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Abstract

Despite the empirical success of meta reinforcement learning (meta-RL), there1

are still a number poorly-understood discrepancies between theory and practice.2

Critically, biased gradient estimates are almost always implemented in practice,3

whereas prior theory on meta-RL only establishes convergence under unbiased4

gradient estimates. In this work, (1) We show that unbiased gradient estimates have5

variance O(N) which linearly depends on the sample size N of the inner loop6

updates; (2) We propose linearized score function (LSF) gradient estimates, which7

have bias O(1/
√
N) and variance O(1/N); (3) We show that most empirical prior8

work in fact implements variants of the LSF estimates; (4) We establish convergence9

guarantees for the LSF estimates in meta-RL, showing better dependency on N10

than prior work. Due to time constraints, the proof and appendix are not yet11

complete. They will be complete for camera-ready.12

1 Introduction13

By design, many reinforcement learning (RL) algorithms learn from scratch. This entails RL to14

achieve high profile success in a number of important and challenging applications [1–3]. However,15

at the same time, RL is highly inefficient compared to how humans learn, usually consuming orders16

of magnitude more samples to acquire skills at the same level as humans. One potential source of17

such inefficiencies is that unlike humans, RL algorithms do not exploit prior knowledge on the tasks18

at hand.19

To resolve such an issue, meta-reinforcement learning (meta-RL) formalizes the learning and transfer20

of prior knowledge in RL [4]. On a high level, an agent interacts with a distribution of tasks at meta-21

training time. The objective is that after meta-training, the agent can learn significantly faster when22

faced with unseen tasks at meta-testing time. If an agent achieves good performance at meta-testing23

time, it embodies the ability to transfer knowledge from prior experiences during meta-training.24

There are many concrete formulations of meta-RL (see, e.g. [5–13]), Our focus is meta-RL through25

gradient-based adaptations [4], where the agent carries out policy gradient (PG) inner loop updates26

[14] at both meta-training and meta-testing time.27

Motivation. Our work is motivated by a number of important discrepancies between meta-RL28

theory and practice. Recently, there is a growing interest in establishing performance guarantees for29

meta-RL algorithms with unbiased gradient estimates [15]. However, since the inception of the field,30

meta-RL practitioners have almost always implemented biased gradient estimates [4, 16–19]. It is31

natural to ask: why are unbiased gradient estimates potentially undesirable in practice, and what do32

we gain by introducing bias into gradient estimates?33

Our focus. We focus on the N-sample meta-RL objective where the inner loop updates are N -34

sample PG estimates. In prior work, this was called the E-MAML objective [16, 17, 15], as opposed35

to the MAML objective [4] where the inner loop update is exact PG. This objective is of practical36
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interest, because at meta-testing time, inner loop updates can only be implemented with N -sample37

PG estimates. See Sec 2 for details.38

Contributions. We make a few contributions that bridge meta-RL theory and practice.39

• High variance of unbiased estimates. By formulating the meta-RL objective as a generic40

N -sample additive Monte-Carlo objective, we show that the unbiased gradient estimates41

have variance on the order of O(N), rendering the estimates useless when N is large (see42

Sec 3).43

• Novel derivation of biased estimates. We propose the linearized score function (LSF)44

gradient estimate for the N -sample additive Monte-Carlo objective, which has variance45

O(1/N) and bias O(1/
√
N). Its application to meta-RL enjoys better properties at large N46

(see Sec 4).47

• Prior work implements biased estimates. We observe that despite their claims of unbi-48

asedness, most prior work in fact implements variants of LSF estimates. This implies they49

are both biased w.r.t. the MAML and the N -sample meta-RL objective (see Sec 5).50

• Performance guarantee with better dependency at large N . We provide performance51

guarantee of meta-RL algorithms with biased gradient estimates. Such guarantee contrasts52

with results of unbiased estimates, where the guarantee degrades significantly at large N53

due to high variance [15] (see Sec 6).54

2 Background55

2.1 Task-based reinforcement learning56

Consider a Markov decision process (MDP) with state space S and action space A. At time t ≥ 0,57

the agent takes action at ∈ A in state st ∈ S, receives a reward rt and transitions to a next state58

xt+1 ∼ p(·|st, at). Without loss of generality, we assume that the at t = 0 the agent starts at the59

same state. We assume the reward rt = r(st, at, g) to be a deterministic function of state-action pair60

