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ABSTRACT

With the necessity of lifelong-learnable machines over continuously changing
real-world problems in practice, there has been rapid progress in continual learn-
ing these days. However, most recent works on continual learning focuses on
alleviating catastrophic forgetting of a model trained over a sequence of vision
tasks, considering only the performance on the tasks themselves rather than the
representation transferability. In this paper, we tackle a novel problem of Continual
Pre-training, which aims to increment the generalization of model representations,
encouraging positive transfer for future problems. An initial empirical study shows
a rather surprising finding that the transfer quality of the pre-trained model rep-
resentation with both supervised and unsupervised task sequences does not show
noticeable performance degradation even with full-finetuning. Furthermore, we
propose a simple yet efficient Continual Pre-training method with GLobal Attention
Discretization (GLAD) which introduces a new constraint to increment the global
transferability of the backbone while projecting model weights to adapt to target
problems via additional weight vectors. Our continual pre-training method breaks
the barriers between pre-training and fine-tuning steps and leads to an integrated
design that combines continual representation learning with continual learning of
the task-specific learners.

1 INTRODUCTION

Unsupervised Representation Learning (URL) (Radford et al., 2015; Gidaris et al., 2018; Grill et al.,
2020; Xie et al., 2021) is a pertinent branch of machine learning where a model exploits data in a
self-supervised manner without human-generated signals to extract the generic representations. Yet,
the standard scenario resorts to an IID (Independent and Identically Distributed) dataset, consisting
of the complete unlabeled instances before starting the model train. So far as the world is incomplete,
the deep learning models in real-world need to update continuously, reflecting on ever-changing
environments throughout a lifetime.

It carries the lifelong learnability of the representation model and aims to satisfy the community’s
thirst to achieve long-term preservation of learned knowledge from a sequence of unlabeled tasks.
As motivated by the continual learning (CL) field (Thrun, 1995; Silver & Mercer, 2002; Kumar &
Daume III, 2012; Li & Hoiem, 2016), Unsupervised Continual Learning (UCL) (Rao et al., 2019;
Madaan et al., 2022; Fini et al., 2022), where continual learner trains on a sequence of unsupervised
tasks, has recently been explored to address the limitations of unsupervised representation learning
and provide comprehensive analyses and potential for unsupervised continual learning regarding
representation quality and forgetting.

However, the recently proposed UCL framework and its interpretations remain clear limitations from
the point of view of model generalization. Though maximizing the transferability of the learned
representations on target problems is essential for general-purpose ed models, prior works confined
the validations and analyses of UCL to linear evaluation on fixed representation model backbones.
It is suitable for measuring direct differences in model drift (i.e., catastrophic forgetting) during a
sequential pre-training, yet, it cannot disclose the effect of knowledge transfer and adaptation of the
model to the unseen target problems.

Beyond limited understandings of UCL from prior works, we provide comprehensive analyses on
the transferability of continual (representation) learning models to the in- and out-of-distribution
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(a) Illustration of continual training schemes (b) Generalization of SCL/UCL

Figure 1: (a) Continual Pre-training is concerned with maximizing model generalization for full-finetuning
on future tasks. It performs pre-training on sequential tasks regardless of label supervision, while UCL
framework prevents the model from updating backbone weights at evaluation to measure representational drift
when it proceeds to the next task. (b) Continual pre-training increments model generalization. Sequential
pre-training on more tasks further increases fine-tuning performance on the unseen task (T9).

tasks using high-resolution visual images for searching the incremental model generalization, which
is one of the foremost desires in representation learning area. We conduct experiments utilizing
three different sequential training frameworks, illustrated in Figure 1 (a). Interestingly, when the
model trains on a sequence of earlier nine tasks from ImageNet-split containing ten tasks in total,
both supervised and unsupervised continual learning frameworks gain steady increases in their
transferability to unseen tasks (T9), nullifying catastrophic forgetting (Please see Figure 1 (b)).

We explain these phenomena because the transferability hinges upon rich global features in pre-
trained models (Xie et al., 2022a; Wei et al., 2022), while the model mostly loses local features
during CL, particularly severe when they train in a supervised/contrastive manner. Therefore, we
propose a new UCL framework based on Masked Image Modeling (Xie et al., 2022b; He et al.,
2022) that outperforms existing supervised/unsupervised CL frameworks in the model generalization
to effectively increment global representation. Lastly, leveraging our motivations, we suggest a
new method for continual pre-training encouraging rich global features during supervised fine-
tuning, named GLobal Attention Discretization (GLAD), We believe our observations and proposed
approach lead to removing the barriers between the standard pretraining-finetuning scheme and
continual learning towards incremental model generalization via never-ending fine-tuning.

We succinctly summarize the main contributions of the paper threefold:

• We unveil the behavior of representational transferability and forgetting of global and local
features under multiple supervised/unsupervised continual learning frameworks at scale,
with Vision Transformer backbones.

• We suggest a new learning/evaluation paradigm of the popular pretraining-finetuning scheme
amalgamating to continual learning that aims to continuously increase the generalization of
the pre-training backbone during the endless sequential fine-tuning phases.

