effect method.
As a way to visualize the heterogeneity, (Goldstein et al., 2014) introduced ICE plots which
generate one plot per dataset instance and visualize them on top of the PDP, as shown
in Figure 5(Left). Moreover, (Goldstein et al., 2014) presented d-PDP and d-ICE, the
derivative counterparts of PDP and ICE, respectively. The d-PDP and d-ICE are used to
visualize the derivative effect of a feature, as shown in Figure 5(Right). Both PDP and
d-PDP, however, may produce misleading explanations when applied to correlated features,
as we discuss below.

7

PDP computes the average effect of a feature by averaging the predictions over the
entire dataset while holding the feature of interest constant. The PDP definition is given
by fPDP(xs) = Exc [f(xs,xc)] and the approximation by:

f̂PDP(xs) =
1

N

N∑
i=1

f(xs,x
i
c) (7)

The ICE plots are used on top of the PDP plot to visualize the heterogeneity of the instance-
level effects. One ICE plot is defined per dataset instance, holding all features constant
except of the feature of interest. The ICE plot of the i-th instance is given by f̂ICEi (xs) =
f(xs,xc

(i)).

The heterogeneity index is the average squared difference between the centered-ICE,

f̂ICEi,centered(xs) = f̂ICEi (xs) − Exs

[
f̂ICEi (xs)

]
, and the centered-PDP plots, f̂PDPcentered(xs) =

f̂PDP(xs) − Exs

[
f̂PDP(xs)

]
. The reason for centering the plots is analyzed in (Herbinger

et al., 2023). The heterogeneity index is computed by splitting the s-th axis into a sequence
of T points, i.e., {xs,t}Ti=1, where xs,t = xs,min + t ·∆x and ∆x =

xs,max−xs,min

T :

ĤPDP
s =

1

T

T∑
t=1

1

N

N∑
i=1

[
f̂ICEi,centered(xs,t)− f̂PDPcentered(xs,t)

]2
(8)

The d-PDP and d-ICE are the derivative counterparts to PDP and ICE. They calculate
the derivative effect of a feature by averaging predictions across the entire dataset while keep-

ing the feature of interest constant. The d-PDP is defined as fd−PDP(xs) = Exc

[
∂f
∂xs

(xs,xc)
]

and approximated by:

f̂d−PDP(xs) =
1

N

N∑
i=1

∂f

∂xs
(xs,xc

(i)) (9)

The d-ICE plots f̂d−ICE(xs) =
∂f
∂xs

(xs,xc
(i)) are used on top of the d-PDP plot to visualize

the heterogeneity of the instance-level derivative effects. The heterogeneity index of the
d-PDP is given by:

Ĥd−PDP
s =

1

T

T∑
t=1

1

N

N∑
i=1

[
f̂d−ICE
i (xs,t)− f̂d−PDP(xs,t)

]2
(10)

Note that the heterogeneity index for d-PDP does not require the centered plots, as the
derivative effects are centered by definition. For a detailed explanation about that, we refer
the reader to (Herbinger et al., 2023).

A.3 SHAP Dependence Plot

SHAP Dependence Plot (SHAP-DP) is a recent method introduced by (Lundberg and Lee,
2017). SHAP-DP builds upon SHAP values, a local explainability method used to measure
the contribution of the s-th feature of the i-th instance on the output, denoted as ϕi

s:

8

ϕi
s =

|Q|!(p− |Q| − 1)!

p!

∑
Q⊆{1,...,p}\{s}

(v(Q ∪ s)− v(Q)) (11)

At the core of Eq. (11) is the value of a coalition of Q features, given by v(Q). The value of a
coalition Q is the expected value of the output of the model if only the values of the features
in Q are known and the rest are considered unknown, i.e., v(Q) = EX/Q

[
f(xQ,X/Q)

]
. The

difference v(Q ∪ {s})− v(Q) is the contribution of the s-th feature to the coalition Q. The
SHAP value ϕi

s is the weighted average of the contributions over all possible coalitions Q,

with weight |Q|!(p−|Q|−1)!
p! . The SHAP-DP is a scatter plot with the feature values on the

x-axis and the SHAP values on the y-axis and i.e., {(xis, ϕi
s)}Ni=1, as shown in Figure 7. For

computing an average effect of the s-th feature, (Herbinger et al., 2023) fit a univariate
spline to the dataset {(xis, ϕi

s)}Ni=1, so the SHAP-DP definition is:

fSHAP−DP(xs) = κ(xs), κ(xs) is a univariate spline fit to {(xis, ϕi
s)}Ni=1 (12)

The number of coalitions grows exponentially with the number of features, therefore, the
SHAP values are approximated using a Monte Carlo method. We denote the approximation
of the SHAP values as ϕ̂i

s. For our approximation, we use the implementation provided by
the shap library. The shap library uses the exact SHAP values if the number of features
is less than 10, otherwise, it uses the permutation approximation, which is a Monte Carlo
sampling of coalitions. The SHAP-DP approximation is given by:

f̂SHAP−DP(xs) = κ(xs), κ(xs) is a univariate spline fit to {(xis, ϕ̂i
s)}Ni=1 (13)

The heterogeneity index is the mean squared difference between the SHAP values and the
SHAP-DP fit:

ĤSHAP−DP
s =

1

N

N∑
i=1

[
ϕ̂i
s − fSHAP−DP (xis)

]2
(14)

Appendix B. Regional Effect Methods

This section provides a brief overview of the regional effect methods of Effector. For a
more thorough analysis, we refer the reader to (Herbinger et al., 2023). Regional effect
methods yield for each individual feature s, a set of Ts non-overlapping regions {Rst}Ts

t=1

where Rst ∈ Xc. The number of non-overlapping regions Ts can be different for each feature,
the regions {Rst}Ts

t=1 are disjoint and their union covers the entire space, i.e., ∪Ts
t=1Rst = Xc.