(st, at) and the task variable g ∈ G. The task variable g ∼ pG is sampled for every episode. A policy61

π : S → P(A) specifies a distribution over actions at each state. We further assume that the MDP62

terminates within a finite horizon of H almost surely under all policies.63

Parameterized policy. In general, the policy is parameterized πθ with parameter θ ∈ RD,64

Value function. Let τ := (st, at, rt)
H−1
t=0 be a trajectory. The policy πθ induces a distribution over65

trajectories pθ,g(τ) := ΠH−1
t=0 p(xt+1|st, at)πθ(at|st, g) . We define R(τ, g) :=

∑H−1
t=0 γtrt as the66

cumulative return along trajectory τ under task g. We also define the value function as the expected67

returns over trajectories Vg(πθ) := Eτ∼pθ [R(τ, g)]. We also overload the notations Vg(θ) := Vg(πθ).68

Note that unlike other work in RL, we define the value function as expected cumulative returns69

starting from the initial state. This definition will greatly simplify notations in later sections.70

Policy gradient and stochastic estimates. Policy gradient (PG) [14] is the gradient of the value71

function with respect to policy parameter ∇θVg(θ) = Eτ∼pθ [R(τ, g)∇θ log pθ,g(τ)]. In practice, it72

is not feasible to compute PG exactly and it is of interest to construct stochastic PG estimates given73

sampled trajectories. Indeed, ∇̂θVg(θ) = R(τ, g)∇θ log pθ,g(τ) with τ ∼ pθ is an unbiased PG74

estimate in that E[∇̂θVg(θ)] = ∇θVg(θ).75

2.2 Meta reinforcement learning76

Meta-RL aims to maximize the average value function evaluated at the updated policy parameter77

θ′N = θ + η 1
N

∑N
i=1R(τi, g)∇θ log pθ,g(τi) obtained by ascent with N -sample PG estimates. Here,78

(τi)
N
i=1 ∼ pθ i.i.d. and η is a fixed stepsize. Formally, consider the following optimization problem,79

max
θ

Eg [LN (θ, g)] , LN (θ, g) := E(τi)Ni=1

[
Vg

(
θ + η

1

N

N∑
i=1

R(τi, g)∇θ log pθ,g(τi)

)]
, (1)

The expectations are over the goal distribution g ∼ pG and random trajectories (τi)
N
i=1 ∼ pθ. The80

N -sample PG estimate update from θ to θ′N is called the inner loop update. We call LN the N -81

sample meta-RL objective due to its critical dependency on N . Since the task distribution pG does not82
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depend on θ, we mostly focus on discussing of properties of LN as a function of θ in later sections.83

The N -sample meta-RL objective was initially proposed in [16, 17] under the name E-MAML and84

analyzed in [15] in more theoretical contexts.85

The limit case N → ∞. Under mild conditions, the limit exists when N → ∞ and Eqn 186

converges to the following problem87

max
θ

Eg [L∞(θ, g)] , L∞(θ, g) := Vg (θ + η∇θVg(θ)) . (2)

In other words, the inner loop update becomes exact PG ascent. This objective was proposed in the88

initial MAML framework [4].89

Short notes on prior work. Though prior literature mainly focuses on deriving gradient estimates90

to the MAML objective, we show that there is a fundamental challenge in obtaining unbiased91

estimates (see Sec 5). Instead, we start the discussion in Sec 3 on the N -sample meta-RL objective.92

2.3 Estimating stochastic gradient of Monte-Carlo objectives93

To facilitate discussions in later sections, we provide a brief background on optimizing general94

Monte-Carlo objectives. Monte-Carlo (MC) objectives are common in RL, generative modeling and95

various probability inference problems (see, e.g., [20, 21] for related reviews). In its general form,96