• We further suggest a simple yet efficient remedy to increment global feature expressiveness
throughout continual pre-training, dubbed GLAD, which enables the model rapidly adapts
to the target problem while preserving high transfer affinity to unseen future tasks.

2 RELATED WORK

Continual Learning SI (Zenke et al., 2017) introduces an additional surrogate loss that reduces the
weight shift during continual learning by maintaining the training trajectory according to the weight
importance of previous tasks. DEN (Yoon et al., 2018) adaptively controls the network capacity by
adding/pruning parameters when new tasks arrive. DER (Buzzega et al., 2020) stores a few training
instances of previous tasks as well as their predicted logits and minimize the similarity to produce
similar logit predictions on past tasks. BiC (Wu et al., 2019) adds a new layer at the top of the
backbone to correct classification bias on new tasks. Similarly, WA (Zhao et al., 2020) corrects
the prediction bias by rescaling the FC layer with averaged weights normalization on past tasks.
DyToX (Douillard et al., 2022) adopts ViT and performs ensembled prediction with task-specific

2



Under review as a conference paper at ICLR 2023

classifiers leveraging additional task-specific tokens. However, dominant research resorts to the
sophisticated human annotation of inputs during training a sequence of tasks.

CURL (Rao et al., 2019) learns unsupervised representation on task sequences with a generative model
adopting task-specific inference. However, the proposed method is validated for only MNIST-scale
datasets due to their limited scalability by design. Madaan et al. (2022) suggest a new unsupervised
continual learning framework in a contrastive manner using Siamese structures. They demonstrate
the scalability of the proposed framework through comprehensive analyses of learned representations.
CaSSLe (Fini et al., 2022) utilizes a similar contrastive self-supervised framework for unsuper-
vised continual learning, yet provides further extensive validations including diverse self-supervised
learning backbones over ImageNet-100.

Self-supervised Learning Simsiam (Chen et al., 2020a) maximizes the similarity of input pre-
diction upon two different augmentations using the Siamese network, learning input-invariant self-
supervision. BarlowTwins (Zbontar et al., 2021) aims to remove cross-correlation across different
feature vector embeddings from Siamese networks. DINO (Caron et al., 2021) distills teacher model
predictions to the student by minimizing cross-entropy loss between their predictions, where the
teacher model is updated through an exponential moving average from the student model. Unlike
contrastive learning-based directions, Masked Image Modeling (MIM) has recently been developed
inspired by masked language models for natural language understanding. SimMIM (Xie et al., 2022b)
and MAE (He et al., 2022) adopt an encoder-decoder structure that zeroes out random spatial patches
in each patchfied image and learns representations by predicting pixel values in masked patches.
MSN (Assran et al., 2022) combines Siamese networks with masked modeling that maximize the
prediction similarity between patchfied masked inputs and the augmented target views.

3 RECAP: PRETRAINING-FINETUNING AND CONTINUAL LEARNING

3.1 PRETRAINING-FINETUNING SCHEME IN REPRESENTATION LEARNING

Given a neural network fw parameterized by weights w, recent works have addressed the broad
machine learning problems described to Dtarget by optimizing learnable weights with respect to
complex objective functions. Beyond statistical initialization of network weights (Glorot & Bengio,
2010; He et al., 2015), pre-training, where leveraging learned weights from scaled benchmark datasets
(e.g., ImageNet (Deng et al., 2009)) as the initialization of w, has been widely adopted to promote
a rapid and stable convergence curve during training. Self-supervised learning (Chen et al., 2020a;
He et al., 2020; Caron et al., 2020; 2021; Bardes et al., 2021; Xie et al., 2022a) has recently become
prevalent for pre-training, demonstrating superior generalization performance compared to supervised
counterparts by capturing task-agnostic input features. Let h and g be an encoder and a decoder
parameterized by θ and ϕ, respectively, the standard objective function is to minimize self-supervised
loss given input data d without supervision as follows:

θ∗, ϕ∗ = argmin
θ,ϕ

ℓ (gϕ ◦ hθ (d)) , (1)

where ◦ indicates function composition. The loss function is often designed in several formulations
based on similarity, identity correlation, and contrastive loss. After the pre-training phase, the encoder
transfers learned features to backbone neural networks for fine-tuning, w ← θ∗.

3.2 SUPERVISED AND UNSUPERVISED CONTINUAL LEARNING

Supervised Continual Learning (SCL) (Mallya & Lazebnik, 2018; Riemer et al., 2019; Aljundi
et al., 2019; Chaudhry et al., 2019; 2020; Chrysakis & Moens, 2020; Titsias et al., 2020; Shen
et al., 2020; Douillard et al., 2022; Yoon et al., 2020; 2022) is about achieving forward positive
transfer on unlimited sequential future tasks while maintaining proficiency on previous tasks. Let
T = {T1, ..., TT } be a sequence of T tasks, where the dataset Dt for the t-th task consists of nt

training instances Xt ∈ Rnt×C×H×W and corresponding labels Yt ∈ Rnt , where C,H, and W
denotes a channel, height, and width of images, respectively. A continual learner fw, parameterized
by a set of weights w, aims to predict classes by minimizing the following optimization problem:
minimizew L (f (X1:T ;w) ,Y1:T ), where L is a cross-entropy loss function. Yet, we assume that
fw can access each task in a specific timestep that loses the authorization to revisit the data instances
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of previous tasks when the next task arrives. That is, the model solves the following non-stationary
problem at task t throughout continuous task training:

minimize
w

L (f (Xt;w,D1:t−1) ,Yt) . (2)

Obtained models directly evaluate the performance of each task, categorizing task- and class-
incremental learning setups according to the accessibility to task oracle during inference.