Each region Rst is associated with a regional effect f̂st and a heterogeneity Ĥst, which is
computed using the dataset Dst that contains the instances of D that fall within Rst, i.e.,
Dst = {(xi, yi) : xi

c ∈ Rst}.

9

https://shap.readthedocs.io/en/latest/

The objective is to split Xc into regions inside of which the heterogeneity is minimized:

minimize
{Rst}Tst=1

Ls =

Ts∑
t=1

|Dst|
|D|

Hm
st

subject to
T⋃
t=1

Rst = Xc

Rst ∩Rsτ = ∅, ∀t ̸= τ

(15)

Hm
st is the heterogeneity of the s-th feature at region t, i.e., the heterogeneity computed

using the dataset Dst. For convenience, we denote as Hm
s0 the heterogeneity of the s-th

feature over the entire space Xc, i.e., H
m
s0 = Hm

s .The formula of Hm
st depends on the regional

effect method. Table 2 summarizes the regional effect methods implemented by Effector.
Effector solves the optimization problem (15) using Algorithm 1. The algorithm starts

with the entire space Xc and recursively splits it into two subspaces. To describe the process,
imagine the following example. For feature s = 2, the algorithm starts with {x1, x3} as
candidate split-features for the first level of the tree. For each candidate split-feature, the
algorithm determines the candidate split positions.

Since x1 is a continuous feature, the candidate splits positions p are a linearly spaced grid
of P points within the range of the feature, for example, [−1, 1], where P is a hyperparameter
of the algorithm. Each position splits into two subspaces, i.e., Rs1 = {(x1, x3) : x1 ≤ p}
and Rs2 = {(x1, x3) : x1 > p} and two datasets Ds1 = {(xi, yi) : xi1 ≤ p} and Ds2 =
{(xi, yi) : xi1 > p}. Each split relates to a heterogeneity index which is the weighted sum of

the heterogeneity of the respective subspaces, i.e.,
∑2

t=1
|Dst|
|D| H

m
st.

Since x3 is a categorical feature, the candidate splits positions p are the unique values
of the feature, for example, {1, 2, 3}. Each position splits into two subspaces, i.e., Rs1 =
{(x1, x3) : x3 = p} and Rs2 = {(x1, x3) : x3 ̸= p} and two datasets Ds1 = {(xi, yi) : xi3 = p}
and Ds2 = {(xi, yi) : xi3 ̸= p}. Each split relates to a heterogeneity index which is the

weighted sum of the heterogeneity of the respective subspaces, i.e.,
∑2

t=1
|Dst|
|D| H

m
st.

The algorithm then selects the split that minimizes the heterogeneity index, which is
assigned as the split of the first level of the tree, i.e. H1

s . Then it continues to the next level
of the tree, where it splits the subspaces of the previous level. Given the previous example,
the algorithm will split the subspaces Rs1 and Rs2 of the first level of the tree into two
subspaces each. If the weighted sum of the heterogeneity of the four subspaces reduces
the heterogeneity of the previous level over the threshold ϵ (Line 8 of Algorithm 1), the
algorithm will continue to the next level of the tree. If the algorithm reaches the maximum
depth of the tree, it stops and returns the subspaces {Rst}2

L

t=1. The maximum tree level L
is a hyperparameter of the algorithm, which is proposed to be set to L = 3 levels, i.e., a
maximum of T = 2L = 8 subspaces per feature.

Algorithm 1 is a general algorithm that can be used for any regional effect method; the
only thing that changes between the methods is the heterogeneity index Hm

st.

Appendix C. Synthetic Examples

In this section, we demonstrate the utilization of Effector through synthetic examples.
The synthetic examples, where both the data-generating distribution p(x) and the predictive

10

Algorithm 1: Detectsubspaces

Input : Heterogeneity function Hs, Maximum depth L

Output: subspaces {Rst}Ts
t=1, where Ts ∈ {0, 2, . . . , 2L}

1 Hs0 ; // Compute the level of interactions before any split

2 D = {(xi, yi)}Ni=1 ; // Initial dataset

3 Ts = 0 ; // Initialize the number of splits for feature s
4 for l = 1 to L do
5 if H l−1

s = 0 then
6 break ; // Stop if the heterogeneity is zero

7 end
/* Iterate over all features xc and candidate split positions p */

/* Find the optimal split with heterogeneity H l
s =

∑2l

t=1
|Dst|
|D| Hst */

/* Define the subspaces {Rst}2
l

t=1 and the datasets {Dst}2
l

t=1 */

8 if Hl
s

Hl−1
s

< ϵ then

9 break ; // Stop, if heterogeneity drop is small (< ϵ)
10 end

11 Ts = 2l ; // Update the number of splits for feature s

12 end
13 return {Rst|s ∈ {1, . . . , D} , t ∈ {1, . . . , Ts}}

function f are known, are suitable to understand the strengths and limitations of each global
and regional effect method.

Synthetic examples offer many advantages. First, they enable the computation of the
global and regional effects of each method based on their definition. Consequently, the
strengths and weaknesses are clear, unaffected by potential misconceptions introduced by
approximation errors. Second, it is feasible to compare different approximations against
a known ground truth. For example, we can objectively compare the ALE approximation
versus the RHALE approximation using the ALE definition as the ground truth. Finally,
comparing with a known-ground truth also serves as a sanity check for the implementations;
if the approximation is close to the definition, then the implementation is correct.

C.1 Global Effect: Comparative study of Effector’s methods

This example shows how to use Effector for generating global effect plots and assessing
their heterogeneity. Effector’s plots are derived from the approximation formula of each
global effect method. All plots are compared with their ground-truth, which is derived from
the definition of each method after applying analytical derivations.