MC objectives are defined as L(θ) := EX∼pθ [f(X)] where random variables X are drawn from97

a distribution pθ that depends on learnable parameter θ. For simplicity, we first consider when f98

depends explicitly on X only, though it can also depend on θ. To optimize L(θ), it is of direct interest99

to construct unbiased estimates to∇θL(θ).100

Score function gradient estimate. The score function (SF) gradient estimate is well defined under101

the general assumption that f is bounded.102

∇̂SF
θ L(θ) := f(X)∇θ log pθ(X), X ∼ pθ.

By construction, The estimate is unbiased. However, due to the gradient of score function103

∇θ log pθ(X), the estimate often has high variance in practice.104

Path-wise gradient estimate. If there exists an elementary distribution ζ ∼ pζ (e.g. normal105

distribution N (0, 1)) and parameter-dependent transformation function Tθ such that Tθ(ζ) is equal106

in distribution to X ∼ pθ, we call X reparameterizable. When X is reparameterizable and f is107

differentiable, the path-wise (PW) gradient estimate exists and is unbiased108

∇̂PW
θ L(θ) := [∇Xf(X)]X=Tθ(ζ)∇θTθ(ζ), ζ ∼ pζ .

Intuitively, PW gradient estimate makes use of the gradient ∇Xf(X) and enjoys lower variance109

compared to the SF gradient estimate in many applications [22]. However, the PW gradient estimate110

is less generally applicable due to assumptions on X and f . For example, those assumptions are not111

satisfied for important applications such as RL and meta-RL.112

3 Meta-RL as N -sample additive Monte-Carlo objective113

We start our discussion by extending the MC objective to N -sample additive MC objective. This114

general framework encompasses meta-RL as a special case and entails the natural derivative of a new115

estimate in Sec 4.116

3.1 N -sample additive Monte-Carlo objective117

Let (Xi)
N
i=1 ∼ pθ be i.i.d. samples from a parameterized distribution pθ on domain X . Define118

φ : X 7→ Rh as feature mapping function and let f : Rh 7→ R be a scalar function. We define the119

N -sample additive MC objective as follows,120

L(θ) := E(Xi)Ni=1

[
f

(∑N
i=1 φ(Xi)

N

)]
. (3)

The N -sample additive MC objective can be recovered as a special case of the MC objective by121

defining X := (Xi)
N
i=1. However, we will find it very useful to make clear the dependency on N122

samples when studying the property of L(θ). In addition, the objective defines interactions between123

φ(Xi) in an additive manner, which seems quite restrictive. We will see later that this restrictive124

definition generalizes the meta-RL objective LN (θ, g) as a special case.125

We ground the discussion with a toy example.126
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ToyN -sample additive MC objective. Consider when pθ is a parameterized Gaussian distribution127

N (µ, σ2) where σ > 0 is fixed. The feature mapping φ and objective f are both identity functions.128

3.2 Gradient estimates for N -sample additive MC objective129

The SF gradient estimate to the N -sample additive MC objective is130

∇̂SF
θ L(θ) := f

(∑N
i=1 φ(Xi)

N

)
N∑
i=1

∇θ log pθ(Xi), (Xi)
N
i=1 ∼ pθ. (4)

Since the SF estimate changes distributions over N variables at the same time,
∑N
i=1∇θ log pθ(Xi)131

sums over N terms. This implies high variance, which we calculate exactly for the toy example.132

Lemma 3.1. In the toy MC objective example, V
[
∇̂SF
θ L(θ)

]
= O(N).133

The variance depends linearly on N ! This makes the estimate very hard to use in applications with134

large N . Compared to the SF estimate, when the PW estimate ∇̂PW
θ L(θ) is available, it has much135

lower variance. In the toy example, it is indeed the case since X = σ · ζ + µ, ζ ∼ N (0, 1),136

Lemma 3.2. In the toy MC objective example, V
[
∇̂PW
θ L(θ)