For Unsupervised Continual Learning (UCL), the t-th task consists of training instances Xt without
any human-annotated labels and is formulated in representation learning frameworks on a sequence
of unlabeled tasks, often referred to as continual self-supervised learning. A representation learner
fw aims to achieve the best solution that learns the informative representation from entire datasets
by minimizing the following optimization problem: minimizew L (f (X1:T ;w)), where L is an
arbitrary loss function for representation learning (e.g., self-supervised losses (Chen et al., 2020b;
Grill et al., 2020; Zbontar et al., 2021)). Similar to Section 3.2, at each timestep t, the model resorts
to the accessible dataset Dt to solve the non-stationary problem as follows:

w∗ = argmin
w

L (f (Xt;w,X1:t−1)) ≈ argmin
w

L (f (X1:t;w)) . (3)

Since a direct comparison of the quality of representation models is intractable, recent representation
learning literature validates obtained representation models by probing generic transferability on
multiple downstream tasks. In a similar vein, prior UCL works (Madaan et al., 2022; Fini et al., 2022)
adopt supervised prediction tools like the KNN classifier and linear evaluation while keeping the
learned backbone fixed. However, we argue that such evaluation paradigms cannot appropriately
measure the transferability of representation on unseen out-of-distribution problems.

4 CONTINUAL PRE-TRAINING FOR INCREMENTAL MODEL GENERALIZATION

4.1 FORGETTING AND GENERALIZATION IN CONTINUAL PRE-TRAINING

Continual learning literature struggles to minimize catastrophic forgetting as a model continuously
trains on unseen tasks over time. Prior works have demonstrated that a model with a standard CL
setting suffers from forgetting due to loss of local features and attention to past tasks. But, we argue
that they still lack understanding of the effect on the model generalization, and a model preserving the
localized representation on pretraining tasks may not be beneficial for fine-tuning. I throw a question
mark at this point:

”So, is the model generalization getting worse as it goes through training sequential tasks?”

Surprisingly, the answer is NO. We found that the generalization is consistently getting increased. To
validate the model generalization during task sequential training, we formally define a scenario of
continual pre-training, a general-purpose integrated learning framework in which a model adapts to
an unlimited number of sequential tasks, encouraging incremental forward knowledge transfer.

Continual Pre-training (CP) is a learning paradigm that a model pre-trained sequential source tasks
solves the target task Ttarget problem in a supervised manner. Note that fine-tuned model on Ttarget
is also used for fine-tuning future tasks. Given the dataset of target task Dtarget = {X ,Y} and a
classifier δu parameterized by u, we formulate the objective of continual pre-training as follows:

w∗,u∗ = arg min
w(t),u

ℓ
(
f
(
X ;w(t),u

)
,Y
)
, where w(t+1) = w∗. (4)

Each fine-tuning step independently introduces its own classifier. The formulation is aligned with the
continual learning problem described in Section 3.2, but the objective is different. While continual
learning focuses on preserving local attention on past tasks to increment fine-grained problem-solving
skills throughout training tasks sequentially, continual pre-training is about never-ending model
generalization to achieve a better adaptation to the out-of-distribution task in the future.

However, the degree of effectiveness varies on the framework, as described in Figure 1 (b). As
Xie et al. (2022a) discussed, both supervised (Sup) and contrastive self-supervised (SimSiam from
Madaan et al. (2022)) frameworks train local attention at higher layers in neural networks, which is
unsuitable for our motivation. To build a new UCL framework for a better generalizable representation
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Figure 2: Illustration of the proposed GLobal Attention Discretization (GLAD) for Continual Pre-training.
Our GLAD introduces a new Multi-head Self-attention operation named GLAD-MSA with a parametric adaptor.
The pre-trained model with adaptors fine-tunes given problems with a constraint which encourages divergence of
attention distance in each layer, leading to incremental positive transfer of backbone parameters for future tasks.

model, we focus on Masked Image modeling (MIM) (Pathak et al., 2016; He et al., 2022) that self-
trains input representation by minimizing regression loss to predict RGB pixel values in randomly
zeroed patches in patchfied input images. MIM captures global attention across all layers, allowing
better generalization to unseen tasks at fine-tuning. Our proposed UCL framework (SimMIM)
obtains superior model generalization ability over other supervised and unsupervised counterparts,
demonstrating our motivation about the relationship between transferability and global attention.