C.1.1 Problem set-up

The data generating distribution is defined as follows: X1 ∼ p(x1) = 5
6U(x1;−0.5, 0) +

1
6U(x1; 0, 0.5), X2 ∼ p(x2) = N (x2;µ = 0, σ = 2) and x3 = x1 + ϵ, where ϵ is sampled

11

from N (0, σ = 0.1). Essentially, this indicates that X1 lies within the range [−0.5, 0.5]
with the 5

6 of the samples falling in the first half [−0.5, 0]. X2 is independent and normally
distributed around around zero (µ2 = 0, σ2 = 2), while X3 is highly correlated with X1.
The ‘black-box’ function is f(x) = sin(2πx1)(1x1<0 − 21x3<0) + x1x2 + x2.

C.1.2 ALE and RHALE

Definition on the synthetic example. In the synthetic example, the ALE and RHALE
average effect for feature x1 is given by:

fALE(x1) = fRHALE(x1) =

∫ xs

z=0
Ex2,x3|x1=z

[
∂f

∂x1
(z, x2, x3)

]
∂z (16)

=

∫ xs

z=0
Ex2Ex3|z [2π cos(2πz)(1z<0 − 21x3<0) + x2] ∂z (17)

≈
∫ xs

z=0
−2π cos(2πz)1z<0 (18)

≈ sin(2πx1)1x1<0 (19)

The result is shown in Figure 2(Left). Furthermore, RHALE visualizes the heterogeneity as
µ(x1)±HRHALE

1 (x1), where µ(x1) is the derivative effect and HRHALE
1 (x1) is the heterogeneity.

These are given by:

µ(x1) = Ex2,x3|x1

[
∂f

∂x1
(x1, x2, x3)

]
(20)

= −2π cos(2πx1)1x1<0 (21)

HRHALE
1 (x1) = σx2,x3|x1

[
∂f

∂x1
(x1, x2, x3)

]
(22)

= σx2,x3|x1
[2π cos(2πx1)(1x1<0 − 21x3<0) + x2] (23)

= σ2 = 2 (24)

The heterogeneity informs that the instance-level effects are deviating from the average
derivative-effect by ±2, as shown in Figure 2.

Approximation using Effector. Listing 2 shows how to use Effector to approximate
the ALE effect for feature x1 using K bins. The results are shown in Figure 3; at the
left figure we observe the ALE effect with 5 bins, and in the right figure, we observe the
ALE effect with 20 bins. At the top of the figures, we observe the global effect, and at the
bottom, the derivative effect along with the heterogeneity visualized with vertical red bars.
We should observe that both K = 5 and K = 20 bins lead to weak approximations of the
ALE effect. This is because ALE’s approximation is sensitive to the choice of K and in
specific cases, no fixed-size binning can provide a good approximation of the ALE effect.

12

Figure 2: Left: ALE and RHALE global effect for feature x1 based on their definitions.
Right: RHALE derivative effect µ(x1) and its heterogeneityHRHALE

1 (x1) visualized as µ(x1)±
HRHALE

1 (x1).

1 from effector.binning_methods import Fixed

2 from effector import ALE

3

4 # input

5 # x = .., the dataset (np.array of shape =(N,D))

6 # f = .., predictive function (python callable)

7

8 # ALE

9 ale = effector.ALE(data=x, model=f)

10 for k in [5, 20]:

11 binning_method = binning_methods.Fixed(nof_bins=K)

12 ale.fit(feat , binning_method=binning_method)

13 ale.plot(feature=0, heterogeneity=True , centering=True)

Listing 2: Listing with how to use Effector to approximate the ALE effect for the first
feature using K bins.

In Listing 3, we show how to use Effector to approximate the RHALE effect for
feature x1 using DynamicProgramming and Greedy optimization. As stated above, RHALE
automatically splits the s-th feature into variable-size bins. The automatic bin-splitting
is performed by solving an optimization problem that minimizes the heterogeneity of the
derivative effect within each bin. For an in-depth explanation of the optimization problem,
we refer the reader to (Gkolemis et al., 2023a). The optimization problem can be solved
either using DynamicProgramming, which ensures a globally optimal solution, or with a
Greedy approach, which is faster but less accurate. Effector provides both alternatives,
as shown in Listing 3. The outputs are shown in Figure 4. We observe that the RHALE
approximation using DynamicProgramming (left) is more accurate than the one using Greedy
(right), but both of them are more accurate than the fixed-size binning of ALE (Figure 3).

1 from effector.binning_methods import DynamicProgramming , Greedy

13

Figure 3: ALE effect for feature x1 using 5 (left) and 20 bins (right).

Figure 4: RHALE approximation using DynamicProgramming (left) and Greedy (right).

14

2 from effector import RHALE

3

4 # Input

5 # x = .., the dataset (np.array of shape =(N,D))

6 # f = .., predictive function (python callable)

7 # f_der = .., the model ’s derivative (python callable)

8

9 # RHALE

10 rhale = RHALE(data=x, model=f, model_jac=f_der)

11 binning = [

12 Greedy(init_nof_bins =100, min_points_per_bin =10),

13 DynamicProgramming(max_nof_bins =20, min_points_per_bin =10)

14]

15

16 for binning_method in binning:

17 rhale.fit(feat , binning_method=binning_method)

18 rhale.plot(feature=0, heterogeneity=True , centering=True)

Listing 3: Demonstrating how to use Effector to approximate the RHALE effect for x1
using Dynamic Programming and Greedy optimization.