]
= 0.137

The zero variance is specialized to the toy example. Since PW gradient estimates are not applicable138

in RL and meta-RL, we will not discuss them further. Nevertheless, they serve as an golden standard139

for low-variance unbiased gradient estimates.140

3.3 Gradient estimates when f, φ depends on θ141

Next, we the discussion to the case where f, φ depends on parameter θ. Define the generalized142

N -sample additive MC objective as follows143

G(θ) := E(Xi)Ni=1

[
f

(∑N
i=1 φ(Xi, θ)

N
, θ

)]
. (5)

We start by deriving exact gradient to the objective144

Lemma 3.3. Let φ̄N := 1
N

∑N
i=1 φ(Xi, θ). The generalized N -sample additive MC objective has145

gradient∇θG(θ) as follows where (Xi)
N
i=1 ∼ pθ i.i.d.,146

E(Xi)Ni=1

f (φ̄N , θ)
N∑
i=1

∇θ log pθ(Xi)︸ ︷︷ ︸
term (i)

+∇θf
(
θ, φ̄N

)
+

(
1

N

N∑
i=1

∇θφ(θ,Xi)

)
∇φ̄N f(θ, φ̄N )︸ ︷︷ ︸

term (ii)


Generalized SF gradient estimate. With access to samples (Xi)i=1 ∼ pθ, we define the general-147

ized SF gradient estimate ∇̂SF
θ G(θ) as follows148

f
(
φ̄N , θ

) N∑
i=1

∇θ log pθ(Xi)︸ ︷︷ ︸
term (i)

+∇θf
(
θ, φ̄N

)
+

(
1

N

N∑
i=1

∇θφ(Xi, θ)

)
∇φ̄N f(φ̄N , θ)︸ ︷︷ ︸

term (ii)

. (6)

The two terms in the estimate echo the two terms in the exact gradient in Lemma 3.3. Term (i)149

corresponds to the SF estimate in Eqn 4. Term (ii) is a direct result of how f, φ depends on θ. We150

provide a full derivation in Appendix A. Examining term (i) and term (ii), we argue that the variance151

of the overall estimate mainly comes from term (i). This is because term (ii) averages over N terms152

(e.g., with φ̄N ) whereas term (i) sums over N score function gradients∇θ log pθ(Xi).153

4



3.4 Meta-RL as generalized N -sample additive MC objective154

With the conversion: Xi := τi, φ(Xi, θ) := R(τi, g)∇θ log pθ,g(τi) and f(φ̄N , θ) = Vg(θ + ηφ̄N ),155

we can cast meta-RL as a special instance of the generalized N -sample additive MC objective.156

We start by computing gradient of the N -sample objective JN (θ, g) := ∇θLN (θ, g) as a direct result157

of Lemma 3.3.158

Lemma 3.4. Let τi ∼ pθ i.i.d., ∇Vg(θ′N ) denotes [∇θVg(θ)]θ=θ′N and θ′N := θ +159

η 1
N

∑N
i=1R(τi, g)∇θ log pθ,g(τi) is the (random) updated parameter. Then the gradient JN (θ, g) :=160

∇θLN (θ, g) is161

E(τi)Ni=1

[
Vg(θ

′
N )

N∑
i=1

∇θ log pθ,g(τi)

]
︸ ︷︷ ︸

=:J
(i)
N (θ,g)

+E(τi)Ni=1

[(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′N )

]
︸ ︷︷ ︸

=:J
(ii)
N (θ,g)

,

(7)

We reiterate intuitions about the two gradient terms in the context of meta-RL. The parameter θ162

influences the objective LN (θ, g) in two different ways. The first term arises from the fact that the N163

random trajectories are sampled from pθ, which depends on θ. The second term is a result of how θ164

impacts LN (θ, g) explicitly through the inner loop N -sample PG estimate.165

Unbiased meta-RL gradient estimate. In the following, we specify an algorithmic procedure to166

construct unbiased estimates to JN (θ, g). This is a direct instantiation of the generalized SF gradient167

estimate in Eqn 6 in the context of meta-RL.168

Corollary 3.5. First, sample (τi)
N
i=1 ∼ pθ and computed the updated parameter θ′N . Then, construct169

unbiased estimates to ∇Vg(θ′N ) and Vg(θ′N ), e.g. with trajectories sampled under πθ′N . Let these170

estimates be∇V̂g(θ′N ) and V̂g(θ′N ) respectively1. The final estimate is171

V̂g(θ
′
N )