4.2 CONTINUAL SELF-SUPERVISED LEARNING WITH MASKED IMAGE MODELING

We formulate a representational learner fw, composed of a neural encoder hθ and a decoder gϕ. We
build backbones using Vision Transformer variants (Dosovitskiy et al., 2020; Liu et al., 2021) due
to their powerful generality and remarkable performance on high-resolution visual tasks. They are
flexible to transfer the obtained representations to downstream tasks requiring various input image
sizes in demands when existing UCL frameworks (Madaan et al., 2022; Rao et al., 2019) allow
the fixed image size for representation learning and fine-tuning since the architectures are basically
composed of multi-layer perceptrons and convolutional neural networks. At training t-th task with
a training instance xt ∈ RC×H×W ∈ Xt, a model segments xt into smaller image patches where
the width and height are s < H,W , and randomly zeros a fraction of image patches out with a
fixed ratio τ . An encoder tokenizes masked patches to the embedding space and fed into multiple
self-attention blocks to capture latent representation features. A decoder reconstructs encoded features
to approximate the input image. The objective is to minimize the following loss function for continual
representation learning (∥ · ∥µ denotes any norm, often µ ∈ {1, 2} is used):

ℓ (xt;w) = ∥f(m ∗s xt;w)− xt∥µ = ∥g (h (m ∗s xt;θ) ;ϕ)− xt∥µ,

where m = {0, 1}⌊
H
s ⌋·⌊W

s ⌋ ∼ B

(⌊
H

s

⌋
·
⌊
W

s

⌋
, ρ

)
.

(5)

With patch size s, ∗s denotes a patch-wise multiplication operation between a training instance x
and a generated mask vector m drawn by the binary distribution B with sparsity ratio ρ. B(i, ρ) is
a i independent binary sampling with a ratio ρ to pick 1. The model updates a set of weights that
predicts masked regions of input images, conditioning other available areas. We simply adopt ℓ1
regularization to minimize the distance between predicted patches and the targets, followed by earlier
reconstruction-based works (Xie et al., 2022b; He et al., 2022), and after completing a sequential
training, the obtained encoder hθ can be utilized for many different downstream tasks. And we
find that our proposed framework outperforms supervised and contrastive benchmarks in model
transferability during continual pre-training, also described in Figure 1 (b).

4.3 CONTINUAL PRE-TRAINING VIA GLOBAL ATTENTION DISCRETIZATION

Motivated by our findings in Section 4.1 and Section 4.2, we propose a new method for continual
pre-training, named Global Attention Discretization (GLAD). Our proposed method promotes diverse
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attention distance to preserve transferable attention for future problems while minimizing current task
loss. We first build a backbone with GLAD-MSA illustrated in Figure 2, a multi-head self-attention
operation with adaptor vector v ∈ Rdout , where dout is an output dimension of MSA operation. We
project the MSA features by multiplying a diagonal form of an adaptor diag(v) to maintain flexibility
to address the current target task while constraining the multi-head attention to preserve locality
inductive bias. Let al,i be attention passed over adaptor operation (dark dashed arrow) from i-th
head at layer l, the objective function of our GLAD is as follows:

argmin
w,v

N∑
n=1

ℓ
(
f
(
x(n);w,v

)
,y(n)

)
s.t.,

L∑
l=1

log

(√
E
[(
al,i − al

)2]
+ ϵ

)
≥ τ, (6)

E indicates the expectation and al = 1
Hl

∑Hl

i al,i at layer l. ϵ is a small constant value. We constrain
the log variance of attention to guarantee sufficient divergence of attention heads at each layer with a
specific degree τ > 0 by jointly minimizing the task loss with an additional regularizer formulated
to the negative sum of layerwise log attention variance. Note that our proposed method is robust to
utilize any kind of multi-head self-attention modules, we demonstrate the efficacy in vanilla Vision
Transformer (Dosovitskiy et al., 2020) and Swin Transformer (Liu et al., 2021). The learned backbone
weights w excepting classifier and GLAD-adaptors can be reused for fine-tuning future tasks. We
describe the overall continual pre-training procedure with GLAD in Algorithm 1.

Algorithm 1 Continal Pre-training with GLobal Attention Discretization (GLAD)

input A sequence of tasks {D1,D2, · · · }, backbone network f , learning rate η ∈ R+, hyperparameter λ,
small constant ϵ, initialization winit,vinit

1: for all task Tt = T1, T2, . . . do
2: Build a model fw,v(·) with GLAD-MSA ▷ Figure 2
3: Initialize w ← w∗ excluding classifier if fw∗exists, otherwise w ← winit
4: Initialize v ← vinit := (1, . . . , 1) ∈ Rdout

5: for batch xn,yn ∼ Dt do

6: L = ℓ (f (xn;w,v) ,yn) + λ
∑L

l=1− log

(√
E
[(
al,i − al

)2]
+ ϵ

)
▷ Equation 6

7: w ← ∇wL
8: v ← ∇vL
9: end for

10: w∗ ← w
11: end for

5 EXPERIMENTS

5.1 BASELINES AND DATASETS

Backbone architectures and baselines For all experiments, we use ViT (Dosovitskiy et al.,
2020) and Swin Transformer (Liu et al., 2021) as backbone architectures. We follow Siamese
networks by Madaan et al. (2022) and implement a masked image modeling-based continual self-
supervised learning framework under SimMIM (Xie et al., 2022b) and MAE (He et al., 2022) for UCL.
CURL (Rao et al., 2019) is one of the pioneer works on unsupervised continual learning literature,
but it is not scalable for high-resolution visual images by design. We utilize several continual learning
methods: Synaptic Intelligence (SI) (Zenke et al., 2017), Dark Experience Replay (DER) (Buzzega
et al., 2020), and Lifelong Unsupervised Mixup (LUMP) (Madaan et al., 2022). We further describe
details on architectures, CL methods, and hyperparameter setups in Appendix A.