C.1.3 PDP, d-PDP, ICE, d-ICE

Definition on the synthetic example: In the synthetic example, the PDP for feature
x1 is given by:

fPDP(x1) = Ex2,x3 [f(x1, x2, x3)] (25)

= Ex2Ex3 [sin(2πx1)(1x1<0 − 21x3<0) + x1x2 + x2] (26)

= sin(2πx1)1x1<0 + Ex3 [−2 sin(2πx1)1x3<0] + Ex2 [x1x2 + x2] (27)

= sin(2πx1)(1x1<0 − 2Ex3 [1x3<0)] (28)

= sin(2πx1)(1x1<0 − 2
5

6
) (29)

= sin(2πx1)(1x1<0 −
5

3
) (30)

and the ICE plot for the i-th instance is given by:

fICEi (x1) = sin(2πx1)(1x1<0 − 21xi
3<0) + x1x

i
2 (31)

The PDP-ICE is shown in Figure 5(Left). Additionally, the d-PDP for feature x1 is given
by:

fd−PDP(x1) = Ex2,x3

[
∂f

∂x1
(x1, x2, x3)

]
(32)

= Ex2Ex3 [2π cos(2πx1)(1x1<0 − 21x3<0) + x2] (33)

= 2π cos(2πx1)(1x1<0 − 2
5

6
) (34)

15

and the d-ICE plot for the i-th instance is given by:

fd−ICE
i (x1) = 2π cos(2πx1)(1x1<0 − 21xi

3<0) (35)

which is shown in Figure 5(Right). We observe that the PDP-based methods treat the
individual features as independent which leads to a non-zero effect for x1 when x1 > 0.
Given the knowledge of the data-generating distribution, where x3 ≈ x1, we can say that
this effect is misleading.

Figure 5: PDP-ICE (left) and d-PDP-ICE (right) definition on the synthetic example.

Approximation using Effector. Listing 4 shows how to use Effector to approximate
the PDP and d-PDP effect for x1. The outputs are shown in Figure 6. We observe that
the PDP-ICE (left) and d-PDP-ICE (right) approximations are very close to the respective
definitions (Figure 5).

1 from effector import PDP , dPDP

2

3 # Input

4 # x = .., the dataset (np.array of shape =(N,D))

5 # f = .., predictive function (python callable)

6

7 # PDP

8 PDP(data=x, model=f).plot(feature=0, centering=True ,

heterogeneity="ice")

9

10 # d-PDP

11 dPDP(data=x, model=f, nof_instances =100).plot(feature=0,

centering=False , heterogeneity="ice")

Listing 4: Listing showing how to use Effector to approximate the PDP and d-PDP effect
for x1.

16

Figure 6: PDP-ICE approximation (left) and d-PDP-ICE approximation (right) on the
synthetic example.

C.1.4 SHAP Dependence Plot

Definition on the synthetic example. Finding the SHAP-DP of the j-th feature of
the i-th instance requires the computation of the value of all coalitions.

v(∅) = Ex1,x2,x3 [sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2] (36)

= − 5

6π
+ 0 + 0 + 0 (37)

= − 5

6π
(38)

v({1}) = Ex2,x3 [sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2] (39)

= sin(2πx1)1x1<0 −
5

3
sin(2πx1) + 0 + 0 (40)

= sin(2πx1)(1x1<0 −
5

3
) (41)

v({2}) = Ex1,x3 [sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2] (42)

= − 5

6π
+ 0− 1

6
x2 + x2 (43)

= − 5

6π
+

5

6
x2 (44)

17

v({3}) = Ex1,x2 [sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2] (45)

= − 5

6π
+ 0 + 0 + 0 (46)

= − 5

6π
(47)

v({1, 2}) = Ex3 [sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2] (48)

= sin(2πx1)1x1<0 −
5

3
sin(2πx1) + x1x2 + x2 (49)

v({1, 3}) = Ex2 [sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2] (50)

= sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + 0 + 0 (51)

= sin(2πx1)(1x1<0 − 21x3<0) (52)

v({2, 3}) = Ex1 [sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2] (53)

= − 5

6π
+ 0− 1

6
x2 + x2 (54)

= − 5

6π
+

5

6
x2 (55)

v({1, 2, 3}) = sin(2πx1)1x1<0 − 2 sin(2πx1)1x3<0 + x1x2 + x2 (56)

The contribution of feature x1 when entering in any possible coalition is:

∆∅,1 = v({1})− v(∅) (57)

= sin(2πx1)(1x1<0 −
5

3
) +

5

6π
(58)

∆{2},1 = v({1, 2})− v({2}) (59)

= sin(2πx1)1x1<0 −
5

3
sin(2πx1) + x1x2 +

1

6
x2 +

5

6π
(60)

∆{3},1 = v({1, 3})− v({3}) (61)

= sin(2πx1)(1x1<0 − 21x3<0) +
5

6π
(62)

18

∆{2,3},1 = v({1, 2, 3})− v({2, 3}) (63)

= sin(2πx1)(1x1<0 − 21x3<0)) + x1x2 +
1

6
x2 +

5

6π
(64)

Therefore, the SHAP value of the first feature of a particular instance i is:

ϕi
1 =

1

3
∆{0},1 +

1

6
∆{2},1 +

1

6
∆{3},1 +

1

3
∆{2,3},1 (65)

= sin(2πx1)1x1<0 − sin(2πx1)1x3<0 −
5

6
sin(2πx1) +

1

2
x1x2 +

1

32
x2 +

5

6π
(66)

≈ −5

6
sin(2πx1) +

1

2
x1x2 +

1

32
x2 +

5

6π
(67)

and the SHAP-DP, fSHAP−DP(x1), is given by a one-dimensional spline fit to {xis, ϕ̂i
s}Ni=1 as

shown in Figure 7 (left).

Approximation using Effector. In Listing 5, we show how to use Effector to ap-
proximate the SHAP-DP for the first feature. In Figure 7, we observe that the SHAP-DP
approximation is very close to the definition. As was the case with the PDP-based plots,
SHAP-DP also treats the individual features as independent, leading to a non-zero effect
for x1 when x1 > 0.

1 from effector import SHAPDependence

2

3 # Input

4 # x = .., the dataset (np.array of shape =(N,D))

5 # f = .., predictive function (python callable)

6

7 # SHAP -DP

8 SHAPDependence(data=x, model=f).plot(feature=0, centering=True ,

heterogeneity="shap_values")

Listing 5: Listing showing how to use Effector to approximate the SHAP-DP for x1.