N∑
i=1

∇θ log pθ,g(τi)︸ ︷︷ ︸
=:Ĵ

(i)
N,SF(θ,g)

+

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(ii)
N,SF(θ,g)

. (8)

Both terms are unbiased E[Ĵ
(i)
N,SF(θ, g)] = J

(i)
N (θ, g),E[Ĵ

(ii)
N,SF(θ, g)] = J

(ii)
N (θ, g) with respect to the172

two terms in Eqn 7. This implies that the overall estimate is also unbiased.173

Variance of the unbiased gradient estimate. As direct implications of the properties of SF gra-174

dient estimate and generalized SF gradient estimate, ĴN has very high variance. In fact, building175

on the N -sample additive MC objective toy example, we can construct meta-RL examples where176

V[Ĵ (ii)] = O(N). See Appendix A for more details. Our objective now is to develop new estimates177

which bypass the high variance of the unbiased estimate.178

4 Linearized score function gradient estimate179

We now introduce a major development in this paper: a new gradient estimate for the N -sample180

additive MC objective. This estimate is in general biased but has significantly lower variance181

(O(1/N)) compared to the SF estimate (O(N)) when N is large, making it attractive in practice.182

4.1 Linearized SF gradient estimate for N -sample additive MC objective.183

When the PW gradient estimate is applicable, it often has lower variance than the SF gradient estimate.184

Previously, we argue that this is because PW leverages gradient information in the objective f while185

SF does not. Building on this intuition, we propose a new gradient estimate called linearized score186

function (LSF) gradient estimate as follows,187

∇̂LSF
θ L(θ) :=

[
∇f

(
φ̄N
)]T 1

N

N∑
i=1

φ(Xi)∇θ log pθ(Xi). (9)

1For now, we just require the estimates to be unbiased. In Section 6, we make these estimates concrete for
refined convergence analysis.
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Recall that φ̄N :=
∑N
i=1 φ(Xi)

N and ∇f(φ̄N ) denotes [∇xf(x)]x=φ̄N . The LSF gradient estimate188

makes use of the gradient of f yet does not require reparameterization of the random variables X . In189

this sense, it is more general than the PW gradient estimate, yet leverages more information than the190

SF estimate. Indeed, LSF achieves significant variance reduction than SF.191

Lemma 4.1. In the toy MC objective example, V
[
∇̂LSF
θ L(θ)

]
= O(1/N).192

In the toy example, the PW gradient estimate is the gold standard unbiased estimate with zero193

variance. Yet, as discussed before, it is not generally applicable. The LSF gradient estimate has194

variance O(1/N), which decays as N increases. This makes LSF applicable in large N regimes.195

However, unlike the SF estimate which is by design unbiased, the LSF estimate is in general biased.196

Lemma 4.2. In general, when f is twice continuously differentiable and
∥∥∇2

xf(x)
∥∥

2
≤ C for all x197

in domains of f with a constant C. Then Bias[∇̂LSF
θ L(θ)] = O(1/

√
N).198

Derivation of the estimate. The naming linearized implies how the estimate was derived in the199

first place, which we show in Appendix A. In a nutshell, LSF is derived using a local linearization200

of f(φ̄N ) used in the SF estimate, based on Taylor expansion. This allows LSF to utilize gradient201

information ∇f(φ̄N ) to reduce variance, yet still remain generally applicable.202

4.2 Gradient estimate for Generalized N -sample additive MC objective203

We extend the LSF gradient estimate to the generalizedN -sample additive MC objective in Eqn 5. We204

do so by replacing the term (i) SF estimate by LSF estimate in Eqn 6. This produces the generalized205

LSF gradient estimate ∇̂LSF
θ G(θ) as follows,206

[
∇φ̄N f

(
φ̄N , θ

)]T 1

N

N∑
i=1

φ(Xi, θ)∇θ log pθ(Xi, θ)︸ ︷︷ ︸
term (i)

+∇θf
(
θ, φ̄N

)
+

(
1

N

N∑
i=1

∇θφ(Xi, θ)

)
∇φ̄N f(φ̄N , θ)︸ ︷︷ ︸

term (ii)

.