Datasets and validation tasks We use ImageNet-1K dataset (Deng et al., 2009) by splitting it into
ten tasks where each task contains 100 classes. We construct a sequential dataset with nine earlier
tasks and assign the last task as a validation set for non-iid task evaluation.

5.2 EXPERIMENTAL RESULTS

Forward transfer through continual pre-training We validate the first task (T0)’s evaluation
performance according to Continual Pre-training in Table 1, to measure the change of evaluation
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Table 1: Finetuning and linear evaluation performance with their forward transfer of the first task on
ImageNet 1K Split after supervised/unsupervised continual learning. We report the Top-1/Top-5 performance
for all individual experiments. Higher is better for both metrics and the best results are highlighted in bold.

(CONTINUAL) PRE-TRAINING SUPERVISED Contrastive (Chen & He, 2021) Masked Model (Xie et al., 2022b)

FINAL ACC FWD TRANSFER FINAL ACC FWD TRANSFER FINAL ACC FWD TRANSFER

Fi
ne

tu
ni

ng

1K PRETRAINED 87.48 / 98.08 − − − − −
22K PRETRAINED 87.76 / 98.48 − − − − −

BASE MODEL 71.90 / 90.64 6.88 / 3.70 64.38 / 86.18 7.18 / 4.56 73.18 / 91.76 13.26 / 7.46
SI (Zenke et al., 2017) 70.00 / 90.38 7.40 / 4.52 61.46 / 84.82 4.15 / 2.42 71.54 / 90.76 11.92 / 6.58

DER (Buzzega et al., 2020) 70.57 / 90.12 8.94 / 4.86 62.37 / 85.46 9.28 / 6.08 70.10 / 90.10 19.55 / 12.24
LUMP (Madaan et al., 2022) N/A N/A 64.01 / 86.42 6.24 / 4.32 75.11 / 92.38 21.28 / 12.42

L
in

ea
rP

ro
be

1K PRETRAINED 87.48 / 97.98 − − − − −
22K PRETRAINED 86.53 / 98.06 − − − − −

BASE MODEL 33.66 / 62.20 -5.98 / -4.30 17.10 / 40.60 7.64 / 13.94 17.46 / 40.60 4.76 / 6.36
‘ SI (Zenke et al., 2017) 34.82 / 63.18 -6.18 / -5.56 15.24 / 36.76 -1.42 / -2.38 14.92 / 37.80 4.82 / 8.26

DER (Buzzega et al., 2020) 34.59 / 62.29 -5.86 / -6.16 14.84 / 36.13 3.68 / 5.22 6.22 / 21.52 -0.84 / -1.04
LUMP (Madaan et al., 2022) N/A N/A 18.50 / 42.05 7.54 / 11.38 19.26 / 43.21 7.38 / 11.22
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Figure 3: (a-b): Visualization of the model transferability by comparing the accuracy on the Out-of-
distribution task (T9) after pre-training the first task (After T0) with after pre-training on nine sequential tasks
(After T8). We perform pre-training under Supervised (Sup), Contrastive Self-supervised Learning (Contr), and
Masked Image Modeling (MIM). (c-d): Same visualization with a CL method, SI, during pre-training.

performance on the in-distribution task. The evaluation of T0 from full pre-trained models over the
Imagenet-1K and -22K datasets obtains high validation accuracy on fine-tuning and linear evaluation
as they do not perform continual pre-training. Fine-tuning the base continual pre-training models,
which perform a simple CL strategy without additional methods during pre-training task sequences,
achieves performance increases in T0 as they pre-trained longer task sequences, obtaining positive
values in Forward Transfer. The results are similar to all supervised and unsupervised continual
pre-training frameworks, including Contrastive Self-supervised Learning (Madaan et al., 2022) and
Masked Image Modeling (Section 4.2). We also performed the continual pre-training with multiple
continual learning methods. We found that continual learning methods follow consistent tendencies
according to the continual pre-training frameworks when LUMP with Masked Image Modeling
gains the highest accuracy on T0 with the strong forward transfer. On the other hand, the model
degrades the linear evaluation performance in supervised continual pre-training, which had to do
with catastrophic forgetting reported in conventional continual learning scenarios, and demonstrates
increased performance by combining with continual learning methods.