C.1.5 Conclusion

In this illustration, we showcase how Effector is utilized to generate global effect plots.
The example highlights the simplicity of Effector’s API, typically requiring just one or two
lines of code for plot generation. Additionally, the consistency of the API across various
methods facilitates users in effortlessly comparing the outputs of different methods. As
demonstrated, within the realm of global effect plots, there is no singular ground-truth
effect. Hence, users typically seek to compare the effects obtained from different methods.

We also show that under highly-correlated features, ALE-based methodologies emerge
as more reliable. In the provided example, only ALE-based techniques accurately depict
that the effect of x1 on the output diminishes to zero for x1 > 0. Conversely, other methods
depict a sinusoidal effect for x1 > 0 due to their implicit assumption of feature independence.

19

Figure 7: SHAP Dependence Plot definition (left) and approximation (right).

Additionally, we emphasize that within ALE-based frameworks, RHALE emerges as a faster
and more precise approximation of the ALE definition, leveraging automatic-differentiation
for speed and automatic bin-splitting for precision.

C.2 Regional Effect: Comparative study of Effector’s methods

This example shows how to use Effector for generating regional effect plots. Regional
effect plots are a powerful tool for visualizing the effect of a feature on the output of a
model across different regions of the feature space.

C.2.1 Problem set-up

The data generating distribution is Xi ∼ p(xi) = U(xi;−1, 1), for i = {1, 2, 3} and the
‘black-box’ function is f(x) = 3x1Ix3>0 − 3x1Ix3≤0 + x3. The terms 3x1Ix3>0 and 3x1Ix3≤0

are the ones that provoke heterogeneity in the effect of x1. It is immediate to see that if
splitting the feature space into two regions, one where x3 > 0 and another where x3 ≤ 0,
the heterogeneity in the effect of x1 becomes zero.

C.3 ALE and RHALE

Listing 6 shows how to use Effector to obtain regional effects using RHALE. For ob-
taining regional ALE effects, the only difference would be using RegionalALE instead of
RegionalRHALE. At line 18, we define that an additional split is only allowed if the het-
erogeneity drops over 60% (0.6). At line 20, we define that the number of candidate splits
for numerical features is 11. After fitting the model, we can visualize the partitioning of
the feature space at line 23 using the method .show partitioning(). The printed output
informs that the feature space is split into two regions, x3 ≤ 0 with 496 and x3 > 0 with
504 instances, respectively. The split provokes a heterogeneity drop of 100%, from 5.94 to
0.0. Finally, we can visualize the global RHALE effect at line 34 and the regional effects at
lines 37 and 38. The outputs are shown in Figure 8.

20

For features x2 and x3, the algorithm does not split in subspaces because the hetero-
geneity of the global effect is already zero. The outputs are shown in Figure 9.

1 from effector import RegionalRHALE

2 from effector.binning_methods import Fixed

3

4 # Input

5 # x = .., the dataset (np.array of shape =(N,D))

6 # f = .., predictive function (python callable)

7 # f_der = .., the model ’s derivative (python callable)

8

9 regional_rhale = effector.RegionalRHALE(

10 data=x,

11 model=f,

12 model_jac=f_der

13)

14

15 binning_method = Fixed(11, min_points_per_bin =0)

16 regional_rhale.fit(

17 features="all",

18 heter_pcg_drop_thres =0.6,

19 binning_method=binning_method ,

20 nof_candidate_splits_for_numerical =11

21)

22

23 regional_rhale.show_partitioning(features =0)

24 # Feature 0 - Full partition tree:

25 # Node id: 0, name: x1, heter: 5.94 || nof_instances: 1000 ||

weight: 1.00

26 # Node id: 1, name: x1 | x3 <= -0.0, heter: 0.00 ||

nof_instances: 496 || weight: 0.50

27 # Node id: 2, name: x1 | x3 > -0.0, heter: 0.00 ||

nof_instances: 504 || weight: 0.50

28 # --

29 # Feature 0 - Statistics per tree level:

30 # Level 0, heter: 5.94

31 # Level 1, heter: 0.00 || heter drop: 5.94 (100.00%)

32

33 # global effect

34 regional_rhale.plot(feature=0, node_idx=0, heterogeneity="std",

centering=True)

35

36 # regional effect

37 regional_rhale.plot(feature=0, node_idx=1, heterogeneity="std",

centering=True)

38 regional_rhale.plot(feature=0, node_idx=2, heterogeneity="std",

centering=True)

Listing 6: Listing showing how to use Effector for obtaning regional effects using RHALE.

21

Figure 8: Top: Global RHALE effect for feature x1. Bottom: Regional RHALE effect for
feature x1 in the regions x3 ≤ 0 (left) and x3 > 0 (right).

Figure 9: Global RHALE effect for feature x2 (left) and x3 (right).

22

C.4 PDP-ICE

Listing 6 shows how to use Effector to obtain regional effects using PDP-ICE. The process
is identical for obtaining regional effects with d-PDP and d-ICE, with the only difference
being that the method used would be RegionalDerivativePDP instead of RegionalPDP.
In line 11, we define that an additional split is only allowed if the heterogeneity drops over
30% (0.3). In line 12, we define that the number of candidate splits for numerical features
is 11. After fitting the model, we can visualize the partitioning of the feature space at line
15. The printed output informs that the feature space is split into two regions, x3 ≤ 0 with
496 and x3 > 0 with 504 instances, respectively. The split provokes a heterogeneity drop
of 83.59%, from 1.74 to 0.29. Finally, we can visualize the global PDP effect at line 36 and
the regional effects at lines 39 and 40. The outputs are shown in Figure 10.