(10)

Due to the bias in the LSF gradient estimate, the generalized LSF estimate is also biased. However,207

the key trade-off is that the new term (i) in Eqn 10 averages overN samples and achieves significantly208

smaller variance than the generalized SF estimate.209

4.3 Biased gradient estimate to the meta-RL objective.210

We next apply the generalized LSF gradient estimate to the N -sample meta-RL objective.211

Corollary 4.3. Let ui := ∇θ log pθ,g(τi). Define∇V̂g, V̂g in the same way as in Lemma 3.5. Then212

the LSF gradient estimate ĴN,LSF(θ, g) to LN (θ, g) is expressed as follows,213 (
1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(i)
N,LSF(θ,g)

+

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(ii)
N,LSF(θ,g)

, (11)

While the unbiased SF estimate Ĵ (iii)
N,SF has high variance when N is large, the LSF estimate Ĵ (i)

N,LSF214

achieves a good trade-off between bias and variance. We will show how such trade-off impacts the215

convergence analysis in Section 6.216

Connections to exact gradient for meta-RL objective L∞(θ, g). It is now worthwhile to contrast217

the generalized LSF estimate to the gradient of J∞(θ, g) := ∇θL∞(θ, g).218
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Corollary 4.4. Let ui := ∇θ log pθ,g(τi) and θ′ = θ + ηEτ∼pθ,g [R(τ, g)∇θ log pθ,g(τ)] be the219

updated parameter with exact PG ascent. In the following, let (τi)
N
i=1 ∼ pθ,g i.i.d., then J∞(θ, g) is220

E(τi)Ni=1

[
1

N

N∑
i=1

R(τi, g)uiu
T
i ∇Vg(θ′)

]
︸ ︷︷ ︸

=:J
(i)
∞ (θ,g)

+E(τi)Ni=1

[(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′)

]
︸ ︷︷ ︸

=:J
(ii)
∞ (θ,g)

,

(12)

Here, since θ′ is the updated parameter resulting from exact PG ascent, it is not easy to construct221

unbiased estimate to J∞(θ, g). This is because even if we can compute θ′N as N -sample unbiased222

estimate to θ′, in general we still have ∇Vg(θ′) 6= E[∇Vg(θ′N )]. However, note that there are223

similarities between the parametric forms of ĴN,LSF(θ, g) and J∞(θ, g). We can interpret ĴN,LSF(θ, g)224

as also a biased estimate to ĴN,LSF(θ, g), obtained by replacing θ′ with θ′N .225

5 Discussion on prior work226

N -sample meta-RL objective. As noted earlier, the N -sample meta-RL objective was considered227

in both empirical [16, 17] and theoretical contexts [15]. This objective is of practical interest because228

of budget on inner loop samples. The limit case N = ∞ was considered in the original MAML229

formulation of meta-RL [4].230

Unbiased gradient to the limit case J∞(θ, g). In the author’s original implementation of the231

MAML gradient estimate with auto-differentiation libraries [4], a term equivalent to J (i)
∞ (θ, g) was232

unintentionally dropped, resulting in a biased estimate. This fuels the motivation for a number of233

follow-up work to derive unbiased gradients [23, 18]. However, they are biased in general. This is234

mainly because practical algorithms can only estimate∇gVg(θ′N ) instead of∇gVg(θ′), as required235

by J∞(θ, g) in Eqn 12. This observation was also hinted at recently in [19].236

Prior work in fact constructs the LSF gradient estimate. Since most prior work derive meta-RL237

gradient estimates based on J∞(θ, g) [23, 17–19], and due to the accidental replacement of θ′ by238