Analyses for an Out-Of-Distribution (OOD) task We denote the last task (T9) as an Out-Of-
Distribution problem, excluding it from the pre-training task sequence. In Figure 3, we visualize
the top-1 validation accuracy on an OOD task over three continual pre-training frameworks w/
and w/o SI. Similar to in-distribution evaluation, MIM Continual Pre-training achieves higher fine-
tuning performance both on the base model and SI. The linear probe performance of Supervised CP
surpasses unsupervised counterparts, and we expect that representation from supervised learning
contains directly helpful features to classify the high-resolution and complex task problems even
without the re-update of backbone weights. In contrast, MIM remarkably underperforms on linear
evaluations due to its characteristic property; Masked Modeling focuses on capturing global attention
rather than local attention, which provides a better generalization to adapt to unseen tasks but is
inadequate for solving the problem.

To understand how continual learning frameworks exhibit incremental model generalization and fine-
tuning performance, we analyze the behavior of layer attention during continual pre-training using
the Swin-T backbone. In Figure 4, We visualize the layer-by-layer changes in aggregated attention
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Supervised SimSiam SimMIM
Figure 4: Visualization of aggregated attention distance on an OOD task (T9) at each layer at the end of
each continual pre-training task phase (T0→T8). The radius of marker indicates the standard deviation over
attention heads in the corresponding layer.
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(a) Attention Distance of T0 (b) Attention Distance of T9 (c) Attention Entropy of T9
Figure 5: (a-b): Visualization of the attention distance of an in-distribution (T0) and out-of-distribution task
(T9) with respect to three continual pre-trained frameworks right after the completion of the first (wT0) and last
task (wT0→T8). (c): Visualization of the entropy of each attention head’s distribution of unseen task T9.

distance for T9 while the model pre-trains ImageNet-1K-Split sequentially until the penultimate task
(T0→T8). Interestingly, aggregated attention distance significantly decreases the scale and increases
the diversity across attention heads. This demonstrates that the continual pre-trainer performs
incremental model generalization by getting more tending to memorize richer global attention rather
than focusing on local attention. In Supervised and Contrastive Continual Pre-training frameworks,
lower layers tend to drastically change toward capturing global attention, and it is also coincident
with well-known observations that lower layers in neural networks are more concerned with global
features. Also, Masked Image Modeling (SimMIM) results demonstrate the salient effectiveness of
capturing global attention compared with the other two frameworks.

Understanding the role of global and local attention We explicate behaviors of multi-head
attention in transformer backbones during continual pre-training with different supervised and
unsupervised frameworks. We investigate the degree of locality inductive bias in the continual
pre-training models by measuring the distance of attention heads at each layer followed by Xie
et al. (2022a), visualized in different dots. As shown in Figure 5 (a) and (b), supervised continual
pre-training (Supervised) captures the locality at lower layers and tends to focus on global attention
at upper layers. And we find that the model continuously promotes the locality preference during
continual pre-training. Also, the attention distance primarily depends on the pre-training models
rather than fine-tuning tasks, whether in- or out-of-distribution. And the results of contrastive self-
supervised learning (SimSiam) are similar to Supervised. Interestingly, Masked Image Modeling
Continual Pre-training (SimMIM) behaves very differently from the other two frameworks. Like
the lower layers, the deeper layers also have a diverse focus on locality and this tendency becomes
stronger as they continue to pre-train more tasks.

Next, we visualize the entropy conditioned solely on the distribution of each attention head in Figure 5
(c) by computing −

∑
i ai log(ai) for each attention head a. Similar to the analyses of attention

distance, we observe that the attention of SimMIM focuses on much broader over many tokens while
the other two frameworks concentrate on a few tokens, resulting in narrow attention.
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PRE-TRAINING CONTINUAL PRE-TRAINING & FINE-TUNING
T0→T4 T5→T8

T5 T6 T7 T8

SUPERVISED LEARNING 64.56 / 86.02 69.06 / 89.98 75.06 / 91.44 77.80 / 93.86

+ GLAD (OURS) 65.78 / 86.84 69.84 / 90.52 76.12 / 91.76 79.04 / 94.54

SIMMIM (Xie et al., 2022b) 68.34 / 88.24 72.22 / 91.78 77.38 / 93.22 80.12 / 94.74

+ GLAD (OURS) 68.24 / 88.46 73.24 / 92.10 78.94 / 93.46 81.62 / 95.22

MAE (He et al., 2022) 42.19 / 70.01 52.07 / 78.56 63.07 / 85.38 71.19 / 90.94

+ GLAD (OURS) 41.75 / 69.46 54.74 / 80.84 68.01 / 87.59 74.30 / 92.19

A
cc
u
ra
cy

Methods

Figure 6: Left: Per-task fine-tuning (top-1 / top-5) performance on T5 to T8 during continual pre-
training with base frameworks and our proposed method. Right: Analysis for freezing the weights on a few
lower/deeper layers during continual pre-training after pre-training first task. We use supervised (Sup) and
masked image modeling (MIM). LF and DF denote freezing lower layers and freezing deeper layers, respectively.