It is interesting to notice that apart from x1 the PDP-ICE method finds subspaces for
x3. As shown in lines 25-32 of Listing 4, the algorithm finds that by splitting in x1 ≤ 0
and x1 > 0, the heterogeneity of the global effect of x3 drops from 1.76 to 0.86, a drop of
51.24%. The outputs are shown in Figure 11. This happens because due to PDP formula
there is an offset of ±6xi1 at x1 = 0. In the subspace x1 ≤ 0, the offset is −6xi1 and in the
subspace x1 > 0, the offset is 6xi1. For feature x2 and x3, the algorithm does not split in
subspaces.

1 from effector import RegionalPDP

2

3 # Input

4 # x = .., the dataset (np.array of shape =(N,D))

5 # f = .., predictive function (python callable)

6 # f_der = .., the model ’s derivative (python callable)

7

8 regional_pdp = effector.RegionalPDP(data=x, model=f)

9 regional_pdp.fit(

10 features="all",

11 heter_pcg_drop_thres =0.3,

12 nof_candidate_splits_for_numerical =11

13)

14

15 [regional_pdp.show_partitioning(features=i) for i in [0, 2]]

16 # Feature 0 - Full partition tree:

17 # Node id: 0, name: x1, heter: 1.74 || nof_instances: 1000 ||

weight: 1.00

18 # Node id: 1, name: x1 | x3 <= -0.0, heter: 0.28 ||

nof_instances: 496 || weight: 0.50

19 # Node id: 2, name: x1 | x3 > -0.0, heter: 0.29 ||

nof_instances: 504 || weight: 0.50

20 # --

21 # Feature 0 - Statistics per tree level:

22 # Level 0, heter: 1.74

23 # Level 1, heter: 0.29 || heter drop: 1.45 (83.59%)

24

25 # Feature 2 - Full partition tree:

26 # Node id: 0, name: x3, heter: 1.76 || nof_instances: 1000 ||

weight: 1.00

23

27 # Node id: 1, name: x3 | x1 <= -0.0, heter: 0.85 ||

nof_instances: 507 || weight: 0.51

28 # Node id: 2, name: x3 | x1 > -0.0, heter: 0.87 ||

nof_instances: 493 || weight: 0.49

29 # --

30 # Feature 2 - Statistics per tree level:

31 # Level 0, heter: 1.76

32 # Level 1, heter: 0.86 || heter drop: 0.90 (51.24%)

33

34 for i in [0, 1]:

35 # Global effect

36 regional_pdp.plot(feature=0, node_idx=0, heterogeneity="ice",

centering=True)

37

38 # regional effect

39 regional_pdp.plot(feature=0, node_idx=1, heterogeneity="ice",

centering=True)

40 regional_pdp.plot(feature=0, node_idx=2, heterogeneity="ice",

centering=True)

Listing 7: Listing showing how to use Effector for obtaning regional effects using PDP-
ICE.

Figure 10: Left: Global PDP effect for feature x1. Middle and Right: Regional PDP effect
for feature x1 in the regions x3 ≤ 0 (left) and x3 > 0

Figure 11: Left: Global PDP effect for feature x3. Middle and Right: Regional PDP effect
for feature x3 in the regions x1 ≤ 0 (left) and x1 > 0.

24

C.5 SHAP-DP

Listing 8 shows how to use Effector to obtain regional effects using RHALE. The process
is identical for obtaining regional ALE effects, with the only difference being that the
method used would be RegionalALE instead of RegionalRHALE. At line 18, we define that
an additional split is only allowed if the heterogeneity drops over 60% (0.6). In line 20, we
define that the number of candidate splits for numerical features is 11. After fitting the
model, we can visualize the partitioning of the feature space at line 22. The printed output
informs that the feature space is split into two regions, x3 ≤ 0 with 496 and x3 > 0 with
504 instances, respectively. The split provokes a heterogeneity drop of 100%, from 5.94 to
0.0. Finally, we can visualize the global ALE effect at line 24 and the regional effects at
lines 24 and 25. The outputs are shown in Figure 12.

For features x2 and x3, the algorithm does not split into subspaces. For x2 this happens
because the heterogeneity of the global effect is already zero. For x3 there is some hetero-
geneity in the global effect, but there is no split that can reduce it over 60%. The outputs
are shown in Figure 13.

1 from effector import RegionalRHALE

2 from effector.binning_methods import Fixed

3

4 # Input

5 # x = .., the dataset (np.array of shape =(N,D))

6 # f = .., predictive function (python callable)

7

8 regional_shap = effector.RegionalSHAP(data=x, model=f)

9

10 regional_shap.fit(

11 features="all",

12 heter_pcg_drop_thres =0.6,

13 nof_candidate_splits_for_numerical =11

14)

15

16 regional_shap.show_partitioning(features =0)

17 # Feature 0 - Full partition tree:

18 # Node id: 0, name: x1, heter: 0.80 || nof_instances: 100 ||

weight: 1.00

19 # Node id: 1, name: x1 | x3 <= -0.0, heter: 0.00 ||

nof_instances: 49 || weight: 0.49

20 # Node id: 2, name: x1 | x3 > -0.0, heter: 0.00 ||

nof_instances: 51 || weight: 0.51

21 # --

22 # Feature 0 - Statistics per tree level:

23 # Level 0, heter: 0.80

24 # Level 1, heter: 0.00 || heter drop: 0.80 (100.00%)

25

26 # global effect

27 regional_shap.plot(feature=0, node_idx=0,

heterogeneity="shap_values", centering=True)

28

29 # regional effect

25

30 regional_shap.plot(feature=0, node_idx=1,

heterogeneity="shap_values", centering=True)

31 regional_shap.plot(feature=0, node_idx=2,

heterogeneity="shap_values", centering=True)

Listing 8: Listing showing how to use Effector for obtaning regional effects using SHAP-
DP.

Figure 12: Left: Global SHAP-DP for feature x1. Middle and Right: Regional SHAP-DP
effect for feature x1 in the regions x3 ≤ 0 (left) and x3 > 0.