θ′N , we conclude that they in fact construct variants of the LSF gradient estimate (see comments239

following Corollary 4.4). In particular they construct Ĵ such that E[Ĵ ] = E[ĴN,LSF(θ, g)] but with240

potentially lower variance. All of them focus on reducing variance of estimating the multiplier matrix241

to∇Vg(θ′N ). Variance reduction methods include control variates [18], as well as introducing further242

bias to the LSF gradient estimate [17, 19].243

Unbiased gradient estimate to N -sample meta-RL objective. The exact gradient and unbiased244

gradient estimate to N -sample meta-RL objective was derived in [16, 17, 15]. A comprehensive245

derivation was carried out in [17], where they contrasted J∞(θ, g) with JN (θ, g). However, they246

erroneously claimed that J (ii)
∞ (θ, g) = J

(ii)
N (θ, g) and only differs in J (i)

∞ (θ, g) 6= J
(i)
N (θ, g). This247

is not true. Our derivation shows that J (ii)
∞ (θ, g) 6= J

(ii)
N (θ, g) in general because E[∇Vg(θ′N )] 6=248

∇Vg(θ′).249

Convergence analysis of gradient-based meta-learning and meta-RL. Recently, [24] estab-250

lished generic convergence guarantees for gradient-based meta-learning algorithms for supervised251

learning with one inner loop update. Recently, [25] extended the analysis to multi-step inner loop252

updates.253

For meta-RL, [15] established convergence for the N -sample meta-RL objective. They motivated the254

objective in a similar manner as [16, 17] and constructed unbiased estimates exactly as the generalized255

SF estimate ĴN,SF(θ, g). However, since the estimate has variance linear in N , the final guarantee256

becomes less applicable in practice. Contrast to this work, we show how the biased generalized LSF257

estimate achieves performance guarantee with more desirable dependency on N .258

6 Full Algorithm and Convergence theory with biased gradient estimate259

We start by presenting the meta-RL full algorithm with generalized LSF estimate. This algorithm260

closely resembles how practical algorithms are implemented. The same algorithm with generalized261

SF estimate was analyzed in [15].262
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6.1 Full algorithm and key assumptions263

The full meta-RL algorithm is in Algorithm 1. Two important notes: (1) We instantiate the unbiased264

gradient estimate∇Vg(θ′N ) by M -sample PG estimates with trajectories collected under the updated265

parameter θ′N ; (2) So far we have focused on presenting gradient estimate for a single task g. In266

practice, we sample a batch of B tasks (gi)
B
i=1 and compute gradient estimate for each ĴN,LSF(θ, gi).267

The overall gradient ĴN,LSF is an average across tasks, which is used for the final update at each268

iteration θ ← θ + αĴ with learning rate α > 0.269

Algorithm 1 N -sample meta-RL algorithm with linearized SF gradient estimate
Require: Inputs: Hyper-parameters: batch sizes (B,N,M). Step size η. Initial parameter θ.

for ite = 1, 2... do
Inner loop sampling. Sample B task variables gi and N trajectories under (τi,j)

N
j=1 ∼ pθ,gi .

Inner update. Compute inner loop update θ′i,N = θ+ η 1
N

∑N
j=1R(τi,j , gi)∇θ log pθ,gi(τi,j).

Outer sampling at adapted parameters. Collect M trajectories (τ ′i,k)Mk=1 ∼ pθ′i,N ,gi for the

outer loop PG estimate∇θV̂gi(θ′i,N ) = 1
M

∑M
k=1R(τ ′i,k, gi)∇θ log pθ,gi(τ

′
i,k).

Gradient estimate and update. Compute ĴN,LSF(θ, gi) based on Eqn 11. Then compute
ĴN,LSF = 1

B

∑B
i=1 ĴN,LSF(θ, gi) as the average estimate. Update outer loop θ ← θ + αĴN,LSF.

end for
Output trained meta-RL policy πθ.