Freezing the partial layer weights during continual pre-training We further analyze the effect
of the layers for incremental generalization during continual pre-training in Figure 6 right. After
supervised/unsupervised training of the first task (After T0), we freeze the two lowest or two deepest
layer weights during the successive continual pre-training up to the final task (After T8). For the
MIM-based UCL framework, we use MAE with a ViT-B backbone. In supervised learning, both
partial gradient update policies reduce the degree of incremental generalization during continual
pre-training. It significantly reduces the representation model’s fine-tuning performance compared to
the fully-trained model. However, interestingly, prohibiting the update of layer weights at both ends
less affects MIM-based continual pre-training. We expect that this property comes from its flexibility
in learning diverse attention across all layers. For further analyses, please see Appendix B.3.

Incremental model generalization via Global Attention Discretization We now validate our
proposed method, Global Attention Discretization (GLAD), which encourages incremental model
generalization during supervised continual pre-training. As discussed earlier, supervised training
tends to focus on global attention at deeper layers. That is, the model is hard to stray far from the
weight space of the limited locality inductive bias, which is evident in the slower movement of
averaged attention distance from supervised continual pre-training compared to the SimMIM-based
(Please see Figure 4) and results in suboptimal adaptation to arriving tasks. In Figure 6 left, we
report the fine-tuning performance during continual pre-training. Note that to see the effect of
MIM-based continual pre-training, we first perform continual pre-training over earlier five tasks from
ImageNet-1K Split under supervised and MIM-based unsupervised continual learning. Next, the pre-
trained models fine-tune the remaining tasks in a sequential manner. We adopt SimMIM and Masked
AutoEncoder (MAE) to better understand general behaviors in Masked Image Modeling during
unsupervised continual learning. Our proposed GLAD achieves significant gain in the performance
of each task during sequential full-finetuning over different pre-trained initialization from supervised
and masked image modeling.

6 CONCLUSION

As powerful representation models have great versability to solve various downstream tasks, exploring
incremental pre-training strategy on a number of sequential tasks can be a practical and important
approach. This paper delves into how supervised and unsupervised continual learning affects model
generalization from various perspectives. To our surprise, continual learning models preserve
or even increment their transferability on in- and out-of-distribution tasks, increasing fine-tuning
performance as pre-training more tasks. We scrutinize the behavior of representations in continual
learning frameworks in the pre-training, including masked image modeling-based unsupervised
continual learning, and find that the continual learner tends to forget class-discriminative features
while progressively accumulating transferable features. Motivated by our observations, we propose
a new method for continual pre-training to help backbone weights gain transferability during fine-
tuning by introducing a new MSA module with parametric adaptors. We believe the exploration of
continuous learnability of the representation model would contribute to developing eco-friendly and
resource-efficient training regimes for broad research/industry fields.
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REPRODUCIBILITY STATEMENT

We will release our code and the implementation details to be publicly available for reproducibility.
In addition, we provide more details in Appendix for reproducibility, including architecture and
baselines setup with hyperparameters.
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A DETAILS FOR PROBLEM SETUPS

Datasets For all experiments and analyses, we use ImageNet (Deng et al., 2009) dataset, containing
1000 classes of high-resolution object images with their corresponding labels. We split them into
10 tasks, where each task consists of 100 different classes. We use only 10% of training instances
in each task for pre-training, and use the full set for the fine-tuning and linear probe. Accuracy is
measured by the validation dataset for each task. Note that Figure 6 Left use full training set for
sequential fine-tuning procedure from T5 to T8.

Architectures and baselines We follow Madaan et al. (2022) for an unsupervised continual learning
framework with contrastive self-supervised learning using SimSiam (Chen et al., 2020a). For masked
image modeling, we follow the setting of SimMIM (Xie et al., 2022b) and MAE (He et al., 2022)
using their official code repositories12 where the masking ratio is 0.6 and 0.75, respectively. We
use Vision Transformer (Dosovitskiy et al., 2020) (ViT-B) and Swin Transformer (Liu et al., 2021)
(Swin-T) for backbone architectures. In ViT-B, the embedding dimension is 768, the layer depth
is 12, the number of heads is 12, and the patch size is 16. In Swin-T, the embedding dimension
is 96, the layer depth at each block is [2, 2, 6, 2] (in total 12), the number of heads at each block
is [3, 6, 12, 24], the patch size is 4, and the sliding window size is 7. We set the input image size
to 224 for all experiments but 192 for SimMIM pre-training. For continual learning methods, we
use SI (Zenke et al., 2017), DER (Buzzega et al., 2020), and LUMP (Madaan et al., 2022). The
implementation is built upon an official code of LUMP3.

Training setups and hyperparameters We use AdamW optimizer (Loshchilov & Hutter, 2017)
with cosine learning rate decay and the warmup for all experiments. For the pre-training phase at
each task, we train the model 60 epochs on supervised learning and 100 epochs on unsupervised
learning models as self-supervised learning methods without label supervision may require more
iterations to converge. For fine-tuning, we basically perform 30 epochs training. For fine-tuning from
the model pre-trained Imagenet 1K & 22K in Table 1, we set the number of training epochs to 10 as
they rapidly converge within a few iterations. We set the hyperparameter for balancing the degree of
regularization term λ = 100 for SI, λ = 0.1 for DER, and α = 0.1 for LUMP. And the buffer size is
200 for rehearsal-based continual learning methods like DER and LUMP. We set the batch size to 64
for SimSiam pre-training, otherwise 128. Table 2 summarizes the learning rate and training epochs
for experiments and we linearly scale the learning rate with batch size/512 in practice to reflect the
input variance, followed by Goyal et al. (2017).