Figure 13: Global SHAP-DP for feature x2 (left) and x3 (right).

Appendix D. Real Example

In this section, we illustrate the use of Effector on a real-world dataset.

D.1 The Bike-Sharing dataset

The Bike-Sharing Dataset contains the hourly and daily count of rental bikes between
the years 2011 and 2012 in Capital bikeshare system with the corresponding weather and
seasonal information.

26

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

Preprocessing and Model fitting. The dataset contains 14 features with information
about the day-type, e.g., month, hour, which day of the week, whether it is working-day, and
the weather conditions, e.g., temperature, humidity, wind speed, etc. The target variable
is the number of bike rentals per hour. The dataset contains 17,379 instances.

We keep 11 features; Xseason (1: winter, 2: spring, 3: summer, 4: fall), Xyr (0: 2011, 1:
2012), Xmnth (1 to 12), Xhr (0 to 23), Xholiday (0: no, 1: yes), Xweekday (0 to 6), Xworkingday

(0: no, 1: yes), Xweathersit (1: clear, 2: mist, 3: light rain, 4: heavy rain), Xtemp (normalized
temperature), Xhum (normalized humidity), and Xwindspeed (normalized wind speed). The
target variable Ycnt is the number of bike rentals per hour, which ranges from 1 to 977, with
a mean of 189.5 and a standard deviation of 181.4.

We fit a fully connected neural network with 3 hidden layers of 1024, 512, and 256
neurons, respectively, using the TensorFlow library. We use the Mean Squared Error as the
loss function and the Adam optimizer with a learning rate of 0.001. We train the model for
20 epochs with a batch size of 512.

Global effect plots. In Figure 15, we illustrate the PDP-ICE and Figure 14 the RHALE
effect for all features. The plots reveal a high degree of concordance between the PDP and
RHALE explanations across all features. Some minor differences are the following. Xyear

exhibits a more pronounced positive effect in RHALE compared to PDP when transitioning
from 2011 to 2012. Conversely, for Xholiday, the RHALE effect appears more negative than
in PDP when shifting from a non-holiday to a holiday. Finally, for Xworkingday = 1, the
effect appears more positive in RHALE than in PDP.

Of particular interest is the observation that among all features, the hour of the day
(Xhr) exerts by far the most significant impact on bike rental numbers. The PDP and
RHALE effect of Xhr shows two peaks, occurring at 8:00 and 17:00, respectively. This pat-
tern aligns with the typical usage of bikes for commuting to and from work. Subsequently,
we delve deeper into the analysis of Xhr utilizing regional effect plots.

Regional effect plots. We further analyze the effect of the hour of the day (Xhr) on bike
rentals using regional effect plots. In Figure 17, we illustrate the PDP-ICE effect for Xhr on
non-working days and working days. The plots reveal a significant difference in the effect
of Xhr on bike rentals between non-working and working days. On non-working days, the
effect of Xhr on bike rentals peaks at 14:00, while on working days, the effect peaks at 8:00
and 17:00. This pattern aligns with the typical usage of bikes for leisure on non-working
days and commuting to and from work on working days.

Appendix E. Integration with common Machine Learning libraries

Effector is designed to be easily integrated with common machine learning libraries such
as scikit-learn, TensorFlow and PyTorch. The user only needs to provide a predictive
function and its derivative, if available, to use Effector with a model trained using these
libraries.

In this section, we show how to use Effector with a model trained using scikit-learn

(Listing 9), TensorFlow (Listing 10), and PyTorch (Listing 11). In all cases, we train a
Fully Connected Neural Network (DNN) with two hidden layers of 10 neurons each. We,
then, use RegionalRHALE to obtain regional effects. Note that scikit-learn does not

27

https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

Figure 14: RHALE effect for all the features.

28

Figure 15: PDP-ICE effect for all the features.

29

Figure 16: Top: Global RHALE effect for the temperature. Bottom: Regional RHALE
effect for the temperature on non-working days (left) and working days (right).

Figure 17: Top: Global PDP effect for the temperature. Bottom: Regional PDP effect for
the temperature on non-working days (left) and working days (right).

provide auto-differentiation, so we only use the predictive function. On the other hand,
TensorFlow and PyTorch provide auto-differentiation, so we use the predictive function
and its derivative.

1 from sklearn.neural_network import MLPRegressor

2 from effector import RegionalRHALE

3

4 model = MLPRegressor(

5 solver=’adam’,

6 learning_rate=’constant ’,

7 hidden_layer_sizes =(10, 10),

8 learning_rate_init =0.01 ,

9 max_iter =100

10)

11

12 model.fit(X, y)

13

14 def predict(X):

15 return model.predict(X)

16

17 # scikit -learn does not provide auto -differentiation.

18 RegionalRHALE(data=X, model=predict).plot(feature=0, node_idx =0)

Listing 9: Integration of Effector with scikit-learn.

30

1 import tensorflow as tf

2

3 # define model

4 model = tf.keras.Sequential ([

5 tf.keras.layers.Dense(10, activation=’relu’),

6 tf.keras.layers.Dense (1)

7])

8

9 # train model

10 model.compile(optimizer=’adam’, loss=’mse’)

11 model.fit(X, y, epochs =10)

12

13 def predict(X: np.ndarray) -> np.ndarray:

14 return model.predict(X)

15

16 def jaobian(X: np.ndarray) -> np.ndarray:

17 X = tf.convert_to_tensor(X, dtype=tf.float32)

18 with tf.GradientTape () as tape:

19 tape.watch(X)

20 y = model(X)

21 return tape.gradient(y, X).numpy()

22

23 RegionalRHALE(X, predict , jacobian).plot(feature=0, node_idx =0)

Listing 10: Integration of Effector with Tensorflow.