We also need a few common assumptions [15] for theoretical analysis.270

Assumption 6.1. (Smooth parameterization assumptions) For all s ∈ S, a ∈ A, g ∈ G,271

‖∇θ log πθ(a|s, g)‖2 ≤ G1 and
∥∥∇2

θ log πθ(a|s, g)
∥∥

2
≤ G2. In addition, for all θ1, θ2 ∈ RD,272 ∥∥∇2

θ log πθ1(a|s, g)−∇2
θ log πθ2(a|s, g)

∥∥
2
≤ ρ ‖θ1 − θ2‖2.273

6.2 Main result274

The meta-RL objectives takes an average over the parameter-independent distribution g ∼ pG and275

hence its overall gradients are JN (θ) := Eg[JN (θ, g)] and for the limit case J∞(θ) := Eg[J∞(θ, g)].276

As previously discussed, the generalized LSF estimate is biased in general. We start by characterizing277

its bias against JN (θ). We have the following.278

Proposition 6.2. For all θ ∈ RD,
∥∥∥E [ĴN,LSF(θ)

]
− J∞(θ)

∥∥∥
2
≤ O(1/

√
N) and279

‖J∞(θ)− JN (θ)‖2 ≤ O(1/
√
N).280

The above also implies a bound on the bias
∥∥∥E [ĴN,LSF(θ)

]
− JN (θ)

∥∥∥
2

= O(1/
√
N). This is281

consistent with the result in Sec 4. We next characterize the variance of the generalized LSF estimate.282

283

Proposition 6.3. For all θ ∈ RD, V
[
ĴN,LSF(θ)

]
≤ O(1/M) +O(1/N) +O(1/B).284

The three terms on the upper bound above indicate these three sources of randomness that contribute285

the variance of the generalized LSF estimate ĴN,LSF (θ): the batch of B tasks, the batch of N inner286

loop trajectories τij per task and the batch of M trajectories τ ′ik for estimating outer loop PG. By287

letting B →∞,M →∞, we see that the variance is of order O(1/N). This is consistent with the288

variance of the LSF estimate for the N -sample additive MC objective in Sec 4.289

The above implies convergence guarantees for the biased gradients, we will complete the result in290

camera-ready. We will also make explicit comparison to [15] and show that our guarantees have more291

superior dependency on N .292
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A Derivation of the Linearized Score Function Estimate362

Since Xis are i.i.d., we expect the average 1
N

∑N
i=1 φ(Xi) to approach φ̄ := E [φ(Xi)] as N →∞.363

Consider the Taylor expansion of f(φ̄) with 1
N

∑N
i=1 φ(Xi) as its refernece point,364

f
(
φ̄
)

= f

(
1

N

N∑
i=1

φ(Xi)

)
+

[
∇f

(
1

N

N∑
i=1

φ(Xi)

)]T [
φ̄−

(
1

N

N∑
i=1

φ(Xi)

)]
+ o

(∥∥∥∥∥φ̄− 1

N

N∑
i=1

φ(Xi)

∥∥∥∥∥
2

)
Rearranging terms, we get365

f

(
1

N

N∑
i=1

φ(Xi)

)
= f

(
φ̄
)

+

[
∇f

(
1

N

N∑
i=1

φ(Xi)

)]T [(
1

N

N∑
i=1

φ(Xi)

)
− φ̄

]
+ o

(∥∥∥∥∥φ̄− 1

N

N∑
i=1

φ(Xi)

∥∥∥∥∥
2

)

Now consider each term above. The constant term f(φ̄) is independent of θ and produces zero366

gradient. If we drop the residual term, we are left with the central term .367

Note that the central term contains φ̄, which we do not have access to. If we multiply the above terms368

with
∑
i∇ log p(Xi), and by dropping terms with expectation zero as well as φ̄ (when dropping φ̄369

the expected gradient does not change), we arrive at the LSF estimate370 [
∇f

(
1

N

N∑
i=1

φ(Xi)

)]T (
1

N

N∑
i=1

φ(Xi)∇θ log p(Xi)

)
.
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