Table 2: Basic configurations for three continual learning frameworks during pre-training and fine-
tuning, where η = 2e−4. We report the best combinations of the learning rate for pre-training and
fine-tuning in the range of [0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0]×η and [0.1, 0.5, 1.0, 5.0]×η, respectively.

METHOD SUPERVISED CONTRASTIVE MASKED MODELING

PRE-TRAINING lr: 1.0 η, epochs: 60 lr: 0.2 η, epochs: 100 lr: 5.0 η, epochs: 100
FINE-TUNING lr: 0.5 η, epochs: 30 lr: 1.0 η, epochs: 30 lr: 5.0 η, epochs: 30

B ADDITIONAL ANALYSES

B.1 ATTENTION DISTANCE AND ENTROPY FROM DIFFERENT TRANSFORMER BACKBONES

sup:subsec:analyses-vitswin We plot the attention distance and distribution of attention heads per
layer for ViT-B in Figure 7 and Figure 8, respectively. And also, we plot the attention distance
and entropy of the distribution of attention heads per layer for Swin-T in Figure 9 and Figure 10.
Both self-attention-based architectures similarly behave according to the learning frameworks, i.e.,
Supervised, SimSiam, and SimMIM. Note that two consecutive layers in Swin-T repeat relatively high
and low values for both metrics since two successive swin transformer blocks (S-MSA and SW-MSA
in their original paper) aggregate locality in different ranges.

1https://github.com/microsoft/SimMIM
2https://github.com/facebookresearch/mae
3https://github.com/divyam3897/UCL
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Figure 7: ViT-B Attention distance of the first (T0) and the last task (T8) in a task sequence with respect to
three continual pre-trained frameworks right after the completion of the first (wT0) and last task (wT0→T8).
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Figure 8: ViT-B Attention entrtopy of the first (T0) and the last task (T8) in a task sequence with respect to
three continual pre-trained frameworks right after the completion of the first (wT0) and last task (wT0→T8).
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Figure 9: Swin-T attention distance of an in-distribution (T0) and ood task (T9) with respect to three continual
pre-trained frameworks right after the completion of the first (wT0) and last task (wT0→T8).
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Figure 10: Swin-T attention entropy of an in-distribution (T0) and ood task (T9) with respect to three continual
pre-trained frameworks right after the completion of the first (wT0) and last task (wT0→T8).

Supervised SimSiam SimMIM

Figure 11: Top row: Visualization of aggregated attention distance on an OOD task (T9) at each layer at the
end of each continual pre-training task phase (T0→T8). The radius of marker indicates the standard deviation
over attention heads in the corresponding layer. Bottom row: Aggregated attention entropy on T9.

B.2 CHANGE OF AGGREGATED ATTENTION DISTANCE AND ENTROPY DURING CONTINUAL
PRE-TRAINING

sup:subsec:analyses-entr We additionally visualize the movement of aggregated entropy of the
distribution from each attention head in Figure 11. We visualize the plot for attention distance
in Figure 4 again for a better comparison between them. Similar to observations in attention distance
visualization, aggregated attention entropy gradually decreases as proceeding to pre-train more tasks,
encouraging incremental model generalization. And aggregated attention entropy for supervised and
contrastive learning-based continual pre-training frameworks suffer from a small diversity with a
high average amount of information for all attention heads, compared to SimMIM.

B.3 AGGREGATED ATTENTION DISTANCE AND ENTROPY WHILE FREEZING PARTIAL LAYERS

We further visualize the movement of aggregated attention distance and entropy when freezing the
two lowest and deepest layers in Figure 12 and Figure 13, respectively. These experiments are exactly
from Figure 6 Right. Interestingly, if SimMIM freezes a few layers during continual pre-training, the
remaining trainable layers tend to decrease their attention distance and entropy more actively. We
believe that this is a reason that the SimMIM does not find noticeable performance degeneration in
fine-tuning, even freezing a few layers during continual pre-training. However, we didn’t observe a
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Figure 12: Visualization of aggregated attention distance on an OOD task (T9) at each layer at the end of
each continual pre-training task phase (T0→T8). We freeze the two lowest or deepest layers after pre-training the
first task (T0). The radius of the marker indicates the standard deviation over attention heads in the corresponding
layer.
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Figure 13: Visualization of aggregated attention entropy on an OOD task (T9) at each layer at the end of each
continual pre-training task phase (T0→T8). We freeze the two lowest or deepest layers after pre-training the first
task (T0). The radius of the marker indicates the standard deviation over attention heads in the corresponding
layer.

significant change in supervised continual pre-training. This is because supervised learning is prone
to rigidly focus on different features according to the layer depths (i.e., global to local), and therefore
cannot flexibly cope with capturing locality inductive bias.
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