1 from torch import nn , optim

2

3 class Net(nn.Module):

4 def __init__(self):

5 super(Net , self).__init__ ()

6 self.fc1 = nn.Linear(D, 10)

7 self.fc2 = nn.Linear (10, 1)

8

9 def forward(self , x):

10 x = self.fc1(x)

11 x = self.fc2(x)

12 return x

13

14 model = Net()

15

16 # train model

17 optimizer = optim.Adam(model.parameters (), lr =0.01)

18 criterion = nn.MSELoss ()

19 for epoch in range (10):

20 optimizer.zero_grad ()

21 y_pred = model(X)

22 loss = criterion(y_pred , y)

23 loss.backward ()

24 optimizer.step()

25

31

26 def predict(X):

27 return model(torch.tensor(X,

dtype=torch.float32)).detach ().numpy ()

28

29 def jacobian(X):

30 X = torch.tensor(X, dtype=torch.float32)

31 X.requires_grad = True

32 y = model(X)

33 return torch.autograd.grad(y, X)[0]. numpy()

34

35 RegionalRHALE(X, predict , jacobian).plot(feature=0, node_idx =0)

Listing 11: Integration of Effector with PyTorch.

References

R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, and G. Hinton.
Neural Additive Models: Interpretable Machine Learning with Neural Nets, Oct. 2021.
URL http://arxiv.org/abs/2004.13912. arXiv:2004.13912 [cs, stat].

D. W. Apley and J. Zhu. Visualizing the effects of predictor variables in black box su-
pervised learning models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 82(4):1059–1086, 2020. Publisher: Wiley Online Library.

H. Baniecki, W. Kretowicz, P. Piatyszek, J. Wísniewski, and P. Biecek. dalex: Responsible
Machine Learning with Interactive Explainability and Fairness in Python. Journal of
Machine Learning Research, 22(214):1–7, 2021. URL http://jmlr.org/papers/v22/

20-1473.html.

M. Britton. Vine: Visualizing statistical interactions in black box models. arXiv preprint
arXiv:1904.00561, 2019.

H. Fanaee-T and J. Gama. Event labeling combining ensemble detectors and background
knowledge. Progress in Artificial Intelligence, 2:113–127, 2014.

T. Freiesleben, G. König, C. Molnar, and A. Tejero-Cantero. Scientific Inference With Inter-
pretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena.
URL http://arxiv.org/abs/2206.05487.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The annals of
applied statistics, pages 916–954, 2008. Publisher: JSTOR.

V. Gkolemis, T. Dalamagas, and C. Diou. Dale: Differential accumulated local effects for
efficient and accurate global explanations. In Asian Conference on Machine Learning
(ACML), Oct. 2022.

32

http://arxiv.org/abs/2004.13912
http://jmlr.org/papers/v22/20-1473.html
http://jmlr.org/papers/v22/20-1473.html
http://arxiv.org/abs/2206.05487

V. Gkolemis, T. Dalamagas, E. Ntoutsi, and C. Diou. Rhale: Robust and heterogeneity-
aware accumulated local effects. In ECAI 2023, pages 859–866. IOS Press, 2023a.

V. Gkolemis, A. Tzerefos, T. Dalamagas, E. Ntoutsi, and C. Diou. Regionally additive
models: Explainable-by-design models minimizing feature interactions. arXiv preprint
arXiv:2309.12215, 2023b.

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking Inside the Black Box: Visual-
izing Statistical Learning with Plots of Individual Conditional Expectation, Mar. 2014.
URL http://arxiv.org/abs/1309.6392. arXiv:1309.6392 [stat].

J. Herbinger, B. Bischl, and G. Casalicchio. REPID: Regional Effect Plots with im-
plicit Interaction Detection, Feb. 2022. URL http://arxiv.org/abs/2202.07254.
arXiv:2202.07254 [cs, stat].

J. Herbinger, B. Bischl, and G. Casalicchio. Decomposing global feature effects based on
feature interactions. arXiv preprint arXiv:2306.00541, 2023.

L. Hu, J. Chen, V. N. Nair, and A. Sudjianto. Surrogate locally-interpretable models with
supervised machine learning algorithms. arXiv preprint arXiv:2007.14528, 2020.

J. Klaise, A. V. Looveren, G. Vacanti, and A. Coca. Alibi Explain: Algorithms for Ex-
plaining Machine Learning Models. Journal of Machine Learning Research, 22(181):1–7,
2021. URL http://jmlr.org/papers/v22/21-0017.html.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. Ad-
vances in neural information processing systems, 30, 2017.

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias
and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.
Publisher: ACM New York, NY, USA.

C. Molnar, G. König, B. Bischl, and G. Casalicchio. Model-agnostic feature importance
and effects with dependent features: a conditional subgroup approach. Data Mining and
Knowledge Discovery, pages 1–39, 2023.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bischl, and C. Heumann. Marginal effects
for non-linear prediction functions. arXiv preprint arXiv:2201.08837, 2022.

K. Sokol and P. Flach. Explainability fact sheets: A framework for systematic assessment of
explainable approaches. In Proceedings of the 2020 conference on fairness, accountability,
and transparency, pages 56–67, 2020.

33

http://arxiv.org/abs/1309.6392
http://arxiv.org/abs/2202.07254
http://jmlr.org/papers/v22/21-0017.html

	Introduction
	Effector - A python package for global and regional feature effects
	Conclusion and Future Work
	Global Effect Methods at Effector
	ALE and RHALE
	PDP, d-PDP, ICE, d-ICE
	SHAP Dependence Plot

	Regional Effect Methods
	Synthetic Examples
	Global Effect: Comparative study of Effector's methods
	Problem set-up
	ALE and RHALE
	PDP, d-PDP, ICE, d-ICE
	SHAP Dependence Plot
	Conclusion

	Regional Effect: Comparative study of Effector's methods
	Problem set-up

	ALE and RHALE
	PDP-ICE
	SHAP-DP

	Real Example
	The Bike-Sharing dataset

	Integration with common Machine Learning libraries

